
HAL Id: hal-04279817
https://hal.science/hal-04279817v1

Submitted on 14 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey of mapping algorithms in the long-reads era
Kristoffer Sahlin, Thomas Baudeau, Bastien Cazaux, Camille Marchet

To cite this version:
Kristoffer Sahlin, Thomas Baudeau, Bastien Cazaux, Camille Marchet. A survey of mapping algo-
rithms in the long-reads era. Genome Biology, 2023, 24 (1), pp.133. �10.1186/s13059-023-02972-3�.
�hal-04279817�

https://hal.science/hal-04279817v1
https://hal.archives-ouvertes.fr

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

REVIEW

Sahlin et al. Genome Biology (2023) 24:133
https://doi.org/10.1186/s13059-023-02972-3

Genome Biology

A survey of mapping algorithms
in the long-reads era
Kristoffer Sahlin1*, Thomas Baudeau2, Bastien Cazaux2 and Camille Marchet2*

Abstract

It has been over a decade since the first publication of a method dedicated entirely to
mapping long-reads. The distinctive characteristics of long reads resulted in methods
moving from the seed-and-extend framework used for short reads to a seed-and-chain
framework due to the seed abundance in each read. The main novelties are based on
alternative seed constructs or chaining formulations. Dozens of tools now exist, whose
heuristics have evolved considerably. We provide an overview of the methods used
in long-read mappers. Since they are driven by implementation-specific parameters,
we develop an original visualization tool to understand the parameter settings (http://
bcaza ux. polyt ech- lille. net/ Minim ap2/).

Introduction
With the introduction of PacBio long-read sequencing and later Oxford Nanopore
Technologies, a need for mapping long and noisy sequencing reads emerged. The data
proposed new computational challenges of mapping millions of sequences, initially at
expected error rates of 10–20%. In addition, researchers noticed that the seed-and-
extend paradigm used in short-read mapping was not practical for long-reads. First,
seed-and-extend would usually rely on a single match before extending, while long-reads
required multiple consistent matches along the read to be confidently mapped. Second,
the extending part, which relies on pairwise alignment algorithms with quadratic time
complexity, had to be avoided, given the combined length and the frequent insertions
and deletions in long-read data. Early on, the computational problem was compared
to whole-genome alignment, with the additional complexity of high error rates. Such
observations lead to the novel seed-and-chain paradigm for mapping long-reads (see
Fig. 1). However, the first long-read mapping algorithms using older seeding techniques
designed for generic sequence alignment (e.g., BLAST) were not time-competitive in
their throughput compared to short-read mappers. Thus, sketching techniques imported
from comparative genomics started to appear in this domain.

*Correspondence:
ksahlin@math.su.se;
marchetcamille@gmail.com

1 Department of Mathematics,
Science for Life Laboratory,
Stockholm University, 106
91 Stockholm, Sweden
2 Univ. Lille, CNRS, Centrale Lille,
UMR 9189 CRIStAL, F-59000 Lille,
France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02972-3&domain=pdf
http://orcid.org/0000-0002-7235-7346
http://bcazaux.polytech-lille.net/Minimap2/
http://bcazaux.polytech-lille.net/Minimap2/

Page 2 of 23Sahlin et al. Genome Biology (2023) 24:133

Recently, specific sub-problems in the mapping domain have been identified and
investigated, such as partial and gapped extension alignment of reads for structural vari-
ant discovery, mapping reads in repetitive regions or from non-reference alleles to cor-
rect loci, and other applications such as spliced-mapping of RNA reads. These specific
problems require and motivate novel algorithmic solutions. In this survey article, we
give an overview of the techniques proposed over the last decade for mapping long reads
to genomes. After giving definitions and main intuitions, we describe the methodology
in two steps. We first discuss seeding, up to the latest advents using novel seeds (e.g.,
syncmers and strobemers). We then discuss chaining, for which we decipher the cur-
rently used score functions. We also made available an original visualization tool that
can be used to play with the different parameters in order to understand their impact on
the chain (http:// bcaza ux. polyt ech- lille. net/ Minim ap2).

Definitions and state‑of‑the‑art of tools
Preliminaries

In this survey, we restrain ourselves to the problem of mapping a sequence shorter or
equal to a genome (a read) to a reference genome. We further assume that reads come
from a genome that is closely related to the reference genome, such as from the same
organism or a closely related species.

Let q = (q1, . . . ql) be the read sequence of size l and t = (t1, . . . tn) the sequence of
the reference region of size n. Let � = {A,C ,G,T } and �+ = {A,C ,G,T ,−} be two
alphabets, x and y strings are defined on � . Let f : �∗

+ → �∗ be a transform that maps
a string to its subsequence with all “−” characters removed. An alignment is a pair of
strings (q′, t ′) such that:

1. q′ and t ′ have the same size: |q′| = |t ′| = S

2. The initial sequences are retrieved through the transform: f (q′) = q and f (t ′) = t

3. Any pair of characters can be matched at a position i of the strings but two dashes:
(q′[i], t ′[i]) �= (−,−) , for 0 ≤ i < S

Fig. 1 Differences in the main steps between short-read mapping (left) and long-read mapping (right).
Query denotes the read and reference denotes a genome region. Mainly, short-read approaches extend
(orange parts) from a single anchor (in blue) on the whole read length while long-read approaches gather
multiple anchors, and chain (yellow line) them in for a candidate extending procedure that is done between
pairs of anchors

http://bcazaux.polytech-lille.net/Minimap2

Page 3 of 23Sahlin et al. Genome Biology (2023) 24:133

Many alignments exist for a given pair of strings, in theory, the methods described
hereafter aim at finding good alignments, i.e., alignments that optimize some distance
between the pair of strings. The distance is computed using score functions which
give rules on the characters pairing. Algorithms exist to compute optimal semi-global
pairwise alignments between a read and the reference genome with respect to a score
function. However, their complexity is O(n× l) and disqualifies them in the context of
handling big data such as sequencing data. Therefore, methods in the literature use heu-
ristics to narrow down a set of candidate locations before performing pairwise align-
ment. This heuristic procedure has been commonly referred to in literature both as read
mapping and read alignment.

We will in this survey refer to read mapping as the complete procedure of finding the
read’s location on the genome (through seeding and chaining steps) and extending the
alignment between the read and genome region identified by the mapping location by
pairwise alignment. The mapping algorithms we discuss do not guarantee to find the
optimal solution. In case we discuss the procedure of only finding a reference location
for the read without the alignment extension, we refer to the procedure as extension-free
mapping.

In our survey, we discuss read mapping to a genome sequence. We will use the terms
query for a read and reference to denote the genome.

Overview of fundamental ideas

To our knowledge, the first mappers explicitly written for long-reads were YAHA [29]
and BLASR [15], although short-reads mappers had been adapted for the long-read
usage [53, 57, 64]. While solutions specialized for either Nanopore [5] or PacBio [38]
characteristics appeared, most modern mappers work for both technologies with
adapted parameters. BLASR presented itself as a hybrid approach descending from both
genome-to-genome alignment methods (such as MUMmer [20]) and short-read mappers.
The paper contains seminal ideas used in modern long-read mappers such as the seed-
and-chain paradigm.

Seeding

Seeding is the first operation in the heuristics used by mapping techniques.

Definition 1 A seed is a subsequence extracted from the query or the reference.

The purpose of seeding is to find relatively small matching segments between the
query and the reference that serves as markers for reference regions that potentially are
similar to the read. The reason seeding is used is that it is typically computationally effi-
cient to find matching seeds that can narrow down regions of interest compared to, e.g.,
global pairwise alignment of the read to the reference. As we will see in the “Seeding
almost always uses sketched, exact, fixed-length seeds” section, seeds can be of different
nature. Seeding relates to pattern matching, although in sequence bioinformatics, prac-
tically all approaches work under the paradigm which indexes the reference and query
the index to find matches. The underlying assumption is that once the index is created,
it can be used several times to map different query sets. To save space, reference indexes

Page 4 of 23Sahlin et al. Genome Biology (2023) 24:133

can be in a compressed form. Once matches are found, a second operation aims at find-
ing sets of concordantly ordered seeds between the query and the reference (chaining;
“Chaining is dominated by dynamic programming with concave gap score functions”
section) and to “fill the gaps” between seeds as well as providing the final nucleotide level
alignment (extension; “Extension step and final alignment computation” section). Seed-
ing was quickly identified as a critical phase in long-read mapping, which led to novel
proposals [58, 66, 95].

Sketching

An important idea for seeding is sketching that was introduced in MHAP, a long-read
overlap finder implemented in an assembly algorithm [7]. The rationale was to improve
the time efficiency of the long-read mapping problem in comparison to the throughput
of the second generation sequencing mappers. Sketching consists of compressing the
information of a set (here a set of k-mers) into a fixed-length vector (a sketch) of repre-
sentative elements called fingerprints. By comparing two sketches, one can approximate
a similarity estimation of the two sets quickly and independently of their initial set sizes.
Several approaches exist [10, 17, 73]. MinHash [10] is a sketching technique based on
locally sensitive hashing, which produces an unbiased estimator for the Jaccard distance
between two sets by comparing a subset of items in a very efficient way. MHAP relied
on sketching with this MinHash approach. Thus, MHAP overcame a space limitation of
BLASR which would index the whole reference. The type of matches (exact, fixed-size)
induced by MHAP’s approach also allowed to perform rapid queries. An important limi-
tation of MHAP was that the sampling technique gave no guarantee to uniformly cover
the query’s sequence. In other words, there was no guarantee on the maximum distance
between two consecutively sampled seeds. This led to the development read mappers
that used sketching techniques with guarantees on maximum distance between sampled
seeds, starting with minimap [58]. Sketching is still an active research area of long-read
mapping with several recent developments [22, 31, 48, 91].

Chaining

A key intuition is that in short-reads mapping, the extending procedure could start after
finding a single shared seed between the query and the reference, called anchors (for
details on techniques related to the previous sequencing generation, we refer the reader
to a methodological survey of short-read mapping [3]).

Definition 2 An anchor is a matching seed between the query and the reference. It is
represented by a pair of coordinates on the query and the reference.

In the literature, an anchor can also be called “a fragment” or “a match.” Two anchors
are said to overlap if one anchor starts or ends within the coordinate interval defined
by the other anchor. In long-read mapping, the length of the reads and the short seed
length used due to the initial high long-read error rates can lead to a large number of
anchors. It is therefore necessary to reduce the search space by selecting subsequences
of ordered anchors (chains).

Page 5 of 23Sahlin et al. Genome Biology (2023) 24:133

Definition 3 Let A = [a0, a1, . . . , ak] be a list of anchors defined by their coordinates
on the reference and the query. A chain is a subset of A of length c ≤ k . A colinear chain
is a subset of A in which anchors are sorted by such that if i < j , aj an anchor of starting
coordinate (xj,yj) , with xj > xi and yj > yi , (xi , yi the ending coordinate of ai) in the (ref-
erence, query) plane.

Drawing inspiration from genome-wide mapping, BLASR introduced a chaining step
which aims at selecting high-scoring chains from a set of candidate chains. Chaining
allows to reduce the final step of a long-read mapper (the base level extension) to pair-
wise alignment of sub-regions between ordered anchors in chains. Chaining in long-
reads has been solved using various dynamic programming procedures [59, 82, 95]. In
particular, the continuous work effort provided in minimap2 [58–60] in both seeding
and chaining processes made it a baseline for many other tools’ development. Figure 2
shows the different algorithmic choices over time for seeding and chaining.

While this survey covers the genomic mapping aspects, other important contribu-
tions have dealt with adapted procedures in the case of long-read RNA mapping [67, 72,
86, 99], and structural variant identification [33, 65, 89, 98], or alignment through large
repeats [12, 74]. Other related research focused on read-to-read overlap detection [26,
100]1, or extension-free (pseudo-alignment) approaches [16, 25, 46]. Finally, here we
describe algorithmic solutions working on the nucleotide sequence, but raw signal map-
pers for Nanopore long-reads is also an active area of research [39, 54, 101].

In the following, we hardly elaborate on complexities for the different algorithms.
Some are yet unknown, but in many cases implementations simply use heuristics so that
each step’s time is expected to be linear.

A survey of algorithmic steps
Seeding almost always uses sketched, exact, fixed‑length seeds

Seeding is the procedure that consists in collecting a set S of seeds from the refer-
ence, then finding anchors between the query’s seeds and S . In order to find anchors

Fig. 2 Long read mapping tools over time. Tools and techniques are presented from oldest to most recent,
from left to right. The figure presents implementation names at the bottom, then goes up to the different
steps: seeding, with seed selection strategies and indexation, then chaining and pairwise alignment
strategies. The dotted line for minimap2 means its implementation evolved from strategy in plain line to
strategy in dotted line. The gray italic names denote for proofs-of-concept rather than tools

1 and the unpublished DALIGNER https:// github. com/ thege nemye rs/ DALIG NER

https://github.com/thegenemyers/DALIGNER

Page 6 of 23Sahlin et al. Genome Biology (2023) 24:133

efficiently, S is stored using an index data-structure. In the following sections we detail
the different types of seeds that have been used in long-read mapping.

k‑mers

Substrings of length k, or k-mers, are perhaps the most commonly used seed in bioin-
formatics. A k-mer seed can be indexed by using a hash function to produce an integer
value (usually as a 32 or 64-bit integer), which is then added to a hash table. This makes
indexing of k-mers computationally cheap, provided that the hash function and hash
table implementations are efficient. Methods to efficiently hash k-mers have been pro-
posed [75], which uses the previous k-mers hash value to compute the next one using a
rolling hash function.

If a k-mer anchor is found, it is guaranteed to be exact (disregarding hash collisions).
While it is desirable to produce anchors only in identical regions to minimize hits to
non-homologous regions, a downside is that mutations in homologous regions will also
alter the k-mers, preventing anchors in the region. Typically, a single substitution alters
2k − 1k-mers. The length distribution of stretches of consecutive non-matching k-mers
between two homologous regions with substitutions depends on the substitution rate,
and has been studied theoretically in [8].

k‑mer sketching

As two consecutive k-mers share most of their sequence, they are mostly redundant.
Therefore, we could reduce the memory overhead and query time without losing much
information if only some k-mers were stored. Here we present different methods for
picking a subsample of representative k-mers as seeds. These approaches have proven
their efficiency by drastically reducing the number of objects to index while keeping
high sensitivity and specificity in mapping applications. There exist two broader classes
of sketching techniques, methods that offers a distance guarantee between consecutively
sampled seeds, and methods that does not. Both classes of methods have been used to
estimate similarity between sequences. However, the central research questions of the
former class of methods involve the distance distribution between sampled seeds, the
fraction of conserved seeds under mutations, and the compression ratio to original input
data. In contrast, the central studied question for sketching methods without distance
guarantees is often to produce unbiased estimations of sequence identity [10, 40, 69]),
which distance bounded sketching methods can not guarantee [6].

No guarantee on distance In this category methods typically stores a predetermined
number of k-mers (e.g., MinHash [10], OrderMinHash [69]) from the sequence. The
k-mers are selected based on the property of their hash value. For example, in Min-
Hash sketching, a total ordering on the k-mers’ hashes is used, and a fixed set of mini-
mal hashes in the ordering are kept. This technique gives no distance guarantee between
seeds, meaning a large gap can appear between two consecutive sampled k-mers.
MinHash has been used to perform extension-free mapping [46] for genome-length
sequences and to find read-to-read overlaps in long-read assembly [7, 90]. However,
fixed-size sketches do not adapt well to different read lengths. The number of sampled
seeds remains constant for any number of distinct k-mers. Because of this, two similar

Page 7 of 23Sahlin et al. Genome Biology (2023) 24:133

regions from sequences of different sizes will not automatically have the same selected
seeds, which is a desired property for seeding. Therefore this approach was later replaced
by other scaled sketch strategies [40, 45]. FracMinHash has been used for long read
mapping [25] (called universal minimizers in their study), and works well when reads are
long enough, but it is important to note that theoretically there does not exist a distance
guarantee for scaled sketch hashing methods, regardless of the density of the sketch.

Distance guaranteed The first distance bounded k-mer sketching technique pro-
posed for long-read mapping was minimizers. Minimizers have been introduced in two
independent publications [83, 88], and was popularized in bioinformatics by the tools
minimap [58] and minimap2 [59]. In our framework, minimizers are k-mers sampled
determined by three parameters m, w, and h. h is a function that defines an order, e.g.,
the lexicographical order. Given the set of w consecutive k-mers in a window at positions
[m,m+ w − 1] on the sequence, a minimizer is the k-mer associated with the minimal
value for h over this set (see left panel in Fig. 3). Minimizers are produced by extracting a
minimizer in each consecutive window w ∈ [0, |S| − w + 1] over a sequence S.

Since at least one minimizer is selected in each window, they have a distance guar-
antee. While the distance guarantee (hence seed density in regions) is desired for map-
ping applications, it is also desired to sample as few minimizers as possible to reduce
storage. Different optimizations have been proposed to reduce the density of sampled
minimizers while keeping the distance guarantee. Weighted minimizers [48] implement
a procedure to select k-mers of variable rareness. In order for k-mers from highly repeti-
tive regions not to be as likely as others to be selected, it first counts k-mers, and down
weights the frequently occurring ones. Then it takes this weight into account for the
hashing procedure. If low occurrence k-mers are too far away in a query, a solution [60]
allows sampling minimizers also in the repetitive region by keeping some of the lowest
possible occurrences among the minimizers in the repetitive region.

Fig. 3 Illustration of spaced-seeds, minimizer selection, syncmer selection and context dependency. Here,
two sequences s1 and s2 are different from a single mutated base (second base, in pink). When comparing
those sequences, one would like to focus on common bases, i.e., bases highlighted in grey. In the left panel,
we present spaced-seeds for k = 5 , with a wildcard at second position (represented by an underscore). We
observe that identical spaced-seeds can be spelled over a mutated locus, e.g., T_GAGG . In the middle panel,
we present a selected minimizer with k = 5,w = 3 . One blue window is presented, a second is suggested in
lighter blue. A star shows the position of the selected k-mer in the window (we use lexicographic order). The
mutated base has an impact on the overall window content, therefore a k-mer from the (unmutated) region
of interest in s1 is no longer selected in s2 . On the contrary, in the right panel, we show that syncmers can be
more robust in this situation. We choose k = 5, s = 2 and present closed syncmers. We underline the smallest
s−mer in each k-mer in blue and a star shows the selected k-mers. We see that in this example, the mutated
base has no impact on the syncmer selection, and the same syncmer is selected in the region of interest for
s1 and s2

Page 8 of 23Sahlin et al. Genome Biology (2023) 24:133

In minimizer sketching, the choice of the minimizer in each window depends on
the other k-mers in the window. This property is called context dependency [91]. Con-
text dependency is typically not desired in sketching methods as neighbouring k-mers
affected by mutations may alter the minimizers in a window. However, for finding
anchors it is desired to guarantee that the same k-mers are sampled between two homol-
ogous regions regardless of neighboring mutations. Therefore, context-independent
methods have been proposed such as syncmers [23] and minimally overlapping words
(MOW) [32], where the sampling does not depend on the neighboring k-mers. Sync-
mers was used in the context of long-read mapping [91] in an alternative implementa-
tion of minimap2 and even more recently in [22]2. For their construction, syncmers use
s-mers of size k − s + 1 (s < k) occurring within k-mers (see right panel in Fig. 3 for an
illustrated difference with the minimizers, and Additional file 1: Fig. S1). The k-mer is
selected if its smallest s-mer meets some criteria. An example criteria is that the s-mer
appears at position p within the k-mer (0 ≤ p < k − s + 1) (these are called open sync-
mers), a more studied category is closed syncmers where p must be the first or the last
s-mer position in the k-mer. This way of selection uses properties intrinsic to each k-mer,
therefore is context-free. Closed syncmers also have a distance guarantee. By construc-
tion, syncmers tend to produce a more even spacing between sampled seeds while still
allowing a distance guarantee.

Fuzzy seeds

Due to read errors and SNPs between the reference and sequenced organism, it is in
many scenarios desired that a seed anchors the query and the reference in homologous
regions even if the seeds extracted in regions differ. In other words, we would want simi-
lar seeds to hash to identical hash values. A hash function that produces identical hash
values for similar but not necessarily identical inputs is usually called a locality-sensitive
hash function. We will refer to seeds produced under such methods as fuzzy or inexact
seeds. Several methods to produce fuzzy seeds have been described.

Perhaps the most common one is spaced seeds. Within a spaced seed, some posi-
tions are required to match (called fixed positions), while the remaining positions can
be ignored (called wildcards or don’t care positions). Within a k-mer, fixed positions can
be selected as wildcards by applying particular masks on the k-mer’s bases [44]. Spaced
seeds are effective for data with substitutions and are, for example, used in the popular
sequence mapping software BLAST [4], metagenome short-read classification [13], and
in long read mapping tool GraphMap [95]. Typically, multiple seed patterns are used [62,
95] where the overlap between the fixed positions in the seeds should be minimized [43]
to increase sensitivity. For example, GraphMap queries three different seeds to the index
for each position in the query. This design is capable of handling substitutions and indels
of one nucleotide. We provide details on this scheme in Additional file 1: Figs. S2 and S3.
However, spaced seeds can only handle indels if multiple patterns are queried per posi-
tion, and the number of patterns required increases with indel size [35]. Although the
computation of good sets of spaced seed patterns has been optimized [44], using such

2 https:// github. com/ bluen ote- 1577/ os- minim ap2 and https:// github. com/ Shamir- Lab/ syncm er_ mappi ng

https://github.com/bluenote-1577/os-minimap2
https://github.com/Shamir-Lab/syncmer_mapping

Page 9 of 23Sahlin et al. Genome Biology (2023) 24:133

seeding can become computationally prohibitive if the application requires to match
over indels beyond a couple of nucleotides.

As indels are a frequent source of variability on long-reads, spaced seeds have, except
GraphMap, not been frequently used in long-read mapping algorithm designs. There
are other types of fuzzy seed constructs, such as permutation-based seeds [56], but they
only tolerate substitutions and have been used in short-read mapping.

Traditionally, anchoring over indels has typically been solved by querying multiple
seeds in a region and performing post-clustering of nearby anchoring seeds, which are
then inferred as an anchoring region. Such an approach usually provides gold standard
sequence similarity queries [4, 52]. However, it comes at a substantial computational
cost, not only because of the post-clustering step but in addition because relatively short
seeds must be used to guarantee sensitivity, which can yield many anchors to other
regions.

To remove the overhead of post-processing of nearby seeds, one can instead link sev-
eral k-mers into a seed and represent it as a single hash value before storing it in the
index. Such linking techniques has recently become popular in the long-reads era, where
indels are frequent. One proposed method is to link two nearby minimizers [18] or sev-
eral MinHash seeds [25] into a seed. Linking several minimizers into a seed is usually
a relatively cheap computation as the minimizers constitute a subset of the positions
on the reference. Such seeding techniques have been used in long-read mapping [25],
and long-read overlap detection in genome assembly [18] and error correction [87]. A
downside with these methods is that the linking of nearby minimizers or MinHash seeds
implies that if some of them are destroyed due to mutations in a region, all the seeds in
the region will be destroyed. Put another way, nearby seeds share redundant information
(in the form of shared minimizers or MinHash seeds). Therefore, alternative approaches

Fig. 4 Illustration of strobemers’ capacity to handle indels. As in Fig. 3, two sequences are presented. This
time, s2 has an insertion (pink G). On the left panel, minimizers are selected using w = 2, k = 5 . Blue stars
point selected minimizers in each blue window. One can see that the only safe region to generate minimizer
is the CGGTT sequence after the insertion, that is shared and of length ≥ k . Put differently, k-mers in red
have no chance to be in common between the two sequences. However, in this example, the scheme fails
to select a common minimizer in the safe region. Strobemer selection is presented in the right panel, using
k = 2, s = 2,w = 2 . At each position, the first k-mer is selected to be the start site of the strobemer. Then, in
the non-overlapping window (of size w) downstream to the first k-mer, a second k-mer is selected according
to one of the selection techniques presented in [84] (we illustrate selecting the lexicographical minimizer).
We underline the bases that are kept for each strobemer. For instance in s1 , the first k-mer is CG at positions
0 and 1, then the next window starts at position 2. Two k-mers are computed from this window, AC and
CG, and AC is the minimizer. Therefore, the strobemer is (CG,AC). Again, strobemers with no chance to be
shared between s1 and s2 are colored in red. For strobemers, it is the case when at least one part contains the
mutated base. We note that not only the CGGTT region has a common strobemer (CG,GT) in both sequences,
but also that the scheme allowed to “jump over” the mutated G and could select another common strobemer
(GA,CG) in a more difficult region. The strobemers in this example consists of two k-mers (s = 2) but they can
be constructed for other s > 2

Page 10 of 23Sahlin et al. Genome Biology (2023) 24:133

such as strobemers [84] (see right panel in Fig. 4) have been described, where the goal
has been to reduce the information between close-by seeds by linking k-mers at seem-
ingly random positions within a window. Such pseudo-random linking of k-mers implies
that, if one seed is destroyed due to a mutation, a nearby seed may still anchor the region.
Strobemers have been shown effective at finding anchors between long-reads and for
long-read mapping [84], and have been used in short-read mapping programs [85], but
the pseudo-random linking come at an increased computational cost to simple linking of
neighboring k-mers.

Two other indel tolerant fuzzy seeding techniques are BLEND seeds [31] and Tensor-
Sketch [50]. The BLEND seeding mechanism mixes SimHash [17] (an alternative locality
sensitive hashing to MinHash) applied either to minimizers or strobemers to construct
fuzzy subsampled seeds. The authors showed that read mapping and overlap detection
with BLEND seeds implemented in minimap2 [59] could improve mapping speed and,
in some cases, accuracy. TensorSketch [50] is based on computing all subsequences of a
given length within a given window. The idea is that similar sequences will share many
similar subsequences and lie close in the embedding space. TensorSketch has been used
in long read mapping to graphs and offers high sensitivity but at a significant computa-
tional cost to approaches using exact seeds [49].

Dynamic seeds

Previously discussed seeds share the characteristic that they can all be produced and
inserted in a hash table and, consequently, only require a single lookup. Such techniques
are typically fast and, hence, popular to use in long-read mapping algorithms. However,
the downside is that if a seed differs in a region between the reference and the query
(e.g., due to an error), there is no way to alternate the seeds in this region at mapping
time. There are, however, other types of seed constructs that we here refer to as dynamic
seeds that can be computed on the fly at the mapping step and then used as seeds down-
stream in the read mapping algorithm.

Maximal exact matches (MEMs) [20] are matches between a query and reference
sequence that cannot be extended in any direction on the query or reference without
destroying the match. These are typically produced by first identifying a k-mer match
and then applying an extension process. MEMs are guaranteed to be an exact match
between the query and the reference and are bounded below by length k but do not
have an upper threshold for seed size. MEMs have been used in earlier long-read map-
ping programs (e.g., BWA-MEM) [15, 57] and for long-read splice mapping [86], but these
seeds are more computationally expensive to compute and are typically slower than sin-
gle-query seed-based algorithms.

Minimal confidently alignable substrings (MCASs) If a query was sampled from a
repetitive region in the reference, one might likely find several clusters of anchoring
seeds across the reference. Further dynamic programming operations to decipher the
true origin region of the query are typically costly or even unfeasible if too many copies
have to be considered. The query might also be attributed to the wrong copy because
of the sequencing errors. A recent contribution [47] proposed a solution for seeding
in repetitive regions. The procedure finds the smallest substrings that uniquely match

Page 11 of 23Sahlin et al. Genome Biology (2023) 24:133

(MCASs) between the query and the reference. There can be as many as the query length
in theory. In practice, the more divergent the repeats, the shorter the MCASs, since a
base pertaining to a single copy is more likely to be found.

Implementation of the seeding step

Seed transformations before indexing

Originally, minimizers used a lexicographical ordering. However, in our four base alpha-
bet, this can tend to select sequences starting with long alphabetically smaller runs such
as “AAA...”. Random hash functions assigning each k-mer a value between 0 and a maxi-
mum integer are preferred [88].

Long read technologies are known for accumulating errors in homopolymer regions,
typically adding/removing a base in a stretch of a single nucleotide. Sequences can be
homopolymer-compressed before finding k-mers. Homopolymers longer than a size s
are reduced to a single base, then k-mers are computed over the compressed sequence.
For instance, for s = 3, k = 4 , an original sequence ATT TTG AAA ACC is compressed
to ATG ACC , and the final k-mers are ATGA, TGAC, GACC. This procedure allows
finding more anchors while indexing fewer k-mers or minimizers. Homopolymer com-
pression appears in long-read mapper implementations (e.g., [59]).

In regions of low complexity (e.g., ATA TAT A, CCCCC) the standard minimizer pro-
cedure keeps all minimal k-mers in windows. It is then possible for two k-mers to get
the minimal value and to be selected, which tends to over-sample repetitive k-mers. A
robust winnowing procedure is proposed in [48], which avoids the over-sampling effect
by selecting fewer copies of a k-mer, but increases context dependency.

Hash tables prevail for seed indexing

Indexing of fixed size seeds is usually done using hash tables (although FM-indexes
for k-mers exist [9]). In the context of sketching, invertible hash functions have been a
key asset for using minimizers as k-mers representatives. In other words, a hash value
is associated with one and only one k-mer, and the k-mer sequence can be retrieved
from the hash value (using reciprocal operations). This choice allows a very fast k-mer/
minimizer correspondence, but is memory-wise costly as it implies that the finger-
prints of the hash table are not compressed (which is mitigated by the density of the
sketching). Minimizers are then used to populate a hash table, which associates them to
their position(s) in the reference and their strand information (usually hashed seeds are
canonical k-mers: the smallest lexicographic sequence between the original k-mer and
its reverse complement). There also exists learned index data structures [51] that further
accelerates the querying of minimizers.

Variable-length seeds are indexed in full-text data structures (e.g., suffix arrays or FM-
index [30]), which allow to find and count arbitrarily long queries in the reference. They
have been used in the first versions of long-read mappers. However, variable-length
seeds takes longer to query in these data structures, while hashed matches are queried
in constant time. Since minimizers represent fixed-length k-mers, hash table solutions
mainly prevail.

Page 12 of 23Sahlin et al. Genome Biology (2023) 24:133

Selecting seeds to query

In [59], it is proposed to index all minimizers from the reference during the index-
ing phase (although the latest versions include weighted k-mers and robust winnow-
ing heuristics), and instead skip to use highly repetitive k-mers to find anchors (also
called soft masking). The authors noticed that in cases where a query is sampled
from a repetitive region, such a procedure prevents it to be seeded. Techniques that
use longer fuzzy seeds (e.g., strobemers) [31] reduce the number of masked regions,
although it comes at the cost of sensitivity. Another approach [82] computes a new
set of minimizers on the targeted reference regions in order to obtain finer candidate
chains, which helps alignment confidence particularly in repeated or low complexity
regions.

Chaining is dominated by dynamic programming with concave gap score functions

A dynamic programming problem

Once the reference’s seeds are indexed, a set of seeds is extracted from the query and
looked up in the index to find anchors. Anchors’ positions on the query and reference
are stored, as well as the forward/reverse information. Instead of directly extending the
alignment between anchors, as it is done in short-read mapping, a step of chaining is
added and meant to accelerate further extensions. Chaining acts as a filter and a guide
for smaller extensions that need to be realized only between selected anchor pairs. With-
out it, too many extension procedures, most of which would be dead-ends, would have
to be started.

In an ideal case, there is a unique way of ordering anchors by ascending Cartesian
positions in the (reference, query) space, which passes by all the anchors. In practice,
some anchors are spurious, others correspond to repeated regions and yield different
possible chains. Moreover, more parameters must be taken in account. Thus, methods
optimize different aspects (also illustrated in Fig. 5):

A1) Do not allow anchors which are not ascending either by the anchors’ start or end
coordinates in both the query and reference (see first case in Fig. 5).
A2) Avoid discrepancies in diagonals between anchors (second case in Fig. 5).

Fig. 5 An illustration of the different constraint taken into account in the gap score functions. The reference
axis shows a genome region of interest where anchors were found, not the whole reference. A1–A4
correspond to items in the text in the “A dynamic programming problem” section. Anchors are showed
in blue. The selected chain with respect to the described constraint is highlighted in yellow and a line
approximately passing by its anchors is showed in red. The longest chain is covered by a green line if it was
not selected

Page 13 of 23Sahlin et al. Genome Biology (2023) 24:133

A3) Do not allow large spaces between consecutive anchors of the chain (see third
case in Fig. 5).
A4) Favor the longest possible anchor chain (fourth case in Fig. 5).
A5) If inexact matches in seeds are possible, each seed represents a couple of inter-
vals on the target and the query. Find a subsequence of seeds that minimize the sum
of the Levenshtein distances computed on these couples of intervals (roughly, ensure
that the matched regions on the target and query are as similar as possible).

The problem of finding an optimal chain using non-overlapping anchors has been
called the local chaining problem [1], although in this application anchors can overlap.
The score f (i + 1) represents the cost of appending an anchor ai+1 to a chain currently
ending by anchor ai . This score is often called the gap score in the literature, though it
includes other constraints, as described above. The chaining problem for long reads
seeks to find an optimal colinear chain with a positive gap score.

Mainly, methods use either a two-step approach: (1) find rough clusters of seeds as
putative chains, followed by (2) find the best scored chain among the selected clusters; or
work in a single pass and apply a custom dynamic programming solution to find the best
anchor chain. We can start by noting that one of the first mappers dedicated to long-
reads solved a global chaining problem to determine a chain of maximum score, by fix-
ing starting and ending points (anchors) such that their interval is roughly the size of the
query [15]. Such an approach would easily discard long gaps and spaces in alignments.

Chaining in two steps

Clusters of seeds are found through single-linkage in 2D space The two-step approaches
rely on a first clustering step. Although it tends to be replaced by single-step chaining
(see “Chaining in a single step: gap score functions” section), in the following we describe
the fundamental ideas of the clustering. Methods first find rough clusters of anchors by
considering a discrete (reference, query) position space. In this space, an anchor realizing
a perfect match is a line of the size of the seed. This line should have a 45-degree angle,
which also corresponds to the main diagonal of a (reference, query) alignment matrix.
The same idea stands for a set of anchors. However, because of insertions and deletions,
each small line materializing an anchor may not be on the exact same diagonal, thus real-
izing approximate lines in the (reference, query) space. A method from image process-
ing has been proposed to find approximate lines in this space: the Hough transform [21],
which makes it possible to detect imperfect straight lines in 2D space. Contrary to linear
regression which would output the best line explained by the anchor distribution, here
an arbitrary number of straight lines can be output and considered (see Additional file 1:
Fig. S4 for an illustration). Hough transform or other similar anchor grouping algorithms
([82] proposes to delineate fine-grained clusters in order to increase the chaining speci-
ficity in repeated regions) all can be assimilated to single-linkage clustering in 2D space,
which finds groups of anchors placed roughly on the same diagonal.

Anchor chaining using longest subsequences of anchors The previous clustering tech-
niques aim at finding lines in groups of anchors that can be approximately colinear. To

Page 14 of 23Sahlin et al. Genome Biology (2023) 24:133

determine truly colinear chains, a subset of anchors can be ordered by finding a long-
est increasing subsequence (LIS) of anchors. Let each anchor be mapped to the order
in which it appears in the reference. By crossing these map values with the order of
these anchors in the query, we obtain a permutation of the set {1, 2, . . . n} where n is the
number of anchors. By using an algorithm on LIS problem, we can obtain truly colinear
chains in O(n× log(n)).

In the case of fuzzy seeds, inexact matches are to be dealt with on top of the ini-
tial increasing chain problemin order to obtain the closest base-wise anchor chain. In
this case, the problem is converted to LCSk (longest common subsequence in at least
k-length substrings). Note that there is a correspondence between LIS and LCS. The LIS
of P is the LCS between P and the sequence (1, 2, . . . c) . In both cases, neither the longest
nor the increasing requirements are sufficient to find correct anchor chains: they lack
definitions for other constraints, such as distance between anchors or the possibility to
allow large gaps. They are complemented with heuristics or replaced by more recent
approaches in “Chaining in a single step: gap score functions” section. In addition, sev-
eral methods use graphs built over anchors as backbones to the chaining and alignment
steps [66, 95, 98] (one approach is described in Additional file 1). Because they would fail
to take into account distances between anchors, these methods have been replaced by
dynamic programming approaches relying on gap score functions.

Chaining in a single step: gap score functions

The main drawback of the approaches previously described in “Chaining in two steps”
section is that though large spaces between two anchors of a pair must be avoided, some
spaces correspond to gaps in the alignment and can be kept. In order to deal concur-
rently with these two problems, most recent methods drop the two-step clustering and
LIS to directly apply a custom dynamic programming solution. It follows the same prin-
ciple as LIS, but integrates a more fine-grained gap penalty solution. It defines a cost
function that grants a maximum penalty for non-monotonic increasing seed chains.

Concave gap functions The cost function is designed to handle the gaps induced by fre-
quent indels in the data. Intuitively, it is likely that indels happen in clusters of n posi-
tions rather than at n independent positions in the chain because some regions on the
query might be particularly spurious, or because of local repeats on the reference. There-
fore, the same cost is not attributed to opening a gap and extending a gap, thus a linear
gap function does not fit. The choice of gap functions which are concave (verifying the
Quadrangle Inequality) improves the time complexity by using the wider is worse strat-
egy [27, 34]. In practice, these concave gap functions are affine, a set of affine functions,
or a combination of affine and log functions, as proposed in [59]. We chose to present
minimap2’s [59] gap functions in Fig. 6 as they are adopted without modifications in
most current papers (with the recent exception of [82]). Chains are built by aggregating
close anchors of smaller coordinates to the current anchor by penalizing the shifts com-
pared to the main diagonal. In Fig. 6, panel a presents how the set of possible anchors to
prolong the chain is selected. Panel b illustrates the dynamic function’s parameters. The

Page 15 of 23Sahlin et al. Genome Biology (2023) 24:133

complete description of the functions is available in Additional file 1. Here, we recall the
formula for regular gap sizes, for anchors i and j:

 With f(i), f(j) scores for anchors ai and aj , and:

This property means that at least on axis X or Y, the distance between the two
anchors must be < G the maximum authorized gap size, and that i is above and to
the right of j (see the three colored zones in panel a of Fig. 6).

Fig. 6 Outline of minimap2’s chaining. a shows for an anchor (in green) the selected region (in white, G
is the gap threshold) to find available anchors to continue chaining (in blue). b and c give respectively the
dynamic programming functions for regular and large gaps size. Anchors are shown as segments ending
with green or blue dots with the same color code as in a. Besides, for the large gap size (c), to improve the
complexity, the anchors do not overlap (available anchors are not in the red zone). dji represents the smallest
“distance” between the two anchors (but is not really a distance by definition), w is the minimizer window
size, gji is the gap length, and the γ functions are the concave gap functions

Page 16 of 23Sahlin et al. Genome Biology (2023) 24:133

This minimum penalizes overlaps between anchors. Indeed, if j starts before
a distance of w on the diagonal (with w the minimizer window size and window
guarantee of minimizers) then dji (the smallest coordinate difference on either X-
or Y-axis between i and j) will be lower than w and therefore selected. For any
other case, w which is a larger value is selected and increases more the score.

This is the concave gap score penalty (see Additional file 1 for a complete for-
mula). It is computed on the gap length gji = |(yi − yj)− (xi − xj)| . It penalizes dis-
tant anchors in the Manhattan definition, i.e., anchors far from i either on the main
diagonal or because they are on side diagonals (see for instance anchor j1 in panel b
of Fig. 6).

This term helps with the initialization.

In order to test w and γr ’s impact on the chain selection, we implemented a visuali-
sation tool: http:// bcaza ux. polyt ech- lille. net/ Minim ap2/3. We generate a scenario of
shared anchors between two sequences and allow to set the different parameters’ values.
We show the selected chain according to the settings.

Heuristics are applied to rapidly drop a dynamic programming procedure in regions
that are unlikely to align and to avoid O(c2) worst cases. Based on empirical results,
these heuristics mostly check if seeds are not separated by too large regions and drop the
chaining procedure if the score becomes too low.

Solutions for large gaps Noticing that [59]’s original approach would be failing in
large gaps, one contribution [82] proposed techniques to perform dynamic program-
ming with a family of concave functions by relying on a previous work [27] (built on
a prior clustering step as described in “Chaining in two steps” section). Recently, [59]
integrated a solution designed for mapping long structural variants in pangenomic
graphs [61]. Its recent versions entail a cost function for regular gaps, and a long gap
patching procedure. Then it chooses the cheapest solution to move on to the alignment
step. The gap patching procedure uses a linear gap cost so that it has a higher long-gap
opening cost in comparison to the regular procedure but at a cheaper extending cost.
The chaining with a linear function is solved with a range minimum query (RMQ) algo-
rithm using a balanced binary search tree [1, 81]. It allows solving the linear chaining in
O(c × log(c)) . Although, by using range maximum queue [14] instead of binary trees,
this time complexity can be improved in O(c) . As the implemented algorithm is more
costly than the solution for regular gaps, the last one is preferred if possible. Panel c in
Fig. 6 illustrates the dynamic function for large gaps.

3 source code: https:// github. com/ bastc azaux/ minim ap2_ chain ing_ plot_ web and DOI: https:// doi. org/ 10. 5281/ zenodo.
78894 34

http://bcazaux.polytech-lille.net/Minimap2/
https://github.com/bastcazaux/minimap2_chaining_plot_web
https://doi.org/10.5281/zenodo.7889434
https://doi.org/10.5281/zenodo.7889434

Page 17 of 23Sahlin et al. Genome Biology (2023) 24:133

Mapping quality scores have been adapted for ranking chains

The described methods may deliver a set of chains that satisfies the chaining score
threshold. To choose among the candidates and decide the final location, chains can then
be categorized into primary/secondary chains. Chains with a sufficient score are ranked
from highest to lowest score. Primary chains are those with the highest scores which do
not overlap with another ranked chain on the target for the most of their length. Second-
ary chains are others. Mapping quality, which is a measure that had been introduced to
assess short-reads mapping, is redefined for long-reads with slight variations according
to articles. It reports, for chains, whether the primary is very far in terms of score from
the best secondary, and if it is long enough.

Extension step and final alignment computation
While some applications, such as abundance estimation, typically need only the map-
ping location of a read, many applications, such as SNV and structural variation
detection, rely on base-level alignments. The extension alignments step is typically com-
putationally costly, where traditional Needleman-Wunch [78] and Smith-Waterman [94]
based approaches have a time complexity O(nm) if n and m are the lengths of the query
and reference sequences, respectively. Even after locating a candidate region to extend
the alignment (using the seeding and chaining steps), the quadratic complexity is still
prohibitive for long reads in computation time and memory. Therefore, long read map-
pers typically extend the alignment of sequence segments between neighboring anchors
(piece-wise extension) [59, 82, 89]. An additional benefit of piece-wise extension is that,
if the chaining step supports multiple chains of disjoint regions on the query, the read
mapper can output alignment to several regions, which helps detection of structural var-
iations [59, 82, 89]. As structural variation detection is a common downstream applica-
tion of long-read mapping, piece-wise extension is considered standard practice in the
area [29, 59, 65, 82, 89].

Piece-wise alignment can still be computationally costly if the distance between anchors
is large enough. Recently, the Wave Front Alignment (WFA) algorithm [71] made a break-
through in both time and space complexity, where the original formulation guarantees
an optimal alignment in time O(ns), proportional to the read length n and the alignment
score s, using O(s2) memory. Instead of a top-to-bottom traversal of the DP matrix, the
WFA algorithm traverses it diagonally. It computes only the cells on the diagonals with
the current highest scores (or, rather, the lowest penalties in the WFA formulation), which
omits visiting many cells far off the diagonal and is particularly beneficial when sequences
are similar, i.e., s is small. Since the WFA algorithm [71] was published, there have been
several follow-up studies to further reduce the time and memory [24, 70]. Notably, the
BiWFA algorithm [70] reduces the space complexity to O(s), which improves on the pre-
viously known lower memory bound O(n) [76]. A current result shows that we can exploit
the massive parallel capabilities of modern GPU devices to accelerate WFA [2]. Currently,
different implementations exist that have been tested on long reads [71]4, although no
dedicated long-read mapper has integrated them yet.

4 https:// github. com/ wavey gang/ wfmash/ blob/ master/ README. md, https:// github. com/ lh3/ miniw fa

https://github.com/waveygang/wfmash/blob/master/README.md
https://github.com/lh3/miniwfa

Page 18 of 23Sahlin et al. Genome Biology (2023) 24:133

Gap cost models

Classical pairwise alignment methods [36, 77] typically relies on global alignment
using algorithms derived from Needleman and Wunsch [78]. These alignment algo-
rithms are based on alignment matrices, which aggregate the base-wise alignment
scores from the two prefixes (top left of the matrix) to the two suffixes (bottom
right). The optimal alignment may look very different depending on which type of
penalties are used for gaps in the alignment. Two natural formulations are either
using a constant gap penalty, where the gaps get the same fixed penalty A regardless
of gap length, or a linear penalty, where the penalty B is multiplied by the gap length
L). Neither of these gap cost models captures very well the error profiles of long
reads and characteristics of indels. While error rates of long reads are constantly
changing, traditionally, the long reads had frequent shorter indels. In addition,
longer insertions and deletions exist as natural sequence variation. Due to this, it
seems natural to introduce a slightly higher cost at opening a gap but not penalizing
successive gaps as much. Therefore, the most popular gap cost penalty in long-read
aligners is the gap-affine penalty, which combines fixed and linear costs. The gap
affine penalty is defined as A+ B(L− 1) , where A is typically a much higher number
than B. This gap cost, to some extent, models the nature of long-read errors and
smaller indels and furthermore does not increase runtime over the linear cost model
due to Gotoh’s formulation [36]. In practice, a 2-piece affine gap cost model is typi-
cally used to score shorter and longer indels differently [59] and enables alignments
over longer indels. However, a 2-piece gap cost model is not a nuanced represen-
tation (model) of gaps of different lengths (e.g., due to indels). There are formula-
tions that better model indel lengths, such as a concave gap cost (A+ B ln L). Such a
model is used in the long-read aligner NGMLR and is computationally more demand-
ing but improves structural variation detection [89].

Vectorization for speed‑up

The extension alignment step is commonly accelerated through vectorization using
single instruction multiple data (SIMD) sets of instructions [19, 28], which increase
the computational throughput by passing several matrix cells for the processors to
evaluate simultaneously in one instruction. Typical SSE architectures have 128-bit
registers, which allow sixteen 8-bit matrix cells (or eight 16-bit cells) to be processed
in parallel, and more recent AVX go up to 256-bit registers. Thus, traditional SIMD
implementations [28] can achieve eight or sixteen times parallelization for short
sequences where scores do not exceed the 8-bit or 16-bit limit, being 127 and 32,767,
respectively. Under most gap penalties, longer alignments can exceed this value and
would therefore require 32-bit values for matrix cells. However, in [96], the authors
introduced a difference-recurrence-based formulation that allows storing only dif-
ferences between the values of adjacent cells in the matrix, which can be represented
in only 8 bits, restoring the usage of 8-bit matrix cells even for larger alignments. To
our knowledge, all competitive long-read aligners use extension modules that allow
vectorization to speed up the extension process.

Page 19 of 23Sahlin et al. Genome Biology (2023) 24:133

Heuristics for speed‑up and quality enhancement

Considering the full matrix is unnecessarily expensive in practice in many cases.
Practical alignment implementations relies on banded alignment [68, 80], which,
simply put, bounds the alignment matrix in a band of size ℓ around the top-left –
bottom-right diagonal. There are also exit-early strategies. Inspired from BLAST’s
X-drop [4, 59] implements a Z-drop procedure. X-drop quits extending the align-
ment if the maximum score reached at some point when aligning the prefix drops by
more than X. Z-drop adds the possibility not to drop the extension during large gaps.

Due to sequencing errors, some spurious anchors main remain in a chain, which can
lead to a sub-optimal alignment. At the alignment step, [59] chooses to remove anchors
that produce an insertion and a deletion at the same time (>10bp) or that lead to a long
gap at the extremity of a chain. Another solution [15] involves to re-compute a chain
with novel anchors computed on a window that comprises the alignment.

Future directions
The seed-chain-extend methodology has remained a popular approach in long
read mapping since the start of long-read sequencing technologies. There has also
been recent advancement on the theoretical side. In [92], the authors show that
long read mapping using the seed-chain-extend method is both fast and accurate
with some guarantees on the average-case time complexity. We therefore believe
this methodology will continue to be a popular approach in the domain of long
read mapping.

We have also seen several recent advances in e.g, the seeding and extension steps. Novel
seeding techniques such as syncmers [22, 23], k-min-mers [25], strobemers [31, 84] have
already led to the emergence of practical solutions for robustness to errors and mutations.
Additionally, the usage of diagonal-transition algorithms for the gap-affine model, which
was initially define for edit distance [42, 55, 97], has been reactivated with the wavefront
alignment algorithm (WFA, including [24, 70, 71]), offering the potential to make the
extension step faster.

Nevertheless, despite these recent advancements, the individual steps of seeding,
chaining, and extension must be adapted to several upcoming challenges. For exam-
ple, we are witnessing a drastic change in the typical reference sequence to which
reads are mapped. We will witness more complete genomes that include challeng-
ing regions such as centromeres (the T2T consortium recently made available a
complete human genome [79]), novel applications are being developed that focus on
mapping over difficult instances like repetitive loci [12] and complex structural vari-
ants [82] and haplotypes [11]. Adapting and tailoring long-read aligners to such appli-
cations will significantly improve analysis over the limited possibilities existing with
short reads. Moreover, using pangenomes represented as graphs made from a set of
reference genomes is becoming more prevalent [37, 41, 63]. As a result, long-read
mapping to these structures is a novel and active field for genomic reads but should
soon expand to other applications such as transcriptomics [93]. Notably, pangenome
graphs vary in definition and structure (overlap graphs, de Bruijn graphs, graphs
of minimizers) and therefore expect a diversified algorithmic response to mapping

Page 20 of 23Sahlin et al. Genome Biology (2023) 24:133

sequences on these graphs. Novel challenges lie again in indexing and maintaining
a good alignment accuracy despite the accumulation of variations as the number of
genomes increases.

Supplementary information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 02972-3.

Additional file 1. Additional figures and details on tools’ strategies.

Additional file 2. Review history.

Acknowledgements
The authors would like to thank Mikaël Salson and Laurent Noé for proofreading the manuscript and suggesting
revisions.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
All authors contributed to the writing of the manuscript, with KS making a significant impact on the text. TB and CM
proposed the figures included in the manuscript. BC played an important role in the chaining section, leading the effort
and proposing the tool. CM led the project. The author(s) read and approved the final manuscript.

Funding
This work was funded by ANR INSSANE ANR21-CE45-0034-02 project. Kristoffer Sahlin was supported by the Swedish
Research Council (SRC, Vetenskapsrådet) under Grant No. 2021-04000.

Declarations

Competing interests
The authors have no competing interests to declare.

Received: 3 August 2022 Accepted: 12 May 2023

References
 1. Abouelhoda MI, Ohlebusch E. A local chaining algorithm and its applications in comparative genomics. In: Inter-

national Workshop on Algorithms in Bioinformatics. Berlin, Heidelberg: Springer; 2003. p. 1–16.
 2. Aguado-Puig Q, Marco-Sola S, Moure JC, Matzoros C, Castells-Rufas D, Espinosa A, et al. WFA-GPU: Gap-affine

pairwise alignment using GPUs. bioRxiv. 2022.
 3. Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, et al. Technology dictates algorithms: recent develop-

ments in read alignment. Genome Biol. 2021;22(1):1–34.
 4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.

1990;215(3):403–10.
 5. Amin MR, Skiena S, Schatz MC. NanoBLASTer: Fast alignment and characterization of Oxford Nanopore single

molecule sequencing reads. In: 2016 IEEE 6th International Conference on Computational Advances in Bio and
Medical Sciences (ICCABS). IEEE; 2016. p. 1–6.

 6. Belbasi M, Blanca A, Harris RS, Koslicki D, Medvedev P. The minimizer Jaccard estimator is biased and inconsistent.
Bioinformatics. 2022;38(Supplement_1):i169–i176.

 7. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM. Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623–30.

 8. Blanca A, Harris RS, Koslicki D, Medvedev P. The Statistics of k-mers from a Sequence Undergoing a Simple Muta-
tion Process Without Spurious Matches. J Comput Biol. 2022;29(2):155–68. https:// doi. org/ 10. 1089/ cmb. 2021. 0431.

 9. Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn graphs. In: International workshop on algorithms in
bioinformatics. Berlin, Heidelberg: Springer; 2012. p. 225–235.

 10. Broder AZ. On the resemblance and containment of documents. In: Proceedings. Compression and Complexity of
SEQUENCES 1997 (Cat. No. 97TB100171). IEEE; 1997. p. 21–29.

 11. Bzikadze AV, Mikheenko A, Pevzner PA. Fast and accurate mapping of long reads to complete genome assemblies
with VerityMap. Genome Res. 2022. https:// doi. org/ 10. 1101/ gr. 276871. 122.

 12. Bzikadze AV, Pevzner PA. TandemAligner: a new parameter-free framework for fast sequence alignment. bioRxiv.
2022;2022–09.

https://doi.org/10.1186/s13059-023-02972-3
https://doi.org/10.1089/cmb.2021.0431
https://doi.org/10.1101/gr.276871.122

Page 21 of 23Sahlin et al. Genome Biology (2023) 24:133

 13. Břinda K, Sykulski M, Kucherov G. Spaced seeds improve k-mer-based metagenomic classification. Bioinformatics.
2015;31(22):3584–92. https:// doi. org/ 10. 1093/ bioin forma tics/ btv419.

 14. Cazaux B, Kosolobov D, Mäkinen V, Norri T. Linear time maximum segmentation problems in column stream
model. In: International Symposium on String Processing and Information Retrieval. Berlin, Heidelberg: Springer;
2019. p. 322–336.

 15. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive
refinement (BLASR): application and theory. BMC Bioinformatics. 2012;13(1):1–18.

 16. Chakraborty A, Morgenstern B, Bandyopadhyay S. S-conLSH: Alignment-free gapped mapping of noisy long reads.
BMC Bioinformatics. 2021;22(1):1–18.

 17. Charikar MS. Similarity estimation techniques from rounding algorithms. In: Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing. 2002. p. 380–388.

 18. Chin CS, Khalak A. Human genome assembly in 100 minutes. BioRxiv. 2019;705616.
 19. Daily J. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments. BMC Bioinformat-

ics. 2016;17(1):81.
 20. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. Alignment of whole genomes. Nucleic Acids

Res. 1999;27(11):2369–76.
 21. Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Commun ACM.

1972;15(1):11–5.
 22. Dutta A, Pellow D, Shamir R. Parameterized syncmer schemes improve long-read mapping. PLOS Comput Biol.

2022;18(10):1–19. https:// doi. org/ 10. 1371/ journ al. pcbi. 10106 38.
 23. Edgar R. Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences.

PeerJ. 2021;9:e10805.
 24. Eizenga JM, Paten B. Improving the time and space complexity of the WFA algorithm and generalizing its scoring.

bioRxiv. 2022.
 25. Ekim B, Sahlin K, Medvedev P, Berger B, Chikhi R. mapquik: Efficient low-divergence mapping of long reads in

minimizer space. In: Research in Computational Molecular Biology. 2023.
 26. Ellis M, Guidi G, Buluç A, Oliker L, Yelick K. diBELLA: Distributed long read to long read alignment. In: Proceedings of

the 48th International Conference on Parallel Processing. 2019. p. 1–11.
 27. Eppstein D, Galil Z, Giancarlo R, Italiano GF. Sparse dynamic programming II: convex and concave cost functions. J

ACM (JACM). 1992;39(3):546–67.
 28. Farrar M. Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinfor-

matics. 2007;23(2):156–61.
 29. Faust GG, Hall IM. YAHA: fast and flexible long-read alignment with optimal breakpoint detection. Bioinformatics.

2012;28(19):2417–24.
 30. Ferragina P, Manzini G. Opportunistic data structures with applications. In: Proceedings 41st annual symposium on

foundations of computer science. IEEE; 2000. p. 390–398.
 31. Firtina C, Park J, Alser M, Kim JS, Cali DS, Shahroodi T, et al. BLEND: a fast, memory-efficient and accurate mecha-

nism to find fuzzy seed matches in genome analysis. NAR Genomics Bioinforma. 2023;5(1).
 32. Frith MC, Noé L, Kucherov G. Minimally overlapping words for sequence similarity search. Bioinformatics.

2020;36(22–23):5344–50.
 33. Fu Y, Mahmoud M, Muraliraman VV, Sedlazeck FJ, Treangen TJ. Vulcan: Improved long-read mapping and structural

variant calling via dual-mode alignment. GigaScience. 2021;10(9):giab063.
 34. Galil Z, Park K. A linear-time algorithm for concave one-dimensional dynamic programming. Inf Process Lett. 1989.
 35. Giladi E, Healy J, Myers G, Hart C, Kapranov P, Lipson D, et al. Error tolerant indexing and alignment of short reads

with covering template families. J Comput Biol. 2010;17(10).
 36. Gotoh O. Optimal sequence alignment allowing for long gaps. Bull Math Biol. 1990;52(3):359–73.
 37. Guarracino A, Heumos S, Nahnsen S, Prins P, Garrison E. ODGI: understanding pangenome graphs. Bioinformatics.

2022;38(13):3319–26.
 38. Haghshenas E, Sahinalp SC, Hach F. lordFAST: sensitive and fast alignment search tool for long noisy read sequenc-

ing data. Bioinformatics. 2019;35(1):20–7.
 39. Han R, Li Y, Gao X, Wang S. An accurate and rapid continuous wavelet dynamic time warping algorithm for end-

to-end mapping in ultra-long nanopore sequencing. Bioinformatics. 2018;34(17):i722–31.
 40. Hera MR, Pierce-Ward NT, Koslicki D. Deriving confidence intervals for mutation rates across a wide range of evolu-

tionary distances using FracMinHash. In: Research in Computational Molecular Biology. 2023.
 41. Hickey G, Monlong J, Novak A, Eizenga JM, Human Pangenome Reference Consortium, Li H, et al. Pangenome

graph construction from genome alignment with Minigraph-Cactus. bioRxiv. 2022;2022–10.
 42. Hyyrö H. A bit-vector algorithm for computing Levenshtein and Damerau edit distances. Nord J Comput.

2003;10(1):29–39.
 43. Ilie L, Ilie S. Multiple spaced seeds for homology search. Bioinformatics. 2007;23(22):2969–77. https:// doi. org/ 10.

1093/ bioin forma tics/ btm422.
 44. Ilie S. Efficient computation of spaced seeds. BMC Res Notes. 2012;5:123–123.
 45. Irber L, Brooks PT, Reiter T, Pierce-Ward NT, Hera MR, Koslicki D, et al. Lightweight compositional analysis of

metagenomes with FracMinHash and minimum metagenome covers. Technical report. Manubot. 2022.
 46. Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. A fast approximate algorithm for mapping long reads to large

reference databases. In: International Conference on Research in Computational Molecular Biology. Springer
International Publishing; 2017. p. 66–81.

 47. Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. Long-read mapping to repetitive reference sequences using Win-
nowmap2. Nature Methods. 2022;1–6.

 48. Jain C, Rhie A, Zhang H, Chu C, Walenz BP, Koren S, et al. Weighted minimizer sampling improves long read map-
ping. Bioinformatics. 2020;36(Supplement-1):i111–8.

https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1371/journal.pcbi.1010638
https://doi.org/10.1093/bioinformatics/btm422
https://doi.org/10.1093/bioinformatics/btm422

Page 22 of 23Sahlin et al. Genome Biology (2023) 24:133

 49. Joudaki A, Meterez A, Mustafa H, Koerkamp RG, Kahles A, Rätsch G. Aligning Distant Sequences to Graphs using
Long Seed Sketches. In: Research in Computational Molecular Biology. 2023.

 50. Joudaki A, Rätsch G, Kahles A. Fast Alignment-Free Similarity Estimation By Tensor Sketching. bioRxiv. 2021. https://
doi. org/ 10. 1101/ 2020. 11. 13. 381814.

 51. Kalikar S, Jain C, Md V, Misra S. Accelerating long-read analysis on modern CPUs. bioRxiv. 2022. https:// doi. org/ 10.
1101/ 2021. 07. 21. 453294.

 52. Kent WJ. BLAT-the BLAST-like alignment tool. Genome Res. 2002;12(4):656–64.
 53. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res.

2011;21(3):487–93.
 54. Kovaka S, Fan Y, Ni B, Timp W, Schatz MC. Targeted nanopore sequencing by real-time mapping of raw electrical

signal with UNCALLED. Nat Biotechnol. 2021;39(4):431–41.
 55. Landau GM, Vishkin U. Fast parallel and serial approximate string matching. J Algorithm. 1989;10(2):157–69.
 56. Lederman R. A random-permutations-based approach to fast read alignment. In: BMC bioinformatics. vol. 14.

BioMed Central; 2013. p. 1–10.
 57. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv: 1303.

3997. 2013.
 58. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.

2016;32(14):2103–10.
 59. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
 60. Li H. New strategies to improve minimap2 alignment accuracy. Bioinformatics. 2021;37(23):4572–4.
 61. Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol.

2020;21(1):1–19.
 62. Li M, Ma B, Kisman D, Tromp J. Patternhunter II: highly sensitive and fast homology search. J Bioinform Comput

Biol. 2004;2(3):417–39.
 63. Liao WW, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft human pangenome reference. bioRxiv.

2022;2022–07.
 64. Lin HN, Hsu WL. Kart: a divide-and-conquer algorithm for NGS read alignment. Bioinformatics. 2017;33(15):2281–7.
 65. Liu B, Gao Y, Wang Y. LAMSA: fast split read alignment with long approximate matches. Bioinformatics.

2017;33(2):192–201.
 66. Liu B, Guan D, Teng M, Wang Y. rHAT: fast alignment of noisy long reads with regional hashing. Bioinformatics.

2015;32(11):1625–31. https:// doi. org/ 10. 1093/ bioin forma tics/ btv662.
 67. Liu B, Liu Y, Li J, Guo H, Zang T, Wang Y. deSALT: fast and accurate long transcriptomic read alignment with de

Bruijn graph-based index. Genome Biol. 2019;20(1):1–14.
 68. Liu D, Steinegger M. Block aligner: fast and flexible pairwise sequence alignment with SIMD-accelerated adaptive

blocks. bioRxiv. 2021.
 69. Marçais G, DeBlasio D, Pandey P, Kingsford C. Locality-sensitive hashing for the edit distance. Bioinformatics.

2019;35(14):i127–35.
 70. Marco-Sola S, Eizenga JM, Guarracino A, Paten B, Garrison E, Moreto M. Optimal gap-affine alignment in O(s)

space. Bioinformatics. 2023;Btad074. https:// doi. org/ 10. 1093/ bioin forma tics/ btad0 74.
 71. Marco-Sola S, Moure JC, Moreto M, Espinosa A. Fast gap-affine pairwise alignment using the wavefront algorithm.

Bioinformatics. 2020;37(4):456–63.
 72. Marić J, Sović I, Križanović K, Nagarajan N, Šikić M. Graphmap2-splice-aware RNA-seq mapper for long reads.

bioRxiv. 2019;720458.
 73. Meunier F, Gandouet O, Fusy É, Flajolet P. HyperLogLog: the analysis of a near-optimal cardinality estimation

algorithm. Discret Math Theor Comput Sci. 2007.
 74. Mikheenko A, Bzikadze AV, Gurevich A, Miga KH, Pevzner PA. TandemTools: mapping long reads and assessing/

improving assembly quality in extra-long tandem repeats. Bioinformatics. 2020;36(Supplement-1):i75–83.
 75. Mohamadi H, Chu J, Vandervalk BP, Birol I. ntHash: recursive nucleotide hashing. Bioinformatics.

2016;32(22):3492–4.
 76. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci. 1988;4(1):11–7.
 77. Myers G. A fast bit-vector algorithm for approximate string matching based on dynamic programming. J ACM

(JACM). 1999;46(3):395–415.
 78. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence

of two proteins. J Mol Biol. 1970;48(3):443–53. https:// doi. org/ 10. 1016/ 0022- 2836(70) 90057-4.
 79. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human

genome. Science. 2022;376(6588):44–53. https:// doi. org/ 10. 1126/ scien ce. abj69 87.
 80. Okada D, Ino F, Hagihara K. Accelerating the Smith-Waterman algorithm with interpair pruning and band optimi-

zation for the all-pairs comparison of base sequences. BMC Bioinformatics. 2015;16(1):321.
 81. Otto C, Hoffmann S, Gorodkin J, Stadler PF. Fast local fragment chaining using sum-of-pair gap costs. Algorithm

Mol Biol. 2011;6(1):1–8.
 82. Ren J, Chaisson MJ. lra: A long read aligner for sequences and contigs. PLOS Comput Biol. 2021;17(6):e1009078.
 83. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological sequence com-

parison. Bioinformatics. 2004;20(18):3363–9.
 84. Sahlin K. Effective sequence similarity detection with strobemers. Genome Res. 2021;31(11):2080–94.
 85. Sahlin K. Strobealign: flexible seed size enables ultra-fast and accurate read alignment. Genome Biol.

2022;23(1):260.
 86. Sahlin K, Mäkinen V. Accurate spliced alignment of long RNA sequencing reads. Bioinformatics.

2021;37(24):4643–51.
 87. Sahlin K, Medvedev P. Error correction enables use of Oxford Nanopore technology for reference-free transcrip-

tome analysis. Nat Commun. 2021;12(1):1–13.

https://doi.org/10.1101/2020.11.13.381814
https://doi.org/10.1101/2020.11.13.381814
https://doi.org/10.1101/2021.07.21.453294
https://doi.org/10.1101/2021.07.21.453294
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://doi.org/10.1093/bioinformatics/btv662
https://doi.org/10.1093/bioinformatics/btad074
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1126/science.abj6987

Page 23 of 23Sahlin et al. Genome Biology (2023) 24:133

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 88. Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for document fingerprinting. In: Proceedings of
the 2003 ACM SIGMOD international conference on Management of data. 2003. p. 76–85.

 89. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, et al. Accurate detection of complex
structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461–8.

 90. Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C, et al. Nanopore sequencing and the Shasta
toolkit enable efficient de novo assembly of eleven human genomes. Nat Biotechnol. 2020;38(9):1044–53.

 91. Shaw J, Yu YW. Theory of local k-mer selection with applications to long-read alignment. Bioinformatics.
2021;38(20):4659–69. https:// doi. org/ 10. 1093/ bioin forma tics/ btab7 90.

 92. Shaw J, Yu YW. Sequence aligners can guarantee accuracy in almost O(m log n) time: a rigorous average-case
analysis of the seed-chain-extend heuristic. bioRxiv. 2023. https:// doi. org/ 10. 1101/ 2022. 10. 14. 512303.

 93. Sibbesen JA, Eizenga JM, Novak AM, Sirén J, Chang X, Garrison E, et al. Haplotype-aware pantranscriptome analy-
ses using spliced pangenome graphs. Nat Methods. 2023;1–9.

 94. Smith TF, Waterman MS. Comparison of biosequences. Adv Appl Math. 1981;2(4):482–9. https:// doi. org/ 10. 1016/
0196- 8858(81) 90046-4.

 95. Sović I, Šikić M, Wilm A, Fenlon SN, Chen S, Nagarajan N. Fast and sensitive mapping of nanopore sequencing
reads with GraphMap. Nat Commun. 2016;7(1):1–11.

 96. Suzuki H, Kasahara M. Introducing difference recurrence relations for faster semi-global alignment of long
sequences. BMC Bioinformatics. 2018;19(Suppl 1):45.

 97. Ukkonen E. Algorithms for approximate string matching. Inf Control. 1985;64(1–3):100–18.
 98. Wei ZG, Fan XG, Zhang H, Zhang XD, Liu F, Qian Y, et al. kngMap: sensitive and fast mapping algorithm for noisy

long reads based on the k-mer neighborhood graph. Front Genet. 2022;988.
 99. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinfor-

matics. 2005;21(9):1859–75.
 100. Xiao CL, Chen Y, Xie SQ, Chen KN, Wang Y, Han Y, et al. MECAT: fast mapping, error correction, and de novo assem-

bly for single-molecule sequencing reads. Nat Methods. 2017;14(11):1072–4.
 101. Zhang H, Jain C, Cheng H, Au KF, Li H, Li H, et al. Real-time mapping of nanopore raw signals. Bioinformatics.

2021;37(Supplement–1):i477–83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btab790
https://doi.org/10.1101/2022.10.14.512303
https://doi.org/10.1016/0196-8858(81)90046-4
https://doi.org/10.1016/0196-8858(81)90046-4

	A survey of mapping algorithms in the long-reads era
	Abstract
	Introduction
	Definitions and state-of-the-art of tools
	Preliminaries
	Overview of fundamental ideas
	Seeding
	Sketching
	Chaining

	A survey of algorithmic steps
	Seeding almost always uses sketched, exact, fixed-length seeds
	k-mers
	k-mer sketching
	Fuzzy seeds
	Dynamic seeds

	Implementation of the seeding step
	Seed transformations before indexing
	Hash tables prevail for seed indexing
	Selecting seeds to query

	Chaining is dominated by dynamic programming with concave gap score functions
	A dynamic programming problem
	Chaining in two steps
	Chaining in a single step: gap score functions
	Mapping quality scores have been adapted for ranking chains

	Extension step and final alignment computation
	Gap cost models
	Vectorization for speed-up
	Heuristics for speed-up and quality enhancement

	Future directions
	Anchor 30
	Acknowledgements
	References

