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Existence of minimizers in
the variational approach to brittle fracture

Antonin Chambolle[0000−0002−9465−4659]

Abstract We review the variational approach to crack growth of Francfort and
Marigo, based on incremental free discontinuity problems in linearized elasticity,
and the successive techniques used to establish the existence of minimizers for
such problems. In particular, we mention the crucial Korn-Poincaré inequality for
functions with small jump set (proved with S. Conti and G. Francfort) which is at the
root of many subsequent important results. In the last section, we give, in the much
simpler scalar case, an overview of the proofs of a Poincaré inequality with small
jump set.

1 Introduction: the variational approach to brittle fracture

The classical theory of crack growth in linear-elastic brittle materials assumes that the
bulk (elastic) energy dissipated to increase a crack by a certain amount is proportional
to the length (in 2D) or surface (in 3D) of the new crack. This was formalized by
Griffith [65, 66] in the early XXth century. In a modern formulation of that theory,
the following situation is considered:

• One is given a reference configuration Ω ⊂ R2 of a linear-elastic material;
• On some part of the boundary 𝜕𝐷Ω ⊂ 𝜕Ω, a boundary load𝑈0, possibly depend-

ing on time, is prescribed;
• One is also given a crack path Γ(ℓ), ℓ ≥ 0, which is a curve parameterized by its

length.

For any ℓ ≥ 0, one can compute the energy given the crack Γ( [0, ℓ]) of length ℓ:
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W(ℓ) = min
{

1
2

ˆ
Ω\Γ ( [0,ℓ ] )

C𝑒(𝑢) : 𝑒(𝑢) 𝑑𝑥 : 𝑢 = 𝑈0 on 𝜕𝐷Ω
}
. (1)

Here, one assumes 𝑢 ∈ 𝐻1
loc (Ω \ Γ( [0, ℓ]);R2), 𝑒(𝑢) = (𝐷𝑢 + 𝐷𝑢𝑇 )/2 is its sym-

metrized gradient, and C is a symmetric tensor defining a coercive quadratic form
of 𝑒(𝑢) (yet which does not control the skew-symmetric part of the gradient).
Denoting 𝜎 the internal stress, the relationship 𝜎 = C𝑒(𝑢) is the Hooke’s law.
The modeling behind this form is very classical [36, Sec. 6.2]: if the configura-
tion Ω is deformed by some smooth diffeomorphism into Φ(Ω), then typically a
first order, frame invariant energy will depend only on the singular values of 𝐷Φ,
hence be a unitary invariant function of (𝐷Φ)𝑇𝐷Φ. Hence, if the deformation is
given by an infinitesimal displacement of the form Φ(𝑥) = 𝑥 + 𝜀𝑢(𝑥), using that
(𝐷Φ)𝑇𝐷Φ = 𝐼 + 𝜀(𝐷𝑢𝑇 + 𝐷𝑢) + 𝜀2𝐷𝑢𝑇𝐷𝑢, at the first order the elastic energy
is a function of 𝑒(𝑢). The specific form (1) is rigorously derived by Γ-convergence
arguments in [44]. A typical Hooke tensor C, for an isotropic linear-elastic material,
is defined by

C𝑒(𝑢) = 𝜆 Tr 𝑒(𝑢)𝐼 + 2𝜇𝑒(𝑢)

with 𝜆, 𝜇 the Lamé constants, see [36, Sec. 3.8].
It is clear that if the crack length increases (freezing the boundary load at the

current time), then the value of W(ℓ) will decrease since the minimization in (1) is
performed on a larger set. Then, a fundamental quantity is the energy release rate
−W′ (ℓ) ≥ 0, which expresses the amount of elastic energy is released by the growth
of the crack of one unit of length. The idea behind Griffith’s theory is that the amount
of energy dissipated to increase the crack by a given length should be proportional,
with some factor 𝛾 > 0 (the toughness), to this additional length, so that the crack
will actually grow as soon as this release rate reaches this threshold.

At time 𝑡 ≥ 0, assuming the crack has reached a length ℓ = ℓ(𝑡) (and is thus given
by Γ( [0, ℓ(𝑡)])), Griffith’s idea postulates therefore that at equilibrium:

• either −W′ (ℓ(𝑡)) < 𝛾 and ℓ remains constant;
• or −W′ (ℓ(𝑡)) = 𝛾 and ℓ may increase.

This is summarized by the following rules:{
−W′ (ℓ) ≤ 𝛾;
(𝛾 +W′ (ℓ)) ¤ℓ = 0.

(2)

In general, to consider a situation where a crack should actually grow, one may
consider an increasing boundary load. In practice, in this short note, we will consider
as in [55] a load of the form 𝑡 ↦→ 𝑡𝑈0 on 𝜕𝐷Ω. More general assumptions require
that the boundary load be absolutely continuous (for instance, [46] and subsequent
works).

This theory of Griffith is widely considered as valid (in a very simplified frame-
work) by the mechanics community, has a good predicting power, and is the basis for
many finite elements (mostly “XFEM” elements, which incorporate discontinuities)
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implementations in the mechanical engineering community [83, 1, 86], yet it has
some limitation:

1. crack initiation is theoretically impossible;
2. the crack path should be known in advance;
3. it is hard to extend properly to the more realistic 3D setting.

For the first point, to be more precise, it is known that in a smooth enough domain,
if the minimizer of (1) for ℓ = 0 has no strong singularity (that is, a point 𝑥 such that´
𝐵𝑟 (𝑥 ) |𝑒(𝑢) |

2𝑑𝑥 ∼ 𝑟 as 𝑟 → 0), then the derivative W′ (0) = 0. In particular, in the
proposed setting where the load is of the form 𝑡𝑈0 on 𝜕𝐷Ω, the solution will be at
each “time” 𝑡𝑢0, where 𝑢0 solves (1) for ℓ = 0, and the energy release rate at any
possible “crack tip” (for no crack, though) will remain 0 whatever 𝑡 and the load.
This is of course absurd for a brittle material. On the other hand, if ℓ(0) > 0, then it
is known [67, 40, 14] that at the tip 𝑥 = Γ(ℓ(0)), one will have

´
𝐵𝑟 (𝑥 ) |𝑒(𝑢

0) |2𝑑𝑥 ∼ 𝑟
as 𝑟 → 0, and in particular W′ (ℓ(0)) < 0. Then for the load 𝑡 ↦→ 𝑡𝑈0, the energy
release rate will grow quadratically with 𝑡 and certainly reach 𝛾 at some point, where
the crack will start to grow (continuously).

For the second point, there have been many attempts to understand the possible
direction of an increase of a crack at a tip, when the load increases. Typically,
one should evaluate the energy release rate as a function of the direction of the
crack starting from the tip. Then, one selects a rule to choose the direction. This
is done at the cost of complicated calculation (see for instance the non exhaustive
list [78, 11, 13, 50]), and the rule seems not entirely clear [11]: whether one should
favor stability (and hence ask that the new crack grows in a direction where the
crack opening is in “mode I”, that is, without shearing further the tip and provoking
immediately a new turn), or an energetic criterion (and hence ask that the crack
grows in the first direction where the release rate reaches the toughness). Both
criteria seem logical yet they also seem incompatible, and one way to resolve this
paradox could be to admit that, as well as for crack initiation, in case the crack has
to kink and change direction it can only do so in a “brutal” way, by increasing of
a finite (nonzero) amount of additional length [33, 34]. Of course, we reach here a
situation where the model is too simplified to describe what really should happen
at small scales for a material in such a physical situation. In addition, these models
which are purely quasi-static cannot capture the dynamics of brutal changes in the
material configuration. For extensions to 3D linearized elasticity, the mathematical
analysis is much harder and more technical, see for instance [88, 79, 80, 76, 77].

In the paper [55], the authors considered Griffith’s theory with a new point of
view. Instead of fixing the crack path and viewing ℓ(𝑡) as the unknown, they proposed
to view also the path as a global variable. This was inspired by previous models of
damage [54] and the emerging interest for free-discontinuity problems [48, 8], and
in particular the study of the Mumford-Shah functional [84] for image segmentation.
These new models led to the introduction of a whole lot of analytic tools (based on
geometric measure theory and 𝐵𝑉 spaces [52, 51, 95, 8]) and it was early proposed to
use them in the modeling of fracture [56, 5]. In [56, 55], the authors pushed the idea
a bit further by introducing an incremental model for computing crack evolutions
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under a growing load, and a limiting “time”1-continuous model which generalizes
Griffith’s evolutions. The setting is as before (in what follows, Ω may be a subset of
R𝑑 for any 𝑑 ≥ 1, the dimensions 𝑑 = 2, 3 being the physical dimensions), except
that now Γ ⊂ Ω ∪ 𝜕𝐷Ω is part of the unknown. In the incremental model, one will
start with 𝑡0 = 0, Γ0 possibly empty, and find for any 𝑘 ≥ 1, given 𝑡𝑘 ≥ 𝑡𝑘−1, a new
configuration (𝑢𝑘 , Γ𝑘) which solves:

min
{

1
2

ˆ
Ω\Γ
C𝑒(𝑢) : 𝑒(𝑢) 𝑑𝑥 + 𝛾H 𝑑−1 (Γ) : 𝑢 = 𝑡𝑘𝑈

0 on 𝜕𝐷Ω \ Γ, Γ ⊇ Γ𝑘−1
}
.

(3)
Here,H 𝑑−1 is the (𝑑−1)-dimensional Hausdorff measure (imposing thus that Γ be an
at most (𝑑−1)-dimensional set, and in particular with vanishing Lebesgue measure),
see for instance [52, 51, 8]. The last constraint accounts for the non-reversibility of
the crack, which may only grow. We will denote by E(𝑢, Γ) the energy appearing
in (3).

A time-continuous evolution is obtained in the limit sup𝑘 (𝑡𝑘+1 − 𝑡𝑘) → 0, and
one hopes to converge to a configuration 𝑢(𝑡), Γ(𝑡) which satisfies

• (irreversibility) Γ0 ⊆ Γ(𝑡) ⊆ Γ(𝑠) for any 0 ≤ 𝑡 < 𝑠,
• (unilateral minimality) for each 𝑡 > 0, 𝑢(𝑡) = 𝑡𝑈0 on 𝜕𝐷Ω \ Γ(𝑡) and (𝑢(𝑡), Γ(𝑡))

is a unilateral minimizer:

E(𝑢(𝑡), Γ(𝑡)) ≤ E(𝑣, 𝐾)

for each 𝐾 ⊇ ⋃
𝑠<𝑡 Γ(𝑠) and any 𝑣 ∈ 𝐻1

loc (Ω \ 𝐾;R𝑑) with 𝑣 = 𝑡𝑈0 on 𝜕𝐷Ω \ 𝐾 .
• (continuity and energy conservation) 𝑡 ↦→ E(𝑢(𝑡), Γ(𝑡)) is absolutely continuous

and one has 𝑑E(𝑢(𝑡), Γ(𝑡))/𝑑𝑡 =
´
𝜕𝐷Ω\Γ (𝑡 ) C𝑒(𝑢(𝑡)) : (𝑈0 ⊙ 𝜈Ω)𝑑H 𝑑−1 for

a.e. 𝑡 ≥ 0.

(Here, for 𝑎, 𝑏 ∈ R𝑑 , 𝑎 ⊙ 𝑏 = 1
2 (𝑎𝑖𝑏 𝑗 + 𝑎 𝑗𝑏𝑖)

𝑑
𝑖, 𝑗=1.) The last condition is written

in a weaker sense in the original work [55], and is derived in this form first in [46]
in dimension 2, for a simplified scalar setting. The linearized-elasticity counterpart
of the results of [46] can be found in [24]. A fundamental result which links the
variational theory to the classical one is [55, Prop. 4.8]. This result shows that if
Γ(𝑡) is growing along a rectifiable curve and satisfies the properties above, then it is
a classical evolution in the sense of Griffith’s theory.

The great improvement of this approach upon the classical one is that it solves all
three issues (1)-(2)-(3) mentioned before, that is, initiation (yet, most probably brutal,
that is, not satisfying the continuity axiom above at least at 𝑡 = 0 [35, 33]) becomes
possible (and will always occur), the crack path is determined by the process, and
the formulation is the same in two or three dimensions (or any dimension). This
comes at several costs. One important issue, for instance, is the fact that the global
minimization introduced in the model (or in the axiom of unilateral minimality) is
nonphysical (in particular taking into account internal or boundary forces would be

1 In the quasistatic models described in this note, the time is just a parameter accounting for
non-reversibility but should not be considered as a precise physical time.
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impossible, since one may reach arbitrarily low energies by breaking the material into
small pieces sent to infinity, corresponding to an infinite work of the forces). Some
progress towards considering local minimization was developed in [45, 74, 75].
An analysis of the differences between local and global minimizations is proposed
in [85]. The authors provide an example where the variational solution is different
from the classical one.

Fig. 1 Numerical simulation: an almost 2D hot ceramic plate (left) and a thicker plate (right)
plunged into cold water at the bottom (experimental setup described in [21], simulation by Blaise
Bourdin)

Yet, the fact that evolutions computed with this approach are compatible with
Griffith’s theory, and even more the link with the phase-field approach indepen-
dently developed in the physics community [70, 68, 87] (this link is rigorously
established through Γ-convergence arguments for the Ambrosio-Tortorelli approxi-
mation of (3) see [10, 20, 69, 28, 57]), have turned this theory more and more into a
“standard tool” for fracture modeling and computation (see for instance [82, 90, 71]).
The quality of the crack growth computed by this approach and their fidelity to the
physical experiments are sometimes remarkable: for instance, Figure 1, computed
by Blaise Bourdin [21], shows numerical simulations in accordance with the exper-
iments from [91] (a hot ceramic sample is brutally cooled and exhibits oscillating
crack patterns starting from the stressed bottom boundary). See also [21, Fig. 3].

On the other hand, this theory has raised numerous mathematical difficulties.
While existence of minimizers for the Mumford-Shah functional was proved only
a few years after its introduction in the late 80s [84, 43, 49], it was not until about
2010 that Gianni Dal Maso introduced in [42] an appropriate energy space for
Griffith’s problem (3), the space “𝐺𝑆𝐵𝐷2 (Ω)”. Before this, although many results
were already available in simplified settings (with additional bounds in the space
𝑆𝐵𝐷 [6, 17], or in dimension 2 with a connectedness assumption on the crack [46,
24]), it was difficult to tackle the problem in its full generality and reproduce the
programme developed for Mumford-Shah. We explain this in this note: in the next
Section, we show how existence for the so-called “weak” formulation has been
established in a series of papers after 2016. Then in Section 2.2 we sketch an
explanation of how the weak solutions are shown to be also strong minimizers of (3).
Some open issues are raised in Section 3. In Section 4, we describe in the scalar
setting some of the techniques for proving the rigidity estimate of [25], stated below.
This result is the starting point for most of the recent progress in this field.
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2 Existence for Griffith’s variational problem

2.1 Poincaré-Korn inequality with small jump set and compactness

There are two main issues for showing existence of the minimizers of (3). First, one
needs to get a control on 𝑢 (or on a minimizing sequence). This is not natural as a
displacement 𝑢 which has a very large value in a small ball 𝐵 with 𝜕𝐵 ⊂ 𝐾 may
have a very low energy. Then, one has to show that an almost minimizer (or the
limit of a minimizing sequence) has a crack set 𝐾 which can be properly described
as a closed (𝑑 − 1)-dimensional set with bounded surface, and does not spread
out everywhere in the domain. In the scalar setting, the first issue corresponds to
the compactness and lower-semicontinuity result shown in [4] for the Mumford-
Shah energy, the second to the density estimates proved in [49] and which allow
to show that weak minimizers are strong solutions of the Mumford-Shah problem
(see also [43] for an alternative approach). In the setting of linearized elasticity, the
situation is far more complex. The main issue for showing compactness is the lack of
control of the maximum of |𝑢 |, indeed, if one adds an artificial box constraint on the
displacement, then the compactness and lower-semicontinuity result proved in [17]
is sufficient to show existence of weak minimizers to (3), in the framework of the
space 𝑆𝐵𝐷 (Ω). This latter space is a subset of 𝐵𝐷 (Ω), the space of displacements
𝑢 ∈ 𝐿1 (Ω;R𝑑) such that the distributional symmetrized gradient 𝐸𝑢 is a bounded
Radon measure [92, 93]. Yet, without such a box constraint, there is no result which
ensures that a minimizing sequence should remain in that space.

A first progress was accomplished in [25] where the following Poincaré-Korn
inequality for functions with small jump set was proved. We quote [25, Prop. 3.1]:

Proposition 1 Let 𝑄 = (−𝑟, 𝑟)𝑑 , 𝑄′ = (−𝑟/2, 𝑟/2)𝑑 , 𝑢 ∈ 𝑆𝐵𝐷 (𝑄) and 𝑝 ∈ [1,∞).
We have the following:

(i) There exist a set 𝜔 ⊂ 𝑄′ and an affine function 𝑎 : R𝑑 → R𝑑 with 𝑒(𝑎) = 0 such
that

|𝜔 | ≤ 𝑐𝑟H 𝑑−1 (𝐽𝑢)

and
ˆ
𝑄′\𝜔

|𝑢 − 𝑎 |𝑑𝑝/(𝑑−1)𝑑𝑥 ≤ 𝑐𝑟𝑑 (𝑝−1)/(𝑑−1)
(ˆ
𝑄

|𝑒(𝑢) |𝑝
)𝑑/(𝑑−1)

.

(ii) If, additionally, 𝑝 > 1, then there is 𝑞 > 0 (depending on 𝑝 and 𝑛) such that,
for a given mollifier 𝜑𝑟 ∈ 𝐶∞

𝑐 (𝐵𝑟/4), 𝜑𝑟 (𝑥) = 𝑟−𝑑𝜑1 (𝑥/𝑟), the function 𝑣 =

𝑢𝜒𝑄′\𝜔 + 𝑎𝜒𝜔 obeys

ˆ
𝑄′′

|𝑒(𝑣 ∗ 𝜑𝑟 ) − 𝑒(𝑢) ∗ 𝜑𝑟 |𝑝𝑑𝑥 ≤ 𝑐
(
H 𝑑−1 (𝐽𝑢)
𝑟𝑑−1

)𝑞 ˆ
𝑄

|𝑒(𝑢) |𝑝𝑑𝑥,

where 𝑄′′ = (−𝑟/4, 𝑟/4)𝑑 .
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The constant in (i) depends only on 𝑝 and 𝑑, the one in (ii) also on 𝜑1.

In this statement, 𝑆𝐵𝐷 (𝑄) stands for the space of “special functions with bounded
deformation”. These functions 𝑢 are such that their symmetrized distributional gra-
dient 𝐸𝑢 = 1

2 (𝐷𝑢 + 𝐷𝑢
𝑇 ) is a bounded Radon measure decomposed as

𝐸𝑢 = 𝑒(𝑢)𝑑𝑥 + (𝑢+ − 𝑢−) ⊙ 𝜈𝑢H 𝑑−1 𝐽𝑢.

In this expression, 𝑒(𝑢) is the absolutely continuous part of 𝐸𝑢 with respect to the
Lebesgue measure 𝑑𝑥, and 𝐽𝑢 is the set of jump points 𝑥, that is, where the blow-ups
𝑦 ↦→ 𝑢(𝑥 + 𝑟𝑦) converge, as 𝑟 → 0 and in 𝐿1 (𝐵1;R𝑑), to a function taking two
values 𝑢± on both sides of a hyperplane 𝜈⊥𝑢 . This intrinsic jump set is known to be
a (𝑑 − 1)-countably rectifiable set, that is, it may be covered by countably many
𝐶1 hypersurfaces up to a H 𝑑−1-negligible set with normal vector 𝜈𝑢 H 𝑑−1-almost
everywhere. We refer to [6, 17] for details.

We mention that roughly at the same time, a series of similar Poincaré-Korn-type
inequalities were proved by Manuel Friedrich. In a first paper [58], the result above
(point (i)) was proved in dimension 2 with different techniques, leading in particular
(for 𝑝 = 2) to a control on the perimeter of the exceptional set 𝜔, and an actual
Korn inequality, that is, a control on |∇𝑢 |, outside of 𝜔. This was remarkable as in
particular, the techniques of [25], described in Section 4, certainly cannot give any
control on the perimeter of𝜔. A following paper [59] was stating a much more precise
inequality in dimension 2 (splitting Ω into a partition of sets where 𝑢 was controlled
up to a different rigid motion in each set), and showing, in arbitrary dimensions,
a variant of our main result [25, Theorem 1.1], valid for 𝑝 = 2 only but also with
an estimate of the perimeter of the exceptional set, and a more precise control of 𝑢
(in particular, 𝑢𝜒𝜔𝑐 is shown to be in 𝐵𝑉): see [59, Theorem 2.10]. Similar results
were proved afterwards with the techniques of [25], first in dimension 2 [38], then in
general [22]. In both latter references, the inequality is for any 𝑝 > 1, the perimeter
of 𝜔 is controlled by the size of the jump, and it is shown that out of 𝜔, 𝑢 coincides
with a function 𝑣 ∈ 𝑊1, 𝑝 (𝑄;R𝑑) so that in particular also ∇𝑢 is controlled.

While the proofs in [25] are written in the so-called space 𝑆𝐵𝐷 (𝑄) (as that work
started actually before [42] was announced), the proof applies to the more general
space 𝐺𝑆𝐵𝐷 (𝑄) introduced in [42] as the correct energy space for (3). Indeed, the
definition of this space is based only on 1D slicing properties of the functions, upon
which the proof of Proposition 1 mostly relies: see Section 4 where we explain the
main mechanisms in the simpler scalar case.

Proposition 1 turned out to be the starting point for many developments: first,
after some time, we realized with Vito Crismale that this was sufficient to obtain
compactness for minimizing sequences for (3). The idea, developed in [30], is quite
simple. One introduces a scale 𝛿 > 0, covers the domain with cubes 𝑄𝑧, 𝛿 = 𝛿𝑧 +
[0, 𝛿)𝑑 , 𝑧 ∈ Z𝑑 (considering only the cubes inside Ω), and for each function of the
minimizing sequence (𝑢𝑛, Γ𝑛)𝑛 one introduces 𝜔𝑧, 𝛿𝑛 and 𝑎𝑧, 𝛿𝑛 obtained by invoking
Proposition 1 in each cube 𝑄𝑧, 𝛿 (or actually, in slightly larger cubes). We obtain
piecewise affine functions 𝑎𝑛 =

∑
𝑧 𝑎

𝑧, 𝛿
𝑛 𝜒𝑄𝑧, 𝛿

with
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ˆ
Ω\𝜔𝑛

|𝑢𝑛 − 𝑎𝑛 |2𝑑𝑥 ≲ 𝛿2
ˆ
Ω

|𝑒(𝑢𝑛) |2 𝑑𝑥,

where 𝜔𝑛 =
⋃
𝑧 𝜔

𝑧, 𝛿
𝑛 (plus a small set near 𝜕Ω) satisfies

|𝜔𝑛 | ≲ 𝛿H 𝑑−1 (Γ𝑛).

(In practice, one works with the “weak” formulation, where Γ𝑛 is to be replaced with
the intrinsic jump set 𝐽𝑢𝑛 of 𝑢𝑛, which might not be closed.)

Thanks to the fact that (𝑎𝑛)𝑛 is finite-dimensional, one can extract a subsequence
which converges (up to pieces which may go to infinity), and as 𝛿 gets smaller, we
end up with showing that (a subsequence of) (𝑢𝑛)𝑛 is a Cauchy sequence (in some
sense), converging either to infinity or to a limiting 𝑢.

The set (denoted by 𝐴 in [30]) where |𝑢𝑛 | → ∞ is not really an issue, as replacing
𝑢 with 0 in that set, one obtains (reproducing almost verbatim the arguments in [17])
lower semicontinuity of the energy and that the limit is actually a minimizer of the
weak formulation.

A natural question which emerges is “what happens in the set 𝐴”? This seems
of little importance (as one eventually replaces 𝑢 with 0 in 𝐴), yet in more general
problems where the elastic energy is not homogeneous and may not be minimal for
𝑒(𝑢) = 0 (consider for instance the case of a pre-stress as in [91, 21], cf Fig. 1), then
this trick will not work. This issue has been addressed in [32, 31]. The main result
in [31], inspired from previous results in 𝐺𝐵𝐷 [3] and 𝐺𝑆𝐵𝑉 [60], shows that if
(𝑢𝑛)𝑛 is a bounded sequence for the energy (3), then there exists a subsequence, a
(Cacciopoli, that is with bounded perimeter) partition (𝐸𝑖)𝑖 of Ω, and sequences of
infinitesimal rigid motions (𝑎𝑖𝑛)𝑛 (for each 𝐸𝑖), such that

𝑢𝑛 −
∑︁
𝑖

𝑎𝑖𝑛𝜒𝐸𝑖
→ 𝑢 a.e.

and the energy of the limit 𝑢 is bounded by the energies of (𝑢𝑛)𝑛. See [31] for details.

2.2 Existence of strong solutions

Once weak minimizers to (3) have been found, one should show that they are “strong”,
that is, their discontinuity set 𝐽𝑢 (which, in general, might be not closed or might
even be dense) is concentrated rather than spread out, so that its closure Γ = 𝐽𝑢 will
have the same surface (Hausdorff measure) and (𝑢, Γ) is a minimizer of (3). This is
where Proposition 1 (ii) played a major role.

It is well-known since this issue was solved in [49] for the Mumford-Shah func-
tional, that this follows from a lower density estimate of the form:

There exists 𝑟0 > 0 and 𝛽 > 0 such that for any 𝑥 ∈ 𝐽𝑢 and any ball 𝐵𝑟 (𝑥) ⊂ Ω

with 𝑟 ≤ 𝑟0, then
H 𝑑−1 (𝐽𝑢 ∩ 𝐵𝑟 (𝑥)) ≥ 𝛽𝑟𝑑−1.
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Indeed, it follows easily that the same holds for 𝐽𝑢, then that the latter set has
finite surface (see for instance [8, Theorem 2.56]), and that this surface is the same
as the surface of 𝐽𝑢 (at least inside Ω).

For (3), this was first shown in dimension 2 in [37, 39]. Then, this was extended to
arbitrary dimensions in [27], while in the paper [29], with Vito Crismale, we showed
the full existence to minimizers of (3) by establishing the density estimate up to the
Dirichlet boundary (when the crack is along this boundary), see [29, Corollary 5.8].

Proposition 1 (ii) is crucial for establishing the lower density in [27, 29]. Indeed, it
allows to build, in a ball 𝐵𝑟 of radius 𝑟 where H 𝑑−1 (𝐽𝑢 ∩ 𝐵𝑟 ) ≪ 𝑟𝑑−1, a competitor
𝑣 which coincides with 𝑢 near 𝜕𝐵𝑟 but is smooth inside a smaller ball and has much
smaller jump. This is the basic brick of a “Decay Lemma”, following the main idea
of [49]: one shows that for 𝜏 < 1, there exist 𝑟0, 𝜀, such that for a minimizer, if
H 𝑑−1 (𝐽𝑢 ∩ 𝐵𝑟 (𝑥)) < 𝜀𝑟𝑑−1, 𝑟 ≤ 𝑟0 then the energy in the ball 𝐵𝜏𝑟 (𝑥) is controlled
by 𝜏𝑑−1+𝑠 times the energy in the ball 𝐵𝑟 (𝑥) for some 𝑠 > 0. This is shown by
contradiction: assuming this is not true, one finds a sequence of (quasi) minimizers
(𝑢𝑟 ) in balls with vanishing radius 𝑟 , with vanishing jump and for which the energy
does not decay at the given rate. Scaling everything to the ball of radius 1 and using
the previous construction, one can replace these functions by smooth competitors in
most of the ball, showing that in the limit the energy should behave like the energy
of smooth functions without jump, and decay like the volume of the ball (that is,
𝜏𝑑), which gives a contradiction.

Once a Decay Lemma is proven, the conclusion follows: indeed, at rectifiability
points 𝑥 of 𝐽𝑢 (H 𝑑−1-almost all points), one has lim𝑟→0 H 𝑑−1 (𝐽𝑢 ∩ 𝐵𝑟 (𝑥))/𝑟𝑑−1 =

𝜔𝑑−1, the volume of the (𝑑 − 1)-ball. But if at larger scales 𝑟 ∼ 𝑟0 one
had H 𝑑−1 (𝐽𝑢 ∩ 𝐵𝑟 (𝑥)) ≤ 𝜀𝑟 , the Decay Lemma would imply that the energy
E(𝑢, 𝐵𝑟 (𝑥)) = 1

2
´
𝐵𝑟 (𝑥 ) C𝑒(𝑢) : 𝑒(𝑢)𝑑𝑥 + 𝛾H 𝑑−1 (𝐽𝑢 ∩ 𝐵𝑟 (𝑥)) decays too fast, with

E(𝑢, 𝐵𝑟 (𝑥))/𝑟𝑑−1 → 0 as 𝑟 → 0: a contradiction since this limit is at least 𝛾𝜔𝑑−1.

2.3 Regularity of the jump set

One natural question, once the existence of minimizers to (3) has been established,
is the regularity one can hope to show for the crack set Γ. This is a tough question
already in the Mumford-Shah case, the full “Mumford-Shah conjecture” [84] (the
jump set in 2D is a finite union of smooth curves with possible endpoints, meeting
only at triple point with three angles of 120◦, and at the boundary with an angle
of 90◦) being still only proved for isolated connected components of Γ [18, 19]. In
higher dimensions, [9, 7] have first shown that Γ is regular up to a set of dimension
smaller than 𝑑 − 1 (see also [8]).

For the Griffith energy, very important progress has been accomplished in the
past few years, towards showing similar results. First in [16], it is proved (in 2D)
that up to a H1-null set, any isolated connected component of Γ is 𝐶1,𝛼 for some
𝛼 > 0. This is extended to arbitrary dimensions in [72], yet under the assumption
that locally, the jump set is separating a ball into two “big” pieces (and possibly
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smaller ones). Finally, the authors of [62] have considerably improved in 2D the
results of [16], showing that 𝐾 is in fact, almost everywhere locally a 𝐶1,1/2 curve,
up to a set of Hausdorff dimension strictly below 1, yet, as for the Mumford-Shah
functional, it is not known whether the singular set is finite. In higher dimensions,
removing the separating assumption is also still a challenge.

3 Extensions and open problems

Among the other difficult issues which remain open, the most important from the
modeling point of view is the existence of generalized Griffith evolutions with
continuously growing crack: to complete the theory introduced in [55], one would
like to be able to send the “time-steps” 𝑡𝑘+1 − 𝑡𝑘 to 0 in the most general setting. In
the scalar setting, there are a few situations where this is known, since the work [46]
(in 2D, with the assumption that the crack is connected), extended then in the strong
setting to the general 2D case in [15]. In the weak formulation, the general scalar
case was first addressed in [53] where the celebrated “jump transfer lemma” was
proven. This lemma shows that under some assumptions, a sequence of minimizers
of Mumford-Shah type problems converges to a minimizer, and, unfortunately, no
such results exists for the Griffith energy in the general setting. This lemma was
proved in dimension 2 in [64], whose authors could therefore show existence of
continuous evolutions in the weak setting. (Until then, the only clear situation was
the extension of [46] to linearized elasticity in [24], assuming connectedness of
the 1D crack.) Establishing the existence of continuous-time evolution in higher
dimension, or simply of strong evolutions (with a closed crack Γ) in 2D as in [15],
still seems very difficult.

For similar reasons, homogenization (most of the time discussed in the scalar
setting [47, 94] or with scalings which exclude (3) as the limit problem [89], see [23]
for a general study) or linearization (of non-linear elasticity models with cracks)
remain challenging. A generalization of [44] in the Griffith setting has been proved
in 2D by Manuel Friedrich [61] and extended to incoporate a non-interpenetration
condition in [2]. Important progress has been made very recently concerning the con-
vergence and integral representation [63, 41] of Griffith-type functionals in arbitrary
dimensions and one may expect more results in the next years.

Many other issues remain open in the framework of the phase-field approxi-
mations of Griffith’s problem, based on [10] and widely adopted for simulations.
Incorporating constraints, such as non-interpenetration [12, 73], is tricky to rigor-
ously justify and well-understood only in 2D [26]. One technical reason behind this
issue is that in 2D, one can easily approximate a displacement with very small jump
set by smooth functions without adding additional jump, as first observed in [38]
(as given a ball 𝐵𝑟 such that H1 (𝐵𝑟 ∩ 𝐽𝑢) ≪ 𝑟 , there will be many circles 𝜕𝐵𝑠 ,
𝑠 < 𝑟 , with 𝐽𝑢 ∩ 𝜕𝐵𝑠 = ∅ and one can select radii 𝑠 where it is possible to wipe out
the jump inside 𝐵𝑠 without changing too much the energy), while this is in general
impossible in higher dimensions without adding some spurious (small) crack set
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where the constraint may be impossible to check (as a very tiny jump set could cross
all spheres 𝜕𝐵𝑠 , 𝑠 < 𝑟, in the same setting as before). We observe that in this setting,
existence of weak minimizers can be shown using the same techniques as described
in this note, yet it remains unclear whether these are also strong minimizers.

4 Ideas of proofs (simpler scalar case)

4.1 Poincaré inequality with a small jump set (the scalar case)

We give here the main ideas of the proofs in [25], in the (much) simpler case where
the functions are real-valued with integrable gradient (and where many alternative
results may be derived, such as [49, Thm 3.1]). As for most proofs of Poincaré or
Sobolev-type inequalities, the results rely on integrating along lines to get control
on a value at some point with values at other points. The same proofs for vectorial
fields, involving only the symmetrized gradients, are much more involved, since
such integrals can control only the difference of the components along the direction
between the two points. Hence, each time such an argument is invoked below, it has
to be replaced with a (quite) more complicated construction involving 𝑑 different
directions in order to gain control on all the components of the field. Throughout
all this section, except otherwise stated, we work at scale 1 (and, even, in (0, 1)𝑑),
the corresponding statements in a cube (−𝑟, 𝑟)𝑑 are recovered without effort by
appropriately scaling the functions and sets.

Consider 𝑄 = (0, 1)𝑑 and 𝑢 ∈ 𝑊1, 𝑝 (𝑄 \ 𝐾) (𝑝 ∈ [1, +∞)), for 𝐾 ⊂ 𝑄 a closed,
rectifiable set. We assume H 𝑑−1 (𝐾) is small. The setting could be as well 𝑆𝐵𝑉 (𝑄)
or 𝐺𝑆𝐵𝑉 (𝑄) [8], with 𝐽𝑢 replacing 𝐾 , and it would not change anything to what
follows. In a first step, we prove:

Proposition 2 There exists 𝐶 depending only on 𝑑 and 𝑝 such that, given 𝑢 and 𝐾
as above, there exists 𝑐 ∈ R and 𝜔 ⊂ 𝑄 with:

|𝜔 | ≤ 𝐶H 𝑑−1 (𝐾) , (4)ˆ
𝑄\𝜔

|𝑢 − 𝑐 |𝑝𝑑𝑦 ≤ 𝐶
ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑥. (5)

Proof. We follow closely [25]. Given 𝑥, 𝑦 ∈ 𝑄, we let 𝜈(𝑥, 𝑦) := H0 (𝐾 ∩ [𝑥, 𝑦]),
and we observe that if 𝜈(𝑥, 𝑦) = 0, then (for a.e. 𝑥, 𝑦, or assuming first 𝑢 is smooth
away from 𝐾 and reasoning then by density):

𝑢(𝑦) = 𝑢(𝑥) +
ˆ 1

0
∇𝑢(𝑥 + 𝑠(𝑦 − 𝑥)) · (𝑦 − 𝑥)𝑑𝑠.

Then (extending all functions by 0 out of 𝑄),



12 Antonin Chambolle
ˆ
𝑄

ˆ
𝑄

(1 − 𝜈(𝑥, 𝑦))+ |𝑢(𝑥) − 𝑢(𝑦) |𝑝𝑑𝑦𝑑𝑥

≤
ˆ
𝑄

𝑑𝑥

ˆ
𝑄

𝑑𝑦(1 − 𝜈(𝑥, 𝑦))+
ˆ 1

0
|∇𝑢(𝑥 + 𝑠(𝑦 − 𝑥)) |𝑝 |𝑦 − 𝑥 |𝑝𝑑𝑠

≤
ˆ 1

0
𝑑𝑠

ˆ
𝑄

𝑑𝑥

ˆ
[−1,1]𝑑

|∇𝑢(𝑥 + 𝑠𝜉) |𝑝 |𝜉 |𝑝𝑑𝜉

=

ˆ 1

0
𝑑𝑠

ˆ
[−1,1]𝑑

|𝜉 |𝑝𝑑𝜉
ˆ
𝑄−𝑠 𝜉

|∇𝑢(𝑥 + 𝑠𝜉) |𝑝𝑑𝑥 ≤ 2𝑑
√
𝑑
𝑝
ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑥,

while, similarly,
ˆ
𝑄

ˆ
𝑄

𝜈(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≤
ˆ
[−1,1]𝑑

ˆ
𝑄

H0 ((𝑥 + R𝜉) ∩ 𝐾)𝑑𝑥𝑑𝜉 ≤ 2𝑑
√
𝑑H 𝑑−1 (𝐾).

Denoting 𝜔𝑥 = {𝑦 : 𝜈(𝑥, 𝑦) ≥ 1}, we deduce that for any 𝜂 > 0,���{𝑥 ∈ 𝑄 : |𝜔𝑥 | ≥ 2𝑑
√
𝑑

𝜂
H 𝑑−1 (𝐾)

}��� ≤ 𝜂 ,���{𝑥 ∈ 𝑄 :
ˆ
𝑄\𝜔𝑥

|𝑢 − 𝑢(𝑥) |𝑝𝑑𝑦 ≥ 2𝑑
√
𝑑
𝑝

𝜂

ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑦
}��� ≤ 𝜂.

Hence, if 𝜂 < |𝑄 |/2 = 1/2, there is a set of positive measure of points 𝑥 such that

|𝜔𝑥 | ≤ 2𝑑
√
𝑑

𝜂
H 𝑑−1 (𝐾) ,

ˆ
𝑄\𝜔𝑥

|𝑢 − 𝑢(𝑥) |𝑝𝑑𝑦 ≤ 2𝑑
√
𝑑
𝑝

𝜂

ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑦.

This shows the result. ⊓⊔

We now show how to improve the estimate on 𝜔 to the right dimensional scaling.

4.2 Improvement: scaling of the volume estimate

Let now 𝑢, 𝐾 and 𝜔, 𝑐 as in Proposition 2. Consider the set 𝜔∗
1 = 𝜔1 ∪ 𝜔̃1, where

𝜔1 = {𝑥 ∈ 𝑄 : (𝑥 + R𝑒1) ∩ 𝐾 ≠ ∅} , 𝜔̃1 =
{
𝑥 ∈ 𝑄 : H1 ((𝑥 + R𝑒1) ∩ 𝜔) ≥ 1

2
}
.

(6)
Here, (𝑒1, . . . , 𝑒𝑑) is the canonical basis of R𝑑 . Clearly, 𝜔∗

1 = (0, 1) × Π1 (𝜔∗
1) is

invariant by translation (in 𝑄) in the direction 𝑒1, where Π1 is the projection onto
𝑒⊥1 . In addition, |𝜔1 | ≤ H 𝑑−1 (𝐾), while we have, letting 𝑄′ = (0, 1)𝑑−1:

|𝜔 | =
ˆ
𝑄′

ˆ 1

0
𝜒𝜔 (𝑥1, 𝑥

′)𝑑𝑥1𝑑𝑥
′ =

ˆ
𝑄′

|𝜔 ∩ ((0, 𝑥′) + R𝑒1) |𝑑𝑥′ ≥
|𝜔̃1 |
2
,

so that (from (4)): |𝜔̃1 | ≤ 2𝐶H 𝑑−1 (𝐾) and |𝜔∗
1 | ≤ (2𝐶 + 1)H 𝑑−1 (𝐾).
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Now, if 𝑥 ∈ 𝑄 \ 𝜔∗
1, for any 𝑡 with 𝑥 + 𝑡𝑒1 ∈ 𝑄,

𝑢(𝑥 + 𝑡𝑒1) = 𝑢(𝑥) +
ˆ 𝑡

0
𝜕1𝑢(𝑥 + 𝑠𝑒1)𝑑𝑠,

and, averaging over {𝑡 ∈ R : 𝑥 + 𝑡𝑒1 ∈ 𝑄 \ 𝜔} we get:

𝑢(𝑥) =
 
(𝑥+R𝑒1 )∩𝑄\𝜔

𝑢 𝑑H1−
ˆ 1−𝑥1

−𝑥1

𝜒𝑄\𝜔 (𝑥 + 𝑡𝑒1)
H1 ((𝑥 + R𝑒1) ∩𝑄 \ 𝜔)

ˆ 𝑡

0
𝜕1𝑢(𝑥+𝑠𝑒1)𝑑𝑠𝑑𝑡.

It follows (for any 𝑐 ∈ R but we consider here the constant from Proposition 2):

|𝑢(𝑥) − 𝑐 | ≤
���  

(𝑥+R𝑒1 )∩𝑄\𝜔
𝑢 𝑑H1 − 𝑐

��� + ˆ
(𝑥+R𝑒1 )∩𝑄

|𝜕1𝑢 |𝑑H1

≤ 2
ˆ
(𝑥+R𝑒1 )∩𝑄\𝜔

|𝑢 − 𝑐 | 𝑑H1 +
ˆ
(𝑥+R𝑒1 )∩𝑄

|𝜕1𝑢 |𝑑H1.

(7)

In the last estimate we have used that 𝑥 ∉ 𝜔̃1 so that | (𝑥 + R𝑒1) ∩𝑄 \ 𝜔 | ≥ 1/2. We
deduce from Jensen’s lemma (or Hölder’s inequality):

|𝑢(𝑥) − 𝑐 |𝑝 ≤ 2𝑝−1
(
2𝑝

ˆ
(𝑥+R𝑒1 )∩𝑄\𝜔

|𝑢 − 𝑐 |𝑝 𝑑H1 +
ˆ
(𝑥+R𝑒1 )∩𝑄

|𝜕1𝑢 |𝑝𝑑H1
)
.

(8)
Integrating (8) over 𝑥 ∈ 𝑄 \ 𝜔∗

1, we get
ˆ
𝑄\𝜔∗

1

|𝑢 − 𝑐 |𝑝𝑑𝑥 ≤ 22𝑝−1
ˆ
𝑄\𝜔

|𝑢 − 𝑐 |𝑝𝑑𝑥 + 2𝑝−1
ˆ
𝑄

|𝜕1𝑢 |𝑝𝑑H1, (9)

then thanks to (5) we get that for some constant, still denoted 𝐶 (depending on 𝑑 and
𝑝), ˆ

𝑄\𝜔∗
1

|𝑢 − 𝑐 |𝑝𝑑𝑥 ≤ 𝐶
ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑥. (10)

Letting 𝜔∗ =
⋂𝑑
𝑖=1 𝜔

∗
𝑖

(where 𝜔∗
𝑖

is defined as 𝜔∗
1 = 𝜔1 ∪ 𝜔̃1 in (6), but in the

direction 𝑒𝑖 instead of 𝑒1), we find (changing again 𝐶, which is multiplied by 𝑑):
ˆ
𝑄\𝜔∗

|𝑢 − 𝑐 |𝑝𝑑𝑥 ≤ 𝐶
ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑥.

Using now that |Π𝑖 (𝜔∗) | ≤ 𝐶H 𝑑−1 (𝐾) for 𝑖 = 1, . . . , 𝑑, we deduce |𝜔∗ | ≤
𝐶H 𝑑−1 (𝐾)𝑑/(𝑑−1) (From Loomis-Whitney’s inequality [81], see also [25, Lemma
4.1], or follow the proof in Section 4.3 below, applied to the functions 𝑓𝑖 = 𝜒𝜔∗

𝑖
,

which are such that 𝜒𝜔∗ =
∏𝑑
𝑖=1 𝑓𝑖). We have shown:

Proposition 3 In Prop. 2, one may replace (4) with the estimate

|𝜔 | ≤ 𝐶H 𝑑−1 (𝐾) 𝑑
𝑑−1 . (11)
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4.3 Higher integrability

Now, we show how a better control on 𝑢−𝑐 is obtained, using the standard approach to
Sobolev’s inequalities (see for instance [51, §4.5]). We consider (8) for 𝑖 = 1, . . . , 𝑑:

𝜒𝑄\𝜔∗
𝑖
|𝑢(𝑥) − 𝑐 |𝑝 ≤ 2𝑝−1𝜒𝑄\𝜔∗

𝑖

ˆ
(𝑥+R𝑒𝑖 )∩𝑄

(
2𝑝 (1 − 𝜒𝜔) |𝑢 − 𝑐 |𝑝 + |𝜕𝑖𝑢 |𝑝

)
𝑑H1.

Denoting by 𝑓𝑖 (𝑥) the right-hand side, we stress that it does not depend on 𝑥𝑖 . We
multiply these inequalities for 𝑖 = 1, . . . , 𝑑 and obtain that for all 𝑥 ∈ 𝑄:

𝑓 (𝑥) := 𝜒𝑄\𝜔∗∗ |𝑢(𝑥) − 𝑐 |
𝑝𝑑

𝑑−1 ≤
𝑑∏
𝑖=1

𝑓𝑖 (𝑥)
1

𝑑−1 ,

where we have denoted 𝜔∗∗ =
⋃𝑑
𝑖=1 𝜔

∗
𝑖
. Then, we pursue as in [51, p. 139] or [81]:

ˆ 1

0
𝑓 (𝑥)𝑑𝑥1 ≤ 𝑓1 (𝑥)

1
𝑑−1

ˆ 1

0

𝑑∏
𝑖=2

𝑓𝑖 (𝑥)
1

𝑑−1 𝑑𝑥1 ≤ 𝑓1 (𝑥)
1

𝑑−1

(
𝑑∏
𝑖=2

ˆ 1

0
𝑓𝑖 (𝑥)𝑑𝑥1

) 1
𝑑−1

=

(
𝑑∏
𝑖=1

ˆ 1

0
𝑓𝑖 (𝑥)𝑑𝑥1

) 1
𝑑−1

(using Hölder’s inequality);

ˆ 1

0

ˆ 1

0
𝑓 (𝑥)𝑑𝑥1𝑑𝑥2 ≤

(ˆ 1

0
𝑓2 (𝑥)𝑑𝑥1

) 1
𝑑−1 ˆ 1

0

(∏
𝑖≠2

ˆ 1

0
𝑓𝑖 (𝑥)𝑑𝑥1

) 1
𝑑−1

𝑑𝑥2 ≤

(ˆ 1

0
𝑓2 (𝑥)𝑑𝑥1

) 1
𝑑−1

(∏
𝑖≠2

ˆ 1

0

ˆ 1

0
𝑓𝑖 (𝑥)𝑑𝑥1𝑑𝑥2

) 1
𝑑−1

=

(
𝑑∏
𝑖=1

ˆ 1

0

ˆ 1

0
𝑓𝑖 (𝑥)𝑑𝑥1𝑑𝑥2

) 1
𝑑−1

,

and the same argument for 𝑖 = 3, . . . , 𝑑. Eventually, we find

ˆ
𝑄

𝑓 (𝑥)𝑑𝑥 ≤
(
𝑑∏
𝑖=1

ˆ
𝑄

𝑓𝑖 (𝑥)𝑑𝑥
) 1

𝑑−1

,

and it follows:

ˆ
𝑄\𝜔∗∗

|𝑢(𝑥) − 𝑐 |
𝑝𝑑

𝑑−1 𝑑𝑥 ≤ 2
(𝑝−1)𝑑
𝑑−1

𝑑∏
𝑖=1

(
2𝑝

ˆ
𝑄\𝜔

|𝑢 − 𝑐 |𝑝𝑑𝑥 +
ˆ
𝑄

|𝜕𝑖𝑢 |𝑝𝑑𝑥
) 1

𝑑−1

≤ 𝐶
(ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑥
) 𝑑

𝑑−1

,
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for some constant depending only on 𝑑, 𝑝. By construction, one has here |𝜔∗∗ | ≤
𝐶H 𝑑−1 (𝐾). By simple scaling arguments, we have eventually proven:

Proposition 4 Let𝑄 = (−𝑟, 𝑟)𝑑 , 𝐾 ⊂ 𝑄 withH 𝑑−1 (𝐾) < +∞ and 𝑢 ∈ 𝑊1, 𝑝
loc (𝑄\𝐾)

with
´
𝑄\𝐾 |∇𝑢 |𝑝𝑑𝑥 < +∞, 𝑝 ∈ [1, +∞). Then there exists 𝜔 ⊂ 𝑄 and 𝑐 ∈ R such

that
|𝜔 | ≤ 𝐶𝑟H 𝑑−1 (𝐾)

and ˆ
𝑄\𝜔

|𝑢 − 𝑐 |
𝑝𝑑

𝑑−1 𝑑𝑥 ≤ 𝐶𝑟
𝑑 (𝑝−1)
𝑑−1

(ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑥
) 𝑑

𝑑−1

,

where the constant 𝐶 depends only on 𝑑 and 𝑝.

This is the scalar counterpart of Proposition 1, (i), except that in this setting it is
easier to obtain the estimate in the whole cube 𝑄 and not a smaller one. Although
we worked with compact sets 𝐾 and 𝑢 ∈ 𝑊1, 𝑝 (𝑄 \ 𝐾), the experts will notice that
the result holds in𝐺𝑆𝐵𝑉 (𝑄) with the same proof and 𝐾 replaced with 𝐽𝑢. Note that,
similarly to the vectorial setting, one cannot easily obtain here the Sobolev exponent
𝑝𝑑/(𝑑 − 𝑝). In classical proofs of the Sobolev inequality, this is derived from the
case 𝑝 = 1, applied to the function |𝑢 |𝑞 ∈ 𝑊1,1

loc (𝑄 \ 𝐾) (for 𝑞 = 𝑝(𝑑 − 1)/(𝑑 − 𝑝),
and assuming in a first stage that |𝑢 | is bounded). Yet, doing so, one will obtain on
the right-hand side an integral of |𝑢 |𝑞−1 |∇𝑢 | on the whole set 𝑄, which cannot be
compared to the left-hand side where |𝑢 |𝑞𝑑/(𝑑−1) is integrated only on 𝑄 \ 𝜔. To
get such a result, much more involved proofs have to be developed, still based on
Proposition 1, yet using both (i) and (ii)), see [22] for details (in 𝐺𝑆𝐵𝐷).

Here again the estimate on |𝜔 | could be improved as in Proposition 3 at the
expense of a more complicated construction, involving intersecting sets in various
directions, see [25, §4].

4.4 Proof of Proposition 1, (ii) in the scalar case

Here, there is a priori not too much to simplify with respect to [25]. Yet we found
some simplification (also possible for the vectorial case) which we detail below.

We consider as before 𝑟 = 1, and as in the statement, a smooth mollifier 𝜑 with
support in 𝐵1/4. One will obtain a result which is valid in (1/4, 3/4)𝑑 ⊂⊂ 𝑄: one
could of course, if needed, obtain similar results in larger cubes, by changing/scaling
the function 𝜑, yet then the constants depend on 𝜑 and will degenerate to +∞ as the
inner cube tends to 𝑄.

In this section, we need to assume 𝑝 > 1. We consider 𝜔 such that (4)-(5) hold2,
and assume without loss of generality that 𝑐 = 0. We define, as in the statement,
𝑣 = 𝑢𝜒𝑄\𝜔 , and we start as in Section 4.3, with the set 𝜔∗

1 defined as before, and
recalling (10).

2 Actually, it could be the original set in Prop. 2, as well as any of the sets built later on in Prop. 3
or Prop. 4.
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We let 𝑤1 = 𝑢𝜒𝑄\𝜔∗
1

and since the set 𝜔∗
1 = (0, 1) × Π1 (𝜔∗

1), one may check
that the distributional derivative 𝜕1𝑤1 is in fact (𝜕1𝑢)𝜒𝑄\𝜔∗

1
∈ 𝐿 𝑝 (𝑄). In particular,

𝜕1 (𝜑 ∗ 𝑤1) = 𝜑 ∗ 𝜕1𝑤1 = 𝜑 ∗ ((𝜕1𝑢)𝜒𝑄\𝜔∗
1
) in 𝑄′ := (1/4, 3/4)𝑑 . We decompose:

𝜕1 (𝜑 ∗ 𝑣) − 𝜑 ∗ (𝜕1𝑢) = 𝜕1𝜑 ∗ (𝑣 − 𝑤1) + 𝜑 ∗ (𝜕1𝑤1 − 𝜕1𝑢)

and we estimate both parts. We write

∥𝜑 ∗ (𝜕1𝑤1 − 𝜕1𝑢)∥ 𝑝 ≤ ∥𝜑∥ 𝑝
ˆ
𝜔∗

1

|𝜕1𝑢 |𝑑𝑥 ≤ 𝐶 |𝜔∗
1 |

1− 1
𝑝 ∥∇𝑢∥ 𝑝

(where now the constant 𝐶 depends on 𝑑, 𝑝 and ∥𝜑∥ 𝑝). Similarly,

∥𝜕1𝜑 ∗ (𝑣 − 𝑤1)∥ 𝑝 ≤ ∥𝜕1𝜑∥ 𝑝
ˆ
𝑄

|𝑢 | |𝜒𝑄\𝜔 − 𝜒𝑄\𝜔∗
1
|𝑑𝑥

= ∥𝜕1𝜑∥ 𝑝
ˆ
𝑄

|𝑢 | (𝜒𝜔∗
1\𝜔

+ 𝜒𝜔\𝜔∗
1
)𝑑𝑥.

Then, ˆ
𝑄

|𝑢 |𝜒𝜔∗
1\𝜔

𝑑𝑥 ≤ |𝜔∗
1 |

1− 1
𝑝 ∥𝑢∥𝐿𝑝 (𝑄\𝜔) ≤ 𝐶 |𝜔∗

1 |
1− 1

𝑝 ∥∇𝑢∥ 𝑝 ,

while thanks to (10),
ˆ
𝑄

|𝑢 |𝜒𝜔\𝜔∗
1
≤ 𝐶 |𝜔 |1−

1
𝑝 ∥∇𝑢∥ 𝑝 .

We deduce:

∥𝜕1 (𝜑 ∗ 𝑣) − 𝜑 ∗ (𝜕1𝑢)∥ 𝑝 ≤ 𝐶 ( |𝜔∗
1 |

1− 1
𝑝 + |𝜔|1−

1
𝑝 )∥∇𝑢∥ 𝑝 ≤ 𝐶H 𝑑−1 (𝐾)1− 1

𝑝 ∥∇𝑢∥ 𝑝
(12)

for a constant 𝐶 which now depends on 𝑑, 𝑝, ∥𝜑∥ 𝑝 and ∥∇𝜑∥ 𝑝 . We have shown:

Proposition 5 In the setting of proposition 4, in addition, if 𝑝 > 1 and 𝜑 ∈ 𝐶∞
𝑐 (𝐵1/4)

is a smooth mollifier with 𝜑𝑟 (𝑥) = 𝑟−𝑑𝜑(𝑥/𝑟), if we let 𝑣 = 𝑢𝜒𝑄\𝜔 + 𝑐𝜒𝜔 then the
smooth function 𝜑𝑟 ∗ 𝑣 obeys:

ˆ
𝑄′

|∇(𝜑𝑟 ∗ 𝑣) − 𝜑𝑟 ∗ ∇𝑢 |𝑝𝑑𝑥 ≤ 𝐶
(
H 𝑑−1 (𝐾)
𝑟𝑑−1

) 𝑝−1 ˆ
𝑄

|∇𝑢 |𝑝𝑑𝑥

where 𝑄′ = (−3𝑟/4, 3𝑟/4)𝑑; the constant 𝐶 depends only on 𝑝, 𝑑, 𝜑.

Remark 1 (Set𝜔 from Proposition 3) If we perform the previous construction starting
from the set 𝜔 built in Section 4.2, then the exponent 𝑝 − 1 above is to be replaced
with 𝑑 (𝑝 − 1)/(𝑑 − 1).
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