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Compressed Raman spectroscopy is a promising technique for fast chemical analysis. In particular, clas-
sification between species with known spectra can be performed with measures acquired through few
binary filters. Moreover, it is possible to reconstruct spectra by using enough filters. As classification and
reconstruction are competing, designing filters allowing to perform both tasks is challenging. To tackle
this problem, we propose to build optimal tradeoff filters, i.e. filters so that there exist no filters achieving
better performance both in classification and in reconstruction. With this approach, users get an overview
of reachable performance and can choose the tradeoff most fitting their application.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Spontaneous Raman scattering spectroscopy is a widely used
technique to determine the chemical composition of a sample.
However, the acquisition of a complete Raman spectrum with
a standard spectrometer can be time-consuming hence incom-
patible with the constraints of some applications, in particular
real-time analysis. This limitation is due to the low amount
of photons generated by the Raman effect and to the fact that
standard spectrometers make use of detector arrays, that are
limited by electronic noise, to acquire the entire spectrum at
once. Compressed Raman approaches have been developed
to overcome this limitation. These approaches are based on
counting the number of photons received on a small number of
detectors of high sensitivity (i.e. that are only limited by pho-
ton noise) and high acquisition rate after filtering with binary
filters designed to select the relevant frequencies of the Raman
spectrum [1]. Such binary filters can be implemented e.g. using
a digital micromirror device (DMD). It is possible to recover
all spectral information from compressed measurements under
certain conditions, e.g. when using sets of filters derived from
the Hadamard basis [2–4] or when using a sufficient number
of random filters [5–7]. However, when the spectra of sample
species are known it is no longer necessary to reconstruct the
entire spectrum in order to estimate their mixing coefficients or
to perform a classification between the different species. Binary
filters can be optimized to perform these tasks with few photons
and few measurements [3, 8–15]. In particular, classification can
be performed with a number of filters smaller than the number
of species to discriminate [14, 16]. Nevertheless, such super-
vised compressed Raman approaches may lead to erroneous

results for example if the sample contains unexpected species
or in case of calibration drifts. It is therefore important to be
able to check the actual spectra in case of doubt, in order to
diagnose a problem or to update the a priori knowledge regard-
ing the sample. Since performing additional measures is not
always possible and would slow down the acquisition, thereby
crippling the main advantage of compressed spectroscopy, it is
important that this check be performed without requiring new
measurements. In order to tackle this problem, it has been pro-
posed in [16] to change filters at each pixel rather then always
using the same binary filters optimized for classification. An
example of such an acquisition system is shown in Fig. 1. By in-
curring a small loss in classification performance, this approach
allows not only to perform classification at each pixel but also
to reconstruct encountered spectra by combining measurements
made on different pixels. This technique consists in building a
large number of filters able to perform a reliable classification
and select from this pool the combination of filters having the
best reconstruction performance. In addition, classification and
reconstruction performance are assessed using the Cramér-Rao
bound, that provides a lower bound on the variance of any un-
biased estimator, and the generalized Bhattacharyya bound [13],
that upper-bounds the probability of classification error.

The algorithm proposed in [16] achieves a tradeoff between
classification and reconstruction, but without guarantee of op-
timality. Moreover, this procedure lacks flexibility since it does
not provide the user with fine control over the tradeoff, i.e to
favor one task over the other. Indeed, other tradeoffs could
have been interesting, e.g. being able to perform better classi-
fication by incurring a tolerable loss in reconstruction quality.

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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In this article, we propose a new and general methodology to
address this multi-criteria optimization problem that relies on
an optimal tradeoff filter approach [17–19]. In the considered
setting, a combination of filters achieves an optimal tradeoff
if there exists no other filter combination that performs both
classification and reconstruction better. This corresponds to the
notion of Pareto optimality whereas the set of optimal tradeoff
filters corresponds to the Pareto frontier. We emphasize that
filters that are not part of this set are strictly suboptimal since by
definition there exists at least one other combination of filters
that has better performance in both tasks. Besides, note that it is
impossible to decide between two filter combinations achieving
optimal tradeoffs without additional constraints since if one of
them is better at one task then it is worse in the other. Hence
filters should only be chosen amongst optimal tradeoff filters,
e.g. distinguishing them by taking into account user-specific
considerations such as a minimum targeted performance. More-
over, this methodology enables to fully characterize achievable
classification / reconstruction performance, as we show on some
examples below.

Sample

Pixel w

Laser

D1n(w)
1

D2n(w)
2

=
F(w)

1

F(w)
2

Fig. 1. Diagram of the acquisition system with P = 2 lossless
and orthogonal filters applied in parallel.

2. COMPRESSED CLASSIFICATION AND SPECTRUM
RECONSTRUCTION

We consider the same compressed Raman acquisition scheme as
in [16] (see Fig. 1). On each pixel the Raman scattering radiation
is measured through P lossless orthogonal binary filters (LOBF)
applied in parallel [11, 20]. The set of filters used at pixel w is

F(w) = (F(w)
1 , . . . , F(w)

P ) where F(w)
m = (F(w)

m (1), . . . , F(w)
m (K))T

is the mth filter of the set, P the number of filters, K the num-
ber of frequency bins and T the transpose. F(w)

m (k) ∈ {0, 1} is
the binary filtering coefficient applied on the frequency range
[νk − δν/2, νk + δν/2]. We assume that νk+1 − νk > δν, i.e. fre-
quency bins are non-overlapping. Each of the filters is associated
with a photon-counting detector Dm that is only limited by pho-
ton noise and with negligible electronic or readout noise [12].
Since filters are lossless and orthogonal, ∑P

m=1 F(w)
m (k) = 1, i.e. at

pixel w, for each frequency bin k, there exists one and only one fil-
ter m0 among the P filters so that Fm0

(k) = 1, and thus Fm(k) = 0

for m 6= m0 (see Fig. 1). This means that the photons in the kth

frequency bin are all redirected to the same detector (orthog-
onal filters), and cannot be redirected toward a rejection path
(lossless filters1). We denote the number of photons received

1 Note that in this paper, the term ’lossless’ does not refer to the optical ef-
ficiency of the filters. We consider that optical losses due to acquisition system
imperfections are directly embedded in the radiation intensity and the Raman
spectrum.

on Dm at pixel w through F(w)
m by n(w)

m . Let S = (S1, . . . , SK)
T

be the normalized Raman spectrum appearing at pixel w (i.e.
∑K

k=1 Sk = 1). Sk corresponds to the average proportion of Ra-
man scattering photons emitted in [νk − δν/2, νk + δν/2]. Let
τ(w) be the acquisition time at pixel w and γ(w) be the radiation
intensity at w before filtering. The average number of photons
measured by Dm at w then writes

〈n(w)
m 〉 = τ(w)γ(w)F(w)

m · S (1)

where 〈 〉 is the statistical mean and · is the dot product. If
a photon emitted by a species with a spectrum S is detected
when performing measurements at pixel w, the probability that
it is detected by Dm is p(w)

m = 〈n(w)
m 〉/ ∑P

p=1〈n(w)
p 〉 = F(w)

m · S.
Acquisition is stopped when the total number of detected pho-
tons reaches N, i.e. when ∑P

m=1 n(w)
m = N. Fixing N rather

than τ(w) allows performance to be independent of γ(w) [14, 16].
Indeed, with this contraint, the measurement vector n(w) =

(n(w)
1 , . . . , n(w)

P ) is distributed according to

P(n(w) | S, w) = N!
P

∏
m=1

(
p(w)

m

)n(w)
m

n(w)
m !

. (2)

Assuming that the spectra of the M species appearing in the
sample are known, it is possible to discriminate between them,
even if P < M [14]. If all species have the same probability to be
observed at each pixel, the classifier minimizing the probability
of classification error writes

û(w)
opt = argmax

u

P

∑
m=1

n(w)
m log p(w,u)

m (3)

where p(w,u)
m is the probability p(w)

m corresponding to the spec-
trum S(u) of the species u. Its probability of error P(ε(w)) is
upper bounded by a generalized Bhattacharyya bound B(w) [14]

P(ε(w)) ≤ B(w) =
1
M ∑

u
∑

v>u

(
P

∑
m=1

√
p(w,u)

m p(w,v)
m

)N

. (4)

As shown in [13, 14] minimizing this bound yields filter sets that
allow one to discriminate between species reliably.

Conversely, reconstructing an unknown spectrum of size
K > P cannot be done using only the P measurements made
with a single LOBF set without additional information. However,
such a reconstruction can be performed from measures acquired
from multiple pixels as soon as the corresponding combination
of filter sets is a generating family of normalized spectra in R

K .
This implies that the minimum number of LOBF sets necessary
to carry out reconstruction is Wmin = d K−1

P−1 e. When P = 2
it is, for example, possible to use filter sets derived from the
Hadamard S-matrix [2]. One can evaluate the reconstruction
performance of a combination of filter sets using its Cramér-Rao
bound (CRB). Indeed the CRB lower bounds the variance of any
unbiased estimator [21]. Let σ2

k be the variance of any unbiased
estimator of Sk; then

σ2
k ≥ [Υ]k,k = [I−1

F ]k,k ∀k ∈ J1, K− 1K (5)

where Υ is the Cramér-Rao matrix, IF is the Fisher information
matrix (FIM) defined as [IF]k,l = −〈∂Sk

∂Sl
`〉with k, l ∈ J1, K− 1K



Research Article Journal of the Optical Society of America A 3

and ` = ∑W
w=1 logP(n(w)|S, w) the log-likelihood. Note that

k, l ∈ J1, K − 1K because S is normalized. From Eq. (2) we get
[16]

[IF]k,l =
W

∑
w=1

N
P

∑
m=1

δF(w)
m (k) δF(w)

m (l)

F(w)
m · S

(6)

where δFm(k) = Fm(k)− Fm(K). The trace of the CRB matrix
Tr Υ = ∑K−1

k=1 [Υ]k,k then provides a convenient criterion that can
be used to select a combination of filter sets able to perform
accurate reconstructions. In the following, since the spectrum
to be estimated is unknown, we compute the CRB for the flat
spectrum Sflat

k = 1/K ∀k [16], but other solutions could be con-
sidered when information about the spectra to be reconstructed
is available.

3. OPTIMAL TRADEOFF FILTERS

To extend the technique presented in [16], we are looking for op-
timal combinations of filters able to perform both classification
and reconstruction. As explained above, supervised classifica-
tion can be carried out from measurements made with a single
set of filters F(w). The classification performance of such a set can
be measured with its Bhattacharyya bound B(w) (see Eq. (4)). We
choose to assess the classification performance of a combination
of filters F = {F(1), . . . , F(W)} (where W is the number of filter
sets) with its average Bhattacharyya bound B = 1

W ∑W
w=1 B(w).

On the other hand spectrum reconstruction can only be carried
out from measurements made with a sufficient diversity of filter
sets. We assess the reconstruction performance of a combination
of filter sets F with the trace of its CRB matrix Tr Υ.

Since B and Tr Υ are competing one cannot minimize them
simultaneously. A possibility to obtain sets of filters tailored
for both tasks is to build a large pool of distinct sets able to
perform classification reliably and then select the W sets of this
pool leading to the best reconstruction performance [16]. How-
ever, a more general approach to this multi-criteria optimization
problem exists, based on optimal tradeoff (OT) filters [17, 18].

F achieves an optimal tradeoff if no other filter combination
performs uniformly better. Writing Fopt the set of OT filters,

F ∈ Fopt ⇔ ∀F ′


B(F ′) ≥ B(F)

and/or
Tr Υ(F ′) ≥ Tr Υ(F).

(7)

In this article we look for OT filters amongst all combinations of
filters comprising W LOBF sets of P filters. Any combination of
filters that does not belong to the set of optimal tradeoff filters
has at least one counterpart in Fopt that performs every task
better.

This is illustrated in Fig. 2. The set of OT filters (blue dia-
monds) is located on the lower left edge of the set of reachable
criteria, which appears as a blue curve. Points A and B cor-
respond to optimal tradeoff filters, whereas C does not. C is
obviously non-optimal because some points such as B are lo-
cated at its bottom left hence perform uniformly better. It is
impossible to decide between A and B on the basis of this graph.
Indeed, A has better reconstruction performance than B but
poorer classification performance.

The problem to test every combinations of filters including W
sets of P filters of size K for optimality proved to be intractable
in the considered setups. Rather, we follow [17] and look for OT

A

B

C

Tr Υ (log scale)

B
(l

og
sc

al
e)

Non-optimal filters
OT filters
OT filters minimizing Ψ

Fig. 2. Sketch of optimal tradeoff filters. The red area is the set of
reachable criteria. Its interior corresponds to non-optimal filters.
Its lower left edge (blue curve) corresponds to optimal tradeoff
filters i.e. combinations of filters so that no other filter combi-
nation performs uniformly better. The green circles correspond
to combinations of filters minimizing Ψ, which belong to the
convex envelope of the set of OT filters.

filters minimizing the convex combination

Ψ(λ, F) = (1− λ) log Tr Υ(F) + λ logB(F). (8)

It can be easily proved that combinations of filters minimizing
Ψ(λ, F) are part of Fopt. However, the converse is not true, i.e it
is possible that some optimal tradeoff filters do not correspond
to any global minimum of Ψ. Indeed, the set of all filter combina-
tions minimizing Ψ(λ, F) for λ ∈ [0, 1] is located on the convex
hull of the set of reachable criteria in the space (log Tr Υ, logB)
(see appendix A). Fig. 2 shows a typical example of the difference
between the OT filters (in blue) and the set of filter combinations
minimizing Ψ (green circles). The convex hull appears as a dot-
ted green curve, abusively called optimal tradeoff curve in the
following. Although it is not possible to reach all OT filters by
minimizing Ψ, minimization of this criterion usually yields a
wide range of optimal tradeoff filters.

Minimizing Ψ(λ, F) is a challenging optimization problem
owing to its non-convexity with respect to the filters F, and the
constraint F(w)

m (k) ∈ {0, 1}. To tackle this problem we developed
an optimization algorithm based on testing many successive
random modifications from some starting filter combinations,
the modifications being accepted only if they decrease Ψ(λ, F)
(see section B for details). Note that although such a computation
is time-consuming it only has to be performed once, before
acquisitions. The experiments of this article have been carried
out with a procedure that should allow the discussion to be
disturbed as little as possible by numerical issues. It outputs an
optimal tradeoff curve in a few hours. In practice, it is possible to
obtain a reasonable set of operating points in a matter of minutes
using a lighter procedure (see section B).

4. EXAMPLES

In this section we illustrate the optimal tradeoff filters ap-
proach on a few examples. Considered spectra comprise

K = 128 components and are randomly generated as S(u)
k =
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(X(u)
k )α/ ∑K

l=1(X(u)
l )α where X(u)

k follows the exponential distri-
bution with unit mean [13]. Here α is a "spikiness" parameter. If
α = 1 it is equivalent to draw S(u) uniformly from the simplex
of normalized spectra.

We first consider the case of the classification between M = 3
species whose spectra, drawn with α = 1, are displayed on Fig. 3.
In this example, it is assumed that only P = 2 detectors are
used, which corresponds to the simplest situation to implement
experimentally, and that N = 250 photons are acquired on each
pixel. Moreover, the number of filter sets W is fixed to Wmin =
127, which corresponds to the size of the smallest region in which
it is possible to reconstruct a spectrum [16]. Fig. 4 shows the
optimal tradeoff curve computed using the algorithm of section
B (blue curve). The W LOBF sets derived from the Hadamard
S-matrix [2] also appear in the diagram (orange triangle). This
combination of filter sets seems to minimize Ψ(λ = 0, F) and
thus has the best reconstruction performance of the curve, with
Tr Υ = 3.9× 10−3. On the other hand, it also has the poorest
classification performance. To compare with a simple baseline,
points corresponding to 103 random LOBF set combinations are
also shown on this graph (green disks). None of them are close to
the optimal tradeoff curve, and they all have poor classification
performance. The yellow crossed circle represents the W LOBF
sets generated using the algorithm proposed in [16]. Although
it is close to the optimal tradeoff curve it is not optimal. The red
dashed horizontal line corresponds to the value of B when using
W times the same set of P = 2 filters optimized as proposed
in [14]. The OT filters corresponding to the lower part of the
curve have a slightly higher B but allow reconstruction to be
performed, which is not possible with a unique LOBF set when
P < K.

It seems obvious that it is not relevant to optimize only one
or the other criteria when aiming to realize both tasks, hence
the interest of optimal tradeoff filters. The shape of the op-
timal tradeoff curve confirms this intuition. First, the lower
part of the curve is nearly horizontal. This means that there
are optimal tradeoff filters that allow for more accurate recon-
struction than the one minimizing Ψ(λ = 1, F) while having
almost the same classification performance. For example, from
λ = 1 to λ = 0.75 the trace of the CRB matrix varies from 96 to
0.1 whereas the average Bhattacharyya bound only varies from
2.4× 10−4 to 2.9× 10−4. This loss of classification performance
can be compensated by increasing N by only a factor of 1.02.
Conversely, since Tr Υ is inversely proportional to N, it would
take N = 960× 250 = 2.4× 104 detected photons for the OT
filters minimizing Ψ(λ=1, F) to have the same reconstruction
performance as the one minimizing Ψ(λ=0.75, F). The left part
of the curve is steep, but not vertical. Nevertheless, a signifi-
cant improvement of classification reliability compared to the
topmost point can be achieved with a limited loss of reconstruc-
tion performance. In fact, from λ = 0 to λ = 0.5 the average
Bhattacharyya bound varies from 0.73 to 1.3× 10−3 whereas
the trace of the CRB matrix varies from 3.9× 10−3 to 1.7× 10−2.
This loss of reconstruction performance can be counterbalanced
by multiplying N by 4.3. On the other hand it would take more
than 2.5× 106 photons to the set minimizing Ψ(λ=0, F) to per-
form as well in classification as the one minimizing Ψ(λ=0.5, F).
Hence it can be interesting to select OT filters located in the bend
of the optimal tradeoff curve rather than close to its extremes.

We then consider the case of different triplets of spectra, each
randomly drawn with different values of α. Fig. 5 shows the
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Fig. 3. Spectra to classify for the experiment of Fig. 4, randomly
generated with α = 1 (see text for details) and K = 128. Second
column zooms over the frequency range highlighted in red.
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Random sets
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Fig. 4. Optimal tradeoff curve for W = 127 LOBF sets of P = 2
filters when N = 250 photons are detected on each pixel and for
M = 3 species to discriminate. The spectra of these 3 species,
generated with α = 1 and K = 128, are shown in Fig. 3. The
filter sets derived from the Hadamard S-matrix [2] and those
generated as in [16] also appear on the graph. Bottom red line
represents the B(w) value of an LOBF set optimized as in [14].
Green disks correspond to 103 random combinations of filters.

M = 3 spectra generated with α = 0.5 (top), α = 1 (middle)
and α = 2 (bottom). Fig. 6 presents the optimal tradeoff curves
computed for these spectra and, as before, combinations of fil-
ters comprising Wmin = 127 LOBF sets having P = 2 filters
when there are N = 250 detected photons per pixel. Note that
as the M = 3 spectra randomly generated for α = 1 are different
realizations in Fig. 4 and in Fig. 6 (blue curve), the optimized
filters and the OT curves are also different. It appears clearly
by comparing the position of the curves that the larger α is, the
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Fig. 5. Spectra to classify generated with different values of α
for the experiment of Fig. 6 (K = 128). Second column zooms
over the frequency range highlighted in red in the same row,
first column.
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Fig. 6. Optimal tradeoff curves computed for discrimination
between M = 3 spectra generated with different α and shown
on Fig. 5. Results obtained for W = 127 LOBF sets of P = 2
filters when N = 250 photons are detected on each pixel.

easier spectra are to discriminate. In fact the lowest B value
reached with α = 0.5 is 1.7× 10−2 whereas it is 1.4× 10−4 for
α = 1 and 9.8× 10−9 for α = 2. One can also note that the three
curves almost begin from the same point. This is because Ψ(λ, F)
no more depends on B when λ = 0, hence the OT filters mini-
mizing Ψ(λ=0, F) do not depend on α. Furthermore, as in the
previous case, the lower part of each curve is almost flat. Thus,
in this example, it is possible to obtain better reconstruction per-
formance than with the OT filters minimizing Ψ(λ=1, F) while
having nearly the same classification performance. Conversely,
the steepness of the left part of the optimal tradeoff curve de-
pends on α, hence extra care has to be taken when analyzing
the case of the OT filters minimizing Ψ(λ=0, F). Nonetheless,

we emphasize that it is necessary in any case to go through the
analysis of the optimal tradeoff curve to see which operating
points are available for a given application. Such an analysis
almost always leads to improved performance compared to the
case where only one of the two criteria is optimized.

The third analyzed example is a more challenging case with
M = 5 species to discriminate. The spectrum of each of these
species is uniformly generated on the simplex of normalized
spectra (i.e. with α = 1). Fig. 7 shows the corresponding optimal
tradeoff curves. The uppermost optimal tradeoff curve was com-
puted for filter set combinations having the same parameters
as before (W = 127, P = 2), for the same number of detected
photons (N = 250) (see blue curve). While a variation of B
values of ∼ 4 orders of magnitude could be observed between
λ = 0 and λ = 1 in Fig. 4 for M = 3 species, there is only a
variation of ∼ 1 order of magnitude for M = 5 although spectra
have still been generated with α = 1. This curve also shows
that such combination of filter sets have poor classification per-
formance even when only the mean Bhattacharyya bound is
optimized, i.e for λ = 1. In fact, B stays above 0.1 all along
the curve. Such performance can be not sufficient for some ap-
plications. To tackle this problem one possibility is to increase
the number of detected photons N that triggers acquisition stop.
The optimal tradeoff curve for combinations of filters having the
same settings but with N = 500 appears in Fig. 7 as a light-green
curve. Classification performance are greatly improved compar-
ing to previous setup as it becomes possible to reach B values
around 10−2 while having reconstruction performance for which
B was about 0.1 when N = 250 (on the blue curve). However,
doubling the number of detected photons implies doubling the
mean measuring time. Another possibility that does not increase
the acquisition time is to increase P, i.e. increase the number of
parallel measurements per pixel.

The dark-green curve of Fig. 7 is the optimal tradeoff curve
drawn for combinations of filters including W = 127 sets of
filters having (unlike before) P = 3 filters, when the number of
photons detected per pixel is N = 250. With this configuration
B values lower than 10−4 can be achieved for Tr Υ values for
which the B was about 10−2 when N = 500 and P = 2 (on
the light green curve). Hence, although using 3 filters (hence
3 detectors) instead of 2 significantly complexifies the imaging
system it can be interesting due to the significant performance
gain that results. One can also note that there exist some OT
filters having P = 3 filters that perform uniformly better than
any combination of filter sets having P = 2 filters for N = 250
(see red rectangle in Fig. 7).

5. CONCLUSION

In this article we propose to use the optimal tradeoff filters ap-
proach to build binary filters able to perform both classification
and spectrum reconstruction in a compressed Raman setup. To
build these filters we minimize a convex combination of the two
criteria assessing filters performance, namely the generalized
Bhattacharyya bound and the trace of the Cramér-Rao bound.
This allows us to find filters on the convex hull of the set of
optimal tradeoff filters, amongst which the user has to choose.
Another interest of drawing the optimal tradeoff curve is to get
an overview of reachable criteria for given parameters and to
measure the impact of their modification on performance. Such
an approach hence provides appropriate tools for building and
choosing the filter set combination to use for measurements.

One straightforward perspective is to implement the ap-



Research Article Journal of the Optical Society of America A 6

10−4 10−3 10−2 10−1 100 101 102 103 104

10−4

10−3

10−2

10−1

100

λ = 0

λ = 0.5

λ = 0.5

λ = 0.5

λ = 1

λ = 1

λ = 1

Tr Υ

B
OT filters for P = 2 N = 250
OT filters for P = 2 N = 500
OT filters for P = 3 N = 250

Fig. 7. Optimal tradeoff curves optimized for discrimination
between M = 5 spectra generated with α = 1 and K = 128.
Results obtained for W = 127 LOBF sets of P = 2 or P =
3 filters when N = 250 or 500 photons are detected on each
pixel. Optimal tradeoff filters inside the red rectangle perform
uniformly better than any combination of filters of the curve
drawn for P = 2, N = 250.

proach on a real experimental setup. Since performing both
classification and reconstruction opens up the possibility to ques-
tion or update the a priori knowledge regarding the sample, the
development of corresponding methods also seems a logical
continuation of this work. In particular, the next challenge is to
investigate the best way to incorporate a null class during the
classification process - i.e. a class for spectra that are distinct
from the references. Binary filters are widely used as they can
be easily implemented using a digital micromirror device. It
would nevertheless be interesting to extend the analysis to non-
binary filters. It would also allow to quantitatively analyze the
impact of filter binarity on performance. Moreover, in this paper,
we only considered the case of classification, i.e. it is assumed
that each pixel contains a single species. The generalization of
the proposed approach to a mixture of species is thus another
challenge.

A. CONVEXITY OF THE OPTIMAL TRADEOFF CURVE

The optimal tradeoff curve corresponds to the combinations of
filters minimizing Ψ(λ, F) for λ ∈ [0, 1]. In this section we show
that this curve is located on the convex hull of the set of reachable
criteria in the space (log Tr Υ, logB). Let Fλ = argminF Ψ(λ, F).
Let also F and F ′ be so that log Tr Υ(F) ≤ log Tr Υ(Fλ) ≤
log Tr Υ(F ′). Then, there exists µ ∈ [0, 1] such that

log Tr Υ(Fλ) = µ log Tr Υ(F) + (1− µ) log Tr Υ(F ′). (9)

Moreover, by definition

Ψ(λ, Fλ) ≤ Ψ(λ, F) and Ψ(λ, Fλ) ≤ Ψ(λ, F ′)

thus
Ψ(λ, Fλ) ≤ µΨ(λ, F) + (1− µ)Ψ(λ, F ′).

Using Eq. (9) we have

(1− λ) log Tr Υ(Fλ) + λ logB(Fλ)

≤ (1− λ) log Tr Υ(Fλ) + λ(µ logB(F) + (1− µ) logB(F ′)),

hence,

logB(Fλ) ≤ µ logB(F) + (1− µ) logB(F ′)

i.e. the optimal tradeoff curve is located on the convex hull of
the set of reachable criteria in the space (log Tr Υ, logB).

B. OPTIMIZATION ALGORITHM

This section provides details about the algorithm used to draw
the optimal tradeoff curve. By definition, this means finding the
combinations of filters comprising W LOBF sets of P filters that
minimize Ψ(λ, F) = (1 − λ) log Tr Υ + λ logB for λ in [0, 1].
This criterion is non-convex with respect to filters. Moreover,
the set of all binary filters is discrete. Our algorithm is based
on successive random modifications of combinations of LOBF
sets, accepted only when they decrease the criterion. In order
to explore a reasonable part of the filters space in a reasonable
amount of time, efforts has been made to speed up criterion
computation. In the following we start with a detailed descrip-
tion of the algorithm, and leave criterion computation matters
to section C.

The following procedure is applied at fixed λ. The algo-
rithm is given an initial combination of filters. Each step con-
sists in testing one random modification of the current filter set
combination. First, a set index w and a frequency bin index
k are drawn uniformly from available indices. A new vector

(F(w)
1 (k), . . . , F(w)

P (k)) is then uniformly drawn from authorized
values. If it strictly increases the value of Ψ(λ, F) for the cur-
rent λ the change is rejected and it is forbidden to try it again.
Because we are only looking for filters able to perform both clas-
sification and estimation, the Fisher information matrix has to
remain invertible after each modification. Hence a change is also
rejected (and forbidden) if the resulting filter set combination
has a singular FIM. Note that this contraint is even applied when
λ = 1, i.e. when only the mean Bhattacharyya bound is opti-
mized. If the modification decreases the criterion and preserves
FIM invertibility it is accepted and the list of forbidden changes
is reset. The algorithm stops either when it reaches the maxi-
mum number of iterations or because any possible modification
increases the criterion.

In order to explore more space and to be less susceptible to lo-
cal minima, the whole process is repeated from multiple starting
points for each λ. Only the trial resulting in the minimum value
of Ψ(λ, F) is kept. Moreover since trials do not depend on each
other it is possible to run them in parallel on multiple CPU cores.
For the experiments presented in this article we use 16 starting
points for each value of λ. Twelve of these starting points are
constituted of W random LOBF sets uniformly drawn for each
λ until their FIM becomes invertible (which is usually the case
within few draws). If P = 2 the 13th starting point is constituted
of filters derived of the Hadamard S-matrix [2] (else it is also
random). The 14th is constituted of filters optimized with the
algorithm described in [16], except that selection is done in order
to minimize B and not Tr Υ (but still enforcing FIM invertibility).
This point is usually located next to the end of the optimal trade-
off curve, and is common to all λ. The two last starting points
are filter set combinations optimized by the algorithm for the
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two values of λ neighbouring the current one (if available, else
they are random).

The choice of λ values is not straightforward. In fact the
relationship between their localization in [0, 1] and the local-
ization of the operating points found by the algorithm in the
(log Tr Υ, logB) space is difficult to anticipate. Moreover, as
can be seen in section 4, the two criteria can vary of orders of
magnitude along the curve. This means that great variations of
their relative values occur within optimization. We observed
that applying the logarithm on both criteria mitigates this prob-
lem, usually leading to a better sampling of the curve. With
Ψ(λ, F) comprising logarithms as in Eq. (8) a linear slicing of
[0, 1] is generally sufficient to obtain reasonably well distributed
operating points. It is nonetheless possible to improve curve
sampling by using a dynamic λ range. The experiments shown
in section 4 implement the following heuristic. The first two λ
values are 0 and 1. Let Fλ1

and Fλ2
be the OT filters found by the

algorithm that are the furthest apart in the sense of the 2-norm
in the (log Tr Υ, logB) plane. Then, the next λ value used by the
algorithm is (λ1 + λ2)/2.

Computing the curve of Fig. 4 took few hours. All trials
ran in parallel and there was no limitation over the maximum
number of iterations, in order for the results presented in this
article not to be disturbed too much by numerical issues. In
practice, it is possible to reduce computation time by limiting
the number of iterations or the number of trials. Fig. 8 compares
the curve of Fig. 4 with another curve obtained for the same
example with a lighter optimization procedure. This procedure
comprises a unique trial, starting for each λ from last optimized
sets. Hence the corresponding optimal tradeoff curve is drawn
iteratively. The number of iterations is limited to 104 and λ
values are linearly distributed between 0 and 1 with a step size
of 2.5 × 10−2. With such restrictions the computing time is
approximately 5 minutes per curve. The procedure is applied
twice, from two different starting points, namely the filter sets
derived from the Hadamard basis and the sets optimized in
terms of B with the variation of the algorithm of [16]. The curve
appearing in light green in Fig. 8 is the convex hull of these
two curves in the (log Tr Υ, logB) space. In this example, using
operating points from this curve rather than the curve obtained
with the full optimization procedure only leads to a limited
loss of performance. Nonetheless, one should note that there
is no guarantee that the performance loss be limited in general.
However considering the extreme reduction in computing time,
it is interesting to compute this suboptimal curve beforehand in
order to have a first set of reasonable operating points.

C. FAST COMPUTATION OF THE CRITERIA

The algorithm presented in section B is based on testing a large
number of successive random modifications of LOBF sets. In the
simulations appearing in this article for P = 2, K = 128 and W =
127 the mean number of iterations necessary for the algorithm
to converge is about 5× 105 per trial. Moreover, increasing P or
K greatly raises the number of iterations before converging. It is
then critically important to compute criteria quickly.

Recall that B = 1
W ∑W

w=1 B(w) with B(w) depending only on

F(w). Since filter sets are modified one at a time, it is possible to
re-compute only one of the W terms of this sum at each step of
the algorithm. Even if it is also the case for the FIM, one has to
invert it at each step to get the Cramér-Rao matrix. Given the
fact that this matrix is of size (K − 1)× (K − 1) this operation

10−2 10−1 100 101 102

10−3

10−2

10−1

100

Tr Υ

B
Full optimization
Fast optimization
Hadamard basis
B-optimized sets

Fig. 8. Optimal tradeoff curves for K = 128, P = 2, M = 3
and N = 250. The curve labelled "full optimization" was drawn
with the standard optimization procedure. The other curve
was generated with a simplified procedure, in particular with a
maximum of 104 iterations.

is a clear computational bottleneck. Let I(t)F be the FIM at the

end of the tth step of the algorithm. It is possible to write I(t)F as

a function of I(t−1)
F such that it is possible to take advantage of

the Woodbury matrix identity to reduce the cost of computing
the CRB. This identity states in particular that if A, B, U, V
are matrices of the right size and if A, B and A + UB−1V are
invertible then[

A + UB−1V
]−1

= A−1 − A−1U
[

B + VA−1U
]−1

VA−1.

Let v and ` respectively be the index of the set and of the fre-
quency bin modified in step t. Recall that step t consists in draw-

ing a new value of (F(v)
1 (`), . . . , F(v)

P (`)). Since filters are lossless

and orthogonal there is a unique m for which F(w)
m (k) = 1 hence

there are only two filter coefficients F(v)
i (k) and F(v)

j (k) that are
modified within step t. Since

[IF]k,l =
W

∑
w=1

N
P

∑
m=1

δF(w)
m (k) δF(w)

m (l)

F(w)
m · S

we have[
I(t)F

]
k,l

=
[

I(t−1)
F

]
k,l

+ ∑
m∈{i, j}

[
N δF(v,t)

m (k) δF(v,t)
m (l)

F(v,t)
m · S

−N δF(v,t−1)
m (k) δF(v,t−1)

m (l)

F(v,t−1)
m · S

]
.

It is then possible to write

I(t)F = I(t−1)
F + Ut B−1

t UT
t

with

Ut =
(

δF(v,t)
i | δF(v,t)

j | δF(v,t−1)
i | δF(v,t−1)

j

)
Bt =

1
N

Diag
(

F(v,t)
i · S, F(v,t)

j · S, −F(v,t−1)
i · S, −F(v,t−1)

j · S
)

,
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where (A|B) is the concatenation of A and B and Diag(A) is the
diagonal matrix whose diagonal values are the elements of the
vector A. Hence the CRB matrix can be written as

Υ
(t) = Υ

(t−1)−[
Υ
(t−1)Ut

] [
Bt + UT

t Υ
(t−1)Ut

]−1 [
UT

t Υ
(t−1)

]
,

which only requires to invert a 4× 4 matrix. Moreover,

Tr Υ
(t) = Tr Υ

(t−1)+

Tr
([

Bt + UT
t Υ

(t−1)Ut

]−1 [
UT

t Υ
(t−1)

] [
Υ
(t−1)Ut

])
,

which is even faster owing to the new order of matrix products.
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