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Abstract: The fast spread of bacteria that are resistant to many classes of antibiotics (multidrug
resistant) is a global threat to human and animal health with a worrisome scenario ahead. Novel
therapeutical strategies are of crucial importance to combat this phenomenon. For this purpose,
we investigated the antimicrobial properties of the naturally occurring tripeptide Bialaphos and
a dipeptide L-leucyl-L-phosphinoithricin, the synthesis and diastereomers separation of which
are herein described. We demonstrate that these compounds are effective on clinical isolates of
the human pathogen Klebsiella pneumoniae, causing hospital-acquired and community-acquired
infections. The tested isolates were remarkable for their resistance to more than 20 commercial
antibiotics of different classes. Based on previous literature data and our experiments consisting
of glutamine supplementation, we suggest that both compounds release phosphinothricin—a well-
known nanomolar inhibitor of glutamine synthetase—after their penetration in the bacterial cells;
and, in this way, exert their antibacterial effect by negatively affecting nitrogen assimilation in
this pathogen.

Keywords: multidrug-resistant bacteria; Klebsiella pneumoniae; Escherichia coli; glutamine synthetase;
phosphinothricin; Bialaphos

1. Introduction

An important achievement of medicine in the 20th century was the discovery of natural
compounds exhibiting antimicrobial activity, and the development of new drugs based on
them, which made it possible to significantly reduce mortality from infectious diseases. The
widespread use of antibiotics in medical practice along with their overuse, however, led to
the emergence of antibiotic-resistant pathogens and even multidrug-resistant (MDR) bugs,
i.e., microorganisms that carry the genes or mutations for inactivating or making ineffective
several types of antibiotics. This problem has become frightening. In 2019, more than
1.2 million people worldwide—and potentially many more—died as a direct result of the
inefficacy of the antibiotics in current use to treat antibiotic-resistant bacterial infections [1].
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If the spread of MDR pathogenic bacteria increases at the present rate (i.e., the rate of
spread of drug resistance in bacteria continues as it is now), according to the World Health
Organization (WHO) mortality from infectious diseases will attain the level of mortality
caused by cardiovascular and oncological diseases by 2050 [2]. In 2009, a list of six bacteria
that pose a particular threat to humans was published. The abbreviation for the bacterial
species that escape the action of currently available antibiotics is known as “ESKAPE” (from
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp.) [3]. The list of MDR microorganisms in
populations is, however, constantly updated; and, recently, the WHO published a list of
twelve bacteria species for which new antibiotics are urgently needed [4].

Microorganisms with a poor response to antibiotic therapy are divided into three
groups characterized by critical, high or medium threat to human health. E. coli, P. aerug-
inosa, K. pneumoniae, and A. baumannii are pathogens that belong to the first «critical»
group, with particularly high rates of resistance to antibiotics, that the arsenal of available
treatments for the diseases they cause becomes ineffective [5–7].

K. pneumoniae is a Gram-negative bacterium and among the most dangerous pathogens
challenging modern medicine. It belongs to the Enterobacteriaceae family, is long lived, is
widespread in nature, occurs on land, in aquatic environments, and is a component of
the intestinal microbiota and mucosa of humans and animals [8,9]. K. pneumoniae is an
opportunistic pathogen, causing hospital-acquired and community-acquired infections.
When an infectious process occurs, the treatment is often complicated, not because of the
evolution of pathogenicity factors, rather as a result of the co-existence of resistance to the
beta-lactams, quinolones and aminoglycosides classes of antibiotics [10–12]. Therefore,
K. pneumoniae infection usually signals a grim prognosis, with mortality up to 50% [13].

As said above, bacteria use different strategies to make antibiotics ineffective. These
strategies include the biosynthesis of antibiotic-deactivating enzymes, a reduction in the
intracellular antibiotic concentration, or even mutations in antibiotic targets. Among
the algorithms to overcome multidrug resistance is to find new “hot spots” of bacterial
metabolism and compounds that are effective on them. In this regard, in the present
work, we focused on glutamine synthetase (GS) as a key target enzyme of microbial
metabolism, and on the naturally occurring L-phosphinotricin (L-PT), a highly effective
inhibitor of this enzyme [14,15]. The interest in glutamine synthetase as a promising
target for the development of drugs towards Mycobacterium tuberculosis is also under
investigation [16–18]. In this respect, virtual screening studies suggest that L-PT is still
superior to other analogues [17]. However, in vivo studies of L-PT on K. pneumoniae MDR
strains as well as on alternative approaches to heighten L-PT activity by improving its
penetration in the bacterial cells are still lacking and lay the foundation for this study. To
ensure delivery of L-PT (Figure 1) to E. coli, K. pneumoniae and MDR clinical isolates of
K. pneumoniae, we used a pro-drug approach: the naturally occurring PT-containing tripep-
tide, Bialaphos (Figure 1), first isolated from culture filtrates of Streptomyces viridochro-
mogenes [19], was therefore tested. In addition, herein, we report for the first time the
synthesis and original purification of the dipeptide L-leucyl-L-PT (L-Leu-L-PT, Figure 1)
and studied its antibacterial activity. Similarly, Bialaphos, once L-Leu-L-PT is taken up by
the cell, is likely cleaved by intracellular peptidases, thus releasing L-PT [19,20], which is
then responsible for inhibition of the growth of E. coli [14,15] and MDR K. pneumoniae.
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ume of water. 31P-NMR analysis of the eluted fractions is depicted in Figure 2. L-Leu-D-
PT eluted first, but was contaminated with some L-Leu-L-PT (approximately 10% in frac-
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of both diastereomers was eluted, and finally L-Leu-L-PT was eluted. It should be noted 
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Figure 1. Chemical structures of L-phosphinothricin (L-PT), L-leucyl-L-phosphinothricin (L-Leu-L-PT)
and L-phosphinothricyl-L-alanyl-L-alanine (Bialaphos, L-PT-L-Ala-L-Ala).
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2. Results
2.1. Synthesis of L-Leu-L-PT

L-Leu-L-PT and L-Leu-D-PT were synthesized by the condensation of N-hydroxysuccinimide
ester of N-Cbz-L-Leu (N-Cbz-L-Leu-OSu) with D,L-PT in water/1,2-dimethoxyethane mix-
ture, followed by one-pot removal of Cbz-protecting group (Scheme 1). Unexpectedly, it
was possible to separate the diastereomers by ion-exchange chromatography on sulfocation-
ite Dowex-50WX8 (H+-form), by eluting the resin with a large volume of water. 31P-NMR
analysis of the eluted fractions is depicted in Figure 2. L-Leu-D-PT eluted first, but was
contaminated with some L-Leu-L-PT (approximately 10% in fraction n. 7 (700 mL, see
Figure 2; for NMR spectra—Figures S6, S7 and S8). Then, a mixture of both diastereomers
was eluted, and finally L-Leu-L-PT was eluted. It should be noted here that NMR chemical
shifts (1H, 13C and 31P) of L,D- and L,L-diastereomers were different (original spectra are
provided in the Supplementary information). Notably, a preliminary screening showed
that only the last-eluted diastereomer (L-Leu-L-PT) possessed antibacterial activity. This is
in line with the fact that only the derivatives of L-Glu are effective inhibitors of GS [16].
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2.2. Bialaphos and L-Leu-L-PT Inhibit the Growth of E. coli K12 in Minimal Medium

It was shown that aminophosphonic acids penetrate poorly into bacteria [20], and D,L-
PT is not an exception. In fact, even in minimal medium E (EG), it has poor antimicrobial
activity towards E. coli (MIC90 266–304 µg/mL, Table 1). In striking contrast, the dipeptide
L-Leu-L-PT was approximately 6000-fold more active (MIC90 0.04 µg/mL, Table 1), while
the tripeptide Bialaphos inhibited the growth of E. coli in the same medium at a MIC90
<0.001 µg/mL (Table 1). These differences in the activity of Bialaphos and L-Leu-L-PT are
likely because Bialaphos actively penetrates E. coli using both oligopeptide transporter Opp
and dipeptide permease Dpp [21], while the dipeptide most likely uses only the latter. It
should be noted that both Bialaphos and L-Leu-L-PT were poorly effective when a rich
medium (Mueller–Hinton) was used. In this case, the MIC90 values for Bialaphos and
L-Leu-L-PT were 500 and 1600 µg/mL, respectively (Table 1), which is in agreement with
the known literature data disclosing poor antibacterial activity of phosphonopeptides on
rich medium [20,22]. A similar relationship between the activities on minimal and rich
media (Table 1) was observed in our experiments with Alaphosphin, a dipeptide containing
a phosphonic moiety on the α-carbon, known to target the biosynthesis of bacteria cell wall.

Table 1. Minimum inhibitory concentration (MIC90, µg/mL) of the compounds tested on E. coli K12
MG1655 determined by the broth microdilution method in minimal (EG) and rich (Mueller–Hinton) media.

Compound Medium
Minimal EG Mueller–Hinton

Amino acid D,L-Phosphinothricin (D,L-PT) 266–304 n.d.

Dipeptides L-Ala-L-aminoethylphosphonic acid (Alaphosphin) 0.001–0.01 * 1000 (MIC50)
L-Leu-L-PT 0.04 1600

Tripeptide Bialaphos (L-PT-L-Ala-L-Ala) <0.001 500 (MIC87)

* Alaphosphin has a MIC99.9 of 0.25 µg/mL on E. coli NCTC 10,418 by agar incorporation method on
minimal medium [22].

2.3. Inhibition of the Growth of Reference Strain of Klebsiella pneumoniae ATCC 13883 with
Bialaphos, L-Leu-L-PT and Antibiotics of Different Classes

As a next step, we examined the effects of Bialaphos and L-Leu-L-PT on the growth
of the reference strain of K. pneumoniae ATCC 13883 using the agar-diffusion test. Both
compounds inhibited the growth of K. pneumoniae in a dose-dependent manner, starting
from 0.2 µg/disk, with approximately the same efficacy (Figures 3A and S1A and Table 2).
It should be noted that, in the case of the inhibition of E. coli growth, Bialaphos was at
least 40-fold more active than L-Leu-L-PT (Table 1). These differences might be ascribed
to the differences in the transport rate and/or the activity of peptidyl permeases in E. coli
and K. pneumoniae.

The cytoplasmic cleavage of Bialaphos and L-Leu-L-PT likely releases L-PT (Figure S2),
a very effective and specific inhibitor of GS [14,15]. Accordingly, the inhibitory activity
of Bialaphos and L-Leu-L-PT was attenuated when the medium was supplemented with
0.5 mM L-glutamine (Figures 3B and S1B). This suggests that the metabolic target of
Bialaphos and L-Leu-L-PT in K. pneumoniae is very likely GS. Moreover, the protective effect
of glutamine turned out to be dose-dependent for both peptides, i.e., Bialaphos (Figure S3)
and L-Leu-L-PT (Figure S4).

The growth of the reference strain of K. pneumoniae ATCC 13883 is inhibited by many
antibiotics, such as aminoglycosides, cephalosporins, fluoroquinolones, and tetracyclines.
Amongst the antibiotics used in this work, the most effective were Ciprofloxacin, Cefo-
taxime, and Levofloxacin (Figure 4—disks 4, 7, 8, respectively; and Table S1), while the
activity of the other tested antibiotics was approximately the same as that of Bialaphos
and L-Leu-L-PT (Figure 4, Table S1). It is worth point out that Ampicillin (Figure 4, disk 2
and Table S1) was active only when used in combination with Sulbactam, the β-lactamase
inhibitor (Figure 4, disk 12 and Table S1) and even in this case it exerted a limited effect
as it can be deduced from the small inhibition halo. All the antibiotics on disks were ap-
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plied using the doses typically tested in antibiotics susceptibility testing, ranging from 5 to
30 µg/disk [23]. Bialaphos and L-Leu-L-PT were applied to disks at the lowest concen-
tration in this range (5 µg/disk), while the zones of inhibition were distinct and ranged
from 18 to 23 mm in diameter. When analyzed in vitro, on average, the dose tested is more
closely resembling the concentration attained when these antibiotics are administrated in
patients as medicines.
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Table 2. Dose-dependent inhibition of the growth of clinical isolates of K. pneumoniae MDR strains
1161, 1158 and 1133 with Bialaphos and L-Leu-L-PT ( yellow background); reference strain ATCC

13883 with Bialaphos ( blue background) and L-Leu-L-PT ( green background). The displayed
values from two dishes.

PT Derivatives
(µg/Disk)

Strain 1161 Strain 1158 Strain 1133 ATCC 13883

Diameter of Inhibition Zones, mm
Bialaphos, 0.01 0/0 0/0 0/0 0/0
Bialaphos, 0.1 0/0 0/0 0/0 9/8 **
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L-Leu-L-PT, 0.1 0/0 0/0 11/12 8/7 **
L-Leu-L-PT, 0.5 10/11 8/9 12/14 n.t.
L-Leu-L-PT, 1.0 13/13 13/13 16/16 12/10 ***
L-Leu-L-PT, 5.0 16/20 20/20 20/22 14/12

L-Leu-L-PT, 10.0 18/21 23/23 25/25 19/20

Blue background of Table is illustrated by Figure 2; green —by Figure S1; yellow —by Figure S5. In these
figures, only one of the two dishes is shown. **—0.2 µg/disk; ***—2.0 µg/disk; n.t.—not tested.
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2.4. Growth Inhibition of Multidrug-Resistant Klebsiella pneumoniae Clinical Isolates

MDR bacteria are threatening, especially when isolated in health care settings (hospi-
tals, nursing homes, etc.), amongst immunocompromised patients. Carbapenems-resistant
strains of K. pneumoniae are classified by the WHO as the first and most dangerous group
of drug-resistant bacteria [4] since carbapenems are the last resort of β-lactam antibiotics to
treat MDR infections.

Here, we tested Bialaphos and L-Leu-L-PT on three MDR strains that are clinical
isolates of K. pneumoniae (Table S2, strains 1161, 1158 and 1133) from the Shumakov
Centre of Transplantology (Moscow, Russia). First, we showed that Bialaphos and L-
Leu-L-PT inhibited the growth of all three MDR strains in a dose-dependent manner at
0.5–10 µg/disk (Table 2, Figure S5). It is worth noting that under the assay conditions
used in this study L-Leu-L-PT is slightly more potent than Bialaphos in the clinical isolates
(Table 2, Figure S5). At present, we cannot provide an explanation for this, but cannot exclude
that this difference may be due to mutations that affect the transport rate of dipeptide and
oligopeptide transporters in the MDR strains respect to the reference strain ATCC 13883.

Finally, we compared the inhibitory activity of Bialaphos and L-Leu-L-PT against
the MDR strains 1161, 1158 and 1133 of K. pneumoniae with that of twelve commer-
cially available antibiotics belonging to different classes, i.e., aminoglycosides, β-lactams,
cephalosporins, fluoroquinolones, tetracyclines, etc. In these experiments, 5.0 µg/disk
of Bialaphos and L-Leu-L-PT were used. Notably, this amount is much lower than the
amount needed to test most of the other antibiotics. In agreement with the previous results
(Table 2, Figure S5), Bialaphos and L-Leu-L-PT were quite potent on all the three MDR
strains (Figure 5, Table S1) whereas, among the tested antibiotics, only Polymyxin B in-
hibited the growth in all these strains. The growth of strain 1161 was also inhibited by
Tetracycline, while that of strain 1133 was inhibited by Gentamicin (Figure 5, Table S1).
Although the molecular mechanisms responsible for the multidrug resistance in these three
strains of K. pneumoniae has not yet been analyzed in detail, Bialaphos and L-Leu-L-PT
turned out to be effective inhibitors of the growth of all these MDR strains. According to
the current knowledge [16–18], based on studies carried out in other microorganisms using
Bialaphos, the inhibition of the growth is a consequence of GS targeting, thus eventually
affecting Gln metabolism and nitrogen assimilation [24].
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Figure 5. Inhibition of the growth of clinical isolates of MDR K. pneumoniae with antibiotics and
peptide derivatives of phosphinothricin. (1) Amikacin, 30 µg/disk; (2) Ampicillin, 10 µg/disk;
(3) Gentamicin, 10 µg/disk; (4) Ciprofloxacin, 5 µg/disk; (5) Cefazolin, 30 µg/disk; (6) Tetra-
cycline, 30 µg/disk; (7) Cefotaxime, 30 µg/disk; (8) Levofloxacin, 5 µg/disk; (9) Polymyxin B,
300 IU/disk; (10) Tobramycin, 10 µg/disk; (11) Trimethoprim, 5 µg/disk; (12) Ampicillin/Sulbactam,
10/10 µg/disk; (13) Bialaphos, 5 µg/disk; (14) L-Leu-L-PT, 5 µg/disk.
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3. Discussion

After the discovery of the penicillin by Fleming, microorganisms attracted researchers’
interest as the most important source of biologically active compounds of different classes.
Many of these substances are used as antibiotics per se, acting on the biosynthesis of
the bacterial cell wall, protein biosynthesis, bacterial DNA replication, etc.; or serve as
lead compounds for the targeted synthesis of new compounds with stronger antibacterial
activity at lower doses.

Microorganisms also produce a wide range of substances with an unusual phosphorus-
carbon bond (P-C bond), which is biochemically highly stable. Antibacterial compounds
with P-C bond have found practical application in medicine and agriculture, since the
phosphorus-containing group can mimic a phosphate monoester or a tetrahedral interme-
diate (or reaction transition state) of the carboxyl group transformations [25,26]. Notable
examples (Figure 6) include the antibiotic Fosfomycin (an irreversible inhibitor of mu-
ramyl ligase A [27], the first enzyme of peptidoglycan synthesis), which is used for the
treatment of cystitis; the antimalarial Fosmidomycin (an inhibitor of 1-deoxy-d-xylulose-5-
phosphate reductoisomerase [28,29], an essential enzyme of the non-mevalonate pathway
of isoprenoid biosynthesis), which is also active against different enterobacteria, but not
against Gram-positive microorganisms or anaerobes; the already mentioned Alaphosphin
(Section 2.2); and the commercial herbicide Bialaphos (Figure 1), a naturally occurring
tripeptide, which, upon cleavage in the cell, gives rise to L-PT (Figure 1)—a very efficient
inhibitor of glutamine synthetase [14,15].
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Microorganism genome mining is the modern approach to discover phosphorus-
containing antibacterials. It is based on the exploitation of the genomic information to
gain knowledge on the biosynthesis of compounds with P-C bond. Most of the known
phosphonates are derived from phosphoenolpyruvate by isomerization to phosphonopy-
ruvate (universal building block used for the biosynthesis of compounds with P-C-bond),
which is catalyzed by the enzyme phosphoenolpyruvate mutase, followed by subsequent
enzymatic decarboxylation, catalyzed by phosphonopyruvate decarboxylase, which gives
rise to phosphonoacetaldehyde [25,26,30]. Phosphonoacetaldehyde can then undergo a
large spectrum of transformations serving as another universal biochemical building block.
The analysis in genome databases of the genes coding for these two enzymes, as well
as of their homologues, enabled to conclude that up to 10–15% of bacterial species can
produce phosphonates. Therefore, the genome mining of 10,000 actinomycetes led to
rediscovering of many old phosphonates, as well as 19 new compounds, including those
with antibacterial activity [31].

The enzymes involved in the biosynthesis of peptidoglycan (murein), an important
constituent of the bacterial cell wall, are common targets of different amino acid-derived
compounds with antibacterial activity [32]. Aminophosphonic acids, with a phosphorus-
containing group replacing the carboxyl-one (-COOH) are amongst these amino acid
analogues and derivatives. However, aminophosphonates, as such, poorly penetrate
in the cells of eukaryotes and prokaryotes; thereby to deliver these compounds some
modifications of the molecule are required. This could explain why many of the naturally
produced aminophosphonates are found in nature as short peptides, which are taken up
by bacteria and fungi via peptidyl permeases [33]. Subsequent intracellular cleavage of
these penetrated phosphonate-containing peptides by cellular peptidases releases the active
compound, the aminophosphonic acid. Among the first examples of such a «Troyan-horse»
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(prodrug) strategy for the design of the antibacterial agent was the synthesis of Alaphosphin
(Figure 6). Following intracellular cleavage, Alaphosphin releases the phosphonic analogue
of alanine, a highly effective inhibitor of alanine racemase, thus leading to the inhibition
of the biosynthesis of the bacterial cell wall and, consequently, the inhibition of bacteria
growth [22]. Dehydrophos (Figure 6) may be considered as a “double prodrug” because it
penetrates the bacterial cell using peptidyl permeases and, after the cleavage of the peptide
bond, provides the phosphonic analogue of dehydroalanine. This analogue undergoes
spontaneous rearrangement into methyl acetylphosphonate [34], which is an analogue of
pyruvic acid and a very strong inhibitor of pyruvate dehydrogenase [35] and ref. within.

Herein, we used L-PT (Figure 1) as a phosphorus-containing antibacterial to inhibit
the growth of the reference E. coli K12 strain MG1655, the reference strain of K. pneumoniae
ATCC 13883 as well as three clinical MDR strains of K. pneumoniae available in the collection
of the Shumakov Federal Research Centre of Transplantology and Artificial Organs. L-PT
is known to irreversibly inhibit GS, a key intracellular enzyme required for the synthesis
of glutamine from glutamate and ammonia, and in that respect, it is fundamental in
microbial nitrogen assimilation. The inhibition mechanism has been elegantly elucidated
by demonstrating that the C-P group mimics the phosphorylated intermediate of glutamate
formed during the enzymatic reaction, and that this intermediate does not allow the
completion of the enzymatic reaction [14,15]. To deliver the poorly penetrating L-PT in E.
coli and K. pneumoniae, we incorporated it into a synthetic dipeptide, i.e., L-Leu-L-PT, as well
as used it in the form of the commercially available herbicide Bialaphos (Figure 1), which is
a naturally occurring L-PT-containing tripeptide with a well-characterized biosynthesis [36]
and low toxicity to vertebrates. In fact, the acute oral LD50 values of Bialaphos for male and
female rats are 268 and 404 mg/kg, respectively; and the acute oral LD50 value for chicken
is greater than 5000 mg/kg. Bialaphos was also shown not to be mutagenic in the Ames
assay [37]. Furthermore, Phosalacine, a tripeptide consisting of L-PT-L-Ala-L-Leu, was also
shown to lack toxicity in mice when administered at 500 mg/kg [38].

Once taken up by bacteria, both Bialaphos and L-Leu-L-PT are proposed to be cleaved
by peptidases thus giving rise to L-PT (Figure S2). To the best of our knowledge, the
dipeptide L-Leu-L-PT does not exist in nature. Therefore, herein, we show for the first
time its synthesis and purification and tested its antimicrobial potential on the E. coli K12
reference strain MG1655. Furthermore, we observed that L-Leu-L-PT and Bialaphos were
also effective at inhibiting the growth of the reference strain K. pneumoniae ATTC 13883
and, more importantly, the growth of MDR K. pneumoniae isolates. We observed that a
few µg/disk of Bialaphos and L-Leu-L-PT inhibit the growth of three clinical isolates of
K. pneumoniae (MDR strains 1161, 1158 and 1133), otherwise resistant to more than twenty
commercially available antibiotics of different classes, including carbapenems Imipenem
and Meropenem (Table S2). This is a finding that we regard as remarkable.

4. Materials and Methods
4.1. Materials

Sodium salts of Bialaphos and D,L-phosphinothricin (Glufosinate-ammonium) were
obtained from Santa Cruz Biotechnology; Alaphosphin was from Fluka. Agar agar pow-
der No 1 for bacteriology was from LobaChemie. N-(Benzyloxycarbonyl)-L-leucine N-
hydroxysuccinimide ester (Z-L-Leu-OSu) was synthetized according to [39] and was freshly
recrystallized from i-PrOH before use. All other reagents, salts and solvents were of highest
purity and used as supplied by Aldrich and Acros.

TLC was carried out on Cellulose F (Merck, Germany) in i-PrOH–25% NH4OH–H2O = 7:1:2.
L-Leu-L-PT was detected on TLC plates following staining with ninhydrin (0.4% in acetone).

Ion-exchange chromatography was carried out on Dowex 50WX8, H+-form,
100–200 mesh (BioRad) using water for elution.

NMR spectra were recorded on a Bruker AM-300 (300.13 MHz for 1H, 75.43 MHz
for 13C, and 121.44 MHz for 31P) using D2O as a solvent with sodium 3-trimethyl-1-
propanesulfonate (DSS) as internal standard, or 85% H3PO4 as external standard. Chemical
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shifts are given in parts per million (ppm), the letter “J” indicates spin-spin coupling
constants which are given in Hertz (Hz).

4.2. Synthesis of L-Leucyl-L-Phosphinothricin

A solution of glufosinate-ammonium (400 mg, 2.0 mmol) in 0.5 M NaOH (8 mL) was
concentrated in vacuo, the residue was co-evaporated in vacuo with water (2 × 10 mL) and
to the residue water (6.5 mL), NaHCO3 (84 mg, 1.0 mmol), Na2CO3 (106 mg, 1.0 mmol)
and 1,2-dimethoxyethane (1.0 mL) were added. To the obtained solution, N-Cbz-L-Leu-
OSu (780 mg, 2.15 mmol) in 1,2-dimethoxyethane (4.0 mL) was added and the resulting
solution was stirred overnight at 20 ◦C. The reaction mixture was concentrated in vacuo,
the residue was dissolved in water (15.0 mL), acidified with 37% HCl (1.5 mL) and the
separated oil was extracted with EtOAc (4 × 8.0 mL). The combined EtOAc extract were
washed with water (3.0 mL), brine (2 × 7.0 mL) and dried (MgSO4). The solvent was
removed in vacuo and the residue was dried in vacuo (1.0 Torr) at 40 ◦C for 1 h. The
resulting foam was dissolved in glacial AcOH (2.5 mL), then anisole (8 drops) and 35%
HBr/AcOH (2.0 mL) were added; the reaction mixture was incubated at 20 ◦C for 2.5 h
(i.e., until the evolution of CO2 ended), pooled into abs. Et2O (60 mL) and left overnight at
−20 ◦C. Solvents were decantated, the residual oil was co-evaporated in vacuo with water
(2 × 10 mL), the residue was dissolved in water (10 mL) and applied on a Dowex 50WX8
column (V = 8.0 mL). Column was eluted with water (2.5 L) and each fraction (100 mL)
was concentrated in vacuo to 10 mL and then ninhydrin-positive fractions (from 5 to 25)
were analyzed by 31P-NMR (Figure 2). Fraction 5 contained pure L-Leu-D-PT (25 mg,
yield 4.3%). Fractions from 6 to 14 contained a mixture of both diastereomers (358 mg,
yield 60.9%). The NMR spectra of fractions 7 and 11 are depicted in the Supplement
(Figures S6–S10). Fractions from 15 to 25 contained pure L-Leu-L-PT (125 mg, yield 21.3%):
Rf 0.49. 1H NMR (300.13 MHz, D2O): δ = 4.42 (1H, dd, 3JHH = 8.1 Hz, 3JHH = 5.1 Hz,
CHCOOH); 4.06 (1H, dd, 3JHH = 7.7 Hz, 3JHH = 6.7 Hz, CHC(O)NH); 2.17–1.88 (2H, m,
CH2CH2P), 1.83–1.58 (5H, m, (CH3)2CHCH2 + CH2P); 1.30 (3H, d, 2JHP = 13.6 Hz, CH3P);
0.96 (6H, t, 3JHH = 6.1 Hz, (CH3)2CH-). 13C NMR (75.43 MHz, D2O): δ = 175.86; 170.97; 54.83
(d, 3JPC = 15.8 Hz); 52.55; 40.49; 27.70 (d, 1JPC = 92.0 Hz); 25.04; 24.42; 22.31, 21.80; 15.32 (d,
1JPC = 92.4 Hz). 31P NMR (121.44 MHz, D2O): δ = 46.16. For original NMR spectra of
L-Leu-L-PT, see Figures S8, S11 and S12. HRMS (ESI-MS): found m/z 295.1417; calc. for
C11H23N2O5P [M+H]+ 295.1423.

4.3. The Microdilution Method to Determine the Antimicrobial Activity of Tested Compounds
against Escherichia coli

The minimum inhibitory concentration of 90% colony-forming units (MIC90) of the
test strain E. coli K12 MG1655 was determined by the broth microdilution method in the
minimal medium EG containing MgSO4•7H2O (0.2 g), citric acid•H2O (2.0 g), anhydrous
K2HPO4 (10.0 g), NaNH4HPO4•H2O (3.5 g), and glucose (4.0 g), milliQ water (1.0 L)
final pH 7, prepared as described earlier [40]. Briefly, overnight cultures (2 mL) of E. coli
K12 strain MG1655 were centrifuged at 3500 rpm for 15 min at 15 ◦C and the cell pellets
resuspended in an equivalent volume of physiological solution (9 g/L NaCl). The OD600
was then brought to 1.0. The resuspended cells were inoculated (1:25) in minimal medium
EG (2 mL) and grown at 37 ◦C up to OD600 = 0.5, then diluted (1:25) in the same minimal
medium and dispensed in a 96-well microplate previously set up with the appropriate serial
dilutions of the compounds to be tested (L-Leu-L-PT, Bialaphos, D,L-PT, Alaphosphin). The
number of colony-forming units (CFU)/mL at time zero was between 0.5–1.0 × 106/well
and the final volume in each well was 200 µL. The microplate was incubated at 37 ◦C for
24 h in the microplate reader Varioskan Lux (Thermo Scientific) and every hour the OD600
was automatically recorded. MIC90 was calculated at 22 h from the time of the inoculum
using the equation: % inhibition = [1 − (OD600treated/OD600untreated)] × 100.
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4.4. The Agar Diffusion Method to Analyze Antimicrobial Activity of Tested Compounds against
Klebsiella pneumoniae

The reference strain K. pneumoniae ATCC 13883 and MDR clinical isolates from patients
of Shumakov Federal Research Centre of Transplantology and Artificial Organs (Moscow,
Russia) were used. Species identification of clinical isolates of K. pneumoniae and their
sensitivity to antibiotics were determined on an automatic bacteriological analyzer for the
identification of microorganisms (MicroScan WalkAway-96 plus System, Beckman Coulter,
USA) following the manufacturer’s instructions.

Bialaphos, L-Leu-L-PT and twelve commercial antibiotics were tested as follows.
Different amounts of the substances under testing were applied to paper discs, the discs
were air dried and placed on the surface of an agar plate containing M9 medium with
the following composition: Na2HPO4•7H2O (12.8 g), anhydrous K2HPO4 (3.0 g), NaCl
(0.5 g), NH4Cl (1.0 g), MgSO4•7H2O (0.5 g), CaCl2 (15 mg), glucose (4.0 g), thiamine
(1 mg), agar (15 g) brought to 1 L with milliQ water and to a final pH 7.2. The plates were
previously seeded with a lawn of K. pneumoniae ATCC 13883 or one of the clinical isolates;
the seeding density was 106 bacteria per cm2 of the agar surface. The plates were incubated
for 20 h at 37 ◦C. Already prepared disks with the other antibiotics were from Becton,
Dickinson & Co., Franklin Lakes, NJ, USA. The antibiotic activity of all the compounds was
tested by the agar diffusion method [41] and determined based on the presence and size of
non-growth zones around the disks.

5. Conclusions

Phosphinothricin (PT), an inhibitor of glutamine synthetase (GS), in the form of its
actively penetrating di- and tripeptides, i.e., L-Leu-L-PT and Bialaphos, is effective in
inhibiting multidrug-resistant (MDR) clinical isolates of K. pneumoniae, otherwise not sensi-
tive to twenty four commonly used antibiotics of different classes. Our data suggest that
nitrogen assimilation via glutamine biosynthesis is of crucial importance for K. pneumoniae
and might be considered as a target to affect the growth of MDR strains of this pathogen.
Furthermore, we describe the original synthesis and purification of L-Leu-L-PT.
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