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Abstract
Motivation. The Sequence Read Archive public database has reached 45 petabytes of raw sequences and doubles its nucleotide content every
2 years. Although BLAST-like methods can routinely search for a sequence in a small collection of genomes, making searchable immense public
resources accessible is beyond the reach of alignment-based strategies. In recent years, abundant literature tackled the task of finding a se-
quence in extensive sequence collections using k-mer-based strategies. At present, the most scalable methods are approximate membership
query data structures that combine the ability to query small signatures or variants while being scalable to collections up to 10 000 eukaryotic
samples. Results. Here, we present PAC, a novel approximate membership query data structure for querying collections of sequence datasets.
PAC index construction works in a streaming fashion without any disk footprint besides the index itself. It shows a 3–6 fold improvement in con-
struction time compared to other compressed methods for comparable index size. A PAC query can need single random access and be per-
formed in constant time in favorable instances. Using limited computation resources, we built PAC for very large collections. They include
32 000 human RNA-seq samples in 5 days, the entire GenBank bacterial genome collection in a single day for an index size of 3.5 TB. The latter
is, to our knowledge, the largest sequence collection ever indexed using an approximate membership query structure. We also showed that
PAC’s ability to query 500 000 transcript sequences in less than an hour.
Availability and implementation: PAC’s open-source software is available at https://github.com/Malfoy/PAC.

1 Introduction

Public databases, such as the Sequence Read Archive (SRA)
or European Nucleotide Archive overflow with sequencing
data. The vast amount of sequences, experiments, and species
allows, in principle, ubiquitous applications for biologists and
clinicians. Such databases are becoming a fundamental shared
resource for daily sequence analysis. But concretely, we only
witness the onset of their exploitation, while their exponential
growth poses serious scalability challenges [for instance, SRA
has reached 45 petabytes of raw reads and roughly doubles
every 3 years (ena)].

Today, searching for a query sequence in a single genome/
dataset or a restricted collection of genomes is considered rou-
tine through alignment-based tools, such as BLAST (Altschul
et al. 1990) and others (Camacho et al. 2009, Li and Durbin
2009, Janin et al. 2014, Dolle et al. 2017). In contrast, the
scale of databases, such as SRA makes BLAST and any
alignment-based method ill-suited due to the prohibitive cost
of the alignment phase. Broader usages of such resources ne-
cessitate algorithms allowing hyper-scalable membership
queries as a foundation. In particular, they must be able to
quickly discard a sequence that is absent from a substantial
dataset collection. They must also identify the datasets where
the query is present. Therefore, recent literature has tackled
these problems using alignment-free k -mer-based strategies.

The known most scalable solutions are sketching methods,
which reduce the datasets to a small set of signatures based on
the principle of locality-sensitive hashing. However, the loss
of resolution implied by these methods narrows the query
possibilities to large queries of the order of magnitude of

genomes or larger. Numerous applications rely on signifi-
cantly smaller query size, e.g. variant calling of SNP/small
indels, finding alternative splicing sites, or other small
genomic signatures.

Recent alignment-free literature has described novel meth-
odologies to fill a dual need: small queries in vast dataset col-
lections. Mostly, two paradigms (Marchet et al. 2021a) cover
this question, both considering each dataset and the query it-
self as k-mer sets. The first type of approach relies on exact
k-mer set representations. These methods build an associative
index [using hash tables (Almodaresi et al. 2018, Holley and
Melsted 2020, Marchet et al. 2021b, Pibiri 2022) or FM-
indexes (Chikhi et al. 2015, Muggli et al. 2017, Belazzougui
et al. 2018)] where the key set corresponds to all k-mers of
the collection. Such static structure hardly scale to extensive
instances with large k-mer cardinality but can be used for
queries with high precision or to build de Bruijn graphs. Some
indexing implement some kind of dynamicity either via merg-
ing or using dynamic bit vectors (Holley et al. 2016, Muggli
et al. 2019, Alipanahi et al. 2021).

The second family of methods relies on probabilistic set
representations (Solomon and Kingsford 2016, Bingmann
et al. 2019, Bradley et al. 2019, Harris and Medvedev 2020).
These approximate membership query (AMQ) structures
trade false positives during the query for improved speed and
memory performance compared to the previous category.

AMQ approaches allowed the indexing of hundreds of
thousands of microbial datasets (Blackwell et al. 2021). For
mammalian datasets, scaling to more samples is a timely chal-
lenge since the increase in the content of k-mer/datasets poses
serious issues for the construction/footprint of current
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methods. Thus, to our knowledge, no published method has
yet overcome the barrier set by SeqOthello (Yu et al. 2018) of
indexing over 10 000 mammalian RNA samples.

This manuscript proposes a novel AMQ method to query
biological sequences in collections of datasets dubbed
Partitioned Aggregative Bloom Comb Trees (PAC). In our ap-
plication case, queries are typically alternative splicing events
or a short genomic context around a small variant or muta-
tion, for both eukaryotic and microbial species. Our structure
is designed to be highly scalable with the number of indexed
samples and requires moderate resources.

2 Materials and methods

In this section, we present our PAC. We kept PAC as an acro-
nym that covers the three keywords, including the main nov-
elties compared to previous tree structures. PAC is available
at https://github.com/Malfoy/PAC.

2.1 Prerequisites

A set of sequences R (also called “dataset”) is a set of finite
strings on the alphabet R ¼ fA;C;G;Tg. In practice, sets of
sequences can be read sets or genome sets. An input
“database” D ¼ fR1; . . . Rng is a set of “datasets.” Similarly
to the datasets, a “query sequence” is a finite string from
which all distinct k-mers are extracted (typically, a gene, a
transcript, or some genomic context around a base mutation).

In the following, we suppose that broadly used concepts in
the context of computational genomics are known [namely,
k-mers, Bloom filters (Bloom 1970), and minimizers (Roberts
et al. 2004, Chikhi et al. 2015)]. However, their definitions
are recalled in the online supplementary appendix if needed.

Problem statement: The structures described hereafter esti-
mate the cardinality of the intersection of dataset’s k-mers
with the query’s k-mers. Then, according to a threshold pa-
rameter s, the query is said to be in a dataset if its intersection
is larger or equal to s.

A sequence Bloom tree (SBT) is an AMQ structure intro-
duced in Solomon and Kingsford (2016). SBTs use a set of n
Bloom filters, each representing the distinct k-mers of the n
datasets in an input database. A SBT is a balanced binary tree
that represents separately each Bloom filter in its leaves and
the union of all Bloom filters in its root. Therefore, it allows
fast membership queries in the whole database using recursive
queries along the tree. We call a “sequence Bloom matrix”
the matrix of Bloom filters introduced in BIGSI (Bradley et al.
2019). For SBTs, a Bloom filter is built for each of the n data-
sets in an input database. Then, these filters are stacked to be-
come a matrix in which each Bloom filter is a column. By
accessing a row, one can directly know whether an element is
present or absent in all Bloom filters. A SeqOthello is an
AMQ structure that relies on a different paradigm. It operates
as a hash table where pairs of (k-mer, presence/absence bitvec-
tor) are associated using a static hashing strategy and can effi-
ciently be interrogated for k-mer’s presence in bit vectors. In
the following section, we will define the necessary concepts to
detail our novel structure.

2.2 PAC construction
2.2.1 Aggregated Bloom filters

PAC, as most AMQ structures, relies on Bloom filters to rep-
resent k-mers presence. For fixed parameters (k, b, h) (respec-
tively, k-mer size, Bloom filter size, and number of hash

functions), for each Ri ð0 < i � nÞ in D, we build a Bloom
filter BFi and populate BFi with Ri’s k-mers. Thus, each Bloom
filter represents the k-mers of a dataset from D. As SBT, we
organize our Bloom filters in a tree whose inner nodes result
from a merge operation on Bloom filters:

Definition 1 (Bloom filter merge) Let two Bloom filters BF1

and BF2 with the same set of parameters (b, h). We
define the bf merge operation as a bitwise OR:

bf mergeðBF1;BF2Þ ¼ BF1jBF2:

Definition 2 (union Bloom filter) A union Bloom filter is
the Bloom filter result of a bf merge operation, with
conserved parameters (b, h).

The tree is then built by “merging” filters from bottom to
top. The tree root represents the union Bloom filters of all dis-
tinct k-mers in D. PAC involves a novel tree topology in com-
parison to other SBTs that are balanced binary trees, which
will be detailed in the following.

Definition 3 (Aggregated Bloom filter) We define a series
of Bloom filters BF1, BF2, . . .BFt built using common
(b, h) parameters. They represent k-mer sets
R1;R2; . . . ;Rt such that Rt � . . . R2 � R1. We encode
this particular series of t filters of size b as a matrix M
of size t�b. Let V be an integer array of size b. For
1 � i � t;V½i� is the length of the run of 1 in the row
i of M. V can effectively encode such a series of 2S

Bloom filters of size b using b integers of size S. In this
way, we can encode t of such Bloom filters of size b
using b� log t bits. We call such an integer array V
encoding for the series of Bloom filters BF1, BF2,
. . .BFt an “Aggregated Bloom filter.”

Observation 1 One can notice that any branch of a SBT
could be represented by an Aggregated Bloom filters,
with BFt being the leaf node in the branch, and BF1 the
root node.

2.2.2 Aggregated Bloom comb trees

Definition 4 (Comb tree) We call a comb tree a binary tree
whose each internal node has at least one leaf as a
child. When considering an order on the leaves, a
“left-comb tree” (respectively, “a right-comb tree”)
has its root connected to the rightmost leaf
(respectively, the leftmost leaf).

PAC relies on Bloom comb trees to organize the set of Bloom
filters representing each dataset.

Definition 5 (Bloom comb tree) We call a Bloom comb tree
a comb tree built using the bf merge operation. First,
given a list of Bloom filters BF1;BF2; . . . BFn

representing datasets, the leaves of the comb tree are
built. Each leaf contains a Bloom filter as in SBTs. A
Bloom left-comb tree is such that the leftmost inner
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node BFnþ1 ¼ bf mergeðBF1;BF2Þ. The right-comb
tree can be defined by symmetry.

Property 1 In a Bloom left-comb tree built from a list of
Bloom filters BF1;BF2; . . . BFn, we have
BFnþ1 � BFnþ2 � . . . BFnþheight (with “height” being
the height of the comb) due to the union operation
performed in bf merge.

See Fig. 1 for an example of the difference between a tree
used by SBTs and a Bloom comb tree.

Observation 2 Similarly to the previous observation, one
can notice that the longest branch of the comb is a
series of Aggregated Bloom filters.

Following Observation 2, we propose using an Aggregated
Bloom filter to encode the longest branch of the Bloom comb
tree.

Definition 6 (Aggregated Bloom Comb Tree) Unless
otherwise specified, we denote by “Aggregated Bloom
Comb Tree” a structure composed of a pair of Bloom
left and right-comb trees built on the same list of
leaves. They are represented using two components.
First, two Aggregated Bloom filters V l, V r (see
Definition 3) of size b, representing the branch going
through all internal nodes down to the deepest leaf in
both left and right-comb tree. Second, n Bloom filters
are the leaves of both combs.

Figure 2A shows an example of two Bloom comb trees and
the Aggregated Bloom filters that represent them. An
Aggregated Bloom filter represents a run of 1’s in an inclusion
series of Bloom filters. Thus, Vl (and symmetrically, Vr)
defines the maximal depth at which 1’s can be encountered at
a given position in Bloom filters of the combs, i.e. the search
space for a hit. Therefore, intersecting the two V 0s intervals
refines the bounds for the search space at each position (see
Fig. 2B for an example).

2.2.3 Structure partitioning

In PAC, we build a distinct “Aggregated Bloom comb tree”
for each minimizer associated with a non-empty k-mer set.

Definition 7 [super-k-mer (Deorowicz et al. 2013)] From
an input string, a super-k-mer is a substring containing
all consecutive k-mers that share a minimizer of size m.

As consecutive k-mers in a sequence largely overlap, blocks
of k-mers tend to share their minimizer and yield super-k-
mers. By associating super-k-mers to their minimizers (and
therefore the k-mers they come from) one can divide a k-mer
set into up to 4m partitions (Deorowicz et al. 2013). See the
Supplementary Fig. S1 in the Appendix for an example.

Figure 3A shows which information is stored in a partition
to represent a PAC. The combined 4m “Aggregated Bloom
comb trees” stored in 4m partitions represent the complete
PAC structure.

2.2.4 Query

Definition 8 (Single query) We call a single query the query
of a single k-mer to an AMQ data structure. The single
query outputs a bit vector of size n indicating the
presence/absence of a k-mer in each dataset.

Definition 9 (Multiple query) Let s be a string of size
jsj > k. We call a multiple query the query of
consecutive k-mers in s through single queries to an
AMQ data structure. The results scores are reported in
an integer vector of size n.

For all AMQ structures studied in this article, the worst-case
time complexity for single queries is in OðnÞ. Thus, the num-
ber of random access impacts is critical for runtimes in
practice.

Definition 10 (Inverted Bloom filter index) In this
framework, we call an inverted Bloom filter index an
index that maps each possible hash value h to a bit
vector of size n that represents which filters have one
at position h.

To minimize the amount of random access, we rely on
Inverted Bloom indexes during query time.

For each k-mer, its hash value h is computed, and the bit
slice h is searched to find which Bloom filters include it. To
further increase data locality, we construct one Inverted
Bloom filter index per partition. In this way, querying succes-
sive k-mers from a super-k-mer is done on the same small

Figure 1. Left: A SBT structure. Right: A Bloom left-comb tree for the same database. Four datasets of a database are represented using grey shapes.

Toy example Bloom filters are represented as bit vectors associated with shapes, and the content of each node is recalled. In the case of the Bloom

comb tree, the inner nodes’ Bloom filters (highlighted zone in grey) are not explicitly represented but are encoded using an Aggregated Bloom filter

instead (integer vector). Runs of 1’s corresponding to the integers are colored. For instance, the leftmost 1 is found at Levels 1 and 2, therefore a run of

length two in the vector.
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data structure, reducing the amount of cache misses. Such
partition indexes are only constructed if needed and kept to
avoid redundant operations following a lazy strategy. An ex-
ample is presented in Fig. 3B (super-k-mers are omitted).
Finally, we maintain and return a score vector of size n. It is
incremented by one at a position j each time a k-mer appears
in leaf j. Therefore, PAC is also related to Sequence Bloom
matrices because queries are handled using a matrix of Bloom
filters.

2.2.5 Update PAC by inserting new datasets

Adding new datasets does not require changing the index
structure. New datasets can be added by constructing their
Bloom filters and updating the values of the Aggregated
Bloom filters when needed. We implemented this functionality
to allow the user to insert a dataset collection into an existing
index. This insertion presents a very similar cost to building
an index from the said collection, as both the construction
and update algorithms consist of successive insertions. It
avoids the need to rebuild the index from scratch due to novel
datasets.

2.2.6 Implementation details
2.2.6.1 Memory usage and parallelization

Bloom filters are constructed in RAM and serialized on disk
to avoid heavy memory usage. In this way, only one Bloom
filter is stored in RAM at a given time (C if C threads are used
to treat the datasets in parallel). A PAC index is distributed
into P sections serialized in P different files. Such sections can
be handled separately, being mutually exclusive. This strategy
provides inherent coarse-grained parallelism, as different

threads can operate on different sections without mutual ex-
clusion mechanisms during construction. It also grants low
memory usage as only small sections (i.e. a fraction of the to-
tal index) have to be stored in memory at a given time.

Similarly, the query also benefits from partitioning. All
k-mer associated with a given partition are queried at once in
a sequential way to limit memory usage. Each Bloom filter is
loaded separately in RAM and freed after the inverted index
is constructed to be queried (C Bloom filters can be loaded si-
multaneously in RAM if C threads are used). This behavior
guarantees that each partition will only be read from the disk
once and that only one partition will be stored in RAM at a
given time. Furthermore, partitions not associated with any
query k-mer can be skipped. Both construction and query
benefit from improved cache coherence as several successive
k-mers are located in the same small structure, generating
cache misses for groups of k-mers instead of doing so for
nearly each k-mer.

2.2.6.2 Inverted index

Bloom filters are represented as sparse bit vectors (using the
BitMagic library (https://github.com/Malfoy/PAC/blob/main/
listpacpaper.txt.gz )] in order to optimize memory usage.

3 Results

All experiments were performed on a single cluster node run-
ning with Intel(R) Xeon(R) Gold 6130 CPU @ 2.10 GHz with
128 GB of RAM and Ubuntu 22.04.

Figure 2. (A) Two Bloom comb trees and their Aggregated Bloom filters. The leaves Bloom filters are in the middle, colored in grey. They are the Bloom

filters representing the input datasets. The left-comb tree (top) and right-comb tree (bottom) are built by aggregating the Bloom filter’s k-mers. The

Aggregated Bloom filter Vl represents the leftmost path of the top comb. Respectively, Vr represents the rightmost path of the bottom comb. We colored

in green the second bit of leaves in order to show its encoding in the Aggregated Bloom filters. In the left comb, this bit is set to 1 only in the root for the

longest branch; therefore, the value is 1 (green) in Vl. Conversely, the longest branch of the right tree has a run of five 1’s on the second position, hence, a

5 in Vr. (B) Using Vl and Vr from (A), we show how Aggregated Bloom filters define restrained search spaces in the leaves. Again, the leaves’ Bloom filters

are grey, and the values of the vectors are printed vertically. Arrows represent the intervals given by each V, and the final search space at each position is

the dotted grey area.

B
A

Figure 3. (A) The content of one partition in PAC. The Aggregated Bloom comb trees constructed for a given partition are represented using Bloom filter

leaves (in gray) and two Aggregated Bloom filters Vl and Vr. (B) A single query in the same partition as (A). The index has been inverted. A k-mer enters a

PAC by finding the partition corresponding to its minimizer. Vl and Vr are loaded, and a search space (here ½3� only) is defined given the position obtained

by hashing the k-mer (here the k-mer’s hash value is 2). Then, a slice is extracted from the inverted index at the given position, and bits are checked to

find 1’s. Here, there is a single position, so necessarily an 1.
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3.1 Indexing 2500 human datasets and comparison

to other AMQ structures

We compared PAC against the latest methods of the AMQ
paradigm, i.e. HowDeSBT (Harris and Medvedev 2020) for
SBTs and SeqOthello (Yu et al. 2018). We also tested COBS
(Bingmann et al. 2019), the most recent sequence Bloom ma-
trix, although it is not designed to work with sequencing
data, but rather genomes. We used kmtricks (Lemane et al.
2022) for an optimized construction of HowDeSBT and its
Bloom filters (commit number 532d545). SeqOthello (com-
mit 68d47e0) uses Jellyfish (Marçais and Kingsford 2011) for
its preprocessing, we worked with version 2.3.0. COBS’s ver-
sion was v0.1.2, and PAC’s commit was cee1b5c. We used
the classic mode of COBS that does not rely on folding to en-
sure a fair comparison of Bloom filter size and practical false-
positive rate across tools.

The dataset first used in the initial SBT contribution
(Solomon and Kingsford 2016) has become a de facto bench-
mark in almost any subsequent article that describes a related
method. We make no exception, and benchmarked PAC and
other AMQ structures on this dataset. It contains 2585 hu-
man RNA-seq datasets, with low-frequency k-mers filtered
according to previous works (Solomon and Kingsford 2018)
(https://www.cs.cmu.edu/ ckingsf/software/bloomtree/srr-list.
txt), resulting in a total of �3:8 billion of distinct k-mers. The
input files are represented as compacted de Bruijn graphs gen-
erated by Bcalm2 (Chikhi et al. 2016) in gzipped FASTA files.
We also kept the settings used in previous benchmarks and
used a k value of 21. We chose COBS, PAC, and
HowDeSBT’s settings to have an average 0.5% false-positive
rate. Notably, SeqOthello’s false-positive rate cannot be
controlled.

In Table 1, we present the costs of indexing this database
with the different tools. Several observations can be made.
First, PAC does not generate any temporary disk footprint;
only the final index is written on disk, while HowDeSBT,
SeqOthello, and COBS generate many temporary files that
are an order of magnitude larger than the index itself.
Another observation is that PAC and COBS’s preprocessing
and index construction steps are comparable and faster than
the other tools, showing at least a 2-fold improvement of re-
quired CPU time. The total computational cost of a PAC in-
dex is improved three times over SeqOthello and six times
over HowDeSBT. Memory-wise, the memory footprint of
HowDeSBT and PAC are both low, while SeqOthello and
COBS are somewhat higher without being prohibitively high.
Finally, excluding COBS, the different produced indexes are
of the same order of magnitude, even if PAC presents the
heaviest index, slightly larger than SeqOthello, while
HowDeSBT is the smallest. This can be explained by the fact
that tree-based tools (as HowDeSBT) spend a lot of time to

choose how to group and merge files to optimize the index
compressibility resulting in a hard to construct but smaller in-
dexes tradeoff. Computing an efficient file ordering to boost
compression is an interesting problem that would benefit any
matrix-based index. Being compression-free, COBS’ index is
two orders of magnitude larger than the other tools and pro-
duces even larger temporary files. COBS’ CPU time is similar
to PAC’s, but its heavy disk usage presents a higher wall-
clock time on our hard-disk drives.

3.2 Indexing over 32 000 human datasets and

scalability regarding the number of datasets

We downloaded 32 768 RNA-seq samples from SRA [acces-
sion list in available on the github repository (https://github.
com/tlk00/BitMagic)] for a total of 30 TB of uncompressed
FASTQ data. We created incremental batches of 28, 29, . . .,
up to 215 datasets to document the scalability of methods
according to the number of datasets. In this second experi-
ment, the indexes are built directly on sequencing datasets in
raw FASTA format, containing redundant k-mers and se-
quencing errors. Each tool was configured to filter unique
k-mers before indexing to remove most sequencing errors (we
used k¼ 31). Since COBS does not provide such an option
and produces huge index files, we did not include it in this
benchmark. To approximate the order of magnitude of the
amount of (non-unique) distinct k-mers, we used ntcard
(Mohamadi et al. 2017). For example, the batch of 211 data-
sets contains �3 billion k-mers to index, while the 214 dataset
contains more than 40 billion k-mers.

In Fig. 4, we report the CPU time required for index con-
struction (including preprocessing) to display their evolution
on databases of increasing size. In Fig. 5, we report temporary
disk usage during index construction and the final index sizes
on the disk after compression.

We can make observations similar to those in the first
experiments. PAC is the only tool that managed to build an
index of the 32 000 human RNA-seq samples, in �5 days
(�60 CPU days), using 22 GB of RAM and for a total index
size of 1.1 TB. PAC’s construction is faster than the state-of-
the-art for the whole construction process. It produces slightly
bigger indexes, but requires much less external memory.
SeqOthello crashed during index construction in the experi-
ment with 212 datasets, and HowDeSBT failed to end before
our ten-day timeout in the experiment with 211 datasets. PAC
was the only tool to build an index on the 213, 214, and 215

datasets.

3.3 Indexing microbial datasets

Besides indexing RNA-seq data, AMQ indexes were also used
to index large collections of bacterial genomes. To further
highlight the scalability of PAC, we built it on two massive

Table 1. Index construction resource requirements on 2585 RNA-seqa.

Tool Max temporary Preprocessing Index construction Peak RAM Final index size

disk (GB) time (CPU, h) time (CPU, h) (GB) (GB)

COBS 4914 7 1 111 2458
HowDeSBT 650 16 44 4.2 15
SeqOthello 1000 19 12 43 25
PAC 0 8 1 9.6 28

a The column “Max temporary disk” reports the maximal external space taken by the method (usually during preprocessing). The “Final Index Size”
indicates the final index size when stored on disk. Bold values indicate the best result in each column. The execution times of the methods are reported in CPU
hours. All methods were run with 12 threads.
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bacterial collections. In a first experiment, we fetched the
661 000 bacterial genomes representing more than three tera-
bases, which were previously collected in a database
(Blackwell et al. 2021) and built two indexes on this collec-
tion. A first index featuring large Bloom filters (229 bits) for
low k-mer query false-positive rates (below 1% for five mega-
bases genomes) and a second index with smaller Bloom filters
(227 bits) when higher false-positive rates can be allowed (be-
low 7% for five megabases genomes). Both indexes were con-
structed within 24 h using 21 and 6 GB of RAM, respectively,
for a total size of 2.4 and 1.4 TB, respectively.

In a second experiment, we downloaded all bacterial assem-
blies available on GenBank (counting 1 200 575 genomes at
the time of the experiment and representing more than five
terabases) and built an index with a Bloom filter size of
227 bits that corresponds to a false-positive rate around 4%
for five megabases genomes. The construction lasted 24 h for

a total of 410 CPU hours using less than 5 GB of RAM for a
total index size of 3.5 TB. This is to our knowledge the largest
collection ever indexed by an AMQ.

3.4 Query results on human RefSeq

We designed a similar experiment to the one presented in
HowDeSBT’s paper, with sequence batches of increasing
sizes. We repetitively selected random transcripts from human
RefSeq [using seqkit (Shen et al. 2016)], and gathered 10, 10,
5, 3, and 3 batches of sizes 1, 10, 100, 1000, and 10 000 tran-
scripts. We report HowDeSBT, SeqOthello, and PAC’s CPU
time on each batch size in Fig. 6. We warmed the cache before
profiling the queries. In accordance with the literature (Harris
and Medvedev 2020), we observe that SBT structures perform
the best on small query sets. In larger instances, other meth-
ods can be preferred. SeqOthello shows the best performance
and keeps a relatively constant query time over the input size.

Figure 4. Results on increasing human dataset sizes. We report total CPU hours for constructing the different indexes, including the Bloom filter

construction and index constructions. X-axis is in log 2 scale and Y-axis is in log 10 scale. All methods were run with 12 threads.

Figure 5. Results on increasing human dataset sizes. We report disk footprints, both temporary and final, for constructing the different indexes. Note that

PAC does not use temporary disk. X-axis is in log 2 scale and Y-axis is in log 10 scale. All methods were run with 12 threads.

Figure 6. Results on query batches. We present query CPU times computed on batches of 1 to 10k transcript sequences. The Y-axis is on a log 10 scale.

The queries were computed using 12 threads.
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PAC has the same behavior, while being slightly more CPU
time than SeqOthello. We also note that no method required
more than 10 GB of RAM to perform the queries. PAC had
the lowest RAM footprint, with up to 2 GB for 10 000 tran-
scripts. COBS CPU time usages are not representative of its
actual queries’ performance, as it incurs almost no CPU times
(typically <1 CPU second per transcript), so we chose not to
plot it along with its competitors.

We performed a separate benchmark to assess the queries
wall-clock times. On a batch of 100 transcripts, HowDeSBT
lasted 1 h 30 min, COBS lasted 30 min, SeqOthello lasted
10 min, and PAC lasted 5 min. Interestingly, on a larger batch
of 10 000 transcripts, SeqOthello and PAC presented very
similar results (10 and 5 min, respectively). These results indi-
cate that the query time of these two tools is dominated by in-
dex loading. To assess when query time became predominant,
we queried a large batch of 100 000 transcripts for which
PAC lasted 11 min (two CPU hours) and an even larger batch
of 500 000 transcripts handled by PAC in 40 min (6.5 CPU
hours).

3.5 Impact of comb structure on query for

collections entailing high k-mer diversity

One novelty of PAC is the use of lightweight Aggregated
Bloom filters to accelerate the queries by skipping subsections
of the bit-slices. To assess the efficiency of this strategy, we re-
port in Table 2 the query times of several query batches on an
index composed of all complete Salmonella enterica genomes
from RefSeq (counting 11 993 genomes at the time of the ex-
periment). We report three different query times for each
batch, using, respectively, two Aggregated Bloom Comb trees
(according to Definition 6), a single one and none (i.e. the
structure is a Bloom matrix). Without the use of Aggregated
Bloom filters PAC index is conceptually identical to a matrix
approach, such as COBS while using one or two Aggregated
Bloom filters allow to skip some bitslice of the index. The
number of bits that can be skipped depends in practice on the
similarity shared between the query and the indexed docu-
ments. To highlight this effect, a batch is made up of
S.enterica that are highly similar to the indexed genomes, a
batch is made up of Escherichia coli that are very dissimilar to
the indexed genomes, and a batch is made up of random se-
quence to show an extreme example of dissimilarity. The first
observation is that Aggregated Bloom filters hardly improve
the query time of the S.enterica batch. This result is expected
because most query k-mers should be found in many indexed
genomes and the amount of zeros that could be skipped in
such slices should be very low. However, we see that using
one Aggregated Bloom filter greatly accelerates the query on
the two dissimilar batches, increasing the throughput by sev-
eral fold. Furthermore, using a second Aggregated Bloom

filter accelerates the query time even more but is not as benefi-
cial as the first one.

4 Discussion

To our knowledge, PAC is the first AMQ k-mer set structure
to index the entire GenBank bacterial genome collection and
reach 32k human RNA-seq datasets.

PAC combines the simplicity and efficiency of inverted in-
dex matrix approaches, such as COBS or BIGSI with a light-
weight tree structure.

The novel tree structure has a minimal resource footprint,
yet greatly improves the query time when a query is dissimilar
to the index content, a scenario possibly met with microbial
databases. As k-mer sets are designed to efficiently skip unre-
levant documents, our Aggregated Bloom filters allow us to
efficiently prune our query space.

Using several real datasets, we demonstrate that PAC is
practically scalable for its construction. In contrast to other
approaches, PAC is simultaneously frugal in RAM, disk, and
time requirements for building an index.

We showed PAC’s ability to query 500 000 human tran-
scripts in less than an hour, being the fastest in wall-clock
time, and comparable to SeqOthello in CPU time. The worst-
case query complexity remains the same for all methods, OðnÞ
for a k-mer present in all n datasets.

We reviewed that inverted indexes methods perform Hð1Þ
random accesses, but still need to read bit-slices of size OðnÞ.
Using Aggregated Bloom filters, PAC improves these in-
dexes, as in favorable cases (k-mers present in a single data-
set with no collision or absent everywhere), PAC can answer
in Oð1Þ.
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Table 2. Results on query times in CPU hours according to the PAC mode used along with the speedup obtained compared to the classical matrix

approach (No ABF column)a.

Query dataset Double ABF filter Single ABF filter No ABF Overhead

200 Random genomes 0.7 (13.6�) 1.3 (7.3�) 9.5 1.0
200 E.coli genomes 1.2 (7�) 2.2 (3.8�) 8.4 1.0
200 S.enterica genomes 10.4 (1.2�) 11.6 (1�) 12 1.0

a Double, Single, No ABF denotes the number of combs used in the structure. We present query CPU times computed along with the overhead constant
across modes that include parsing the query file and loading the index. The random genomes are random nucleotide sequences of length five megabases. E.coli
and S.enterica genomes were randomly selected among the RefSeq genomes.
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