
HAL Id: hal-04279711
https://hal.science/hal-04279711v1

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security for oneM2M-Based Smart City Network: An
OM2M Implementation

G.V. Ihita, Vybhav.K. Acharya, Likhith Kanigolla, S. Chaudhari, Thierry
Monteil

To cite this version:
G.V. Ihita, Vybhav.K. Acharya, Likhith Kanigolla, S. Chaudhari, Thierry Monteil. Security for
oneM2M-Based Smart City Network: An OM2M Implementation. 2023 15th International Conference
on COMmunication Systems & NETworkS (COMSNETS), Jan 2023, Bangalore, India. pp.808-813,
�10.1109/COMSNETS56262.2023.10041334�. �hal-04279711�

https://hal.science/hal-04279711v1
https://hal.archives-ouvertes.fr


Security for oneM2M-Based Smart City Network:
An OM2M Implementation

G.V. Ihita1, Vybhav.K. Acharya1, Likhith Kanigolla1, S. Chaudhari1, Thierry Monteil2
1International Institute of Information Technology - Hyderabad (IIIT-H), India

2IRIT, Université de Toulouse, INSA, Toulouse, France
ihita.g@research.iiit.ac.in, sachin.chaudhari@iiit.ac.in, thierry.monteil@irit.fr

Abstract—Integrating scalability, interoperability, and security
has become crucial with the widespread adoption of IoT-enabled
smart city solutions. In this context, the oneM2M provides
promising technical specifications for an interoperable and secure
IoT/M2M system. This paper focuses on the potential threats
and their impact on oneM2M standard-based smart cities. Fur-
ther, configurations for baseline security of the oneM2M open-
source implementation, called Eclipse OM2M, are presented. The
configurations and recommendations are proposed based on the
tests conducted on an existing smart city deployment of IIIT
Hyderabad (IIIT-H) in India.

Index Terms—Eclipse OM2M, Internet of Things (IoT) secu-
rity, IoT security standardisation, oneM2M, smart city

I. INTRODUCTION

There is widespread adoption of smart city solutions to
make cities more livable, economically diverse, and environ-
mentally sustainable. Smart city applications such as smart
grids, waste management, traffic management, air pollution
monitoring, and energy management leverage IoT devices to
monitor, analyze and regulate various parameters for effective
governance. IoT-enabled smart city requirements consist of
heterogeneity, interoperability, scalability, mobility, connectiv-
ity, and security. To satisfy the need for a common platform
supporting these requirements, oneM2M [1] proposes a com-
mon middleware technology in a horizontal layer covering
use case-centric requirements, architecture, API specifica-
tions, security solutions, and interoperability for Machine-to-
Machine and IoT technologies. These make the standard a de
facto for a smart city as it reduces fragmentation, facilitates
large amounts of data sharing, increases the re-usability of
underlying existing technologies, and optimizes the costs.
Various implementations of the standard are being developed
and implemented globally. India has adopted the oneM2M
standard as the national standard for IoT/M2M. There are
multiple oneM2M implementations [2] such as Mobius, OA-
SIS, CCSP, and eclipse OM2M. Each of these implementations
has security provisions along with functional and operational
requirements. The Eclipse OM2M [3] implements oneM2M
and the smartM2M standard. It is an open-source project under
the Eclipse Technology Project.

There are multiple trade-offs involved with the deployment
of IoT-enabled smart cities. The trade-offs between cost,
deployment scenario, processing power, and security of IoT
devices usually result in security taking the backseat. Most
IoT devices comprise low-cost sensors with memory, power

consumption, and processing constraints. Thus, incorporating
the principles of CIA (confidentiality, integrity, availability)
becomes challenging.

Much work has been done on IoT/M2M systems and their
security. Authors in [4] present a survey on the security re-
quirements of mission-critical IoT applications, vulnerabilities,
and sources of threats and culminate work on mitigation
strategies for emerging applications. The work also presents
the integration of blockchain with IoT for enhancing secu-
rity. RFC 8576 [5] describes challenges with securing IoT
deployments and categorizes the threats and risks to such
systems. Proposing recommendations through consultations
from stakeholders, the [6] focuses on challenges with IoT,
threats, attack scenarios and possible mitigation strategies.
Further ETSI standards on consumer IoT security [7] and
[8] cover security and privacy best practices for consumers
and manufacturers of IoT devices. Particularly in the case
of IoT-enabled smart cities, [9] provides a detailed analysis
of the threats and vulnerabilities to AirIoT, an air quality
monitoring smart city set up. They model the threats using
STRIDE modelling framework followed by solutions with
respective trade-offs. In the context of M2M/IoT security,
the oneM2M technical specifications document, TS-0003, [10]
mentions security provisions and procedures on access con-
trol policies (ACP), dynamic authorization, application/device
impersonation prevention, and privacy protection. The paper
[11] implements security in the OS stack, Mbed OS. Their
implementation to enable secure end-to-end communications
for IoT devices involves realizing the oneM2M specified
Security Association Establishment Framework (SAEF). On
the same MbedOS, the authors [12] show the implementation
of secure MQTT binding as per [13] of the oneM2M technical
specification. Both these works incorporate key security provi-
sions from the standard into their implementations. To address
the privacy and resource access management requirements,
[14] proposes a “Privacy Enforcement” plugin.

This paper focuses on the security analysis of OM2M based
implementation of IoT network deployed at IIIT-H having
more than 200 nodes for several smart city applications. First,
the potential threats and attacks are modelled on oneM2M
standard compliant implementations using STRIDE method-
ology [15]. Second, five security analyses are performed on
this network: eavesdropping, brute force attack for OM2M
credentials, authorization via access control policies, scalabil-



Fig. 1. oneM2M architecture [16]

ity requirements and a packet replay attack. Third, solutions
are recommended based on the above analysis comprising of
configuring OM2M provisions to ensure baseline security of
smart cities. To the best of our knowledge, this kind of security
analysis has not been done for an actual OM2M based smart
city deployment till date.

The paper is structured as follows: Section II describes the
oneM2M standard, followed by Section III that focuses on
modeling the major potential threats to any oneM2M standard-
based system. Section IV describes the OM2M platform and
its IIIT-H smart city implementation. Next, Section V presents
a security analysis of OM2M followed by recommendations
for baseline security in OM2M-based smart city proposed in
Section VI.

II. ONEM2M STANDARD

The oneM2M is a global standard initiative led by eight
national standardization bodies and various industries aiming
to provide an interoperable horizontal platform for building
vertically scalable applications in the IoT paradigm. It provides
the technical specifications which cater to the requirements
needed by a common M2M service layer. The common ser-
vice layer is incorporated into varied hardware and software,
interconnecting all types of devices in the field with the
M2M application servers worldwide. All IoT components are
brought together in a solution stack using oneM2M standard.

A. Architecture

The functional architecture of oneM2M comprises applica-
tion entities (AEs), interworking proxy entities (IPEs), com-
mon service entities (CSEs), and network service entities
(NSEs) as shown in Fig. 1. Application entities deal with the
application layer in the IoT setup, residing in the sensors and
communicating with the M2M service layer using REST APIs.
IPE aims to provide an interface for non-oneM2M devices
to communicate with the service layer. The common service
entities provide the common service functions (CSFs). These
include registration, discovery, data management, and security.
Network service entities manage communications for services
such as device triggering, small data transmission, location
notification, and location queries. The oneM2M System has
logical entities called nodes which typically contain CSEs
and/or AEs. The nodes mainly have two categories, the field
domain, and the infrastructure domain. The “Field Domain”

comprises sensors, actuators, and gateways, while the “Infras-
tructure Domain” handles all the servers and applications on
larger computers. The entities communicate using OneM2M
reference points such as Mca (AE-CSE communication), Mcc
(inter-CSE communication), Mcn (CSE-NSE communication).

III. ONEM2M FOR SMART CITY: THREATS AND
VULNERABILITIES

Technical report [17] gives a high-level overview of security
threats and countermeasures for oneM2M-based systems. The
document briefly explains the security services of oneM2M,
security requirements, threats to oneM2M systems, and suit-
able mitigation recommendations. This section presents Table
I describing the potential security threats and vulnerabilities
in an oneM2M based smart city-centric implementation. In
addition to the threats, security provisions of [10], and techni-
cal specifications [18] are modeled using the STRIDE threat
modeling framework. STRIDE is an acronym for Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege. STRIDE is preferred
over other frameworks such as PASTA, OWASP, and MITRE
Att&ck as it is a product and development-centric method of
assessing the threats. Each STRIDE element with implications
on oneM2M systems is defined below.

• Spoofing: Spoofing is a technique where cyber attackers
impersonate legitimate sources to manipulate communi-
cations, access sensitive personal data, and modify poli-
cies. In the context of oneM2M, spoofing leads to com-
promising passwords, cryptographic keys, and CSE and
AE node identifiers. The secure association establishment
procedure of oneM2M provides mutual authentication
mechanisms to counter these threats.

• Tampering: Tampering violates integrity and authoriza-
tion. With tampering, the attacker can modify a system,
component, intended function, or data as a consequence
of intentional but unlawful conduct. This includes physi-
cal tampering of sensor nodes, communication channels,
primitives, the oneM2M service capability layer, and
oneM2M system dependencies for a smart city setup.

• Repudiation: An application or system that fails to pro-
vide facilities to monitor and log user activities, allowing
for malicious modification or falsifying the identification
of new actions, is subject to a repudiation attack. Similar
to how spoofing mail messages are used, its use may
be expanded to include generic data manipulation under
others’ names. In the event of this assault, the information
recorded in log files may be deemed false or deceptive.
Logging of user activity and system procedures can
prevent violation of non-repudiation. oneM2M systems
can log primitives, messages between entities, and user
profiles.

• Information disclosure: When an application or website
makes sensitive information available to unauthorized
users, it is called information disclosure (also known as
information leaking). Websites may reveal any informa-
tion to a prospective attacker depending on the context,



TABLE I
STRIDE MODELLING OF THREATS TO ONEM2M

STRIDE Potential threats to oneM2M
standard based implementations

Security provisions in oneM2M OM2M features for securing smart cities

Spoofing
• AE impersonation
• Broken Authentication
• Session Hijacking

• AE impersonation prevention
• Authentication mechanisms:

Symmetric key-based Security,
Certificate-based security, Generic
Bootstrapping Architecture (GBA)
Framework

• IP and port blocking for replay attack mitiga-
tion

• “m2m:nodeID” for node identification
• Application entity identifier, Common service

entity identifier

Tampering

• Corrupted service layer software
• Unauthorized access to oneM2M

software dependencies
• Alteration of primitives transmit-

ted over the Mca/Mcc/Mcc’ ref-
erence points

• Physical tampering of nodes

• ”m2m:software update” provide
consistent updates to the end nodes
to patch the security vulnerabilities

• “m2m:DeviceID” uniquely identi-
fies a device using a URN(Uniform
Resource Name)

• Device certificates to authenticate
the AEs or CSEs

• Creation time(CT) and Last modified time(LT)
present in the ContentInstance indicate illegit-
imate modified ContentInstance

• X-M2M-OT as a HTTP header parameter in-
dicating originating Timestamp of request and
response

Repudiation
• Unavailability of access logs
• Log injection-tampering-forging

• Token based authorization
• Role based access control
• “m2m:logStatus”,

“m2m:logTypeId” for checking the
log status of the event management
resource

• OM2M logging mechanism at server

Information
Disclosure

• Insecure communication proto-
cols

• Replay of M2M primitives be-
tween entities

• Device hijacking
• Network manipulation attacks
• Exposed sensitive data in AE or

M2M gateways

• oneM2M protocol bindings
• End-to-End Security of Primitives

(ESPrim)
• Secure environment plug-in

• Secure protocols binding as plugins have been
implemented in the set up: HTTPs and secure
MQTT.

• Locking of account after failed attempts
• Each AE or container in the resource tree has

a unique id
• Hashing of ContainerID
• Each application vertical of the resource tree

has separate credentials.

Denial
of Service

• Buffer overflow
• Flooding of RestAPI requests

• “m2m:accessControlRule” (with
assigning access based using
m2m:ipv4, m2m:ipv6 and
m2m:locationRegion)

• mutual authentication through se-
cure association establishment pro-
cedure

• At the node end, two buffers were created:
primary and secondary to handle the issues
of network failure ensuring resiliency. On net-
work restoration the requests would be sent to
the server.

• Transition from H2 to Mongo to address buffer
overflow challenges

Elevation
of
Privilege

• Privileged insider attack
• Access mechanism violation
• Insecure cryptographic storage
• Exposed Long-Term Service-

Layer Keys

• “m2m:authorizationStatus”
provides status of access control
policies

• Dynamic authorization for token
based temporary permissions

• “m2m:authorizationStatus” provides status of
access control policies

• “m2m:accessControlRule” to define privileges
of entities

which includes information about other users, including
their usernames or financial data, sensitive business or
commercial data, the architecture of the website, and its
technical specifications. Further, unsecured communica-
tion protocols, such as HTTP and MQTT, can reveal
sensitive information. Secure environment proposed by
oneM2M assists with sensitive data storage and sensitive
function execution.

• Denial of service: A Denial-of-Service (DoS) attack aims

to bring down a computer system or network so its in-
tended users cannot access it. DoS attacks achieve this by
providing the victim with excessive traffic or information
that causes a crash. Both times, the DoS attack denies
the service or resource that legitimate users expected.
Various attacks can violate the availability of data and
services, such as buffer overflow attacks, ICMP floods,
and SYN floods. DoS is possible in oneM2M systems
by overwriting the limits of buffers, multiple REST API



requests to resource trees, and sending unsupported data
formats.

Fig. 2. OM2M based smart city deployment

• Elevation of privilege: With privilege escalation, an
attacker gets the system’s administrative, root, or higher
privileged rights. It leads to an authorization violation and
impacts the security of the common service functions on
oneM2M. Misconfigurations, unnecessary open ports, and
weak authentication processes can result in this threat.

IV. OM2M IMPLEMENTATION AT IIIT-H

This section studies the OM2M platform and its integration
with the smart city setup. Various experiments are conducted,
and observations are made to understand the platform’s secu-
rity provisions and effectiveness in catering to the security
requirements. The experiments are conducted on an actual
OM2M-based dense IoT deployment of IIIT-H in India.

A. About OM2M

OM2M [19] stands for open-source M2M (Machine To
Machine) service platform, which is in line with ETSI M2M
and oneM2M standard. OM2M, a part of the Eclipse IoT
working group, consists of service capability layers (SCL)
which are highly extensible via plugins that provide various
functionalities. OM2M is built on top of modular OSGi
architecture and provides RESTful APIs for all the services
on its platform. It enables multiple communication protocols
binding (HTTP, HTTPS, COAP, MQTT), reuse of existing
remote devices management mechanisms, and inter-working
with existing legacy devices. OM2M is extensible via plugins.
For example, the Jetty plugin may be activated to offer HTTPS
as an additional layer of protection. Similarly, to use the
MongoDB database, the home persistence MongoDB plugin
can be activated.

B. Smart city at IIIT-H

There are currently more than 200 nodes deployed, covering
an area of 66 acres in and around IIIT-H. The applications
covered include air and water quality, energy and weather
monitoring, smart room (air conditioning, occupancy, air qual-
ity, energy monitoring), and smart campus applications (smart
street lamps). Each of these nodes uses a different network,
namely Wi-Fi, 4G, Wi-Sun, and LoraWAN, to send data to
the OM2M server, which is then used to send the data to

Fig. 3. Confidential X-M2M-Origin visible in HTTP packet on Wireshark

the data warehouse using the subscription method. The data
stored in the data warehouse is utilized for various purposes
depending on the application type. The smart city dashboard
[20], smartphone applications, Alexa interface, and home
automation access the data from the warehouse. The general
user must utilize the Indian Urban Data Exchange (IUDX)
[21] to view the data. IUDX requires user self-registration to
obtain a token. With the token, the user can view data from the
OM2M server. Fig. 2 shows the current smart city deployment
based on OM2M.

V. SECURITY ANALYSIS OF OM2M

A. Eavesdropping attack

Eavesdropping was performed as an initial analysis to gain
visibility into the communication between the AE and CSE.
Fig. 3 shows the result of performing a passive eavesdropping
on the network using Wireshark. The following observations
were made:

• The standard provides plugin support for communication
via COAP, HTTP, MQTT, and Websocket. By default,
OM2M uses HTTP as the communication protocol. This
default configuration is not secure and thus exposes the
header and payload.

• X-M2M-Origin: This username:password pair is used as
the authenticator to manage the resource tree. The X-
M2M credentials are used across all the nodes in the
network and need to be added to all the API requests
made in OM2M setup. X-M2M-Origins assigned by the
Originator of the request which maybe a CSE or AE.

The attacker can easily create custom requests with this header
value, which can severely impact the entire infrastructure.
Therefore, in addition to enabling HTTPS to mitigate this
scenario, separate XM2M credentials were created for all
the verticals present such as air, water, and energy, thereby
restricting the scope of the attack.

B. Brute force attack for OM2M credentials

In order to access the entries of the resource tree, users
must login using credentials assigned to them by the admin.
Users and roles are authorized through ACPs in OM2M. With
access to those credentials, an attacker can manipulate the
entire resource tree and change the admin credentials, resulting
in a DoS on OM2M administrators. Brute force, dictionary
attacks and social engineering can be used to obtain the
credentials. It is found that there is a possibility of launching
wide-scale attacks by several thousand devices (botnets) or
attempting many passwords on the single OM2M server. There
is no mitigation mechanism such as blocking the attacker’s



Fig. 4. Mitigation against brute-force attack

IP address. Further, there is a limit on the type of special
characters allowed for the passwords making our brute force
attack easier. Passwords with characters such as ‘(’, ‘)’, ‘[’,
‘]’ were not allowed.

C. Authorization via access control policies

To access the setup, the configuration file in the default
OM2M setup stores two kinds of user profiles, admin and
guest. These two profiles can log into the OM2M setup, with
the admin capable of performing CRUD operations on all the
entities in the setup, while the guest can only view the resource
tree. The resource tree stores different entities, such as the
application entities (AE), internetworking proxy entities (IPE),
and ACP. ACP in the OM2M setup issues different application
entities with certain Access Control Operations (ACORs),
such as create-1, retrieve-2, update-4, delete-8, notify-16, and,
discover-34. Another user with devtest as the username and
password was created for the experiment. For the user, CRUD
operation 34 was set as its ACOR. With these new credentials,
any user could view the resource tree on the OM2M platform.
It was noticed that the admin credentials could no longer be
used to view the resource tree, but the credentials continue
to control all the CRUD operations. Therefore, the attacker
can never obtain the admin credentials by guessing them on
the server login page. As shown in Fig. 4, the attacker must
perform two steps to obtain all the previous privileges. This
setup is a form of mitigation against the brute force on the
server login page.

• In step 1, the attacker would first need to obtain the
devtest credentials to view the resource tree with all
the required information to launch the attack on specific
targets can be obtained.

• In step 2, the attacker would need to obtain the admin
credentials, with which the CRUD operations would
be granted. At this stage, the attacker has both view
access to the resources and the CRUD operations needed
to modify any resource. Obtaining the credentials via
standard techniques like brute force and dictionary attacks
is indeterminate and tedious.

Fig. 5. H2 database server crash - a scalability issue

D. Scalability requirements

Scalability is an essential requirement for smart cities.
OM2M comes with the H2 database, acting as the default
database to store records collected in the resource tree. We
discovered that the server started logging null point exceptions
and locking objects upon an overload of requests from IoT
nodes. Therefore to handle the scalability issues, we migrated
our database from the high-speed in-memory H2 database to
MongoDB, an auto-scalable production development NOSQL
database. This database change helped solve the server crash
issues, thus preventing a denial of service attack.

Fig. 5 shows 944222 threads. With 200+ nodes deployed,
each node tries to send the data to the server for which
it creates threads and keeps them in the thread pool. The
exception arises when the pool size and the number of active
threads are equal. At this point, the writelock waits for a
period of 600 seconds, exceeding which the thread gets locked
with all its upcoming container entities. The server throws a
ServletHandler Error which cause the NullPointerException
and RejectedExecutionException cases to be resolved.

E. Packet replay attack

A replay attack is when an attacker intercepts (sniffing,
eavesdropping) the packets from the client to the server,
delaying or resending the packets at different intervals. This
attack is successful on systems that do not have the means to
differentiate between the source of the various API requests
the servers receive.

In our demo experiment, we use MITM Proxy, a Kali Linux-
based cybersecurity tool for penetration testing and replay-
ing web traffic. The tool helps intercept HTTP and HTTPS
requests and replay messages. It is important to note that
all nodes within the campus network use HTTP connections,
while the nodes outside the campus network require HTTPS
to connect to the server. The experiment proceeds as follows:

• Post requests are sent to the OM2M server that gets
intercepted by the MITM proxy

• MITM proxy keeps track of the request from the client
side, allowing replay of the packet at a different time
interval.

We observe a new content instance created in the resource
tree, indicating the server has no provisions to check the
authenticity of any API request. In the case of an HTTPS
connection, CA certificates need to be added to the client
nodes. Since the smart city nodes are deployed around the
city, physical tampering is feasible. It was observed that
the OM2M server could not identify the fake CA certificate



installed on the client end. The same fake CA certificates
issued by the MITM proxy were immediately flagged as
fake in other popular websites. OneM2M security solutions
document provides provisions such as X-M2M-RT (request
timestamp) to mitigate such attacks. Other provisions provided
in the standards, such as establishing sessions with a fixed
session time, can also be used.

VI. OM2M SECURITY RECOMMENDATIONS

This section presents solutions implemented for each
STRIDE element based on the experiments conducted. The
baseline security configurations for OM2M are shown in Table
I. In the case of spoofing or impersonation, oneM2M technical
report TR0008 mentions ways to mitigate this threat using
a secure communication link or Role Based Access Control
(RBAC). In OM2M, we use HTTPS binding to encrypt the
headers, node identifiers, and timestamps. Technical specifi-
cations on service layer core protocol [18] specify a list of
common data formats, interfaces, and message sequences to
be used by developers. M2M node identifier (m2m:NodeID)
data format has been implemented to mitigate impersonation
and replay attacks. This does not require modifying the entire
authentication mechanism of the deployment. Data tampering
is detected by observing the discrepancy in the resource tree’s
creation and last modified time. The access control policies
authorize entities for data retrieval and manipulation. Further,
using “m2m:authorizationStatus”, the status of a resource au-
thorization is known. HTTP header X-M2M-OT provides the
originating timestamp parameter of request and response, thus
indicating possible packet injection and similar man-in-the-
middle attacks. Similarly, “m2m:authorizationStatus” along
with “m2m:operationMonitor” and “m2m:accessControlRule”
help reduce the elevation of privilege. In the case of repudi-
ation, provisions for tracking and logging users’ actions have
been implemented by OM2M server. The “m2m:logStatus”
provides additional update on the logging activity. To mitigate
the threat of information disclosure, secure HTTP provisions
are implemented. SAEF can be established to mutually au-
thenticate the MQTT Client and MQTT Server when using
the MQTT protocol. In an attempt to mitigate the DoS attack,
modifications were made both at the node end and the server
end. Additionally, the nodes are MAC, and IP bound, thus a
white list of permitted IP and MAC addresses is implemented
to implement IP blocking during DoS.

VII. CONCLUSIONS AND FUTURE WORK

This work analyses the security provisions by oneM2M and
its implications for smart cities. Numerous potential threats
and vulnerabilities to oneM2M implementations are explored
and modeled using the STRIDE threat modeling framework.
Experiments are conducted to understand the impact of these
threats on an actual OM2M-based smart city deployment based
on the existing configurations of the OM2M platform. The
appropriate features and configurations for baseline security
of smart cities are then proposed based on the STRIDE
framework. In the future, we aim to implement a SAEF and

conduct a comparative analysis to understand the tradeoffs in
a constrained environment.

ACKNOWLEDGMENT

This research was supported partly by National Geospa-
tial Programme (NGP), India, under grant no. 2073 (2020),
PRIF Social Incubator Program (2019) and the Ministry of
Electronics and Information Technology (MEITY) under grant
no. 3070665 (2020), with no conflict of interests. The author,
G.V. Ihita thanks IHub-Data, IIIT Hyderabad for a research
fellowship.

REFERENCES

[1] OneM2M, [Online] Accessed: 15-Mar-2021, https://www.onem2m.org/.
[2] oneM2M platform, gateway and device components , [Online] Accessed:

20-April-2021, https://www.onem2m.org/using-onem2m/developers/
device-developers.

[3] “Eclipse OM2M,” Accessed 25-August-2022,
https://www.eclipse.org/om2m/.

[4] Hassija et.al, “A survey on iot security: Application areas, security
threats, and solution architectures,” IEEE Access, vol. 7, pp. 82721–
82743, 2019.

[5] “RFC 8576 - Internet of Things (IoT) Security: State of the Art and
Challenges,” [Online] Accessed: 11-Mar-2021, https://datatracker.ietf.
org/doc/rfc8576/.

[6] “Baseline Security Recommendations for IoT,” [Online]
Accessed: 11-Mar-2021, https://www.enisa.europa.eu/publications/
baseline-security-recommendations-for-iot/.

[7] “ETSI- Cyber Security for Consumer Internet of Things:Baseline
Requirements ,” [Online] Accessed: 15-Sept-2021, https:
//www.etsi.org/deliver/etsi en/303600 303699/303645/02.01.01 60/
en 303645v020101p.pdf.

[8] “ETSI-Cyber Security for Consumer Internet of Things: Confor-
mance Assessment of Baseline Requirements ,” Accessed 11-Mar-
2021, https://www.etsi.org/deliver/etsi ts/103700 103799/103701/01.
01.01 60/ts 103701v010101p.pdf.

[9] G.V. Ihita et.al, “Security analysis of large scale IoT network for
pollution monitoring in urban india,” in IEEE 7th World Forum on
Internet of Things (WF-IoT), 2021, pp. 283–288.

[10] “TS-0003-V3.10.2 Security,” Accessed 11-Mar-2021,
https://www.onem2m.org/images/files/deliverables/Release3/TS-0003
Security Solutions-v3 10 2.pdf.

[11] Imran et.al, “Misa: Minimalist implementation of onem2m security
architecture for constrained iot devices,” in 2019 IEEE Global Com-
munications Conference (GLOBECOM), 2019, pp. 1–6.

[12] Muhammad et.al, “onem2m architecture based secure mqtt binding in
mbed os,” in 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroSPW), 2019, pp. 48–56.

[13] “MQTTbinding,” Accessed 13-August-2022, https://www.onem2m.
org/images/files/deliverables/Release2A/TS-0010-MQTT protocol
binding-v 2 7 1.pdf.

[14] Sicari et.al, “Secure om2m service platform,” in 2015 IEEE Interna-
tional Conference on Autonomic Computing, 2015, pp. 313–318.

[15] Microsoft Security. 2007. STRIDE chart Microsoft Security, “STRIDE
threat modelling framework,” [Online] Accessed: 14-Feb-2021, https:
//www.microsoft.com/security/blog/2007/09/11/stride-chart/.

[16] “Architecture,” Accessed 21-July-2022, https://onem2m.org/using-
onem2m/developers/basics.

[17] “OneM2M TR-0008,” [Online] Accessed: 11-May-2022, https://
member.onem2m.org/static Pages/others/WPM-pages/TR-TS List.htm.

[18] “TS-0004-V3.11.2 Service Layer Core Protocol,” Accessed 11-
10-2022, https://www.onem2m.org/images/files/deliverables/Release3/
TS-0004 Service Layer Core Protocol V3 11 2.pdf.

[19] M. Ben Alaya et.al, “Om2m: Extensible etsi-compliant m2m service
platform with self-configuration capability,” Procedia Computer Science,
vol. 32, pp. 1079–1086, 2014, The 5th International Conference on
Ambient Systems, Networks and Technologies (ANT-2014).

[20] “Dashboard,” Accessed 25-August-2022,
https://smartcitylivinglab.iiit.ac.in/building/.

[21] “India Urban Data Exchange,” Accessed 11-Dec-2021, https://iudx.org.
in/.

https://www.onem2m.org/
https://www.onem2m.org/using-onem2m/developers/device-developers
https://www.onem2m.org/using-onem2m/developers/device-developers
https://datatracker.ietf.org/doc/rfc8576/
https://datatracker.ietf.org/doc/rfc8576/
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot/
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot/
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103701/01.01.01_60/ts_103701v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103701/01.01.01_60/ts_103701v010101p.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0003_Security_Solutions-v3_10_2.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0003_Security_Solutions-v3_10_2.pdf
https://www.onem2m.org/images/files/deliverables/Release2A/TS-0010-MQTT_protocol_binding-v_2_7_1.pdf
https://www.onem2m.org/images/files/deliverables/Release2A/TS-0010-MQTT_protocol_binding-v_2_7_1.pdf
https://www.onem2m.org/images/files/deliverables/Release2A/TS-0010-MQTT_protocol_binding-v_2_7_1.pdf
https://www.microsoft.com/security/blog/2007/09/11/stride-chart/
https://www.microsoft.com/security/blog/2007/09/11/stride-chart/
https://member.onem2m.org/static_Pages/others/WPM-pages/TR-TS_List.htm
https://member.onem2m.org/static_Pages/others/WPM-pages/TR-TS_List.htm
https://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://iudx.org.in/
https://iudx.org.in/

	Introduction
	oneM2M standard
	Architecture

	oneM2M for smart city: Threats and vulnerabilities
	OM2M implementation at IIIT-H
	About OM2M
	Smart city at IIIT-H

	Security analysis of OM2M
	Eavesdropping attack
	Brute force attack for OM2M credentials
	Authorization via access control policies
	Scalability requirements
	Packet replay attack

	OM2M security recommendations
	Conclusions and Future work
	References

