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Abstract 

It has been over a decade since the first publication of a method dedicated entirely to 
mapping long-reads. The distinctive characteristics of long reads resulted in methods 
moving from the seed-and-extend framework used for short reads to a seed-and-chain 
framework due to the seed abundance in each read. The main novelties are based on 
alternative seed constructs or chaining formulations. Dozens of tools now exist, whose 
heuristics have evolved considerably. We provide an overview of the methods used 
in long-read mappers. Since they are driven by implementation-specific parameters, 
we develop an original visualization tool to understand the parameter settings (http:// 
bcaza ux. polyt ech- lille. net/ Minim ap2/).

Introduction
With the introduction of PacBio long-read sequencing and later Oxford Nanopore 
Technologies, a need for mapping long and noisy sequencing reads emerged. The data 
proposed new computational challenges of mapping millions of sequences, initially at 
expected error rates of 10–20%. In addition, researchers noticed that the seed-and-
extend paradigm used in short-read mapping was not practical for long-reads. First, 
seed-and-extend would usually rely on a single match before extending, while long-reads 
required multiple consistent matches along the read to be confidently mapped. Second, 
the extending part, which relies on pairwise alignment algorithms with quadratic time 
complexity, had to be avoided, given the combined length and the frequent insertions 
and deletions in long-read data. Early on, the computational problem was compared 
to whole-genome alignment, with the additional complexity of high error rates. Such 
observations lead to the novel seed-and-chain paradigm for mapping long-reads (see 
Fig. 1). However, the first long-read mapping algorithms using older seeding techniques 
designed for generic sequence alignment (e.g., BLAST) were not time-competitive in 
their throughput compared to short-read mappers. Thus, sketching techniques imported 
from comparative genomics started to appear in this domain.
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Recently, specific sub-problems in the mapping domain have been identified and 
investigated, such as partial and gapped extension alignment of reads for structural vari-
ant discovery, mapping reads in repetitive regions or from non-reference alleles to cor-
rect loci, and other applications such as spliced-mapping of RNA reads. These specific 
problems require and motivate novel algorithmic solutions. In this survey article, we 
give an overview of the techniques proposed over the last decade for mapping long reads 
to genomes. After giving definitions and main intuitions, we describe the methodology 
in two steps. We first discuss seeding, up to the latest advents using novel seeds (e.g., 
syncmers and strobemers). We then discuss chaining, for which we decipher the cur-
rently used score functions. We also made available an original visualization tool that 
can be used to play with the different parameters in order to understand their impact on 
the chain (http:// bcaza ux. polyt ech- lille. net/ Minim ap2).

Definitions and state‑of‑the‑art of tools
Preliminaries

In this survey, we restrain ourselves to the problem of mapping a sequence shorter or 
equal to a genome (a read) to a reference genome. We further assume that reads come 
from a genome that is closely related to the reference genome, such as from the same 
organism or a closely related species.

Let q = (q1, . . . ql) be the read sequence of size l and t = (t1, . . . tn) the sequence of 
the reference region of size n. Let � = {A,C ,G,T } and �+ = {A,C ,G,T ,−} be two 
alphabets, x and y strings are defined on � . Let f : �∗

+ → �∗ be a transform that maps 
a string to its subsequence with all “−” characters removed. An alignment is a pair of 
strings (q′, t ′) such that: 

1. q′ and t ′ have the same size: |q′| = |t ′| = S

2. The initial sequences are retrieved through the transform: f (q′) = q and f (t ′) = t

3. Any pair of characters can be matched at a position i of the strings but two dashes: 
(q′[i], t ′[i]) �= (−,−) , for 0 ≤ i < S

Fig. 1 Differences in the main steps between short-read mapping (left) and long-read mapping (right). 
Query denotes the read and reference denotes a genome region. Mainly, short-read approaches extend 
(orange parts) from a single anchor (in blue) on the whole read length while long-read approaches gather 
multiple anchors, and chain (yellow line) them in for a candidate extending procedure that is done between 
pairs of anchors

http://bcazaux.polytech-lille.net/Minimap2
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Many alignments exist for a given pair of strings, in theory, the methods described 
hereafter aim at finding good alignments, i.e., alignments that optimize some distance 
between the pair of strings. The distance is computed using score functions which 
give rules on the characters pairing. Algorithms exist to compute optimal semi-global 
pairwise alignments between a read and the reference genome with respect to a score 
function. However, their complexity is O(n× l) and disqualifies them in the context of 
handling big data such as sequencing data. Therefore, methods in the literature use heu-
ristics to narrow down a set of candidate locations before performing pairwise align-
ment. This heuristic procedure has been commonly referred to in literature both as read 
mapping and read alignment.

We will in this survey refer to read mapping as the complete procedure of finding the 
read’s location on the genome (through seeding and chaining steps) and extending the 
alignment between the read and genome region identified by the mapping location by 
pairwise alignment. The mapping algorithms we discuss do not guarantee to find the 
optimal solution. In case we discuss the procedure of only finding a reference location 
for the read without the alignment extension, we refer to the procedure as extension-free 
mapping.

In our survey, we discuss read mapping to a genome sequence. We will use the terms 
query for a read and reference to denote the genome.

Overview of fundamental ideas

To our knowledge, the first mappers explicitly written for long-reads were YAHA  [29] 
and BLASR  [15], although short-reads mappers had been adapted for the long-read 
usage  [53, 57, 64]. While solutions specialized for either Nanopore  [5] or PacBio  [38] 
characteristics appeared, most modern mappers work for both technologies with 
adapted parameters. BLASR presented itself as a hybrid approach descending from both 
genome-to-genome alignment methods (such as MUMmer [20]) and short-read mappers. 
The paper contains seminal ideas used in modern long-read mappers such as the seed-
and-chain paradigm.

Seeding

Seeding is the first operation in the heuristics used by mapping techniques.

Definition 1 A seed is a subsequence extracted from the query or the reference.

The purpose of seeding is to find relatively small matching segments between the 
query and the reference that serves as markers for reference regions that potentially are 
similar to the read. The reason seeding is used is that it is typically computationally effi-
cient to find matching seeds that can narrow down regions of interest compared to, e.g., 
global pairwise alignment of the read to the reference. As we will see in the  “Seeding 
almost always uses sketched, exact, fixed-length seeds” section, seeds can be of different 
nature. Seeding relates to pattern matching, although in sequence bioinformatics, prac-
tically all approaches work under the paradigm which indexes the reference and query 
the index to find matches. The underlying assumption is that once the index is created, 
it can be used several times to map different query sets. To save space, reference indexes 
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can be in a compressed form. Once matches are found, a second operation aims at find-
ing sets of concordantly ordered seeds between the query and the reference (chaining; 
“Chaining is dominated by dynamic programming with concave gap score functions” 
section) and to “fill the gaps” between seeds as well as providing the final nucleotide level 
alignment (extension; “Extension step and final alignment computation” section). Seed-
ing was quickly identified as a critical phase in long-read mapping, which led to novel 
proposals [58, 66, 95].

Sketching

An important idea for seeding is sketching that was introduced in MHAP, a long-read 
overlap finder implemented in an assembly algorithm [7]. The rationale was to improve 
the time efficiency of the long-read mapping problem in comparison to the throughput 
of the second generation sequencing mappers. Sketching consists of compressing the 
information of a set (here a set of k-mers) into a fixed-length vector (a sketch) of repre-
sentative elements called fingerprints. By comparing two sketches, one can approximate 
a similarity estimation of the two sets quickly and independently of their initial set sizes. 
Several approaches exist  [10, 17, 73]. MinHash [10] is a sketching technique based on 
locally sensitive hashing, which produces an unbiased estimator for the Jaccard distance 
between two sets by comparing a subset of items in a very efficient way. MHAP relied 
on sketching with this MinHash approach. Thus, MHAP overcame a space limitation of 
BLASR which would index the whole reference. The type of matches (exact, fixed-size) 
induced by MHAP’s approach also allowed to perform rapid queries. An important limi-
tation of MHAP was that the sampling technique gave no guarantee to uniformly cover 
the query’s sequence. In other words, there was no guarantee on the maximum distance 
between two consecutively sampled seeds. This led to the development read mappers 
that used sketching techniques with guarantees on maximum distance between sampled 
seeds, starting with minimap [58]. Sketching is still an active research area of long-read 
mapping with several recent developments [22, 31, 48, 91].

Chaining

A key intuition is that in short-reads mapping, the extending procedure could start after 
finding a single shared seed between the query and the reference, called anchors (for 
details on techniques related to the previous sequencing generation, we refer the reader 
to a methodological survey of short-read mapping [3]).

Definition 2 An anchor is a matching seed between the query and the reference. It is 
represented by a pair of coordinates on the query and the reference.

In the literature, an anchor can also be called “a fragment” or “a match.” Two anchors 
are said to overlap if one anchor starts or ends within the coordinate interval defined 
by the other anchor. In long-read mapping, the length of the reads and the short seed 
length used due to the initial high long-read error rates can lead to a large number of 
anchors. It is therefore necessary to reduce the search space by selecting subsequences 
of ordered anchors (chains).
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Definition 3 Let A = [a0, a1, . . . , ak ] be a list of anchors defined by their coordinates 
on the reference and the query. A chain is a subset of A of length c ≤ k . A colinear chain 
is a subset of A in which anchors are sorted by such that if i < j , aj an anchor of starting 
coordinate (xj,yj) , with xj > xi and yj > yi , ( xi , yi the ending coordinate of ai ) in the (ref-
erence, query) plane.

Drawing inspiration from genome-wide mapping, BLASR introduced a chaining step 
which aims at selecting high-scoring chains from a set of candidate chains. Chaining 
allows to reduce the final step of a long-read mapper (the base level extension) to pair-
wise alignment of sub-regions between ordered anchors in chains. Chaining in long-
reads has been solved using various dynamic programming procedures [59, 82, 95]. In 
particular, the continuous work effort provided in minimap2  [58–60] in both seeding 
and chaining processes made it a baseline for many other tools’ development. Figure 2 
shows the different algorithmic choices over time for seeding and chaining.

While this survey covers the genomic mapping aspects, other important contribu-
tions have dealt with adapted procedures in the case of long-read RNA mapping [67, 72, 
86, 99], and structural variant identification [33, 65, 89, 98], or alignment through large 
repeats [12, 74]. Other related research focused on read-to-read overlap detection [26, 
100]1, or extension-free (pseudo-alignment) approaches  [16, 25, 46]. Finally, here we 
describe algorithmic solutions working on the nucleotide sequence, but raw signal map-
pers for Nanopore long-reads is also an active area of research [39, 54, 101].

In the following, we hardly elaborate on complexities for the different algorithms. 
Some are yet unknown, but in many cases implementations simply use heuristics so that 
each step’s time is expected to be linear.

A survey of algorithmic steps
Seeding almost always uses sketched, exact, fixed‑length seeds

Seeding is the procedure that consists in collecting a set S of seeds from the refer-
ence, then finding anchors between the query’s seeds and S . In order to find anchors 

Fig. 2 Long read mapping tools over time. Tools and techniques are presented from oldest to most recent, 
from left to right. The figure presents implementation names at the bottom, then goes up to the different 
steps: seeding, with seed selection strategies and indexation, then chaining and pairwise alignment 
strategies. The dotted line for minimap2 means its implementation evolved from strategy in plain line to 
strategy in dotted line. The gray italic names denote for proofs-of-concept rather than tools

1 and the unpublished DALIGNER https:// github. com/ thege nemye rs/ DALIG NER

https://github.com/thegenemyers/DALIGNER
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efficiently, S is stored using an index data-structure. In the following sections we detail 
the different types of seeds that have been used in long-read mapping.

k‑mers

Substrings of length k, or k-mers, are perhaps the most commonly used seed in bioin-
formatics. A k-mer seed can be indexed by using a hash function to produce an integer 
value (usually as a 32 or 64-bit integer), which is then added to a hash table. This makes 
indexing of k-mers computationally cheap, provided that the hash function and hash 
table implementations are efficient. Methods to efficiently hash k-mers have been pro-
posed  [75], which uses the previous k-mers hash value to compute the next one using a 
rolling hash function.

If a k-mer anchor is found, it is guaranteed to be exact (disregarding hash collisions). 
While it is desirable to produce anchors only in identical regions to minimize hits to 
non-homologous regions, a downside is that mutations in homologous regions will also 
alter the k-mers, preventing anchors in the region. Typically, a single substitution alters 
2k − 1k-mers. The length distribution of stretches of consecutive non-matching k-mers 
between two homologous regions with substitutions depends on the substitution rate, 
and has been studied theoretically in [8].

k‑mer sketching

As two consecutive k-mers share most of their sequence, they are mostly redundant. 
Therefore, we could reduce the memory overhead and query time without losing much 
information if only some k-mers were stored. Here we present different methods for 
picking a subsample of representative k-mers as seeds. These approaches have proven 
their efficiency by drastically reducing the number of objects to index while keeping 
high sensitivity and specificity in mapping applications. There exist two broader classes 
of sketching techniques, methods that offers a distance guarantee between consecutively 
sampled seeds, and methods that does not. Both classes of methods have been used to 
estimate similarity between sequences. However, the central research questions of the 
former class of methods involve the distance distribution between sampled seeds, the 
fraction of conserved seeds under mutations, and the compression ratio to original input 
data. In contrast, the central studied question for sketching methods without distance 
guarantees is often to produce unbiased estimations of sequence identity [10, 40, 69]), 
which distance bounded sketching methods can not guarantee [6].

No guarantee on distance In this category methods typically stores a predetermined 
number of k-mers (e.g., MinHash  [10], OrderMinHash  [69]) from the sequence. The 
k-mers are selected based on the property of their hash value. For example, in Min-
Hash sketching, a total ordering on the k-mers’ hashes is used, and a fixed set of mini-
mal hashes in the ordering are kept. This technique gives no distance guarantee between 
seeds, meaning a large gap can appear between two consecutive sampled k-mers. 
MinHash has been used to perform extension-free mapping  [46] for genome-length 
sequences and to find read-to-read overlaps in long-read assembly  [7, 90]. However, 
fixed-size sketches do not adapt well to different read lengths. The number of sampled 
seeds remains constant for any number of distinct k-mers. Because of this, two similar 
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regions from sequences of different sizes will not automatically have the same selected 
seeds, which is a desired property for seeding. Therefore this approach was later replaced 
by other scaled sketch strategies  [40, 45]. FracMinHash has been used for long read 
mapping [25] (called universal minimizers in their study), and works well when reads are 
long enough, but it is important to note that theoretically there does not exist a distance 
guarantee for scaled sketch hashing methods, regardless of the density of the sketch.

Distance guaranteed The first distance bounded k-mer sketching technique pro-
posed for long-read mapping was minimizers. Minimizers have been introduced in two 
independent publications  [83, 88], and was popularized in bioinformatics by the tools 
minimap [58] and minimap2 [59]. In our framework, minimizers are k-mers sampled 
determined by three parameters m, w, and h. h is a function that defines an order, e.g., 
the lexicographical order. Given the set of w consecutive k-mers in a window at positions 
[m,m+ w − 1] on the sequence, a minimizer is the k-mer associated with the minimal 
value for h over this set (see left panel in Fig. 3). Minimizers are produced by extracting a 
minimizer in each consecutive window w ∈ [0, |S| − w + 1] over a sequence S.

Since at least one minimizer is selected in each window, they have a distance guar-
antee. While the distance guarantee (hence seed density in regions) is desired for map-
ping applications, it is also desired to sample as few minimizers as possible to reduce 
storage. Different optimizations have been proposed to reduce the density of sampled 
minimizers while keeping the distance guarantee. Weighted minimizers [48] implement 
a procedure to select k-mers of variable rareness. In order for k-mers from highly repeti-
tive regions not to be as likely as others to be selected, it first counts k-mers, and down 
weights the frequently occurring ones. Then it takes this weight into account for the 
hashing procedure. If low occurrence k-mers are too far away in a query, a solution [60] 
allows sampling minimizers also in the repetitive region by keeping some of the lowest 
possible occurrences among the minimizers in the repetitive region.

Fig. 3 Illustration of spaced-seeds, minimizer selection, syncmer selection and context dependency. Here, 
two sequences s1 and s2 are different from a single mutated base (second base, in pink). When comparing 
those sequences, one would like to focus on common bases, i.e., bases highlighted in grey. In the left panel, 
we present spaced-seeds for k = 5 , with a wildcard at second position (represented by an underscore). We 
observe that identical spaced-seeds can be spelled over a mutated locus, e.g., T_GAGG . In the middle panel, 
we present a selected minimizer with k = 5,w = 3 . One blue window is presented, a second is suggested in 
lighter blue. A star shows the position of the selected k-mer in the window (we use lexicographic order). The 
mutated base has an impact on the overall window content, therefore a k-mer from the (unmutated) region 
of interest in s1 is no longer selected in s2 . On the contrary, in the right panel, we show that syncmers can be 
more robust in this situation. We choose k = 5, s = 2 and present closed syncmers. We underline the smallest 
s−mer in each k-mer in blue and a star shows the selected k-mers. We see that in this example, the mutated 
base has no impact on the syncmer selection, and the same syncmer is selected in the region of interest for 
s1 and s2
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In minimizer sketching, the choice of the minimizer in each window depends on 
the other k-mers in the window. This property is called context dependency  [91]. Con-
text dependency is typically not desired in sketching methods as neighbouring k-mers 
affected by mutations may alter the minimizers in a window. However, for finding 
anchors it is desired to guarantee that the same k-mers are sampled between two homol-
ogous regions regardless of neighboring mutations. Therefore, context-independent 
methods have been proposed such as syncmers [23] and minimally overlapping words 
(MOW)  [32], where the sampling does not depend on the neighboring k-mers. Sync-
mers was used in the context of long-read mapping [91] in an alternative implementa-
tion of minimap2 and even more recently in [22]2. For their construction, syncmers use 
s-mers of size k − s + 1 ( s < k ) occurring within k-mers (see right panel in Fig. 3 for an 
illustrated difference with the minimizers, and Additional file 1: Fig. S1). The k-mer is 
selected if its smallest s-mer meets some criteria. An example criteria is that the s-mer 
appears at position p within the k-mer ( 0 ≤ p < k − s + 1) (these are called open sync-
mers), a more studied category is closed syncmers where p must be the first or the last 
s-mer position in the k-mer. This way of selection uses properties intrinsic to each k-mer, 
therefore is context-free. Closed syncmers also have a distance guarantee. By construc-
tion, syncmers tend to produce a more even spacing between sampled seeds while still 
allowing a distance guarantee.

Fuzzy seeds

Due to read errors and SNPs between the reference and sequenced organism, it is in 
many scenarios desired that a seed anchors the query and the reference in homologous 
regions even if the seeds extracted in regions differ. In other words, we would want simi-
lar seeds to hash to identical hash values. A hash function that produces identical hash 
values for similar but not necessarily identical inputs is usually called a locality-sensitive 
hash function. We will refer to seeds produced under such methods as fuzzy or inexact 
seeds. Several methods to produce fuzzy seeds have been described.

Perhaps the most common one is spaced seeds. Within a spaced seed, some posi-
tions are required to match (called fixed positions), while the remaining positions can 
be ignored (called wildcards or don’t care positions). Within a k-mer, fixed positions can 
be selected as wildcards by applying particular masks on the k-mer’s bases [44]. Spaced 
seeds are effective for data with substitutions and are, for example, used in the popular 
sequence mapping software BLAST [4], metagenome short-read classification [13], and 
in long read mapping tool GraphMap [95]. Typically, multiple seed patterns are used [62, 
95] where the overlap between the fixed positions in the seeds should be minimized [43] 
to increase sensitivity. For example, GraphMap queries three different seeds to the index 
for each position in the query. This design is capable of handling substitutions and indels 
of one nucleotide. We provide details on this scheme in Additional file 1: Figs. S2 and S3. 
However, spaced seeds can only handle indels if multiple patterns are queried per posi-
tion, and the number of patterns required increases with indel size [35]. Although the 
computation of good sets of spaced seed patterns has been optimized [44], using such 

2 https:// github. com/ bluen ote- 1577/ os- minim ap2 and https:// github. com/ Shamir- Lab/ syncm er_ mappi ng

https://github.com/bluenote-1577/os-minimap2
https://github.com/Shamir-Lab/syncmer_mapping
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seeding can become computationally prohibitive if the application requires to match 
over indels beyond a couple of nucleotides.

As indels are a frequent source of variability on long-reads, spaced seeds have, except 
GraphMap, not been frequently used in long-read mapping algorithm designs. There 
are other types of fuzzy seed constructs, such as permutation-based seeds [56], but they 
only tolerate substitutions and have been used in short-read mapping.

Traditionally, anchoring over indels has typically been solved by querying multiple 
seeds in a region and performing post-clustering of nearby anchoring seeds, which are 
then inferred as an anchoring region. Such an approach usually provides gold standard 
sequence similarity queries  [4, 52]. However, it comes at a substantial computational 
cost, not only because of the post-clustering step but in addition because relatively short 
seeds must be used to guarantee sensitivity, which can yield many anchors to other 
regions.

To remove the overhead of post-processing of nearby seeds, one can instead link sev-
eral k-mers into a seed and represent it as a single hash value before storing it in the 
index. Such linking techniques has recently become popular in the long-reads era, where 
indels are frequent. One proposed method is to link two nearby minimizers [18] or sev-
eral MinHash seeds  [25] into a seed. Linking several minimizers into a seed is usually 
a relatively cheap computation as the minimizers constitute a subset of the positions 
on the reference. Such seeding techniques have been used in long-read mapping  [25], 
and long-read overlap detection in genome assembly [18] and error correction [87]. A 
downside with these methods is that the linking of nearby minimizers or MinHash seeds 
implies that if some of them are destroyed due to mutations in a region, all the seeds in 
the region will be destroyed. Put another way, nearby seeds share redundant information 
(in the form of shared minimizers or MinHash seeds). Therefore, alternative approaches 

Fig. 4 Illustration of strobemers’ capacity to handle indels. As in Fig. 3, two sequences are presented. This 
time, s2 has an insertion (pink G). On the left panel, minimizers are selected using w = 2, k = 5 . Blue stars 
point selected minimizers in each blue window. One can see that the only safe region to generate minimizer 
is the CGGTT sequence after the insertion, that is shared and of length ≥ k . Put differently, k-mers in red 
have no chance to be in common between the two sequences. However, in this example, the scheme fails 
to select a common minimizer in the safe region. Strobemer selection is presented in the right panel, using 
k = 2, s = 2,w = 2 . At each position, the first k-mer is selected to be the start site of the strobemer. Then, in 
the non-overlapping window (of size w) downstream to the first k-mer, a second k-mer is selected according 
to one of the selection techniques presented in [84] (we illustrate selecting the lexicographical minimizer). 
We underline the bases that are kept for each strobemer. For instance in s1 , the first k-mer is CG at positions 
0 and 1, then the next window starts at position 2. Two k-mers are computed from this window, AC and 
CG, and AC is the minimizer. Therefore, the strobemer is (CG,AC). Again, strobemers with no chance to be 
shared between s1 and s2 are colored in red. For strobemers, it is the case when at least one part contains the 
mutated base. We note that not only the CGGTT region has a common strobemer (CG,GT) in both sequences, 
but also that the scheme allowed to “jump over” the mutated G and could select another common strobemer 
(GA,CG) in a more difficult region. The strobemers in this example consists of two k-mers ( s = 2 ) but they can 
be constructed for other s > 2
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such as strobemers [84] (see right panel in Fig. 4) have been described, where the goal 
has been to reduce the information between close-by seeds by linking k-mers at seem-
ingly random positions within a window. Such pseudo-random linking of k-mers implies 
that, if one seed is destroyed due to a mutation, a nearby seed may still anchor the region. 
Strobemers have been shown effective at finding anchors between long-reads and for 
long-read mapping [84], and have been used in short-read mapping programs [85], but 
the pseudo-random linking come at an increased computational cost to simple linking of 
neighboring k-mers.

Two other indel tolerant fuzzy seeding techniques are BLEND seeds [31] and Tensor-
Sketch [50]. The BLEND seeding mechanism mixes SimHash [17] (an alternative locality 
sensitive hashing to MinHash) applied either to minimizers or strobemers to construct 
fuzzy subsampled seeds. The authors showed that read mapping and overlap detection 
with BLEND seeds implemented in minimap2 [59] could improve mapping speed and, 
in some cases, accuracy. TensorSketch [50] is based on computing all subsequences of a 
given length within a given window. The idea is that similar sequences will share many 
similar subsequences and lie close in the embedding space. TensorSketch has been used 
in long read mapping to graphs and offers high sensitivity but at a significant computa-
tional cost to approaches using exact seeds [49].

Dynamic seeds

Previously discussed seeds share the characteristic that they can all be produced and 
inserted in a hash table and, consequently, only require a single lookup. Such techniques 
are typically fast and, hence, popular to use in long-read mapping algorithms. However, 
the downside is that if a seed differs in a region between the reference and the query 
(e.g., due to an error), there is no way to alternate the seeds in this region at mapping 
time. There are, however, other types of seed constructs that we here refer to as dynamic 
seeds that can be computed on the fly at the mapping step and then used as seeds down-
stream in the read mapping algorithm.

Maximal exact matches (MEMs)  [20] are matches between a query and reference 
sequence that cannot be extended in any direction on the query or reference without 
destroying the match. These are typically produced by first identifying a k-mer match 
and then applying an extension process. MEMs are guaranteed to be an exact match 
between the query and the reference and are bounded below by length k but do not 
have an upper threshold for seed size. MEMs have been used in earlier long-read map-
ping programs (e.g., BWA-MEM) [15, 57] and for long-read splice mapping [86], but these 
seeds are more computationally expensive to compute and are typically slower than sin-
gle-query seed-based algorithms.

Minimal confidently alignable substrings (MCASs) If a query was sampled from a 
repetitive region in the reference, one might likely find several clusters of anchoring 
seeds across the reference. Further dynamic programming operations to decipher the 
true origin region of the query are typically costly or even unfeasible if too many copies 
have to be considered. The query might also be attributed to the wrong copy because 
of the sequencing errors. A recent contribution  [47] proposed a solution for seeding 
in repetitive regions. The procedure finds the smallest substrings that uniquely match 
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(MCASs) between the query and the reference. There can be as many as the query length 
in theory. In practice, the more divergent the repeats, the shorter the MCASs, since a 
base pertaining to a single copy is more likely to be found.

Implementation of the seeding step

Seed transformations before indexing

Originally, minimizers used a lexicographical ordering. However, in our four base alpha-
bet, this can tend to select sequences starting with long alphabetically smaller runs such 
as “AAA...”. Random hash functions assigning each k-mer a value between 0 and a maxi-
mum integer are preferred [88].

Long read technologies are known for accumulating errors in homopolymer regions, 
typically adding/removing a base in a stretch of a single nucleotide. Sequences can be 
homopolymer-compressed before finding k-mers. Homopolymers longer than a size s 
are reduced to a single base, then k-mers are computed over the compressed sequence. 
For instance, for s = 3, k = 4 , an original sequence ATT TTG AAA ACC  is compressed 
to ATG ACC , and the final k-mers are ATGA, TGAC, GACC. This procedure allows 
finding more anchors while indexing fewer k-mers or minimizers. Homopolymer com-
pression appears in long-read mapper implementations (e.g., [59]).

In regions of low complexity (e.g., ATA TAT A, CCCCC) the standard minimizer pro-
cedure keeps all minimal k-mers in windows. It is then possible for two k-mers to get 
the minimal value and to be selected, which tends to over-sample repetitive k-mers. A 
robust winnowing procedure is proposed in [48], which avoids the over-sampling effect 
by selecting fewer copies of a k-mer, but increases context dependency.

Hash tables prevail for seed indexing

Indexing of fixed size seeds is usually done using hash tables (although FM-indexes 
for k-mers exist [9]). In the context of sketching, invertible hash functions have been a 
key asset for using minimizers as k-mers representatives. In other words, a hash value 
is associated with one and only one k-mer, and the k-mer sequence can be retrieved 
from the hash value (using reciprocal operations). This choice allows a very fast k-mer/
minimizer correspondence, but is memory-wise costly as it implies that the finger-
prints of the hash table are not compressed (which is mitigated by the density of the 
sketching). Minimizers are then used to populate a hash table, which associates them to 
their position(s) in the reference and their strand information (usually hashed seeds are 
canonical k-mers: the smallest lexicographic sequence between the original k-mer and 
its reverse complement). There also exists learned index data structures [51] that further 
accelerates the querying of minimizers.

Variable-length seeds are indexed in full-text data structures (e.g., suffix arrays or FM-
index [30]), which allow to find and count arbitrarily long queries in the reference. They 
have been used in the first versions of long-read mappers. However, variable-length 
seeds takes longer to query in these data structures, while hashed matches are queried 
in constant time. Since minimizers represent fixed-length k-mers, hash table solutions 
mainly prevail.
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Selecting seeds to query

In [59], it is proposed to index all minimizers from the reference during the index-
ing phase (although the latest versions include weighted k-mers and robust winnow-
ing heuristics), and instead skip to use highly repetitive k-mers to find anchors (also 
called soft masking). The authors noticed that in cases where a query is sampled 
from a repetitive region, such a procedure prevents it to be seeded. Techniques that 
use longer fuzzy seeds (e.g., strobemers) [31] reduce the number of masked regions, 
although it comes at the cost of sensitivity. Another approach  [82] computes a new 
set of minimizers on the targeted reference regions in order to obtain finer candidate 
chains, which helps alignment confidence particularly in repeated or low complexity 
regions.

Chaining is dominated by dynamic programming with concave gap score functions

A dynamic programming problem

Once the reference’s seeds are indexed, a set of seeds is extracted from the query and 
looked up in the index to find anchors. Anchors’ positions on the query and reference 
are stored, as well as the forward/reverse information. Instead of directly extending the 
alignment between anchors, as it is done in short-read mapping, a step of chaining is 
added and meant to accelerate further extensions. Chaining acts as a filter and a guide 
for smaller extensions that need to be realized only between selected anchor pairs. With-
out it, too many extension procedures, most of which would be dead-ends, would have 
to be started.

In an ideal case, there is a unique way of ordering anchors by ascending Cartesian 
positions in the (reference,  query) space, which passes by all the anchors. In practice, 
some anchors are spurious, others correspond to repeated regions and yield different 
possible chains. Moreover, more parameters must be taken in account. Thus, methods 
optimize different aspects (also illustrated in Fig. 5):

A1) Do not allow anchors which are not ascending either by the anchors’ start or end 
coordinates in both the query and reference (see first case in Fig. 5).
A2) Avoid discrepancies in diagonals between anchors (second case in Fig. 5).

Fig. 5 An illustration of the different constraint taken into account in the gap score functions. The reference 
axis shows a genome region of interest where anchors were found, not the whole reference. A1–A4 
correspond to items in the text in the “A dynamic programming problem” section. Anchors are showed 
in blue. The selected chain with respect to the described constraint is highlighted in yellow and a line 
approximately passing by its anchors is showed in red. The longest chain is covered by a green line if it was 
not selected
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A3) Do not allow large spaces between consecutive anchors of the chain (see third 
case in Fig. 5).
A4) Favor the longest possible anchor chain (fourth case in Fig. 5).
A5) If inexact matches in seeds are possible, each seed represents a couple of inter-
vals on the target and the query. Find a subsequence of seeds that minimize the sum 
of the Levenshtein distances computed on these couples of intervals (roughly, ensure 
that the matched regions on the target and query are as similar as possible).

The problem of finding an optimal chain using non-overlapping anchors has been 
called the local chaining problem  [1], although in this application anchors can overlap. 
The score f (i + 1) represents the cost of appending an anchor ai+1 to a chain currently 
ending by anchor ai . This score is often called the gap score in the literature, though it 
includes other constraints, as described above. The chaining problem for long reads 
seeks to find an optimal colinear chain with a positive gap score.

Mainly, methods use either a two-step approach: (1) find rough clusters of seeds as 
putative chains, followed by (2) find the best scored chain among the selected clusters; or 
work in a single pass and apply a custom dynamic programming solution to find the best 
anchor chain. We can start by noting that one of the first mappers dedicated to long-
reads solved a global chaining problem to determine a chain of maximum score, by fix-
ing starting and ending points (anchors) such that their interval is roughly the size of the 
query [15]. Such an approach would easily discard long gaps and spaces in alignments.

Chaining in two steps

Clusters of seeds are found through single-linkage in 2D space The two-step approaches 
rely on a first clustering step. Although it tends to be replaced by single-step chaining 
(see “Chaining in a single step: gap score functions” section), in the following we describe 
the fundamental ideas of the clustering. Methods first find rough clusters of anchors by 
considering a discrete (reference, query) position space. In this space, an anchor realizing 
a perfect match is a line of the size of the seed. This line should have a 45-degree angle, 
which also corresponds to the main diagonal of a (reference, query) alignment matrix. 
The same idea stands for a set of anchors. However, because of insertions and deletions, 
each small line materializing an anchor may not be on the exact same diagonal, thus real-
izing approximate lines in the (reference, query) space. A method from image process-
ing has been proposed to find approximate lines in this space: the Hough transform [21], 
which makes it possible to detect imperfect straight lines in 2D space. Contrary to linear 
regression which would output the best line explained by the anchor distribution, here 
an arbitrary number of straight lines can be output and considered (see Additional file 1: 
Fig. S4 for an illustration). Hough transform or other similar anchor grouping algorithms 
([82] proposes to delineate fine-grained clusters in order to increase the chaining speci-
ficity in repeated regions) all can be assimilated to single-linkage clustering in 2D space, 
which finds groups of anchors placed roughly on the same diagonal.

Anchor chaining using longest subsequences of anchors The previous clustering tech-
niques aim at finding lines in groups of anchors that can be approximately colinear. To 
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determine truly colinear chains, a subset of anchors can be ordered by finding a long-
est increasing subsequence (LIS) of anchors. Let each anchor be mapped to the order 
in which it appears in the reference. By crossing these map values with the order of 
these anchors in the query, we obtain a permutation of the set {1, 2, . . . n} where n is the 
number of anchors. By using an algorithm on LIS problem, we can obtain truly colinear 
chains in O(n× log(n)).

In the case of fuzzy seeds, inexact matches are to be dealt with on top of the ini-
tial increasing chain problemin order to obtain the closest base-wise anchor chain. In 
this case, the problem is converted to LCSk (longest common subsequence in at least 
k-length substrings). Note that there is a correspondence between LIS and LCS. The LIS 
of P is the LCS between P and the sequence (1, 2, . . . c) . In both cases, neither the longest 
nor the increasing requirements are sufficient to find correct anchor chains: they lack 
definitions for other constraints, such as distance between anchors or the possibility to 
allow large gaps. They are complemented with heuristics or replaced by more recent 
approaches in “Chaining in a single step: gap score functions” section. In addition, sev-
eral methods use graphs built over anchors as backbones to the chaining and alignment 
steps [66, 95, 98] (one approach is described in Additional file 1). Because they would fail 
to take into account distances between anchors, these methods have been replaced by 
dynamic programming approaches relying on gap score functions.

Chaining in a single step: gap score functions

The main drawback of the approaches previously described in “Chaining in two steps” 
section is that though large spaces between two anchors of a pair must be avoided, some 
spaces correspond to gaps in the alignment and can be kept. In order to deal concur-
rently with these two problems, most recent methods drop the two-step clustering and 
LIS to directly apply a custom dynamic programming solution. It follows the same prin-
ciple as LIS, but integrates a more fine-grained gap penalty solution. It defines a cost 
function that grants a maximum penalty for non-monotonic increasing seed chains.

Concave gap functions The cost function is designed to handle the gaps induced by fre-
quent indels in the data. Intuitively, it is likely that indels happen in clusters of n posi-
tions rather than at n independent positions in the chain because some regions on the 
query might be particularly spurious, or because of local repeats on the reference. There-
fore, the same cost is not attributed to opening a gap and extending a gap, thus a linear 
gap function does not fit. The choice of gap functions which are concave (verifying the 
Quadrangle Inequality) improves the time complexity by using the wider is worse strat-
egy [27, 34]. In practice, these concave gap functions are affine, a set of affine functions, 
or a combination of affine and log functions, as proposed in [59]. We chose to present 
minimap2’s  [59] gap functions in Fig. 6 as they are adopted without modifications in 
most current papers (with the recent exception of [82]). Chains are built by aggregating 
close anchors of smaller coordinates to the current anchor by penalizing the shifts com-
pared to the main diagonal. In Fig. 6, panel a presents how the set of possible anchors to 
prolong the chain is selected. Panel b illustrates the dynamic function’s parameters. The 
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complete description of the functions is available in Additional file 1. Here, we recall the 
formula for regular gap sizes, for anchors i and j:

 With f(i), f(j) scores for anchors ai and aj , and:

This property means that at least on axis X or Y, the distance between the two 
anchors must be < G the maximum authorized gap size, and that i is above and to 
the right of j (see the three colored zones in panel a of Fig. 6).

Fig. 6 Outline of minimap2’s chaining. a shows for an anchor (in green) the selected region (in white, G 
is the gap threshold) to find available anchors to continue chaining (in blue). b and c give respectively the 
dynamic programming functions for regular and large gaps size. Anchors are shown as segments ending 
with green or blue dots with the same color code as in a. Besides, for the large gap size (c), to improve the 
complexity, the anchors do not overlap (available anchors are not in the red zone). dji represents the smallest 
“distance” between the two anchors (but is not really a distance by definition), w is the minimizer window 
size, gji is the gap length, and the γ functions are the concave gap functions
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This minimum penalizes overlaps between anchors. Indeed, if j starts before 
a distance of w on the diagonal (with w the minimizer window size and window 
guarantee of minimizers) then dji (the smallest coordinate difference on either X- 
or Y-axis between i and j) will be lower than w and therefore selected. For any 
other case, w which is a larger value is selected and increases more the score.

This is the concave gap score penalty (see Additional file  1 for a complete for-
mula). It is computed on the gap length gji = |(yi − yj)− (xi − xj)| . It penalizes dis-
tant anchors in the Manhattan definition, i.e., anchors far from i either on the main 
diagonal or because they are on side diagonals (see for instance anchor j1 in panel b 
of Fig. 6).

This term helps with the initialization.

In order to test w and γr ’s impact on the chain selection, we implemented a visuali-
sation tool: http:// bcaza ux. polyt ech- lille. net/ Minim ap2/3. We generate a scenario of 
shared anchors between two sequences and allow to set the different parameters’ values. 
We show the selected chain according to the settings.

Heuristics are applied to rapidly drop a dynamic programming procedure in regions 
that are unlikely to align and to avoid O(c2) worst cases. Based on empirical results, 
these heuristics mostly check if seeds are not separated by too large regions and drop the 
chaining procedure if the score becomes too low.

Solutions for large gaps Noticing that  [59]’s original approach would be failing in 
large gaps, one contribution  [82] proposed techniques to perform dynamic program-
ming with a family of concave functions by relying on a previous work  [27] (built on 
a prior clustering step as described in “Chaining in two steps” section). Recently,  [59] 
integrated a solution designed for mapping long structural variants in pangenomic 
graphs  [61]. Its recent versions entail a cost function for regular gaps, and a long gap 
patching procedure. Then it chooses the cheapest solution to move on to the alignment 
step. The gap patching procedure uses a linear gap cost so that it has a higher long-gap 
opening cost in comparison to the regular procedure but at a cheaper extending cost. 
The chaining with a linear function is solved with a range minimum query (RMQ) algo-
rithm using a balanced binary search tree [1, 81]. It allows solving the linear chaining in 
O(c × log(c)) . Although, by using range maximum queue  [14] instead of binary trees, 
this time complexity can be improved in O(c) . As the implemented algorithm is more 
costly than the solution for regular gaps, the last one is preferred if possible. Panel c in 
Fig. 6 illustrates the dynamic function for large gaps.

3 source code: https:// github. com/ bastc azaux/ minim ap2_ chain ing_ plot_ web and DOI: https:// doi. org/ 10. 5281/ zenodo. 
78894 34

http://bcazaux.polytech-lille.net/Minimap2/
https://github.com/bastcazaux/minimap2_chaining_plot_web
https://doi.org/10.5281/zenodo.7889434
https://doi.org/10.5281/zenodo.7889434
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Mapping quality scores have been adapted for ranking chains

The described methods may deliver a set of chains that satisfies the chaining score 
threshold. To choose among the candidates and decide the final location, chains can then 
be categorized into primary/secondary chains. Chains with a sufficient score are ranked 
from highest to lowest score. Primary chains are those with the highest scores which do 
not overlap with another ranked chain on the target for the most of their length. Second-
ary chains are others. Mapping quality, which is a measure that had been introduced to 
assess short-reads mapping, is redefined for long-reads with slight variations according 
to articles. It reports, for chains, whether the primary is very far in terms of score from 
the best secondary, and if it is long enough.

Extension step and final alignment computation
While some applications, such as abundance estimation, typically need only the map-
ping location of a read, many applications, such as SNV and structural variation 
detection, rely on base-level alignments. The extension alignments step is typically com-
putationally costly, where traditional Needleman-Wunch [78] and Smith-Waterman [94] 
based approaches have a time complexity O(nm) if n and m are the lengths of the query 
and reference sequences, respectively. Even after locating a candidate region to extend 
the alignment (using the seeding and chaining steps), the quadratic complexity is still 
prohibitive for long reads in computation time and memory. Therefore, long read map-
pers typically extend the alignment of sequence segments between neighboring anchors 
(piece-wise extension) [59, 82, 89]. An additional benefit of piece-wise extension is that, 
if the chaining step supports multiple chains of disjoint regions on the query, the read 
mapper can output alignment to several regions, which helps detection of structural var-
iations [59, 82, 89]. As structural variation detection is a common downstream applica-
tion of long-read mapping, piece-wise extension is considered standard practice in the 
area [29, 59, 65, 82, 89].

Piece-wise alignment can still be computationally costly if the distance between anchors 
is large enough. Recently, the Wave Front Alignment (WFA) algorithm [71] made a break-
through in both time and space complexity, where the original formulation guarantees 
an optimal alignment in time O(ns), proportional to the read length n and the alignment 
score s, using O(s2) memory. Instead of a top-to-bottom traversal of the DP matrix, the 
WFA algorithm traverses it diagonally. It computes only the cells on the diagonals with 
the current highest scores (or, rather, the lowest penalties in the WFA formulation), which 
omits visiting many cells far off the diagonal and is particularly beneficial when sequences 
are similar, i.e., s is small. Since the WFA algorithm [71] was published, there have been 
several follow-up studies to further reduce the time and memory [24, 70]. Notably, the 
BiWFA algorithm [70] reduces the space complexity to O(s), which improves on the pre-
viously known lower memory bound O(n) [76]. A current result shows that we can exploit 
the massive parallel capabilities of modern GPU devices to accelerate WFA [2]. Currently, 
different implementations exist that have been tested on long reads  [71]4, although no 
dedicated long-read mapper has integrated them yet.

4 https:// github. com/ wavey gang/ wfmash/ blob/ master/ README. md, https:// github. com/ lh3/ miniw fa

https://github.com/waveygang/wfmash/blob/master/README.md
https://github.com/lh3/miniwfa
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Gap cost models

Classical pairwise alignment methods  [36, 77] typically relies on global alignment 
using algorithms derived from Needleman and Wunsch [78]. These alignment algo-
rithms are based on alignment matrices, which aggregate the base-wise alignment 
scores from the two prefixes (top left of the matrix) to the two suffixes (bottom 
right). The optimal alignment may look very different depending on which type of 
penalties are used for gaps in the alignment. Two natural formulations are either 
using a constant gap penalty, where the gaps get the same fixed penalty A regardless 
of gap length, or a linear penalty, where the penalty B is multiplied by the gap length 
L). Neither of these gap cost models captures very well the error profiles of long 
reads and characteristics of indels. While error rates of long reads are constantly 
changing, traditionally, the long reads had frequent shorter indels. In addition, 
longer insertions and deletions exist as natural sequence variation. Due to this, it 
seems natural to introduce a slightly higher cost at opening a gap but not penalizing 
successive gaps as much. Therefore, the most popular gap cost penalty in long-read 
aligners is the gap-affine penalty, which combines fixed and linear costs. The gap 
affine penalty is defined as A+ B(L− 1) , where A is typically a much higher number 
than B. This gap cost, to some extent, models the nature of long-read errors and 
smaller indels and furthermore does not increase runtime over the linear cost model 
due to Gotoh’s formulation [36]. In practice, a 2-piece affine gap cost model is typi-
cally used to score shorter and longer indels differently [59] and enables alignments 
over longer indels. However, a 2-piece gap cost model is not a nuanced represen-
tation (model) of gaps of different lengths (e.g., due to indels). There are formula-
tions that better model indel lengths, such as a concave gap cost ( A+ B ln L ). Such a 
model is used in the long-read aligner NGMLR and is computationally more demand-
ing but improves structural variation detection [89].

Vectorization for speed‑up

The extension alignment step is commonly accelerated through vectorization using 
single instruction multiple data (SIMD) sets of instructions [19, 28], which increase 
the computational throughput by passing several matrix cells for the processors to 
evaluate simultaneously in one instruction. Typical SSE architectures have 128-bit 
registers, which allow sixteen 8-bit matrix cells (or eight 16-bit cells) to be processed 
in parallel, and more recent AVX go up to 256-bit registers. Thus, traditional SIMD 
implementations  [28] can achieve eight or sixteen times parallelization for short 
sequences where scores do not exceed the 8-bit or 16-bit limit, being 127 and 32,767, 
respectively. Under most gap penalties, longer alignments can exceed this value and 
would therefore require 32-bit values for matrix cells. However, in [96], the authors 
introduced a difference-recurrence-based formulation that allows storing only dif-
ferences between the values of adjacent cells in the matrix, which can be represented 
in only 8 bits, restoring the usage of 8-bit matrix cells even for larger alignments. To 
our knowledge, all competitive long-read aligners use extension modules that allow 
vectorization to speed up the extension process.
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Heuristics for speed‑up and quality enhancement

Considering the full matrix is unnecessarily expensive in practice in many cases. 
Practical alignment implementations relies on banded alignment  [68, 80], which, 
simply put, bounds the alignment matrix in a band of size ℓ around the top-left – 
bottom-right diagonal. There are also exit-early strategies. Inspired from BLAST’s 
X-drop  [4, 59] implements a Z-drop procedure. X-drop quits extending the align-
ment if the maximum score reached at some point when aligning the prefix drops by 
more than X. Z-drop adds the possibility not to drop the extension during large gaps.

Due to sequencing errors, some spurious anchors main remain in a chain, which can 
lead to a sub-optimal alignment. At the alignment step, [59] chooses to remove anchors 
that produce an insertion and a deletion at the same time (>10bp) or that lead to a long 
gap at the extremity of a chain. Another solution [15] involves to re-compute a chain 
with novel anchors computed on a window that comprises the alignment.

Future directions
The seed-chain-extend methodology has remained a popular approach in long 
read mapping since the start of long-read sequencing technologies. There has also 
been recent advancement on the theoretical side. In  [92], the authors show that 
long read mapping using the seed-chain-extend method is both fast and accurate 
with some guarantees on the average-case time complexity. We therefore believe 
this methodology will continue to be a popular approach in the domain of long 
read mapping.

We have also seen several recent advances in e.g, the seeding and extension steps. Novel 
seeding techniques such as syncmers [22, 23], k-min-mers [25], strobemers [31, 84] have 
already led to the emergence of practical solutions for robustness to errors and mutations. 
Additionally, the usage of diagonal-transition algorithms for the gap-affine model, which 
was initially define for edit distance [42, 55, 97], has been reactivated with the wavefront 
alignment algorithm (WFA, including  [24, 70, 71]), offering the potential to make the 
extension step faster.

Nevertheless, despite these recent advancements, the individual steps of seeding, 
chaining, and extension must be adapted to several upcoming challenges. For exam-
ple, we are witnessing a drastic change in the typical reference sequence to which 
reads are mapped. We will witness more complete genomes that include challeng-
ing regions such as centromeres (the T2T consortium recently made available a 
complete human genome [79]), novel applications are being developed that focus on 
mapping over difficult instances like repetitive loci [12] and complex structural vari-
ants [82] and haplotypes [11]. Adapting and tailoring long-read aligners to such appli-
cations will significantly improve analysis over the limited possibilities existing with 
short reads. Moreover, using pangenomes represented as graphs made from a set of 
reference genomes is becoming more prevalent  [37, 41, 63]. As a result, long-read 
mapping to these structures is a novel and active field for genomic reads but should 
soon expand to other applications such as transcriptomics [93]. Notably, pangenome 
graphs vary in definition and structure (overlap graphs, de Bruijn graphs, graphs 
of minimizers) and therefore expect a diversified algorithmic response to mapping 
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sequences on these graphs. Novel challenges lie again in indexing and maintaining 
a good alignment accuracy despite the accumulation of variations as the number of 
genomes increases.
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