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Abstract— The Internet of Things is seen as a solution for many 
problems such as helping to create smart cities, industry 4.0 or 
even smart grids. The objective is in particular to offer a better 
service, to automate a set of services or to save money, particularly 
on energy consumption. Nevertheless, the complexity of these 
systems of systems requires the use of standards to deploy and 
make interoperable all of those connected objects and needed 
services. The oneM2M standard aims to provide a service layer to 
create those complex IoT systems. There are many scenarios and 
deployments in the literature and in standardization documents 
showing how the use of IoT can save or better manage energy 
consumption in a particular area, as opposed to energy 
consumption by the IoT system itself is little studied. This aspect, 
particularly in the oneM2M standard, is currently not very 
present except for interfacing with the cellular network and 
considering the capabilities of 5G in terms of reducing energy 
consumption. On the other hand, at the level of services, data 
management or the architecture to be deployed to set up an IoT 
system ranging from the sensor to the cloud, everything remains 
to be done. In this article, we propose to raise awareness on the 
one hand of the actors of IoT standardization of the energy impact 
in the definition of standards and on the other hand of the 
developers of IoT stacks and applications. For this, we first 
develop an environment to measure the energy impact in the 
choice of the use of a standard and its implementations then in a 
second time, we identify a set of recommendations both on the 
evolutions possible of the standard but also on the choice of 
implementation and deployment of applications and IoT stacks. 

Keywords— Internet of things, standardization, self-energy 
consumption, REST architecture 

I. INTRODUCTION 
The Internet of Things is a field that continues to develop. The 
domains of application are very varied and initially were rather 
in a very vertical vision: logistics of goods, e-health, home 
automation, etc. This has evolved towards a more horizontal and 
multi-domain vision with for example: industry 4.0 or even the 
smart city. The main reasons are the greater economic potential 
and a certain maturity of the technologies. However, this 
amplified the complexity with systems of systems, 
interoperability needs and data management which had to rely 
on new concepts such as ontologies. This evolution has 
amplified the need for standardization not only on equipment 
and communication layers but also on services and their access 
to drive, interact, monitor these IoT systems. 
This article will focus on a standard for the IoT service layer 
called oneM2M [1]. There are other initiatives to try to define a 

common layer of services but oneM2M is distinguished by the 
support of standardization bodies. 
 
At the same time, the field of green IT is becoming increasingly 
important given the environmental impact of ICT and its strong 
growth. Standardization bodies have produced numerous 
documents. PKIs have been defined for different levels of a 
system in terms of production consumption [2], in 
communication systems [3], for end of life of equipment [4], etc. 
 
The crossing between the standardization of the IoT and the 
green IT has for the moment been made almost exclusively in 
the fields of applications such as the smart city [5] or even the 
smart grid [6]. However, work does exist, for example, on 
considering the energy consumed by specific technology like 
communication  network [7], type of architecture like edge [8] 
or an end-to-end IoT system [9]. Tools exist also to measure the 
energy impact in the ICT world but partially adapted to the IoT 
(greenspector for example for the WEBsmartphone [10]). 
Standardization bodies have not taken the sustainable aspect into 
account in defining the standard itself. However, this could be 
integrated into the services, into the mechanisms or even into the 
architecture that the standard offers. The increasing deployment 
of IoT systems will ultimately have an increasingly strong 
impact on the energy that they themselves consume. 
 
In this work, an environment of test has been created to measure 
the impact of deployment of the oneM2M standard in term of 
energy. First, elements on the oneM2M standard will be given, 
then we will present the test platform which was used to deploy 
the tests and collect the energy measurements. Finally, we will 
give the results on 3 opensource IoT stacks and a first synthesis 
to suggest improvement of IoT standard in term of self-
consuming energy management.  
 

II. CONTEXT 

A. oneM2M Principle 
oneM2M is driven by a consortium of five standardization 
organizations bringing together more than 200 industrial 
partners and laboratories. This standard aims to define a set of 
services as well as resource trees that make it possible to create 
a topology of connected objects. oneM2M then makes it 
possible to provide identical access to a set of heterogeneous 
technologies and data. 
 



The standard specifies several types of nodes, the main ones 
being: 

• Infrastructure Node (IN): This node is able to 
centralize links to the different middle nodes and 
allowing high-level user applications to interact with 
all nodes. the IN is generally deployed on the cloud. It 
hosts the service layer called Common Service Entity 
(CSE). 

• Middle Node (MN): This is a device containing sensor 
data. He is directly connected to IN servers and 
sensors. The MN generally acts as a gateway between 
the long-distance network and the local sensor/actuator 
networks. It hosts also a CSE. 

• Application Service Node (ASN): This is a node 
deployed on objects with a good processing capacity 
and therefore having the possibility of also hosting the 
service layer of oneM2M 

• Application Dedicated Node (ADN): it is a node 
hosting an application called Application Entity (AE) 
but not containing the oneM2M service layer. 

 
A common operating principle is as follows: 

1. The MN registers with the IN and everyone creates a 
link in their database (remote IN/MN server) 

2. Sensors registers with the MN and creates an 
Application Entity (AE) containing the description 
application and sensor data. 

3. An End User (a user application such as a smartphone 
application) may have access to data through a REST 
API, receive notifications when they are updated, etc. 
Most of access are done at the IN level. 

B. oneM2M data management 
The oneM2M service layer is based on REST architecture.  Data 
and services are represented in the form of a resource tree. In 
oneM2M, this takes the form of a creation of a CSE (Common 
Service Entity) as the root of the tree. Resources can be of a 
multitude of types. Here are the main ones: 

• Application Entity (AE): This is a resource that 
symbolizes a sensor, an actuator or any other connected 
object or an application. Inside this resource, we will 
store data and the actions that we can carry out 

• Containers (CNT): they are under an AE resource and 
group together several other resources to store them. 

• Content Instance (CIN): they are located in the 
containers and most often represent the value collected 
by sensors, or a description of possible actions on an 
actuator. 

• Subscriptions (SUB): they are located mainly in the 
containers and define an action to be performed for 
exemple when a content instance is added in this same 
container. More generally, they make it possible to 
subscribe to any modification of the resource in which 
they were created by setting up a notification 
mechanism. 
 

C. Three oneM2M opensource stacks 
The oneM2M has several industrial and academic 
implementations with different features. Three of them are 
accessible as opensource:  

• ACME is an opensource implementation of CSE 
created by Andreas Kraft [11]. A subset of oneM2M 
resources is proposed. The goal is to produce a version 
simple to install, configure, maintain, extend and use. 
The main use is for educational purpose. This IoT stack 
is written with python. The architecture of ACME is 
based on a python code to run. The data are stored in 
file through Tinydb and the access is made with an API. 
This choice of database is one of the reasons of 
limitation in education use case. The second limitation 
is due to time response of ACME but as mentioned the 
goal was not to have an optimized responsive IoT 
stack. ACME offers an user interface accessible with a 
browser (figure 1). 

 
 

Fig. 1. ACME User interface 

Developers have some information to help them to understand 
the structure of ACME in term of components (figure 2) and 
class hierarchy. Some guidelines are also offered to help to 
develop and integrate new applications in ACME.



 
Fig. 2. ACME component architecture 

 
 
 
 
 
 
 

 
Fig. 3. OM2M architecture 

• Mobius [12] is developed by KETI. It is an opensource 
implementation of CSE. It provides the service layer in 
term of: registration, data management, subscription 
and notification, security, etc.  If also offers the concept 
on interworking for connection with different 
technologies. Mobius is certified by TTA for release 1 
of oneM2M. It is written in node JS language. Mobius 
use an external MySQL data base to store data and 
MQTT protocol (figure 3). MySQL server and MQTT 
broker are needed. 

 
Fig. 4. Mobius architecture 

• OM2M [13,14] has been created at LAAS-CNRS / 
IRIT. It has been selected by eclipse foundation as 
eclipse OM2M. It provides CSE based on release 2 of 

oneM2M. It is based on java and use a H2 database in 
memory or remotely. Documentation is available on 
eclipse website. Tutorials and MOOCs are also 
available. The architecture is based on plugins for all 
specific capabilities (figure 4). Installation is simple if 
you are using only bytes code, it is a bit more 
complicated with the java source due to dependency 
and version management of external packages. 

 Those three IoT stacks are interesting because they use 
different language: python, node JS, java. Their philosophy 
is different made for education, research or industry. Their 
architecture is also different (table 1). So, this subset of 
oneM2M implementation should have different behaviors 
in term of self-energy consumption. 

TABLE I.  COMPARISON OF THREE ONEM2M OPENSOURCE STACKS 
 oneM2M 

release 
language documentation installation use development performance 

ACME R3 Python Good on github Very easy Very 
easy 

documented limited 

Mobius Certified 
R1 

Node JS simple on github 
in English 

not so simple 
on linux, need 
to cross 
different 
sources of 
information 

very 
easy 

no 
documentation in 
English 

good 

OM2M R2 java good on eclipse 
foundation 

simple for bit 
code, 
complicated 
for source 
code 

very 
easy 

documented good 

 

III. EXPERIMENTATION 

A. Configuration of the testing platform 
The platform (figure 5) uses: 



• an HP elite book 840 computer with an I5 Vpro quad-
core processor and 8 GB of RAM. The battery has been 
removed so as not to disturb the power measurement. 
The operating system is Linux ubuntu 20.04.4. This 
computer will host an Infrastructure Node of each 
implementation to be tested. 

• a macbook pro with an I7 quadcore processor and 16GB 
of RAM with Mac OS monterey. This machine will 
host the python client responsible for interacting with 
the IN. It will play the role of ADN in the oneM2M 
architecture. In addition, for the measure on the 
subscription/notification mechanism, it will also host 
an http server to receive the notifications sent by the 
IN. 

• a wired ethernet network at 100 Mb/s is set up with an 
ASUS RTAC51U router. This network is isolated from 
any disturbance and the WIFI networks is deactivated. 

• a rhodes&schwarz HMC 8015 power analyzer 
measures the power consumed by the machine hosting 
the IN. Measures are done every 0.1 seconds and stored 
in a file. 

 
Fig. 5. Test platform with an Infrastructure Node 

Most of the tests are run during a large period compared to 
the time of the oneM2M requests to integrate energy consumed 
due to cooling of the computer. Nevertheless, due to the high 
response time of ACME compared to Mobius and OM2M, we 
had to make different tests for ACME in term of number of 
resources manipulated. With ACME, we manipulate a burst of 
100 resources and for Mobius and OM2M we manipulate burst 
of 1000 resources. By this way, we stay in the same interval of 
time for each experience. 

In order to calibrate the energy needed by the computer to run 
the operating system and the basic services, a first set of 
measurements is made for 3min. This gives an estimation of the 
power required to power the machine which is equal to 9.34 W.  
The curve shows regular peaks (with a maximum of 23,25W) 
corresponding to linux service activation (figure 6). 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Power consumption for computer and operating system 

 

B. Energy Consumption behavior 
Standalone stack: For each IoT stacks, we start the stack and 
waiting for stabilisation of energy consumption to remove the 
peak due to initialisation phase (figure 7). This value will help 
to calculate the over consumption due to creation and delete of 
oneM2M resources. To estimate the over consumption due to 
IoT stack we make the difference between computer without IoT 
stack and computer with the oneM2M stacks (figure 6). This 
consumption of IoT stack is due to periodic activities in IoT 
stack to get possible message from the network or activities on 
the database. ACME and Mobius have a consumption 
respectively of 3.50 and 3.11 kWh. OM2M has a greater 
consumption with 5.3 kWh. The reason is the Java virtual 
machine that creates an overload activity on processor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Power consumption with the different IoT stacks with no request 

Application Entity manipulation:  In this test, a burst of 
Application Entity creation (1000 for Mobius and OM2M, 100 
for ACME) is done any activity is stopped during 1min and then 
a burst of deletion of AE is done. 
 
 



 

 

 

 

 

 

 

 

 

Fig. 8. Power consumption with the different IoT stacks for 
AE manipulation 

The behaviors are very different (figure 8). OM2M consumes a 
lot of power during a short time with a maximum of 28,54 W. 
Mobius consumes less power but during a longer time and have 
different phases of consumption with a first phase with different 
peaks with a maximum of 25.59 W and after a phase with stable 
consumption around 12.2 W. For ACME the consumption is 
made with a consumption around 12.2 W and many small peaks 
with a maximum of 25.16W. We should also notice that for 
ACME the time to process the only 100 creation and delete of 
AE is longer then Mobius and OM2M to manage the 1000 
requests of creation and deletion. We can estimate the power 
consumption for AE creation and delete for each task (Table 2). 
The creation of an AE cost a lot of power for ACME compared 
to the deletion. Mobius and OM2M are nearest with a power 
between 1.66 to 2.45 for creation and deletion of AE. 

TABLE II.  ESTIMATED POWER PER REQUEST FOR APPLICATION ENTITY 
 Total power during 

burst (w) 
Duration of burst (s) Estimated power of 

IoT stack (w) 
Estimated power 
per request (w) 

Creation ACME 11354 88 3131.9 31.32 
Creation Mobius 6312.42 48.1 1818.29 1.82 
Creation OM2M 4245.4 19.2 2451.49 2.45 
Delete ACME 3702.18 27.1 1170.14 11.7 
Delete Mobius 6509.33 51.9 1660.15 1.66 
Delete OM2M 3532 16.1 2027.72 2.02 

 
CIN manipulation: In this test, a burst of content Instance 
(CIN) creation is made then we stop any activity and then a burst 
of delete of the CIN is done. The CIN resource is made to collect 
data from the system for example the set of value of a sensors. 
A new behavior for ACME could been seen for the delete with 
a energy consumption that depends on the number of CIN record 
in the database. The processing time of the algorithm in the 
database depend on the number of recorded in the database for 
CIN. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Power consumption with the different IoT stacks for CIN 
manipulation 

 
We can estimate the power consumption for CIN creation and 
deletion for each task (figure 9).  All stacks included ACME 
have behavior in term of power consumption that look like the 
same then previous resources. The cache mechanism of in 
memory database of OM2M helps to have a very efficient delete 
of CIN with 0.12W per delete (table 3). 

TABLE III.  ESTIMATED POWER PER REQUEST FOR CONTENT INSTANCE 
 Total power during 

burst (w) 
Duration of burst (s) Estimated power of 

IoT stack (w) 
Estimated power 
per request (w) 

Creation ACME 10443.44 82.2 2763.24 27.63 
Creation Mobius 4539.56 36.4 1138.6 1.14 
Creation OM2M 1929 9.6 1032.33 1.03 
Delete ACME 4949.26 37 1492.24 14.92 
Delete Mobius 4908.85 40.50 1124.81 1.12 
Delete OM2M 653.88 5.7 121.31 0.12 

 

LAST request: In this test, a creation of one content instance is 
done and then a burst to get the last content Instance (CIN) 
created then we stop any activity and then all resources are 
deleted. We can estimate the power consumption for creation 
and get of this value inside an application and delete for each 
task (table 4). This consumption is very low for all IoT stacks. 
This is important because one of the main goal of IoT stack is to 
expose the collected values. ACME is really efficient compared 
to the other resources management. This is due to the use of in 
memory simple data base. OM2M has a cache on database and 
this help also to get low consumption. Mobius is just over the 
two other stacks in term of consumption, this is due to the 
management of the remote database and processing activity 
created even after the response to the application test.  

TABLE IV.  ESTIMATED POWER PER REQUEST FOR GET LAST CONTET 
INSTANCE 

 Total power 
during burst (w) 

Duration of 
burst (s) 

Estimated 
power of IoT 
stack (w) 

Estimated power 
per request (w) 

ACME 1493.71 11.5 419.23 0.42 
Mobius 3866.93 28.5 1204.09 1.2 
OM2M 1605.18 7.4 913.78 0.91 

 



 

 
Subscription and notification mechanism with SUB 
resource: In this test, we make a burst of subscription (SUB) on 
a container that contents Content Instance resources (CIN), we 
stop any activity and then we create a new CIN in the container 
that create a burst of notification then we have a burst of deletion 
of the SUB (figure 10).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Power consumption with the different IoT stacks for SUB creation, 
delete and notification mechanism  

To estimate the power consumption for notification mechanism 
(table 5), we have estimated before the value for the subscription 
creation with a test with only requestion for subscription 
creation. A soustraction of this value help to estimate the 
notification cost in term of power consumption. That is to say 
the cost to get the information about the remote http server and 
the sending of the notification to this http server. ACME still 
have a very high power cost. Mobius and OM2M have a very 
low cost compared. 

TABLE V.  ESTIMATED POWER FOR NOTIFICATION MECHANISM 
 Total power 

during burst (w) 
Duration of 
burst (s) 

Estimated 
power of IoT 
stack (w) 

Estimated power 
per request 
CIN+notification 
(w) 

Estimated 
power per 
notification 
(w) 

ACME 26346.47 198.9 7762.63 77.6 49.99 
Mobius 5477.11 44 1366.05 1.37 0.23 
OM2M 2247.5 11.5 1173.02 1.17 0.14 

 
Multi-level Architecture with an Infrastructure and Middle 
Nodes: the goal is to measure the impact of use of two CSEs 
based on one Infrastructure node and one Middle node. 
Application requests are sent to the IN node and a redirection to 
MN node is done by the oneM2M stack. The two CSEs are run 
on the same computer to be able to measure the processing 
power consumption (figure 11).  

 
Fig. 11. Deployment of one IN and one MN node with OM2M stack 

 
This architecture is not really realistic because IN nodes are 
deployed on cloud and MN nodes on gateways and devices in 
real application. This creates also a communication over wide 
area network. Nevertheless, do real measures on such 
architecture is not trivial and most of the time simulation 
replaces real measures.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Power consumption with on IN and one MN node with OM2M stack  

The measures are shown on figure 12.  By using the value 
measured for AE creation with OM2M we can deduce the over 
cost of redirection of the request from IN CSE to MN CSE: 
0,39W (table 6). It over costs around 15% to use IN and MN 
node and in real world we should add the network impact. So 
the use of redirection mechanism has an significant impact on 
energy consumption. 
 

TABLE VI.  ESTIMATED POWER FOR REDIRECTION MECHANISM 
 Total power 

during burst (w) 
Duration of 
burst (s) 

Estimated 
power of IoT 
stack (w) 

Estimated power 
per request (w) 

Overcost of 
redirection 
(w) 

OM2M 5061.76 23.8 2838.05 2.84 0.39 

 

IV. LESSONS FROM EXPERIMENTATION 
The results of a set of experiments allowing to better understand 
the energy impact of the implementation of the oneM2M 



standard. We were also able to study the behavior in terms of 
energy consumption of the manipulation of a subset of the 
resources described in the standard. The question is how can this 
impact the oneM2M standardization community: standard 
contributors, stack developers and oneM2M users. 

A. Analysis 
Several aspects could be analyzed from the experiments done: 

• programming language: The 3 IoT stacks have been 
chosen because of their opensource characteristic.  It is 
allowing to test 3 stacks developed with different 
programming languages. ACME is written in python, 
Mobius in node JS and OM2M in java. These language 
choices were clearly guided by a desire for easier 
portability on computer and operating systems. The 
choice of these languages is also to a lesser extent 
derived from the need to have a strong connection with 
the concepts of the Internet by the very nature of the 
IoT. Node JS and java are two languages strongly 
coupled to the Internet, python to a lesser extent. This 
choice was made to the detriment on the one hand of 
the processing power compared to a language compiled 
in binary which can be directly used on the processors 
and on the other hand of the energy necessary to 
execute them. The 3 implementations do not have a big 
difference in consumption when they are not requested, 
on the other hand as soon as requests is processed the 
difference between ACME in python and the 2 other 
implementations is very important with an average (by 
removing the 2 extreme cases) of the order of 20 times 
more energy consuming. The choice of language alone 
cannot explain this difference. The choice of software 
design also had an influence. ACME would like to be 
use for education and therefore easy to understand but 
sometime not optimized in term of performance. 

• database: Storing the resource tree necessary to 
guarantee the stateless aspect of REST requests 
requires having an efficient information storage 
mechanism. Naturally, IoT stacks are using a database. 
The diversity of databases: objects database, SQL, 
NoSQL, etc. and the choice made by implementations 
has a considerable impact on performance and energy 
consumption. It is very likely that this is one of the 
bottlenecks of ACME. The cache mechanisms that can 
be activated on certain databases can reduce the energy 
consumed, especially when the resources handled are 
either often the same, or the most recently produced, or 
rather have read access. ACME also shows specific 
behavior in particular on the destruction of resources. 
The time and therefore the energy are strongly 
impacted by the number of resources in the database. 
IoT stacks must therefore be vigilant about minimizing 
the impact of the number of records in a database and 
the query time for the main used by oneM2M specific 
application. 

• Distributed or not: the distribution of the 
functionalities necessary for the IoT stack has an 

impact on energy. We see the impact of the database 
being distributed rather than embedded directly in the 
process memory of the IoT stack. This is the case for 
example of MOBIUS which tends to consume energy 
longer. Similarly, if we had put a request dispatcher 
feeding a distributed service architecture on a cloud, 
we could have measured the energy impact of using 
more computer and more processes. 

• IN/MN/ASN: oneM2M build complex architecture 
based on IN, MN and ASN CSE for the service layer 
part. However, we found that adding an IN+MN had 
an impact on power consumption. Due on the one hand 
to the creation of several processes on the computers 
but also to the additional mechanisms to be put in place 
such as the redirection of requests. 

 

B. Proposals 
Derivated form the tests and analysis, a list of proposals and 
recommandations are made: 

• programming language: Choose an efficient 
programming language to develop the IoT stack 

• Conception and development of IoT stack: Think 
about performance and energy consumption when you 
develop an IoT stack 

• Database: Choose a database and optimization 
parameters of database related to type of usage and 
requests made by applications (impact of distribution, 
cache, size of database, etc) 

• oneM2M node and energy: The deployed architecture 
should be as simple as possible in term of number of 
nodes and processes created in computer.  

• Energy Monitoring: resources to keep information on 
the energy consumed by both the computer, the CSE or 
the manipulation of the resources is necessary. This 
may be possible by using the energy measurements that 
a computer can make by itself and in particular on its 
processor over time. An energy resource can be 
attached to any oneM2M resources and give 
information on energy consumption when an access is 
made for creation, read, write or update. This value will 
be static or evaluated by the CSE. Making those 
resources available to users will promote consideration 
of energy in the use of oneM2M.   

• QoS level: The response time for oneM2M request is 
one the Quality of Service indicator. From now, IoT 
stack try to respond to a request as soon as possible. 
oneM2M service layer should introduce level of 
response time for specific deployment. With low level 
of response time for non-critical application, we can 
adjust energy consumption for a request. For example, 
IoT stack can reduce the frequency of processor based 
on DVFS mechanism [15] or stop core or processor in 
a computer. This implies to add a negotiation 
mechanism inside oneM2M CSE and inside oneM2M 
request. This can be done at the level of CSE resource 
or when an AE is created. This implies new parameters 



in oneM2M request or new resources dedicated to 
describe QoS and energy impact possibility.  

• Energy budget: Energy for the IoT device may be 
critical for unplugged equipment’s. For those 
equipment battery, solar panel or any local energy 
source should be used. The connection between energy 
source, hardware and oneM2M CSE should be done to 
manage energy. One way to do that is to manage an 
energy budget for oneM2M request. The global CSE 
can evaluate its energy budget at a specific time. This 
can be improved with prediction of energy production 
to get prediction of energy budget.  The CSE must also 
have the capacity to measure by itself the energy 
consumed with various accesses to oneM2M 
resources.  Then when an application makes a request 
either the CSE can evaluate that the energy 
consumption of this request will be too high given its 
current energy budget and, in this case, returns an error 
code or the request can itself express the quantity 
amount of energy it's willing to pay to be answered. 
The idea here is to bring a market mechanism for 
energy at the level of requests for CSEs. This also 
implies to add new resource to describe energy budget 
and parameters on request to manage exchange 
between applications and CSEs. 

 

V. CONCLUSION AND PERSPECTIVE 
In this article, a physical platform of test has been created that 
used the same application test program to estimate power 
consumption of the 3 IoT stacks: ACME, Mobius and OM2M. 
The programming languages used in the 3 stacks are different. 
The architecture of the software is very different. Cumulated 
with the behavior of the different oneM2M resources 
management made by stacks implies different power 
consumption profile.  
Energy consumption of IoT stack should be taken in account in 
the future.  This should be made at the level of standardization 
organism, developers of oneM2M IoT stacks, developers of IoT 
applications and finally at the level of deployment of IoT 
solutions. 

Based on those recommendation, we have started to work on 
new IoT stack called lightom2m [16] based on C++ language. 
Low impact on memory and processing are the first goal of this 
new work. The second goal will be to be able to test and 
experiment low energy recommendation made in this paper. 
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