
HAL Id: hal-04279735
https://hal.science/hal-04279735

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Green aspect inside Internet of Things
standard

Thierry Monteil

To cite this version:
Thierry Monteil. Integration of Green aspect inside Internet of Things standard. 24th International
Conference on Internet Computing & IoT (ICOMP 2023), Jul 2023, Las vegas, United States. à
paraître. �hal-04279735�

https://hal.science/hal-04279735
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Integration of Green aspect inside Internet of Things standard

Thierry Monteil
IRIT, Université de Toulouse, INSA

Toulouse, France
thierry.monteil@irit.fr

Abstract— The Internet of Things is seen as a solution for many
problems such as helping to create smart cities, industry 4.0 or
even smart grids. The objective is in particular to offer a better
service, to automate a set of services or to save money, particularly
on energy consumption. Nevertheless, the complexity of these
systems of systems requires the use of standards to deploy and
make interoperable all of those connected objects and needed
services. The oneM2M standard aims to provide a service layer to
create those complex IoT systems. There are many scenarios and
deployments in the literature and in standardization documents
showing how the use of IoT can save or better manage energy
consumption in a particular area, as opposed to energy
consumption by the IoT system itself is little studied. This aspect,
particularly in the oneM2M standard, is currently not very
present except for interfacing with the cellular network and
considering the capabilities of 5G in terms of reducing energy
consumption. On the other hand, at the level of services, data
management or the architecture to be deployed to set up an IoT
system ranging from the sensor to the cloud, everything remains
to be done. In this article, we propose to raise awareness on the
one hand of the actors of IoT standardization of the energy impact
in the definition of standards and on the other hand of the
developers of IoT stacks and applications. For this, we first
develop an environment to measure the energy impact in the
choice of the use of a standard and its implementations then in a
second time, we identify a set of recommendations both on the
evolutions possible of the standard but also on the choice of
implementation and deployment of applications and IoT stacks.

Keywords— Internet of things, standardization, self-energy
consumption, REST architecture

I. INTRODUCTION
The Internet of Things is a field that continues to develop. The
domains of application are very varied and initially were rather
in a very vertical vision: logistics of goods, e-health, home
automation, etc. This has evolved towards a more horizontal and
multi-domain vision with for example: industry 4.0 or even the
smart city. The main reasons are the greater economic potential
and a certain maturity of the technologies. However, this
amplified the complexity with systems of systems,
interoperability needs and data management which had to rely
on new concepts such as ontologies. This evolution has
amplified the need for standardization not only on equipment
and communication layers but also on services and their access
to drive, interact, monitor these IoT systems.
This article will focus on a standard for the IoT service layer
called oneM2M [1]. There are other initiatives to try to define a

common layer of services but oneM2M is distinguished by the
support of standardization bodies.

At the same time, the field of green IT is becoming increasingly
important given the environmental impact of ICT and its strong
growth. Standardization bodies have produced numerous
documents. PKIs have been defined for different levels of a
system in terms of production consumption [2], in
communication systems [3], for end of life of equipment [4], etc.

The crossing between the standardization of the IoT and the
green IT has for the moment been made almost exclusively in
the fields of applications such as the smart city [5] or even the
smart grid [6]. However, work does exist, for example, on
considering the energy consumed by specific technology like
communication network [7], type of architecture like edge [8]
or an end-to-end IoT system [9]. Tools exist also to measure the
energy impact in the ICT world but partially adapted to the IoT
(greenspector for example for the WEBsmartphone [10]).
Standardization bodies have not taken the sustainable aspect into
account in defining the standard itself. However, this could be
integrated into the services, into the mechanisms or even into the
architecture that the standard offers. The increasing deployment
of IoT systems will ultimately have an increasingly strong
impact on the energy that they themselves consume.

In this work, an environment of test has been created to measure
the impact of deployment of the oneM2M standard in term of
energy. First, elements on the oneM2M standard will be given,
then we will present the test platform which was used to deploy
the tests and collect the energy measurements. Finally, we will
give the results on 3 opensource IoT stacks and a first synthesis
to suggest improvement of IoT standard in term of self-
consuming energy management.

II. CONTEXT

A. oneM2M Principle
oneM2M is driven by a consortium of five standardization
organizations bringing together more than 200 industrial
partners and laboratories. This standard aims to define a set of
services as well as resource trees that make it possible to create
a topology of connected objects. oneM2M then makes it
possible to provide identical access to a set of heterogeneous
technologies and data.

The standard specifies several types of nodes, the main ones
being:

• Infrastructure Node (IN): This node is able to
centralize links to the different middle nodes and
allowing high-level user applications to interact with
all nodes. the IN is generally deployed on the cloud. It
hosts the service layer called Common Service Entity
(CSE).

• Middle Node (MN): This is a device containing sensor
data. He is directly connected to IN servers and
sensors. The MN generally acts as a gateway between
the long-distance network and the local sensor/actuator
networks. It hosts also a CSE.

• Application Service Node (ASN): This is a node
deployed on objects with a good processing capacity
and therefore having the possibility of also hosting the
service layer of oneM2M

• Application Dedicated Node (ADN): it is a node
hosting an application called Application Entity (AE)
but not containing the oneM2M service layer.

A common operating principle is as follows:

1. The MN registers with the IN and everyone creates a
link in their database (remote IN/MN server)

2. Sensors registers with the MN and creates an
Application Entity (AE) containing the description
application and sensor data.

3. An End User (a user application such as a smartphone
application) may have access to data through a REST
API, receive notifications when they are updated, etc.
Most of access are done at the IN level.

B. oneM2M data management
The oneM2M service layer is based on REST architecture. Data
and services are represented in the form of a resource tree. In
oneM2M, this takes the form of a creation of a CSE (Common
Service Entity) as the root of the tree. Resources can be of a
multitude of types. Here are the main ones:

• Application Entity (AE): This is a resource that
symbolizes a sensor, an actuator or any other connected
object or an application. Inside this resource, we will
store data and the actions that we can carry out

• Containers (CNT): they are under an AE resource and
group together several other resources to store them.

• Content Instance (CIN): they are located in the
containers and most often represent the value collected
by sensors, or a description of possible actions on an
actuator.

• Subscriptions (SUB): they are located mainly in the
containers and define an action to be performed for
exemple when a content instance is added in this same
container. More generally, they make it possible to
subscribe to any modification of the resource in which
they were created by setting up a notification
mechanism.

C. Three oneM2M opensource stacks
The oneM2M has several industrial and academic
implementations with different features. Three of them are
accessible as opensource:

• ACME is an opensource implementation of CSE
created by Andreas Kraft [11]. A subset of oneM2M
resources is proposed. The goal is to produce a version
simple to install, configure, maintain, extend and use.
The main use is for educational purpose. This IoT stack
is written with python. The architecture of ACME is
based on a python code to run. The data are stored in
file through Tinydb and the access is made with an API.
This choice of database is one of the reasons of
limitation in education use case. The second limitation
is due to time response of ACME but as mentioned the
goal was not to have an optimized responsive IoT
stack. ACME offers an user interface accessible with a
browser (figure 1).

Fig. 1. ACME User interface

Developers have some information to help them to understand
the structure of ACME in term of components (figure 2) and
class hierarchy. Some guidelines are also offered to help to
develop and integrate new applications in ACME.

Fig. 2. ACME component architecture

Fig. 3. OM2M architecture

• Mobius [12] is developed by KETI. It is an opensource
implementation of CSE. It provides the service layer in
term of: registration, data management, subscription
and notification, security, etc. If also offers the concept
on interworking for connection with different
technologies. Mobius is certified by TTA for release 1
of oneM2M. It is written in node JS language. Mobius
use an external MySQL data base to store data and
MQTT protocol (figure 3). MySQL server and MQTT
broker are needed.

Fig. 4. Mobius architecture

• OM2M [13,14] has been created at LAAS-CNRS /
IRIT. It has been selected by eclipse foundation as
eclipse OM2M. It provides CSE based on release 2 of

oneM2M. It is based on java and use a H2 database in
memory or remotely. Documentation is available on
eclipse website. Tutorials and MOOCs are also
available. The architecture is based on plugins for all
specific capabilities (figure 4). Installation is simple if
you are using only bytes code, it is a bit more
complicated with the java source due to dependency
and version management of external packages.

 Those three IoT stacks are interesting because they use
different language: python, node JS, java. Their philosophy
is different made for education, research or industry. Their
architecture is also different (table 1). So, this subset of
oneM2M implementation should have different behaviors
in term of self-energy consumption.

TABLE I. COMPARISON OF THREE ONEM2M OPENSOURCE STACKS
 oneM2M

release
language documentation installation use development performance

ACME R3 Python Good on github Very easy Very
easy

documented limited

Mobius Certified
R1

Node JS simple on github
in English

not so simple
on linux, need
to cross
different
sources of
information

very
easy

no
documentation in
English

good

OM2M R2 java good on eclipse
foundation

simple for bit
code,
complicated
for source
code

very
easy

documented good

III. EXPERIMENTATION

A. Configuration of the testing platform
The platform (figure 5) uses:

• an HP elite book 840 computer with an I5 Vpro quad-
core processor and 8 GB of RAM. The battery has been
removed so as not to disturb the power measurement.
The operating system is Linux ubuntu 20.04.4. This
computer will host an Infrastructure Node of each
implementation to be tested.

• a macbook pro with an I7 quadcore processor and 16GB
of RAM with Mac OS monterey. This machine will
host the python client responsible for interacting with
the IN. It will play the role of ADN in the oneM2M
architecture. In addition, for the measure on the
subscription/notification mechanism, it will also host
an http server to receive the notifications sent by the
IN.

• a wired ethernet network at 100 Mb/s is set up with an
ASUS RTAC51U router. This network is isolated from
any disturbance and the WIFI networks is deactivated.

• a rhodes&schwarz HMC 8015 power analyzer
measures the power consumed by the machine hosting
the IN. Measures are done every 0.1 seconds and stored
in a file.

Fig. 5. Test platform with an Infrastructure Node

Most of the tests are run during a large period compared to
the time of the oneM2M requests to integrate energy consumed
due to cooling of the computer. Nevertheless, due to the high
response time of ACME compared to Mobius and OM2M, we
had to make different tests for ACME in term of number of
resources manipulated. With ACME, we manipulate a burst of
100 resources and for Mobius and OM2M we manipulate burst
of 1000 resources. By this way, we stay in the same interval of
time for each experience.

In order to calibrate the energy needed by the computer to run
the operating system and the basic services, a first set of
measurements is made for 3min. This gives an estimation of the
power required to power the machine which is equal to 9.34 W.
The curve shows regular peaks (with a maximum of 23,25W)
corresponding to linux service activation (figure 6).

Fig. 6. Power consumption for computer and operating system

B. Energy Consumption behavior
Standalone stack: For each IoT stacks, we start the stack and
waiting for stabilisation of energy consumption to remove the
peak due to initialisation phase (figure 7). This value will help
to calculate the over consumption due to creation and delete of
oneM2M resources. To estimate the over consumption due to
IoT stack we make the difference between computer without IoT
stack and computer with the oneM2M stacks (figure 6). This
consumption of IoT stack is due to periodic activities in IoT
stack to get possible message from the network or activities on
the database. ACME and Mobius have a consumption
respectively of 3.50 and 3.11 kWh. OM2M has a greater
consumption with 5.3 kWh. The reason is the Java virtual
machine that creates an overload activity on processor.

Fig. 7. Power consumption with the different IoT stacks with no request

Application Entity manipulation: In this test, a burst of
Application Entity creation (1000 for Mobius and OM2M, 100
for ACME) is done any activity is stopped during 1min and then
a burst of deletion of AE is done.

Fig. 8. Power consumption with the different IoT stacks for
AE manipulation

The behaviors are very different (figure 8). OM2M consumes a
lot of power during a short time with a maximum of 28,54 W.
Mobius consumes less power but during a longer time and have
different phases of consumption with a first phase with different
peaks with a maximum of 25.59 W and after a phase with stable
consumption around 12.2 W. For ACME the consumption is
made with a consumption around 12.2 W and many small peaks
with a maximum of 25.16W. We should also notice that for
ACME the time to process the only 100 creation and delete of
AE is longer then Mobius and OM2M to manage the 1000
requests of creation and deletion. We can estimate the power
consumption for AE creation and delete for each task (Table 2).
The creation of an AE cost a lot of power for ACME compared
to the deletion. Mobius and OM2M are nearest with a power
between 1.66 to 2.45 for creation and deletion of AE.

TABLE II. ESTIMATED POWER PER REQUEST FOR APPLICATION ENTITY
 Total power during

burst (w)
Duration of burst (s) Estimated power of

IoT stack (w)
Estimated power
per request (w)

Creation ACME 11354 88 3131.9 31.32
Creation Mobius 6312.42 48.1 1818.29 1.82
Creation OM2M 4245.4 19.2 2451.49 2.45
Delete ACME 3702.18 27.1 1170.14 11.7
Delete Mobius 6509.33 51.9 1660.15 1.66
Delete OM2M 3532 16.1 2027.72 2.02

CIN manipulation: In this test, a burst of content Instance
(CIN) creation is made then we stop any activity and then a burst
of delete of the CIN is done. The CIN resource is made to collect
data from the system for example the set of value of a sensors.
A new behavior for ACME could been seen for the delete with
a energy consumption that depends on the number of CIN record
in the database. The processing time of the algorithm in the
database depend on the number of recorded in the database for
CIN.

Fig. 9. Power consumption with the different IoT stacks for CIN
manipulation

We can estimate the power consumption for CIN creation and
deletion for each task (figure 9). All stacks included ACME
have behavior in term of power consumption that look like the
same then previous resources. The cache mechanism of in
memory database of OM2M helps to have a very efficient delete
of CIN with 0.12W per delete (table 3).

TABLE III. ESTIMATED POWER PER REQUEST FOR CONTENT INSTANCE
 Total power during

burst (w)
Duration of burst (s) Estimated power of

IoT stack (w)
Estimated power
per request (w)

Creation ACME 10443.44 82.2 2763.24 27.63
Creation Mobius 4539.56 36.4 1138.6 1.14
Creation OM2M 1929 9.6 1032.33 1.03
Delete ACME 4949.26 37 1492.24 14.92
Delete Mobius 4908.85 40.50 1124.81 1.12
Delete OM2M 653.88 5.7 121.31 0.12

LAST request: In this test, a creation of one content instance is
done and then a burst to get the last content Instance (CIN)
created then we stop any activity and then all resources are
deleted. We can estimate the power consumption for creation
and get of this value inside an application and delete for each
task (table 4). This consumption is very low for all IoT stacks.
This is important because one of the main goal of IoT stack is to
expose the collected values. ACME is really efficient compared
to the other resources management. This is due to the use of in
memory simple data base. OM2M has a cache on database and
this help also to get low consumption. Mobius is just over the
two other stacks in term of consumption, this is due to the
management of the remote database and processing activity
created even after the response to the application test.

TABLE IV. ESTIMATED POWER PER REQUEST FOR GET LAST CONTET
INSTANCE

 Total power
during burst (w)

Duration of
burst (s)

Estimated
power of IoT
stack (w)

Estimated power
per request (w)

ACME 1493.71 11.5 419.23 0.42
Mobius 3866.93 28.5 1204.09 1.2
OM2M 1605.18 7.4 913.78 0.91

Subscription and notification mechanism with SUB
resource: In this test, we make a burst of subscription (SUB) on
a container that contents Content Instance resources (CIN), we
stop any activity and then we create a new CIN in the container
that create a burst of notification then we have a burst of deletion
of the SUB (figure 10).

Fig. 10. Power consumption with the different IoT stacks for SUB creation,
delete and notification mechanism

To estimate the power consumption for notification mechanism
(table 5), we have estimated before the value for the subscription
creation with a test with only requestion for subscription
creation. A soustraction of this value help to estimate the
notification cost in term of power consumption. That is to say
the cost to get the information about the remote http server and
the sending of the notification to this http server. ACME still
have a very high power cost. Mobius and OM2M have a very
low cost compared.

TABLE V. ESTIMATED POWER FOR NOTIFICATION MECHANISM
 Total power

during burst (w)
Duration of
burst (s)

Estimated
power of IoT
stack (w)

Estimated power
per request
CIN+notification
(w)

Estimated
power per
notification
(w)

ACME 26346.47 198.9 7762.63 77.6 49.99
Mobius 5477.11 44 1366.05 1.37 0.23
OM2M 2247.5 11.5 1173.02 1.17 0.14

Multi-level Architecture with an Infrastructure and Middle
Nodes: the goal is to measure the impact of use of two CSEs
based on one Infrastructure node and one Middle node.
Application requests are sent to the IN node and a redirection to
MN node is done by the oneM2M stack. The two CSEs are run
on the same computer to be able to measure the processing
power consumption (figure 11).

Fig. 11. Deployment of one IN and one MN node with OM2M stack

This architecture is not really realistic because IN nodes are
deployed on cloud and MN nodes on gateways and devices in
real application. This creates also a communication over wide
area network. Nevertheless, do real measures on such
architecture is not trivial and most of the time simulation
replaces real measures.

Fig. 12. Power consumption with on IN and one MN node with OM2M stack

The measures are shown on figure 12. By using the value
measured for AE creation with OM2M we can deduce the over
cost of redirection of the request from IN CSE to MN CSE:
0,39W (table 6). It over costs around 15% to use IN and MN
node and in real world we should add the network impact. So
the use of redirection mechanism has an significant impact on
energy consumption.

TABLE VI. ESTIMATED POWER FOR REDIRECTION MECHANISM
 Total power

during burst (w)
Duration of
burst (s)

Estimated
power of IoT
stack (w)

Estimated power
per request (w)

Overcost of
redirection
(w)

OM2M 5061.76 23.8 2838.05 2.84 0.39

IV. LESSONS FROM EXPERIMENTATION
The results of a set of experiments allowing to better understand
the energy impact of the implementation of the oneM2M

standard. We were also able to study the behavior in terms of
energy consumption of the manipulation of a subset of the
resources described in the standard. The question is how can this
impact the oneM2M standardization community: standard
contributors, stack developers and oneM2M users.

A. Analysis
Several aspects could be analyzed from the experiments done:

• programming language: The 3 IoT stacks have been
chosen because of their opensource characteristic. It is
allowing to test 3 stacks developed with different
programming languages. ACME is written in python,
Mobius in node JS and OM2M in java. These language
choices were clearly guided by a desire for easier
portability on computer and operating systems. The
choice of these languages is also to a lesser extent
derived from the need to have a strong connection with
the concepts of the Internet by the very nature of the
IoT. Node JS and java are two languages strongly
coupled to the Internet, python to a lesser extent. This
choice was made to the detriment on the one hand of
the processing power compared to a language compiled
in binary which can be directly used on the processors
and on the other hand of the energy necessary to
execute them. The 3 implementations do not have a big
difference in consumption when they are not requested,
on the other hand as soon as requests is processed the
difference between ACME in python and the 2 other
implementations is very important with an average (by
removing the 2 extreme cases) of the order of 20 times
more energy consuming. The choice of language alone
cannot explain this difference. The choice of software
design also had an influence. ACME would like to be
use for education and therefore easy to understand but
sometime not optimized in term of performance.

• database: Storing the resource tree necessary to
guarantee the stateless aspect of REST requests
requires having an efficient information storage
mechanism. Naturally, IoT stacks are using a database.
The diversity of databases: objects database, SQL,
NoSQL, etc. and the choice made by implementations
has a considerable impact on performance and energy
consumption. It is very likely that this is one of the
bottlenecks of ACME. The cache mechanisms that can
be activated on certain databases can reduce the energy
consumed, especially when the resources handled are
either often the same, or the most recently produced, or
rather have read access. ACME also shows specific
behavior in particular on the destruction of resources.
The time and therefore the energy are strongly
impacted by the number of resources in the database.
IoT stacks must therefore be vigilant about minimizing
the impact of the number of records in a database and
the query time for the main used by oneM2M specific
application.

• Distributed or not: the distribution of the
functionalities necessary for the IoT stack has an

impact on energy. We see the impact of the database
being distributed rather than embedded directly in the
process memory of the IoT stack. This is the case for
example of MOBIUS which tends to consume energy
longer. Similarly, if we had put a request dispatcher
feeding a distributed service architecture on a cloud,
we could have measured the energy impact of using
more computer and more processes.

• IN/MN/ASN: oneM2M build complex architecture
based on IN, MN and ASN CSE for the service layer
part. However, we found that adding an IN+MN had
an impact on power consumption. Due on the one hand
to the creation of several processes on the computers
but also to the additional mechanisms to be put in place
such as the redirection of requests.

B. Proposals
Derivated form the tests and analysis, a list of proposals and
recommandations are made:

• programming language: Choose an efficient
programming language to develop the IoT stack

• Conception and development of IoT stack: Think
about performance and energy consumption when you
develop an IoT stack

• Database: Choose a database and optimization
parameters of database related to type of usage and
requests made by applications (impact of distribution,
cache, size of database, etc)

• oneM2M node and energy: The deployed architecture
should be as simple as possible in term of number of
nodes and processes created in computer.

• Energy Monitoring: resources to keep information on
the energy consumed by both the computer, the CSE or
the manipulation of the resources is necessary. This
may be possible by using the energy measurements that
a computer can make by itself and in particular on its
processor over time. An energy resource can be
attached to any oneM2M resources and give
information on energy consumption when an access is
made for creation, read, write or update. This value will
be static or evaluated by the CSE. Making those
resources available to users will promote consideration
of energy in the use of oneM2M.

• QoS level: The response time for oneM2M request is
one the Quality of Service indicator. From now, IoT
stack try to respond to a request as soon as possible.
oneM2M service layer should introduce level of
response time for specific deployment. With low level
of response time for non-critical application, we can
adjust energy consumption for a request. For example,
IoT stack can reduce the frequency of processor based
on DVFS mechanism [15] or stop core or processor in
a computer. This implies to add a negotiation
mechanism inside oneM2M CSE and inside oneM2M
request. This can be done at the level of CSE resource
or when an AE is created. This implies new parameters

in oneM2M request or new resources dedicated to
describe QoS and energy impact possibility.

• Energy budget: Energy for the IoT device may be
critical for unplugged equipment’s. For those
equipment battery, solar panel or any local energy
source should be used. The connection between energy
source, hardware and oneM2M CSE should be done to
manage energy. One way to do that is to manage an
energy budget for oneM2M request. The global CSE
can evaluate its energy budget at a specific time. This
can be improved with prediction of energy production
to get prediction of energy budget. The CSE must also
have the capacity to measure by itself the energy
consumed with various accesses to oneM2M
resources. Then when an application makes a request
either the CSE can evaluate that the energy
consumption of this request will be too high given its
current energy budget and, in this case, returns an error
code or the request can itself express the quantity
amount of energy it's willing to pay to be answered.
The idea here is to bring a market mechanism for
energy at the level of requests for CSEs. This also
implies to add new resource to describe energy budget
and parameters on request to manage exchange
between applications and CSEs.

V. CONCLUSION AND PERSPECTIVE
In this article, a physical platform of test has been created that
used the same application test program to estimate power
consumption of the 3 IoT stacks: ACME, Mobius and OM2M.
The programming languages used in the 3 stacks are different.
The architecture of the software is very different. Cumulated
with the behavior of the different oneM2M resources
management made by stacks implies different power
consumption profile.
Energy consumption of IoT stack should be taken in account in
the future. This should be made at the level of standardization
organism, developers of oneM2M IoT stacks, developers of IoT
applications and finally at the level of deployment of IoT
solutions.

Based on those recommendation, we have started to work on
new IoT stack called lightom2m [16] based on C++ language.
Low impact on memory and processing are the first goal of this
new work. The second goal will be to be able to test and
experiment low energy recommendation made in this paper.

ACKNOWLEDGMENT
 This work has been done under the founding of European
project StandICT.eu.

REFERENCES
[1] http://www.onem2m.org
[2] Operational energy Efficiency for Users (OEU); Global KPIs for ICT

Sites, ICT ETSI GS OEU 001.
[3] Access, Terminals, Transmission and Multiplexing (ATTM); Energy

management; Operational infrastructures; Global KPIs; ETSI EN 305
200-3-1.

[4] Access, Terminals, Transmission and Multiplexing (ATTM); Broadband
Deployment and Lifecycle Resource Management, ETSI EN 305 174-8.

[5] Adaptation of oneM2M for Smart City, oneM2M TR-0036- V0.3.0.
[6] oneM2M Use Case collection, ETSI TR 118 501.
[7] J. Finnegan, An Analysis of the Energy Consumption of LPWA-based

IoT Devices, IEEE International Symposium on Networks, Computers
and Communications (ISNCC), Rome, Italy, June 2018,
DOI:10.1109/ISNCC.2018.8531068

[8] J. Mocnej, M. Miškuf. P. Papcun, I. Zolotová, Impact of Edge Computing
Paradigm on Energy Consumption in IoT, IFAC 2018 Intenrational
Federation of Automatic Control.

[9] L. Guegan, A.C. Orgerie. Estimating the end-to-end energy consumption
of low-bandwidth IoT applications for WiFi devices. CloudCom 2019 -
11th IEEE International Conference on Cloud Computing Technology
and Science, Dec 2019, Sydney, Australia. Hal-02352637.

[10] https://greenspector.com/en/home/
[11] https://github.com/ankraft/ACME-oneM2M-CSE
[12] https://github.com/IoTKETI/Mobius
[13] https://www.eclipse.org/om2m
[14] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot, K. Drira, OM2M:

Extensible ETSI-compliant M2M Service Platform with Self-
configuration Capability, Procedia Computer Science, Volume 32, 2014,
Pages 1079-1086, ISSN 1877-0509,
http://dx.doi.org/10.1016/j.procs.2014.05.536.

[15] T. Kolpe, A. Zhai, S. Sapatnekar, Enabling improved power management
in multicore processors through clustered dvfs, in: Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, pp. 1–6.

[16] https://gitlab.irit.fr/sepia-pub/lightom2m

