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Large groups of active cilia collectively beat in a fluid medium as metachronal waves, essential for
some microorganisms motility and for flow generation in mucociliary clearance. Several models can
predict the emergence of metachronal waves, but what controls the properties of metachronal waves
is still unclear. Here, we investigate numerically a simple model for cilia in the presence of noise
on regular lattices in one- and two-dimensions. We characterize the wave using spatial correlation
and the frequency of collective beating. Our results clearly show that the viscosity of the fluid
medium does not affect the wavelength; the activity of the cilia does. These numerical results are
supported by a dimensional analysis, which is expected to be robust against the model for active
force generation, unless surrounding fluid influences the cilia activity. Interestingly, enhancement of
cilia activity increases the wavelength and decreases the beating frequency, keeping the wave velocity
almost unchanged. These results might have significance in understanding paramecium locomotion
and mucociliary clearance diseases.

The emergence of phase-travelling waves in dense ar-
rays of active beating cilia, known as metachronal waves,
is a complex multiscale physics problem [1–8] and is
nonequilibrium because of the internal activity-driven
movements of cilia [4]. The active beating of each cilium
arises from the sliding of microtubules by thousands of
molecular motors, and the subsequent interaction with
the surrounding fluid medium. The coupling of a large
number of these oscillators lead to synchronized dynam-
ics over larger length scales. Illustrations are abundant
in nature with ciliary living systems differing by cilia
assembly geometry, cilia activity, or properties of the
surrounding fluid. In respiratory tissues, the continuous
cleaning of our lungs is provided by cilia beating waves
that generate mucus flow [9, 10]. For certain microorgan-
isms such as paramecium, synchronized beating of cilia
help in their efficient locomotion [11]. The complexity
of cilia active beating pattern and their interaction with
each other through a complex environment makes it dif-
ficult to predict the emergent wave properties, despite
recent theoretical and experimental advancements.

Models of cilia arrays [12–16], aim to identify the con-
ditions required for such a coordinated state and to com-
prehend the physical parameters that govern the prop-
erties of the metachronal wave and the subsequent mu-
cus transport. Several models have been proposed [12–
14, 17], wherein the coupling is primarily described as a
viscous hydrodynamic coupling. In these models, differ-
ent types of active forces - from simple to complex, suc-
cessfully generate continuous beating of a cilium. Nu-
merical simulations enable to investigate the intricate
structure of cilia by considering their beating as a fil-
ament bending wave [13, 18, 19]. Another approach is

to model cilia by actuated micron-sized beads called ro-
tors [20–23] or rowers [12, 24, 25]. For a large group
of cilia arranged in arrays, it has been shown that hy-
drodynamic coupling can lead to metachronal waves for
various models of cilia [13, 15, 16].

Recently, the influence, on these collective behaviors,
of several physical parameters such as noise [25, 26] and
disorder in the arrangement and orientation of cilia has
been investigated both numerically [25, 27, 28] and ex-
perimentally [28, 29], showing that spatial heterogeneity
favors transport. Other important physical quantities
that may play a role on the coordination are the activ-
ity and the dissipation, that will have opposite impacts
on the metachronal waves emerging from cilia beating.
Experimentally, a decrease in beating frequency with vis-
cosity was found [30, 31], whereas the beating amplitude
and the metachronal wavelength were found constant up
to ≈ 50 times the viscosity of water [32, 33]. Theoret-
ically, the mutual influence of activity and dissipation
were almost not explored [34]. Here, our fundamental
inquiry pertains to the interplay between cilia activity
and fluid medium and its impact on the overall proper-
ties of metachronal waves.

To investigate this, we study the metachronal waves
in the rower model of cilia in viscous fluid for one and
two-dimensional regular lattices in the presence of ther-
mal noise. In the rower model [12, 24, 25], the complex
active beating of a cilium is simplified into the back and
forth motion, along an axis, of a micron-sized bead im-
mersed in a viscous fluid, thus ensuring a low Reynold’s
number regime. Such an oscillating motion is driven by
two harmonic potential branches, corresponding to the
stroke and anti-stroke of the cilia beating, with a geo-
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FIG. 1. Rower model of cilia [12]. (A) The motion of a
micron-sized bead in a viscous medium under two harmonic
potential branches, corresponding to σ ± 1, represents the
stroke and anti-stroke beating of a cilium. (B) The bead
switches branches when it reaches terminal position y = ±A.
(C) Rowers beating along y-axis on two dimensional L × L
regular lattices. Hydrodynamic interaction between rower i
and j is modelled by the Oseen coupling that depends on the
separation vector rij and viscosity of the medium.

metric switching mechanism. The bead moves downhill
of a potential until it reaches one of the two terminal po-
sitions for which switching to the second branch occurs
(Fig. 1A, B). This switching is like pumping energy to
lift the bead on the upper side of the other potential at
the terminal. At a given time, the bead can be found
in one of these two states, the stroke and anti-stroke of
the cilia beating, represented by a discrete σ = ±1. The
driving force for a bead displacement y for a given σ can
be written as

f(y, σ) = −dV (y,σ)
dy = −k(y − σµ/2), (1)

where k is the force constant associated with the har-
monic potentials, µ is the distance between minima of
two potentials, and A is the beating amplitude. The
supply of energies during each downhill motion in a har-
monic potential, kA2/2, and during each switch, the
pumping energy kµA, keep the bead oscillating in the
dissipating media. Therefore, for a given µ, the ‘activ-
ity’ of the bead depends on values of k and A. Because
of its simplicity and ability to capture the two-stroke
beating of cilia, the rower model has become a method
of choice for theoretical and experimental studies of syn-
chronization in ciliary systems [16, 29].

We consider a system of N rowers beating in the y direc-
tion in a viscous medium. Rowers are placed regularly
in one- or two-dimensions (square) lattices (see Fig. 1C)
at fixed positions ri (for i = {1, 2, 3, ..., N}). The dis-
placement, yi, of a rower i is hydrodynamically coupled
with the others and is given by

dyi
dt

= −fi
γ

+
∑
j ̸=i

O(i, j) fj + ξi, (2)
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FIG. 2. Metachronal waves in 1d. A. Snapshot of displace-
ments of the first 100 rowers. The displacement of even (odd)
sites is plotted in light (dark) color. B. Correlation func-
tion C(x=mℓ) between two rowers is plotted against separa-
tion distance x. C. Kymograph of the beating state σ, with
white color (black) representing σ=1 (σ= −1). Parameters:
A = 0.8, η = 6mPa·s, and N = 200.

where γ = 6πηa is the viscous drag coefficient for a bead
with radius a moving in a fluid medium with viscos-
ity η and O(i, j) the coupling strength between rower i
and j. In the far-field hydrodynamic coupling approx-
imation, for which both the distance from the surface
and the distance between two adjacent rowers (lattice
spacing ℓ) are large compared to a, O(i, j) is set by

the Oseen tensor: O(i, j) = 1
8πηrij

(
1 + (

yij

rij
)2
)
, with

i ̸= j, and rij = rj − ri, the separation vector between
rowers i and j. The last term is due to the thermal
noise, obeying the following delta-correlation: ⟨ξ(t)⟩ =
0, ⟨ξ(t1)ξ(t2)⟩ = 2D δ(t1 − t2). For simplicity, we as-
sume no correlation between the noise acting on each of
the rowers as in [25]. The noise strength or diffusivity
is equal to D = kB T/γ, kB and T being the Boltzmann
constant and the temperature. The displacement of a
single isolated bead shows sustained oscillations with the
frequency ν0 = 1/(2 τd log [(µ+ 2A)/(µ− 2A)]), where
τd = γ/k is the relaxation time for the bead to reach
equilibrium in a harmonic potential [24]. Such two cou-
pled rowers beat collectively with antiphase synchroniza-
tion [12]. For many rowers, the interplay between the
activity of the rowers and coupling through the medium
generates metachronal waves [12].

Simulation details - The Euler method with an inte-
gration step equal to 5×10−3s has been used to evolve
the coupled dynamical equation (Eq. 2), starting from
random initial values for {σi, yi}. The open bound-
ary condition is implemented. Parameters are chosen
within the experimentally relevant range [24, 35], as
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FIG. 3. Effect of viscosity and beating amplitude on
metachronal waves in 1d (N=200). Correlation function
C(x=mℓ) as a function of the distance between rowers, for
three different A values (for η=6 mPa.s) (A) and for three
different η values (for A=0.8 µm) (B). The wavelengths of
metachronal waves λ are plotted against A (C), and η (D),
together with the corresponding beating frequency ν. Prop-
agation velocity V=λν is plotted against A (E), and η (F).

follows: a=1.5µm, ℓ=8µm, k=2.6 pN ·µm−1, µ=2µm,
A=0.56 − 0.8µm, η=2 − 20mPa·s, and T=300K. Re-
sults presented here for large system sizes; N=L=200
(for 1d) and N=L2=1600 (for 2d). Comparing results
with smaller systems (not shown here), we confirm that
the presented results have no system size dependence.
Results - Fig. 2 shows the metachronal waves in the one-
dimensional lattice. The beads’ displacement against the
rowers’ position for a given time displays two spatial
waves that are visualized by connecting displacements
yi by lines for all rowers at the even and odd lattice sites
separately (Fig. 2A) in agreement with [12, 36]. This is a
unique feature of the rower model, and arises due to a de-
gree of anti-phase synchronization between two adjacent
rowers. The wave propagation is illustrated in Fig. 2C
by the kymograph obtained for σi(t). To characterize it,
we compute the spatial correlation function between two
rowers as a function of their separation vector r:

C(r) =

∑
ij⟨σi(ri, t)σj(rj , t)⟩δ(r− rij)∑

ij δ(r− rij)
. (3)

As the rowers are placed on a regular lattice with lat-
tice spacing ℓ, the coordinates of r are discrete and can
be written as (mℓ, nℓ) with m,n ∈ {0, 1, 2, ..., L}. The
measurement is done after a large equilibration time t0,
where the system is assumed to reach a steady state.
Brackets ⟨·⟩ represent average over times and ensem-
bles. An ensemble is the collection of 5000 sets of {σi(t)}
recorded every 2 seconds after t0=2500 seconds.
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FIG. 4. Effect of viscosity and beating amplitude on
metachronal waves in 2d (N=L2=1600). Correlation func-
tion along beating direction C(x=0, y=nℓ) as a function of
the distance between rowers, for three different values of A
(for η=6 mPa.s) (A) and for three different η values (for
A=0.8 µm) (B). The wavelengths of metachronal waves λ
are plotted against A (C), and η (D), together with the cor-
responding beating frequency ν. Propagation velocity V=λν
is plotted as a function of A (E), and η (F).

Fig. 2B shows the variation of C(x) = C(x, y = 0)
in one dimension. For odd and even m values, two os-
cillating curves decay to zero as the distance between
rowers x = mℓ increases. While the oscillations indi-
cate the wave nature of the collective beating, the loss of
correlations at larger x suggest a damping in the coor-
dination on a characteristic length scale ld. C(x) can be
fitted with the simple function ±e−x/ld cos(2πx/λ), the
+ (−) sign being for even (odd)m. This fit estimates the
wavelength λ and decay length ld. For Fig. 2, λ ≃ 13.7ℓ
and ld ≃ 9.0ℓ. In a recent work, wavelength, and decay
length were measured experimentally for metachronal
waves on the human bronchial epithelium, and these
two lengthscale values are comparable [37]. Our re-
sults are consistent with the experiment. The ensemble
and spatial average of the beating frequency was com-
puted: ν ≃ 3.4 Hz and combined with λ to infer the
metachronal wave velocity V = νλ ≃ 370 µm.s−1. These
values are consistent with estimates that can be inferred
directly from the slopes in the kymograph Fig. 2C.

We then investigate the effect of viscosity of the fluid
medium and activity of the cilia on the metachronal
waves quantities: λ, ld, ν, and V=νλ, by computing
C(x) for various η and A. The plot of C(x) for different
A values shows that both the wavelength λ and the decay
length ld increase with A (Fig. 3A and C), whereas the
averaged beating frequency ν decreases with A, keeping
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the velocity of the wave V , almost constant (Fig. 3C and
E). As ν0, the natural frequency of a single rower, de-
creases with A, the decrease of ν is expected. On the
same line, increasing A, which is a characteristic length
of the problem, may naturally increase the length scale
of the emerging collective dynamics. Thus the respective
variation of ν and λ can be generally expected. What
is remarkable though is that they compensate to result
in an almost constant metachronal wave velocity. Inter-
estingly, C(x) does not depend on the values of η (see
Fig. 3B), meaning λ and ld are independent of η and
implying that the spatial behavior of emergent waves
does not depend on the fluid viscosity and are only de-
termined by cilia activity parameters, in agreement with
experimental observations [30, 33]. Below, we argued
that such behavior is generally characteristic of a hydro-
dynamically coupled system. Finally, the frequency ν
decreases as a function of η and so does V , as measured
experimentally in [30, 33].

On a square lattice, we find that the metachronal wave
propagates along the beating direction y whereas no
wave is obtained in the perpendicular direction (Fig. 5),
suggesting longitudinal waves. In Fig. 4A and B, we plot
the correlation function along y-direction C(0, y = nℓ)
against n for various values of A and η. Similar to 1d,
two spatial waves can be seen for even and odd values of
n for a given parameter set. For a fixed η, λ increases and
ν decreases with A, keeping the wave velocity V almost
constant (Fig. 4C and E). On the contrary, λ remains
constant and ν decreases with η, leading to a decrease in
the velocity V with η (Fig. 4D and F). These results are
consistent with the 1d results. We further note that al-
though the qualitative behavior of metachronal waves in
1d and 2d are similar, the values of λ and V are relatively
larger in 1d. This result raises interesting questions on
the implications of the geometry of realistic ciliated tis-
sues, which are mostly organized in 2d groups of cilia
bundles.

In the direction perpendicular to beating, no oscilla-
tion is obtained (Fig. 5). C(x, 0) either monotonically
decays to zero as for large A or shows a negative cor-
relation for small y = mℓ with odd m that eventually
approaches zero for large m. For a given A, C(x, 0) does
not depend on η (Fig. 5B), although odd and even m
can follow different curves, reminiscent of C(0, y). We
compare the decay lengths of correlations along x and y
directions ld,x and ld,y. The decay length for the damped
oscillations along y, ld,y, can be estimated from the fit-
ting method discussed above. The decay length ld,x is
estimated from the exponential fit of the C(x = mℓ, 0)
for even m values. The ratio ld,y/ld,x is plotted in the
insets, one notes that ld,y/ld,x ≳ 2. For a fixed A, it
remains unchanged with η. However, for a given η, the
ratio increases with cilia activity A, which implies an
enhancement of coherence along the beating direction
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FIG. 5. Effect of viscosity and beating amplitude on corre-
lations along the direction perpendicular to the beating di-
rection C(x=mℓ, y=0). A. C(x=mℓ, y=0) for three different
A for a fixed η=6mPa·s (A), and for three values of η for a
given A=0.69µm (B).

compared the perpendicular one. This anisotropic re-
sponse may be related to the anisotropy of the interac-
tion strength. Indeed, considering the same rij value,
O(i, j) is two times larger along the y-axis than along
the x-axis.
The fact that we obtain metachronal waves with spa-

tial properties unaffected by viscosity has not been em-
phasized by previous studies, to our knowledge. Nev-
ertheless, this remarkable numerical observation is ro-
bust on an order of magnitude of η obtained with both
1d and 2d simulations. To rationalize this result, one
needs to look into the details of characteristic length,
and timescales of the system set by the activity and
the surrounding viscous medium. The relaxation time
τd = 6πηa/k for the bead motion in the viscous medium
under a harmonic driving potential, which also deter-
mines the natural frequency ν0 of a single rower, is a
crucial timescale in our problem. In the rower model,
there are two lengths scales, the amplitude A, and µ,
the distance between the two branches of the potential
(Fig. 1). Since we only vary A, we chose it as the typical
length scale. We note that our conclusion below, how-
ever, does not depend on the choice of the length scale.
Multiplying both sides of Eq. 2 by τd/A leads to an adi-
mensional equation for the collective beating dynamics:

dy′i
dt′

= −f ′
i −

∑
i̸=j

3 a

4rij

(
1 + (yij/rij)

2
)
f ′
j + ζi(t

′), (4)

where t′ and y′ are dimensionless time t′ = t/τd and
displacement y′ = y/A, f ′

j = −(y′j − µσj/(2A)) is the
dimensionless force acting on rower j, and ⟨ζ(t′1)ζ(t′2)⟩ =
2kBT/(kA2)δ(t′1 − t′2) is the adimensional noise correla-
tion. As activity parameters A, k, and µ are constant,
Eq. 4 is η independent. The latter suggests that the spa-
tial properties are independent of η. However, as τd is
affected by η, it impacts the dynamical properties of the
system. If any parameter A, k, and µ are influenced by
the medium, then our observation will break down.

We argue that the independence on fluid viscosity of
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the spatial emergent properties is more generic to sys-
tems operating at low Reynold’s numbers, irrespective
of the model details. For systems at a low Reynold’s
number, both the viscous drag and hydrodynamic cou-
pling between two objects are inversely proportional to
η. The thermal noise strength D is also inversely propor-
tional to η. As τd is inversely proportional to η, this also
means that the normalization of Eq. 2 by τd will lead to
the same conclusion. Therefore, one can get a similar
adimensional equation as Eq. 4 for any model of active
cilia coupled by a viscous fluid at low Reynolds numbers.
Hence, the spatial properties of the emergent waves are
expected to be independent of viscosity. If active beat-
ing is strongly dependent on the fluid rheology, then the
active parameters of the rower model would depend on
the viscosity, and this result would fail. Experimental
results [31] seem to indicate though a very small depen-
dence of cilia beating amplitude with the liquid medium.
We note that additional sources of deviation from this
result could be the viscoelastic nature of the fluid or a
non-thermal noise, which we have not addressed in this
paper. Finally, although this simple dimensional analy-
sis cannot predict the occurrence or nature of emergent
behavior, it is powerful in predicting that the wavelength
or other spatial properties will be viscosity independent
in general.

In conclusion, we have presented simple generic results
about complex dynamics of hydrodynamically coupled
model cilia. Using a very simple rower model of coupled
oscillators, we have focused our study on the influence of
activity and dissipation on the spatial and temporal syn-
chronization properties of cilia assemblies. Enhancement
of cilia activity increases the wavelength and beating pe-
riod, keeping the wave velocity almost unchanged. On
the other hand, viscosity does not affect spatial patterns
characterizing metachronal waves such as wavelength or
correlation lengths. On the contrary, the beating fre-
quency and the wave velocity indeed decrease with vis-
cosity. The deviation from such a behaviour may indi-
cate the influence of additional properties of the medium
not taken into account in the coupling description of the
current model and could also be a signature of viscoelas-
ticity or elasticity of the tissue itself. This could pave the
way to the study of the emergence of specific functions
of cilia in pathological contexts for example [23].
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