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Abstract

Optimality conditions for optimal control problems arising in network modeling
are discussed. We confine ourselves to the steady state network models. Therefore,
we consider only control systems described by ordinary differential equations.
First, we derive optimality conditions for the nonlinear problem for a single beam.
These conditions are formulated in terms of the local Pontryagin maximum prin-
ciple and the matrix Riccati equation. Then the optimality conditions for the
control problem for networks posed on an arbitrary planar graph are discussed.
This problem has a set of independent variables xi varying on their intervals
[0, li] associated with the corresponding beams at network edges. The lengths
li of intervals are not specified and must be determined. So, the optimization
problem is non-standard, it is a combination of control and design of networks.
However, using a linear change of the independent variables, it can be reduced
to a standard one, and we show this. Two simple numerical examples for the
single-beam problem are presented.

Keywords: Network, optimal control problem, weak local minimum, Pontryagin’s
maximum principle, critical cone, quadratic form, second order optimality conditions,
Riccati equation.
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1 Introduction

1.1 Motivation

We are interested in the optimum design of optimal control systems for networks. We
restrict ourselves to the steady state nonlinear network models. First, a single element
is considered. Then, a network with the star graph is studied. The geometric domain
for the network is a star graph for the sake of simplicity.

Optimization problems for steady state models are important for networks that
enjoy some specific features of control problems. Roughly speaking, the control strat-
egy with long time horizons includes two parts. The first part is an exact controllability
problem for the first time interval to some steady state solution followed by the sta-
bilization of the steady state solution. The cost is chosen of tracking type with some
regularization components for the state and the control, if necessary to assure the
turnpike property for the control problems under studies. The steady state solution
could be selected by optimization of the steady state network model. In other words,
it turns out that for some control problems with nonlinear state equations, the so-
called turnpike property occurs. It means that optimal control and optimum design
for steady state system can be used for the evolution system in the specific case of the
cost. Therefore, our analysis of the optimality conditions is performed for the nonlin-
ear steady state models. Such an analysis can be useful for the real systems governed
by the networks of Nonlinear Partial Differential Equations. The practical examples
for our framework include e.g., the Gas and Hydrogen Distribution (GHD) Networks
[1], [2], and the Geometrically Exact Beam (GEB) Networks which lead to the Intrin-
sic Geometrically Exact Beam (IGEB) network models [3], [4]. The GHD Networks
are modeled by quasilinear hyperbolic systems. The IGEB Networks are governed by
semilinear hyperbolic systems under some assumptions on the transformation of GEB
models. The steady state equations for two types of networks are given by ODEs.

The quadratic tracking type cost depending on the specific solution to the steady
state equation is considered for the optimal control problem. The optimal control cost
is augmented by an auxiliary term depending on design, usually in a finite dimension
space, which models the cost of manufacturing the networks. We present an example
of the elastic networks governed by static GEB state equations.

1.2 Model for single beam

The networks of elastic beams are of primal importance for applications we have
in mind. Thus, we describe in details the nonlinear models of beams which lead to
semilinear state equations for static and evolution problems. The optimal steady state
can be determined by solving the control problem for static model. We are looking for
optimal control and optimum design in the framework of the systems which enjoy the
turnpike property.

The mathematical framework describing geometrically exact beams (GEB) focuses
on the position of the beam’s centerline and the orientation of its cross sections with
a fixed coordinate system denoted as {ej}3j=1 (representing the standard basis of R3).

In the GEB context, the system state is denoted as (p,R), expressed in the basis
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{ej}3j=1. This state comprises the position of the centerline, denoted as p(x, t) ∈ R3,

and the orientation of the cross sections, represented by the columns
{
bj

}3

j=1
of the

rotation matrix R(x, t) ∈ SO(3). Here, SO(3) denotes the special orthogonal group,
which comprises unitary real matrices of size 3 with a determinant equal to 1. For
visual reference, we could refer to Fig. 1. The figure illustrates three pivotal states of
a deformable beam: the unchanged reference beam; the initial beam characterized by
a curvature described as Υc = vec

(
R⊤ d

dxR
)
, where R =

[
b1 b2 b3

]
; and the beam at

time t, represented by the state variables p and R =
[
b1 b2 b3

]
.

le10 xe1e1

e3

e2

Reference

b1(x)

b3(x)

b2(x)

Before deformation

b1(x, t)

b3(x, t)

b2(x, t)
p(x, t)

At time t

Fig. 1 The straight reference beam (bottom), the beam before deformation (upper left), and the
beam at time t (upper right).

For a beam with a length l > 0 positioned within the domain (0, l) × (0, T ), the
governing system is defined as follows:[

∂t 0
(∂tp̂) ∂t

] [[
R 0
0 R

]
Mv

]
=

[[
∂x 0

(∂xp̂) ∂x

] [
R 0
0 R

]
z

]
+

[
ϕ̄
ψ̄

]
, (1)

given external forces and moments ϕ̄(x, t), ψ̄(x, t) ∈ R3, the mass matrix M(x) ∈
S6++(the set of positive definite symmetric matrices), the flexibility (or compliance)
matrix C(x) ∈ S6++ and the curvature before deformation Υc(x), where v, z depend
on (p,R) :

v =

[
R⊤∂tp

vec
(
R⊤∂tR

) ] , s =

[
R⊤∂xp− e1

vec
(
R⊤∂xR

)
− Υc

]
, z = C−1s. (2)
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Here, for any u ∈ R3, the skew-symmetric matrix û is defined as follows:

û =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 .
Consider the Intrinsic Geometrically Exact Beam (IGEB) model for a single beam.

The governing semilinear system consists of twelve equations. The state variable is
denoted as

y =

[
v
z

]
expressed on a moving basis. Here, v(x, t) ∈ R6 represents linear and angular velocities,
and z(x, t) ∈ R6 represents internal forces and moments. We use vf , zf , vl, and zl
to denote the first and last three components of v and z respectively. The notation
Φ̄(x, t) and Ψ̄(x, t) ∈ R3 is employed for external forces and moments expressed in the
moving basis. Within the domain (0, l) × (0, T ), the governing system of IGEB reads:

[
M 0
0 C

]
∂ty −

[
0 I6
I6 0

]
∂xy −Ay = −B(v, z)

[
Mv
Cz

]
+


Φ̄
Ψ̄
0
0

 , (3)

where

A =


0 0 Υ̂c 0

0 0 ê1 Υ̂c

Υ̂c ê1 0 0

0 Υ̂c 0 0

 , B(v, z) =


v̂l 0 0 ẑf
v̂f v̂l ẑf ẑl
0 0 v̂l v̂f
0 0 0 v̂l

 , (4)

and I6 is the identity matrix with the size 6× 6. The system (3) is semilinear because
of the presence on the right-hand side of the quadratic terms

(v, z) 7→ B(v, z)

[
Mv
Cz

]
.

We introduce the matrix E(x) ∈ R6×6, which contains information about curvature
and twist at rest, and the matrix QP(x) ∈ S12++, defined by

E =

[
Υ̂c 0

ê1 Υ̂c

]
, QP = diag(M,C).
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We present in a simple example, that of a single beam clamped at x = 0 and controlled
via velocity free at x = l. The IGEB system with boundary conditions reads

∂ty + Ā(x)∂xy + B̄(x)y = ḡ(x, y) in (0, l) × (0, T )

v(0, t) = 0 for t ∈ (0, T )

z(l, t) = 0 for t ∈ (0, T )

y(x, 0) = y0(x) for x ∈ (0, l)

(5)

where the coefficients Ā, B̄ and the source ḡ depend on M,C and R, and y0(x) is
the initial velocity. The governing system is derived by left-multiplying Eq. (3) by the
inverse of QP . Specifically, the functions Ā(x) and B̄(x) are defined over the interval
[0, l] and map to R12×12,

Ā = −
(
QP)−1

[
0 I6
I6 0

]
, B̄ =

(
QP)−1

[
0 −E
E⊤ 0

]
. (6)

The function ḡ : [0, l] × R12 → R12 is defined by

ḡ(x, u) = QP(x)−1G(u)QP(x)u

for all x ∈ [0, l] and u =
(
u⊤1 , u

⊤
2 , u

⊤
3 , u

⊤
4

)⊤ ∈ R12 with each uj ∈ R3, where the map

G is defined by

G(u) = −


û2 0 0 û3
û1 û2 û3 û4
0 0 û2 û1
0 0 0 û2

 .
For the static problem, the nonlinear transformation results in v = 0. Denote L(z) :=[

0 ẑf
ẑf ẑl

]
and we have a steady state system:


−∂xz = E(x)z − L(z)Cz +


f(x)

0
...

0

 in (0, l)

z(l) = 0

(7)

where f(x) is control.
Remark 1 We are going to present numerical examples for the evolution state
equation in a separate paper. We are interested in the steady state models as well as
dynamic models. The framework and the analysis of optimization problems for the
steady state models are presented in the paper. The steady state problems for one edge
of the network are considered in Section 3. In the simplest case, the model problem for
the semilinear state equation for the steady state of a single edge of the network can be

5



considered in the form of the semilinear ordinary differential equation (14). We refer
the reader to Section 4 for elementary numerical examples.

The paper is organized as follows. In section 2, we recall the formulations of known
first-order necessary conditions and second-order sufficient conditions for a weak local
minimum for problems of optimal control of ordinary differential equations. In section
3, we discuss a problem of optimal control of a single beam that arises in network
modeling and obtain optimality conditions for a weak local minimum in this problem.
An elementary numerical example of a single beam problem is considered in Section
4. Section 5 studies a general optimal control problem with m beams that arises in
network modeling, which is not a standard optimal control problem. The characteristic
of our setting is the optimum design part of the cost which allows to include the
variable geometry of network in our analysis of the optimal control and at the same
time of shape optimum design. With the help of a change of independent variables, we
transform such a complex problem to the standard one in the reference geometry, and
in the latter, we use the known optimality conditions. We then rewrite these conditions
in terms of the original problem. In shape optimization this is a standard approach
which is called the material derivative method [5] in the reference domain setting, in
contrast to the shape derivative method in the variable domain setting. Note that a
similar technique was used by A.V. Dmitruk and A.M. Kaganovich in [6] and [7] with
slightly different goals. An example ends Section 5.

2 Preliminaries

2.1 Formulation of the First-Order Necessary Optimality
Conditions for an Autonomous Problem on the Interval
[0, 1]

Consider the following autonomous problem of optimal control:

J(x, u) =
∫ 1

0
F (x(t), u(t)) dt→ min,

ẋ(t) = f(x(t), u(t)) ∀t ∈ [0, 1], κ(x(0), x(1)) ≤ 0, K(x(0), x(1)) = 0.

}
(8)

Here x : [0, 1] → Rn is a continuously differentiable function, u : [0, 1] → Rm is a
continuous function, and ẋ = dx/ dt. Hence the problem is considered in the space

W := C1([0, 1],Rn) × C([0, 1],Rm).

A local minimum in this space is called a weak local minimum. We call x the state
variable and u the control. All data F : Rn+m → R, f : Rn+m → Rn, κ : R2n → Rk,
K : R2n → Rs are assumed to be continuously differentiable.

We say that w = (x, u) ∈ W is an admissible point if it satisfies all the constraints
of the problem. For brevity we set ξ = (x(0), x(1)).
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Let us formulate first-order necessary optimality conditions for this problem. We
introduce the Hamiltonian (Pontryagin) function and the endpoint Lagrange function:

H(x, u, p, α0) = pf(x, u) + α0F (x, u), L = ακ(ξ) + βK(ξ),

where p, α, β are row vectors of the same dimensions as the column vectors f , κ,

K, respectively, α0 is a number. By definition, pf =
n∑

i=1

pifi, where pi and fi are the

components of the vectors p and f , respectively.
Denote by Rn⊤ the space of row vectors of dimension n.
By Fx and Fu we denote the partial derivatives ∂F/∂x and ∂F/∂u, respectively,

considered as row vectors, i.e. Fx ∈ Rn⊤, Fu ∈ Rm⊤. Similarly, fx := ∂f/∂x and
fu := ∂f/∂u, which are matrices of order n × n and n ×m, respectively. Note that
Hx ∈ Rn⊤, Hu ∈ Rm⊤ are row vectors, and Hp = f ∈ Rn is a column vector.

We say that at an admissible point w0 = (x0, u0) ∈ W the local minimum principle
(LMP) is satisfied if there exists a continuously differentiable function p : [0, 1] → Rn⊤,
a number α0, and row vectors α ∈ Rk⊤, β ∈ Rs⊤ such that the following system of
optimality conditions holds:

(a) the nonnegativity conditions: α0 ≥ 0, α ≥ 0,
(b) the nontriviality condition: α0 + |α| + |β| > 0,
(c) the complementary slackness condition: ακ(ξ0) = 0, where ξ0 = (x0(0), x0(1)),
(d) the adjoint equation: −ṗ(t) = Hx(w0(t), p(t), α0) ∀ t ∈ [0, 1],
(e) the transversality conditions: (−p(0), p(1)) = Lξ(ξ0, α, β),
(f) the stationarity of the Hamiltonian with respect to the control:

Hu(w0(t), p(t), α0) = 0 ∀t ∈ [0, 1].

From the equation ẋ0 = f(w0) and conditions (d) and (f) it follows
(g) the condition for the Hamiltonian to be constant: there exists a constant cH such

that H(w0(t), p(t), α0) = cH ∀ t ∈ [0, 1].

Indeed, d
dt
H(w0(t), p(t), α0) = Hx(w0(t), p(t), α0)ẋ0(t) +Hu(w0(t), p(t), α0)u̇0(t)

+ ṗ(t)Hp(w0(t), p(t), α0) = −ṗ(t)ẋ0(t) + ṗ(t)ẋ0(t) = 0. □

The following theorem is well known, see, for example, [8], [9], [10], [11], [12].
Theorem 2.1 If w0 is a weak local minimum in problem (8), then it satisfies the
LMP.

The case, when the cost Lagrange multiplier α0 is not equal to zero (for any quadru-
ple (α0, α, β, p(·)) satisfying the LMP conditions), is called normal. Let us formulate a
condition that guarantees the normal case for the point w0. Introduce a set of active
indices

I = {i ∈ {1, . . . , k} : κi(ξ
0) = 0}.

We say that the Mangasyan-Fromowitz constraint qualification (MFCQ) is satisfied
for the point w0 = (x0, u0) ∈ W if there exists a pair (x, u) ∈ W such that

κ′i(ξ
0)ξ < 0 ∀ i ∈ I, K ′(ξ0)ξ = 0, ξ = (x(0), x(1)), ẋ = f ′(w0)w,
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where, for example, f ′(w0)w = fx(w0)x+fu(w0)u. In this case, in the LMP conditions,
we can set α0 = 1.

2.2 Formulation of the Second-Order Sufficient Optimality
Conditions for an Autonomous Problem on the Interval
[0, 1]

Consider again the autonomous problem (8). Now we suppose that all data F , f , κ,
K are twice continuously differentiable.

Let us formulate sufficient second-order conditions for a weak local minimum at an
admissible point w0 = (x0, u0) ∈ W, satisfying necessary first-order conditions with
the adjoint variable p and Lagrange multipliers α0, α, β. Define the critical cone at
the point w0:

C :=
{
δw = (δx, δu) ∈ W : δẋ(t) = f ′(w0(t))δw(t), K ′(ξ0)δξ = 0,

κ′i(ξ
0)δξ ≤ 0, i ∈ I,

∫ 1

0
F ′(w0(t))δw(t) dt ≤ 0

}
,

where δξ = (δx(0), δx(1)). The equation δẋ = f ′(w0)δw is called the equation in
variations.

In the normal case, where α0 = 1, the inequality
∫ 1

0
F ′(w0(t))δw(t) dt ≤ 0 can be

excluded from the definition of the critical cone, but then we must add the equalities
αiκ

′
i(ξ

0)δξ = 0, i ∈ I. Thus, in the normal case, we have

C := {δw = (δx, δu) ∈ W : δẋ(t) = f ′(w0(t))δw(t), K ′(ξ0)δξ = 0,

κ′i(ξ
0)δξ ≤ 0, i ∈ I, αiκ

′
i(ξ

0)δξ = 0, i ∈ I}.

This is easy to prove using the LMP conditions. Later, in Section 3, where we consider
the normal case, we will use this critical cone representation.

Define the strengthened Legendre condition: there exists cL > 0 such that for all
t ∈ [0, 1] we have ⟨Huu(w0(t), p(t), α0)u, u⟩ ≥ cL|u|2 ∀u ∈ Rm. Here Huu = ∂2H/∂u2

stands for the second partial derivative of H with respect to the control.
Next, define a quadratic form:

2Ω(δw) = ⟨Lξξ(ξ0, α, β)δξ, δξ⟩ +

∫ 1

0

⟨Hww(w0(t), p(t), α0)δw(t), δw(t)⟩ dt.

Note that if κ(ξ) and K(ξ) are affine functions, then L = ακ + βK is also
an affine function of ξ, and therefore, Lξξ = 0. In this case, the endpoint term
⟨Lξξ(ξ0, α, β)δξ, δξ⟩ vanishes, and Ω reduces to the integral only.

The following theorem holds, see, for example, [13].
Theorem 2.2 Assume that for the point w0

(a) the strengthened Legendre condition is satisfied,
(b) there exists a constant cΩ > 0 such that Ω(δw) ≥ cΩ(|δx(0)|2 + ∥δu∥22) ∀ δw ∈ C.
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Then there are c > 0 and ε > 0 such that J(w) − J(w0) ≥ c
(
∥x− x0∥2∞ +

∫ 1

0
|u(t) −

u0(t)|2 dt
)
for all admissible w = (x, u) such that ∥w − w0∥∞ < ε, and hence w0 is a

weak local minimum in the problem.
Remark 2 Since Ω(−δw) = Ω(δw) for all δw ∈ W, condition (b) in this theorem is
equivalent to the condition Ω(δw) ≥ cΩ(|δx(0)|2+∥δu∥22) ∀ δw ∈ Σ, where Σ = C∪(−C).
In particular, let C = {δw ∈ Γ, l(δw) ≤ 0}, where Γ is a subspace, and l is a linear
functional. Then, obviously, Σ = Γ.

2.3 Matrix Riccati equation

Now we consider a sufficient condition for positive definiteness of the quadratic form
Ω on the subspace Γ. Assume that Γ has the form:

Γ =
{
δw = (δx, δu) ∈ W : δẋ = fx(w0)δx+ fu(w0)δu, Eδξ = 0

}
,

where E is a constant matrix, δξ = (δx(0), δx(1)). Let us show that the quadratic form
Ω could be transformed into a perfect square if the corresponding Riccati equation has
a solution Q(t) defined on [0, 1]. Assume that the strengthened Legendre condition is
satisfied. Define the Riccati matrix equation along (x0(t), u0(t), p(t)) by

Q̇+Qfx + fTx Q+Hxx − (Hxu +Qfu)H−1
uu (Hux + fTu Q) = 0, t ∈ [0, 1], (9)

where Q = Q(t) is a symmetric matrix of order n whose elements belong to C1,
fx = fx(w0), Hxx = Hxx(w0, p, α0), etc., f⊤x means the transposed matrix fx.
Theorem 2.3 Assume that the strengthened Legendre condition is satisfied and there
exists a symmetric solution Q (with the entries belonging to C1) of the matrix Riccati
equation on [0, 1]. Then the quadratic form Ω has the following transformation into a
perfect square on the subspace Γ:

2Ω(δw) =

∫ 1

0

⟨H−1
uu δv, δv⟩ dt+ ⟨Mδξ, δξ⟩ ∀ δw ∈ Γ, (10)

where δv := (Hux + f⊤u Q)δx+Huuδu, H
−1
uu is the inverse matrix of matrix Huu, and

M :=

(
Lx0x0 +Q(0) Lx0x1

Lx1x0 Lx1x1 −Q(1)

)
.

For the reader’s convenience, we give a proof of this theorem. We follow [13] (see also
[14]).

Proof Let (δx, δu) ∈ Γ. Then

2⟨Qδẋ, δx⟩ = 2⟨Q(fxδx+ fuδu), δx⟩
= ⟨(Qfx + f⊤x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤u Qδx, δu⟩.
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Consequently,

d
dt
⟨Qδx, δx⟩ = ⟨Q̇δx, δx⟩ + 2⟨Qδẋ, δx⟩

= ⟨Q̇δx, δx⟩ + ⟨(Qfx + f⊤x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤u Qδx, δu⟩
= ⟨(Q̇+Qfx + f⊤x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤u Qδx, δu⟩.

Integrating over [0, 1], we get

⟨Q(1)δx(1), δx(1)⟩ − ⟨Q(0)δx(0), δx(0)⟩
=

∫ 1

0

(
⟨(Q̇+Qfx + f⊤x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤u Qδx, δu⟩

)
dt.

Consequently,

∫ 1

0

(
⟨(Q̇+Qfx + f⊤x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤u Qδx, δu⟩

)
dt

+⟨Q(0)δx(0), δx(0)⟩ − ⟨Q(1)δx(1), δx(1)⟩ = 0.

Adding this zero form to the form 2Ω(δw), we obtain

2Ω(δw) =
∫ 1

0

(
⟨(Q̇+Qfx + f⊤x Q+Hxx)δx, δx⟩

+⟨(Qfu +Hxu)δu, δx⟩ + ⟨(f⊤u Q+Huxδx, δu⟩ + ⟨Huuδu, δu⟩
)

dt

+⟨Q(0)δx(0), δx(0)⟩ − ⟨Q(1)δx(1), δx(1)⟩ + ⟨Lξξδξ, δξ⟩.

Now let Q satisfy the Riccati equation (9). Then

2Ω(δw) =
∫ 1

0

(
⟨(Hxu +Qfu)H−1

uu (Hux + f⊤u Q)δx, δx⟩

+⟨(Qfu +Hxu)δu, δx⟩ + ⟨(f⊤u Q+Huxδx, δu⟩ + ⟨Huuδu, δu⟩
)

dt

+⟨Q(0)δx(0), δx(0)⟩ − ⟨Q(1)δx(1), δx(1)⟩ + ⟨Lξξδξ, δξ⟩.

Since ⟨Huuδu, δu⟩ = ⟨(Huu)−1Huuδu,Huuδu⟩ and ⟨Q(0)δx(0), δx(0)⟩ −
⟨Q(1)δx(1), δx(1)⟩ + ⟨Lξξδξ, δξ⟩ = ⟨Mδξ, δξ⟩, we obtain

2Ω(δw) =
∫ 1

0

(
⟨(Hxu +Qfu)H−1

uu (Hux + f⊤u Q)δx, δx⟩

+⟨(Qfu +Hxu)δu, δx⟩ + ⟨(f⊤u Q+Huxδx, δu⟩ + ⟨(Huu)−1Huuδu,Huuδu⟩
)

dt

+⟨Mδξ, δξ⟩.

Further,

⟨(Hxu +Qfu)H−1
uu (Hux + f⊤u Q)δx, δx⟩

+⟨(Qfu +Hxu)δu, δx⟩ + ⟨(f⊤u Q+Huxδx, δu⟩ + ⟨(Huu)−1Huuδu,Huuδu⟩
= ⟨(Huu)−1((Hux + f⊤u Q)δx+Huuδu), ((Hux + f⊤u Q)δx+Huuδu)⟩ = ⟨(Huu)−1δv, δv⟩,
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where δv = (Hux+f⊤u Q)δx+Huuδu. Consequently, 2Ω(δw) =
∫ 1

0
⟨(Huu)−1δv, δv⟩ dt+

⟨Mδξ, δξ⟩ □.

Assume that M is non-negative definite. Recall that Huu is positive definite, and
then (Huu)−1 is positive definite too. Hence Ω(δw) ≥ 0 ∀ δw = (δx, δu) ∈ Γ.

Suppose that Ω(δw) = 0 for some δw = (δx, δu) ∈ Γ. Then, given (10)

both non-negative terms
∫ 1

0
⟨(Huu)−1δv, δv⟩ and ⟨Mδξ, δξ⟩ are equal zero. Condition∫ 1

0
⟨(Huu)−1δv, δv⟩dt = 0 implies δv = 0, i.e. (Hux + f⊤u Q)δx + Huuδu = 0. Hence

δu = −(Huu)−1(Hux + f⊤u Q)δx. It follows that δx is a solution to the homogeneous
differential equation δẋ = fx(ŵ)δx−fu(ŵ)(Huu)−1(Hux+f⊤u Q)δx. Let us now assume
that the conditions Eδξ = 0, ⟨Mδξ, δξ⟩ = 0 imply that δx(0) = 0 or δx(1) = 0.
Then δx = 0 and hence δu = 0. Consequently, Ω(δw) > 0 for all δw ∈ Γ \ {0}. Since
Ω is a Legendre form, its positiveness on the subspace Γ implies positive definiteness
on Γ. Thus we obtain the following result.
Theorem 2.4 Assume that the strengthened Legendre condition is satisfied and there
exists a symmetric solution Q (with the entries belonging to C1) of the Riccati matrix
equation on [0, 1] such that

(a) the matrix M is non-negative definite;
(b) for all ξ = (x0, x1) ∈ R2n the conditions Eξ = 0, ⟨Mξ, ξ⟩ = 0 imply that

x0 = 0 or x1 = 0. Then the quadratic form Ω is positive definite on the subspace Γ.
Other designations

Let Γ has the form:

Γ =
{
δw = (δx, δu) : δẋ(t) = A(t)δx(t) +B(t)δu(t), Eδξ = 0

}
,

and

2Ω(δw) = ⟨Nδξ, δξ⟩

+

∫ 1

0

(
⟨R(t)δx(t), δx(t)⟩ + 2⟨S(t)δu(t), δx(t)⟩ + ⟨U(t)δu(t), δu(t)⟩

)
dt, (11)

where E and N are constant matrices, A(t), B(t), R(t), S(t), U(t) are matrices with
continuous entries. Assume that the matrices R(t) and U(t) are symmetric and, more-
over, the matrix U(t) is positive definite for all t ∈ [0, 1], and the constant symmetric
matrix N of the order 2n has the form

N =

(
N00 N01

N10 N11

)
,

where N00, N01, N10, N11 are constant n × n matrices, N00 and N11 are symmetric,
and N10 = N⊤

01. Previously, we had A = fx, B = fu, R = Hxx, S = Hxu, U = Huu.
We can prove similar results for the new quadratic form and subspace in the same
way as before. Now the Riccati equation and the matrix M are:

Q̇+QA+A⊤Q+R− (S +QB)U−1(S⊤ +B⊤Q) = 0, (12)
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M =

(
N00 +Q(0) N01

N10 N11 −Q(1)

)
. (13)

3 Single Beam Problem

3.1 Statement of the Problem with One Beam

Consider the following optimal control problem. Let z(x) be a state variable, f(x) be
a control, where x ∈ [0, l]. Here z = (z1, . . . , zn)⊤ ∈ Rn, f ∈ R1, l > 0. We assume
that z(x) is a continuously differentiable function and f(x) is a continuous function.
The control system has the form

dz(x)

dx
= φ(z(x)) + e1f(x), x ∈ [0, l], K(z(0), z(l)) = 0, (14)

where φ : Rn → Rn is a twice continuously differentiable function, e1 = (1, 0, . . . , 0)T ∈
Rn, and K : R2n → Rs is an affine function of its arguments ζ0 := z(0) and ζl := z(l).
Set ζ = (ζ0, ζl). The cost that needs to be minimized is:

J =

∫ l

0

F (x, z(x), f(x)) dx, (15)

where F (x, z, f) is a twice continuously differentiable function. In this problem l is
not fixed, but satisfies the constraint

l ∈ [a, b], where 0 < a < b. (16)

An arbitrary admissible process in this problem is defined by the triple (l, z(·), f(·)),
where z : [0, l] → Rn, f : [0, l] → R. We will consider a fixed admissible process

(l0, z0(·), f0(·)), (17)

where z0 and f0 are defined on [0, l0].
Let us represent this problem as a problem on the interval [0, 1]. To do this, we use

the following change of the independent variable x. Let t ∈ [0, 1] be a new independent
variable. We set

x̃(t) = lt, t ∈ [0, 1].

Then x̃ : [0, 1] → [0, l]. We treat x̃(t) as a new state variable. We also treat l = l̃(t) as
another state variable, constant on [0, 1]. Hence

dl̃(t)

dt
= 0,

dx̃(t)

dt
= l̃(t), t ∈ [0, 1], x̃(0) = 0.

To any admissible process (l, z, f) in the original problem, we associate the process
(l̃, x̃, z̃, f̃) in the new problem by the formulas

l̃(t) = l, x̃(t) = lt, z̃(t) = z(x̃(t)) = z(lt), f̃(t) = f(x̃(t)) = f(lt) ∀ t ∈ [0, 1].
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This is one-to-one correspondence. In what follows, we will continue to use the tilde
for variables in the interval [0, 1].

Thus, we obtain an autonomous problem with a new independent variable t ∈ [0, 1]:

dl̃(t)

dt
= 0,

dx̃(t)

dt
= l̃(t), t ∈ [0, 1], (18)

dz̃(t)

dt
= l̃(t)

(
φ(z̃(t)) + e1f̃(t)

)
, t ∈ [0, 1], (19)

x̃(0) = 0, K(z̃(0), z̃(1)) = 0, (20)

−l̃(0) + a ≤ 0. l̃(0) − b ≤ 0, (21)

J =

∫ 1

0

l̃(t)F (x̃(t), z̃(t), f̃(t)) dt→ min . (22)

We study the local minimum at the point

(l̃0(·), x̃0, z̃0(·), f̃0(·)), (23)

such that

l̃0(t) = l0, x̃0(t) = l0t, z̃0(t) = z0(l0t), f̃0(t) = f0(l0t), t ∈ [0, 1].

This point corresponds to the process (17) in the original problem (14)-(16). Clearly,
the minimum at (17) in problem (14)-(16) implies the minimum at (23) in problem
(18)-(22) and vice versa.

3.2 Local Minimum Principle for Problem with One Beam

Denote by p̃z(t) the adjoint variable which corresponds to the equation for z̃ in the
new problem. We consider p̃z = (p̃z1, . . . , p̃

z
n) as a row vector. We also introduce

one-dimensional adjoint variables p̃x(t) and p̃l(t). The Hamiltonian and the endpoint
Lagrange function are:

H̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z, α0) = p̃x l̃ + p̃z l̃
(
φ(z̃) + e1f̃

)
+ α0 l̃F (x̃, z̃, f̃),

L̃ = αa(−l̃(0) + a) + αb(l̃(0) − b) + βxx̃(0) + βK(z̃(0), z̃(1)).

Note that L̃ is an affine function of the endpoint values l̃(0), x̃(0), z̃(0), l̃(1), x̃(1),
z̃(1) of the states l̃, x̃, and z̃, since K is an affine function by assumption.

Let us write down the first-order necessary optimality conditions at the point (23)
in problem (18)-(22). The partial derivatives of H̃ with respect to l̃, x̃, z̃, f̃ have the
form

H̃l̃ = p̃x + p̃z(φ(z̃) + e1f̃) + α0F (x̃, z̃, f̃),

H̃x̃ = α0 l̃Fx̃(x̃, z̃, f̃),

H̃z̃ = p̃z l̃φ′(z̃)⊤ + α0 l̃Fz̃(x̃, z̃, f̃),

H̃f̃ = p̃z l̃e1 + α0 l̃Ff̃ (x̃, z̃, f̃).
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Hence, the conditions of the local minimum principle at the point (23) in problem (18)
-(22) are as follows.

(a) The nonnegativity conditions: α0 ≥ 0, αa ≥ 0, αb ≥ 0.
(b) The nontriviality condition: α0 + αa + αb + |βx| + |β| > 0.
(c) The complementary slackness conditions: αa(l̃0(0) − a) = 0, αb(l̃

0(0) − b) = 0.
(d) The adjoint equations:

− dp̃l(t)

dt
= p̃x(t) + p̃z(t)

(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0F (x̃0(t), z̃0(t), f̃0(t)), (24)

− dp̃x(t)

dt
= α0 l̃

0Fx̃(x̃0(t), z̃0(t), f̃0(t)), (25)

− dp̃z(t)

dt
= p̃z(t)l̃0φ′(z̃0(t)) + α0 l̃

0Fz̃(x̃0(t), z̃0(t), f̃0(t)), t ∈ [0, 1]. (26)

(e) The transversality conditions:

−p̃l(0) = −αa + αb, p̃l(1) = 0,
−p̃x(0) = βx, p̃x(1) = 0,
−p̃z(0) = βKζ̃0

(z̃0(0), z̃0(1)), p̃z(1) = βKζ̃1
(z̃0(0), z̃0(1)),

where ζ̃0 = z̃(0), ζ̃1 = z̃(1).

(f) The condition H̃f̃ = 0: p̃z(t)l̃0e1 + α0 l̃
0Ff̃ (x̃0(t), z̃0(t), f̃0(t)) = 0. Since l̃0 > 0 and

p̃z(t)e1 = p̃z1(t), we get

p̃z1(t) + α0 l̃
0Ff̃ (x̃0(t), z̃0(t), f̃0(t)) = 0, t ∈ [0, 1].

(g) Finally, the condition H̃ = const has the form: there exists a constant ĉH such that

p̃x(t)l̃0 + p̃z(t)l̃0
(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0 l̃
0F (x̃0(t), z̃0(t), f̃0(t)) = c̃H ∀ t ∈ [0, 1].

Denote the left hand side of this equality by H̃(t). Dividing this equality by l̃0, we
obtain

p̃x(t) + p̃z(t)
(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0F (x̃0(t), z̃0(t), f̃0(t)) =
c̃H

l̃0
∀ t ∈ [0, 1].

Integrating equation (24) over the interval [0, 1] and using the above condition, we
get p̃l(0) − p̃l(1) = c̃H

l̃0
. This and the transversality conditions −p̃l(0) = −αa + αb,

p̃l(1) = 0 give
c̃H

l̃0
= αa − αb.

This relation means the following.

(1) If a < l̃0 < b then by the complementary slackness conditions (c) we have αa =
αb = 0 and therefore c̃H = 0.
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(2) If l̃0 = a, then by (c) we have αb = 0 and, therefore, c̃H = αa l̃
0 ≥ 0.

(3) If l̃0 = b, then by (c) we have αa = 0 and, therefore, c̃H = −αb l̃
0 ≤ 0.

(4) Moreover, if c̃H > 0, then αa > 0, and, therefore, by (c) l̃0 = a; if c̃H < 0, then
αb > 0, and, therefore, by (c) l̃0 = b.

Note that the transversality condition p̃x(1) = 0 and adjoint equation (25) imply

p̃x(t) = α0 l̃
0

∫ 1

t

Fx̃(x̃0(τ), z̃0(τ), f̃0(τ)) dτ, t ∈ [0, 1]. (27)

Thus, we obtain the following result. If (23) is a local minimum in problem (18)–
(22), then there exist a number α0 ≥ 0, a row vector β ∈ Rs⊤, and a continuously
differentiable function p̃z(t) such that the following system of optimality conditions
holds:

dz̃

dt
= l̃0

(
φ(z̃0(t)) + e1f̃

0(t)
)
, t ∈ [0, 1], K(z̃0(0), z̃0(1)) = 0,

− dp̃z

dt
= p̃z(t)l̃0φ′(z̃0(t)) + α0 l̃

0Fz̃(x̃0(t), z̃0(t), f̃0(t)), t ∈ [0, 1],

− p̃z(0) = βKζ̃0
(z̃0(0), z̃0(1)), p̃z(1) = βKζ̃1

(z̃0(0), z̃0(1)),

p̃z1(t) + α0 l̃
0Ff̃ (x̃0(t), z̃0(t), f̃0(t)) = 0, t ∈ [0, 1].

These conditions imply the condition of the constancy of the Hamiltonian: there exists
a constant c̃H such that

p̃x(t)l̃0 + p̃z(t)l̃0
(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0 l̃
0F (x̃0(t), z̃0(t), f̃0(t)) = c̃H ∀ t ∈ [0, 1],

where p̃x(t) is defined by (27).
Moreover, the following is true. If a < l̃0 < b, then c̃H = 0. If l̃0 = a, then c̃H ≥ 0;

if c̃H > 0, then l̃0 = a. If l̃0 = b, then c̃H ≤ 0; if c̃H < 0, then l̃0 = b.

We now represent this system in an equivalent way on the interval [0, l0]. Introduce
a function pz : [0, l0] → Rn⊤ such that p̃z(t) = pz(x̃0(t)) = pz(l0t), that is pz(x) =

p̃z
(

x
l0

)
, x ∈ [0, l0]. Then dp̃z

dt
= dpz

dx
l0. Hence the adjoint equation for p̃z takes the

form

− dpz(x)

dx
= pz(x)φ′(z0(x)) + α0Fz(x0(t), z0(t), f0(t)), x ∈ [0, l0].

So, the obtained result has the following formulation on the interval [0, l0]. Below
we replace pz with p, and we also replace (l0, z0(·), f0(·)) with (l, z(·), f(·)) omitting
the superscript zero.
Theorem 3.1 If (l, z(·), f(·)) is a local minimum in problem (14)-(16), then there
exist a number α0 ≥ 0, a row vector β ∈ Rs⊤, and a continuously differentiable
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function p : [0, l] → Rn⊤ such that the following system of optimality conditions holds:

dz(x)

dx
= φ(z(x)) + e1f(x), x ∈ [0, l], l ∈ [a, b], K(z(0), z(l)) = 0,

− dp(x)

dx
= p(x)φ′(z(x)) + α0Fz(x, z(x), f(x)), x ∈ [0, l],

− p(0) = βKζ0(z(0), z(1)), p(l) = βKζ1(z(0), z(l)),

p1(x) + α0Ff (x, z(x), f(x)) = 0, x ∈ [0, l].

These conditions imply the condition of the constancy of the Hamiltonian: there exists
a constant cH such that

px(x) + p(x)
(
φ(z(x)) + e1f(x)

)
+ α0F (x, z(x), f(x)) = cH ∀x ∈ [0, l],

where px(x) = α0

∫ l

x
Fx(y, z(y), f(y)) dy, x ∈ [0, l]. Moreover, the following is true. If

a < l < b, then cH = 0. If l = a, then cH ≥ 0; if cH > 0, then l = a. If l = b, then
cH ≤ 0; if cH < 0, then l = b.
Since px(l) = 0 and cH = H(l), we get

cH = p(l)
(
φ(z(l)) + e1f(l)

)
+ α0F (l, z(l), f(l)).

This formula does not use the adjoint variable px.
In what follows, we consider the case of

F (x, z, f) =
1

2
|z − z∗(x)|2 +

1

2
(f − f∗(x))2, (28)

where |z| =
√

⟨z, z⟩ and z∗(x) and f∗(x) are twice continuously differentiable functions
defined on [0, b].

3.3 Second-Order Sufficient Conditions for Problem with One
Beam

For problem (18) -(22) on [0, 1] with the function F defined by formula (28), we
formulate sufficient second-order conditions for a weak local minimum at the point
w̃(·) = (l̃(·), x̃(·), z̃(·), f̃(·)).

Now suppose that the normal case holds for this point. Therefore, there are a
row vector β ∈ Rs⊤ and a continuously differentiable function p̃ : [0, 1] → Rn⊤ such
that the necessary optimality conditions in Section 3.2 are satisfied with α0 = 1. In
problem (18)-(22) on [0, 1], by definition ξ̃ = (l̃(0), x̃(0), z̃(0); l̃(1), x̃(1), z̃(1)). Since L̃
is an affine function of ξ̃, we have L̃ξ̃ξ̃ = 0. Since α0 = 1 we have

H̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z) = p̃x l̃ + p̃z l̃
(
φ(z̃) + e1f̃

)
+ l̃F (x̃, z̃, f̃).

Recall that H̃f̃ = p̃z l̃e1 + α0 l̃(f̃ − f∗(x̃)). Consequently, H̃f̃ f̃ = l̃. Since l̃ = l ≥ a > 0,
the strengthened Legendre condition is satisfied.
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Let us write down the definition of the critical cone C̃. Equations in variations for
the system

dl̃

dt
= 0,

dx̃

dt
= l̃,

dz̃

dt
= l̃(φ(z̃(t)) + e1f̃(t))

at the point w̃ have the form

δ
˙̃
l = 0, δ ˙̃x(t) = δl̃, δ ˙̃z(t) = l̃

(
φ′(z̃(t))δz̃(t) + e1δf̃(t)

)
+
(
φ(z̃(t)) + e1f̃(t)

)
δl̃.

The endpoint conditions x̃(0) = 0 and K(z̃(0), z̃(1)) = 0 imply the following
conditions in the critical cone

δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0,

where ζ̃ = (z̃(0), z̃(1)), δζ̃ = (δz̃(0), δz̃(1)).
Further, recall that

c̃H

l̃
= αa − αb.

The initial conditions −l̃(0) + a ≤ 0 and l̃(0) − b ≤ 0 imply:

• if a < l̃ < b, i.e., these constraints are not active, then c̃H = 0, and we have no
conditions on δl̃(0),

• if a = l̃ and, therefore, l̃ < b, then the following conditions are satisfied
δl̃(0) ≥ 0, c̃Hδl̃(0) = 0,

• if l̃ = b and, therefore, l̃ > a, then the following conditions are satisfied
δl̃(0) ≤ 0, c̃Hδl̃(0) = 0.

Consequently,

C̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δ

˙̃
l = 0, δ ˙̃x(t) = δl̃, δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0, cHδl̃(0) = 0,

δ ˙̃z(t) = l̃
(
φ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+
(
φ(z̃(t)) + e1f̃(t)

)
δl̃,

l̃ = a =⇒ δl̃(0) ≥ 0; l̃ = b =⇒ δl̃(0) ≤ 0
}
.

As stated in Remark 2, if Ω is positive definite on C̃, then it is positive definite on
(−C̃). Only one of the two conditions l̃ = a or l̃ = b could be realized. Therefore, the
conditions l̃ = a =⇒ δl̃(0) ≥ 0; l̃ = b =⇒ δl̃(0) ≤ 0 in the definition of C̃ can be
ommitted. More precisely, we can replace C̃ with a subspace

Σ̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δ

˙̃
l = 0, δ ˙̃x(t) = δl̃, δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0, c̃Hδl̃(0) = 0,

δ ˙̃z(t) = l̃
(
φ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+
(
φ(z̃(t)) + e1f̃(t)

)
δl̃

}
.

Note that if c̃H ̸= 0, then in the definition of Σ̃ we have δl̃(0) = 0,which gives δl̃ = 0,
and this means that δx̃ = 0. In this case,

Σ̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δl̃ = 0, δx̃ = 0, δ ˙̃z(t) = l̃φ′(ẑ(t))δz̃(t)+l̃e1δf̃(t), K ′(ζ̃)δζ̃ = 0

}
.
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Let us write down the quadratic form Ω̃. Since α0 = 1,

H̃l̃ = p̃x + p̃z(φ(z̃) + e1f̃) + F (x̃, z̃, f̃),

H̃x̃ = l̃Fx̃ = −l̃
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) − l̃(f̃ − f∗(x̃))(f∗)′(x̃),

H̃z̃ = p̃z l̃φ′(z̃) + l̃
(
z̃ − z∗(x̃)

)⊤
,

H̃f̃ = p̃z l̃e+ l̃Ff̃ (x̃, z̃, f̃) = p̃z l̃e1 + l̃(f̃ − f∗(x̃)).

Once again we emphasize that we consider z, z̃, z∗ as column vectors, and pz, p̃z,

H̃z̃ as row vectors. Therefore,
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) =

∑
i

(
z̃i − z∗i (x̃)

)
(z∗i )′(x̃).

The second-order partial derivatives have the form

H̃l̃l̃ = 0,

H̃l̃x̃ = H̃x̃l̃ = −
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) − (f̃ − f∗(x̃))(f∗)′(x̃),

H̃l̃z̃ = H̃⊤
z̃l̃

= p̃zφ′(z̃) +
(
z̃ − z∗(x̃)

)⊤
,

H̃l̃f̃ = H̃f̃ l̃ = p̃z1 + f̃ − f∗(x̃),

H̃x̃x̃ = l̃[(z∗)′(x̃)]⊤(z∗)′(x̃) − l̃(z̃ − z∗(x̃))⊤(z∗)′′(x̃)

+l̃[(f∗)′(x̃)]2 − l̃(f̃ − f∗(x̃))(f∗)′′(x̃),

H̃x̃z̃ = H̃⊤
z̃x̃ = −l̃[(z∗)′(x̃)]⊤, H̃x̃f̃ = H̃f̃ x̃ = −l̃(f∗)′(x̃),

H̃z̃z̃ = p̃z l̃φ′(z̃)⊤ + l̃In, H̃z̃f̃ = H̃⊤
f̃ z̃

= 0,

H̃f̃ f̃ = l̃.

Here In is the identity matrix of size n and(
z̃ − z∗(x̃)

)⊤
(z∗)′′(x̃) =

∑
i

(
z̃i − z∗i (x̃)

)
(z∗i )′′(x̃).

Denoting w̃ = (l̃, x̃, z̃, f̃), we get

⟨H̃ww(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z)δw, δw⟩ = H̃l̃l̃(δl̃)
2 + H̃x̃x̃(δx̃)2 + ⟨H̃z̃z̃δz̃, δz̃⟩ + H̃f̃ f̃ (δf̃)2

+2H̃l̃x̃δx̃ · δl̃ + 2H̃l̃z̃δz̃ · δl̃ + 2H̃l̃f̃δf̃ · δl̃ + 2H̃x̃z̃δz̃ · δx̃+ 2H̃x̃f̃δf̃ · δx̃+ 2H̃f̃ z̃δz̃ · δf̃ .

Using the above formulas, we obtain〈
H̃w̃w̃(l̃(t), x̃(t), z̃(t), f̃(t), p̃l(t), p̃x(t), p̃z(t))δw̃(t), δw̃(t)

〉
= l̃

(
[(z∗)′(x̃(t))]⊤(z∗)′(x̃(t)) − (z̃(t) − z∗(x̃(t)))⊤(z∗)′′(x̃(t))

+ [(f∗)′(x̃(t))]2 − (f̃(t) − f∗(x̃(t)))(f∗)′′(x̃(t))
)

(δx̃(t))2

+ l̃
〈(
p̃z(t)φ′′(z̃(t)) + In

)
δz̃(t), δz̃(t)

〉
+ l̃

(
δf̃(t)

)2
− 2

((
z̃(t) − z∗(x̃(t))

)
(z∗)′(x̃(t)) +

(
f̃(t) − f∗(x̃(t))

)
(f∗)′(x̃(t))

)
δx̃(t) · δl̃

+ 2
(
p̃z(t)φ′(z̃(t)) +

(
z̃(t) − z∗(x̃(t))

)⊤)
δz̃(t) · δl̃

+ 2
(
p̃z1(t) + f̃(t) − f∗(x̃(t))

)
δf̃(t) · δl̃

− 2l̃ · [(z∗)′(x̃(t))]⊤δz̃(t) · δx̃(t) − 2l̃ · (f∗)′(x̃(t))δf̃(t) · δx̃(t).
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Recall that here l̃ = l = const > 0. Since L̃ξ̃ξ̃ = 0, the quadratic form Ω̃ is:

Ω̃(δw̃) =

∫ 1

0

⟨H̃w̃w̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z)δw̃, δw̃⟩ dt.

Thus, we obtain the following result: if there exists a constant c̃Ω > 0 such that

Ω̃(δw̃) ≥ c̃Ω((δl̃)2 + |δz̃(0)|2 + ∥δf̃∥22) ∀ δw̃ ∈ Σ̃,

then the quadruple (l̃(·), x̃(·), z̃(·), f̃(·)) is a weak local minimum in problem (18)-(22)
on [0, 1].

Now let us rewrite the obtained sufficient second-order condition in terms of the
independent variable x ∈ [0, l]. Let δw̃ = (δl̃, δx̃, δz̃, δf̃) ∈ Σ̃. Introduce δz(x) such

that δz(x̃(t)) = δz(lt) = δz̃(t), that is δz(x) = δz̃
(

x
l

)
. Then δ ˙̃z(t) = (δz)′(x̃(t))l,

where (δz)′(x) = dz(x)

dx
. Define δl such that δl̃ = lδl, that is δl = δl̃

l . Similarly, we

define δf(x) = δf̃
(

x
l

)
, δx(x) = δx̃

(
x
l

)
. Then the equation δ ˙̃z(t) = l̃

(
φ′(ẑ(t))δz̃(t)+

e1δf̃(t)
)

+
(
φ(z̃(t)) + e1f̃(t)

)
δl̃ takes the form

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl

and the subspace Σ̃ in the new variables reads as follows

Σ =
{
δw = (δl, δx, δz, δf) : (δl)′ = 0, (δx)′(x) = δl, δx(0) = 0, K ′(ζ)δζ = 0, cHδl(0) = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl
}
,

where ζ = (z(0), z(l)), δζ = (δz(0), δz(l)). Recall that δx and δl are one-dimensional,
δl = const and δx = xδl. Therefore,

Σ =
{
δw = (δl, δx, δz, δf) : (δl)′ = 0, δx(x) = x · δl, K ′(ζ)δζ = 0, cHδl(0) = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl
}
.

Let us rewrite the quadratic form Ω̃ in the new variables. Recall that l̃ = l. If x =
x̃(t) = lt, then dx = l dt and z̃(t) = z(x), f̃(t) = f(x), δl̃ = lδl, δz(x) = δz̃(t),
δx(x) = δx̃(t), δf(x) = δf̃(t). Therefore, we have
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l̃
(

[(z∗)′(x̃(t))]⊤(z∗)′(x̃(t)) − (z̃(t) − z∗(x̃(t)))⊤(z∗)′′(x̃(t))

+[(f∗)′(x̃(t))]2 − (f̃(t) − f∗(x̃(t)))(f∗)′′(x̃(t))
)

(δx̃(t))2 dt

=
(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)

(δx(x))2 dx,〈(
p̃z(t)l̃φ′′(z̃(t)) + l̃In

)
δz̃(t), δz̃(t)

〉
dt

=
〈(
pz(x)φ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx,

l(δf̃(t))2 dt = (δf(x))2 dx,

−2
((
z̃(t) − z∗(x̃(t))

)⊤
(z∗)′(x̃(t)) +

(
f̃(t) − f∗(x̃(t))(f∗)′(x̃(t))

)
δx̃(t) · δl̃ · dt

= −2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) +

(
f(x) − f∗(x)

)
(f∗)′(x)

)
δx(x) · δl · dx,

2
((
p̃z(t)φ′(z̃(t)) +

(
z̃(t) − z∗(x̃(t))

)⊤)
δz̃(t) · δl̃ · dt

= 2
((
pz(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) · δl · dx

2
(
p̃z1(t) + f̃(t) − f∗(x̃(t))

)
δf̃(t) · δl̃ · dt

= 2
(
pz1(x) + f(x) − f∗(x)

)
δf(x) · δl · dx

−2l̃[(z∗)′(x̃(t))]⊤δz̃(t) · δx̃(t) · dt− 2l̃(f∗)′(x̃(t)) · δf̃(t) · δx̃(t) · dt
= −2[(z∗)′(x)]⊤δz(x) · δx(x) · dx− 2(f∗)′(x)δf(x) · δx(x) · dx.

Consequently,

Ω̃(δw̃) = Ω(δw),

where

Ω(δw) =
∫ l

0

{(
[(z∗)′(x)]⊤(z∗)′(x) −

(
z(x) − z∗(x)

)⊤
(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)
(δx(x))2

+
〈(
pzφ′′(z) + In

)
δz(x), δz(x)

〉
+ (δf(x))2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
δx(x) · δl

+2
(
pz(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) · δl

+2
(
pz1(x) + f(x) − f∗(x)

)
δf(x) · δl

−2[(z∗)′(x)]⊤δz(x) · δx(x) − 2(f∗)′(x)δf(x) · δx(x)
}

dx.
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Below we replace pz with p, omitting the superscript z. Since δl ∈ R is a constant,
δx = x · δl, and δf is one-dimensional, we obtain

Ω(δw) = (δl)2
∫ l

0

(
[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x)(f∗)′′(x)
)
x2 dx

+
∫ l

0

〈(
p(x)φ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx+

∫ l

0
(δf(x))2 dx

−2(δl)2
∫ l

0

((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
xdx

+2δl
∫ l

0

(
p(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) dx

+2δl
∫ l

0

(
p1(x) + f(x) − f∗(x)

)
δf(x) dx

−2δl
∫ l

0

(
(z∗)′(x)

)⊤
δz(x)xdx− 2δl

∫ l

0
(f∗)′(x)δf(x)xdx.

(29)

This quadratic form is independent of δx. We can exclude δx from the definition of Σ
as well. Therefore, the quadratic form Ω is considered on a subspace, which we still
denote by Σ (we also keep the notation δw for the shorter collection (δl, δz, δf)):

Σ :=
{
δw = (δl, δz, δf) : (δl)′ = 0, cHδl = 0, K ′(ζ)δζ = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl

}
.

Thus, we obtain the following result:
Theorem 3.2 Let an admissible triple (l, z(·), f(·)) satisfy the first order necessary
optimality conditions of Theorem 3.1 in problem (14)-(16) with the corresponding
multipliers α0 = 1, β, p(·). Suppose there exists a constant cΩ > 0 such that

Ω(δw) ≥ cΩ

(
(δl)2 + |δz(0)|2 + ∥δf∥22

)
∀ δw ∈ Σ.

Then the triple (l, z(·), f(·)) is a weak local minimum in problem (14)-(16).

3.4 Matrix Riccati equation for One Beam: Case CH ̸= 0

In this case, as we know, the condition CH > 0 implies l = a, and the condition
CH < 0 implies l = b. Then in the definition of Σ, we have δl = 0, so that we can put

Σ :=
{
δw = (δz, δf) : (δz)′(x) = φ′(z(x))δz(x) + e1δf(x), K ′(ζ)δζ = 0

}
.

Since δl = 0, the quadratic form reduces to

Ω(δw) =

∫ l

0

〈(
p(x)φ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx+

∫ l

0

(δf(x))2 dx.

We study the question of the positive definiteness of Ω on Σ in terms of the solution
of the matrix Riccati equation. Obviously, the strengthened Legendre condition is
satisfied.
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Comparing the differential equation in the definition of Σ with the equation (δz)′ =
Aδz +Bδf (see end of section 2.3), we obtain

A = φ′((z(x)), B = e1 = (1, 0, . . . , 0)⊤.

Comparing Ω with (2.3), we get

R = p(x)φ′′(z(x)) + In, S = 0, U = 1.

Consequently,

(S +QB)U−1(S⊤ +B⊤Q) = Qe1e
⊤
1 Q =

 Q11

. . .
Q1n

(
Q11 . . . Q1n

)

=

 Q11Q11 . . . Q11Q1n

. . . . . . . . .
Q1nQ11 . . . Q1nQ1n

 = ||Q1iQ1j ||ni,j=1.

Thus, the Riccati equation (12) reduces to the following

d

dx
Q+QA+A⊤Q+R−Qe1e

⊤
1 Q = 0, x ∈ [0, l]. (30)

where
A = φ′((z(x)), R = p(x)φ′′(z(x)) + In,

e1 = (1, 0. . . . , 0)T , Qe1e
T
1Q = ||Q1iQ1j ||ni,j=1.

The matrix M has the form

M =

(
Q(0) 0

0 −Q(l)

)
.

To this Riccati equation, one can add the initial condition

Q(0) = In,

where In is the identity matrix of order n.
Similarly to Theorem 2.4 the following theorem holds.

Theorem 3.3 Assume that the strengthened Legendre condition is satisfied, CH ̸= 0,
and there exists a symmetric solution Q (with the entries belonging to C1) of the
Riccati matrix equation (30) on [0, l] such that

(a) the matrix M is nonnegative definite;
(b) for all ζ = (ζ0, ζ1) ∈ R2n the conditions K ′(ζ)ζ = 0, ⟨Mζ, ζ⟩ = 0 imply that

ζ0 = 0 or ζ1 = 0. Then the quadratic form Ω is positive definite on the subspace Σ.
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3.5 Matrix Riccati equation for one beam: case CH = 0

In this more complicated case, we have

Σ :=
{
δw = (δl, δz, δf) : (δl)′ = 0, K ′(ζ)δζ = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl
}
.

Consider again the sufficient condition for the positive definiteness of the quadratic
form Ω on the subspace Σ. Now Σ is defined by a linear system of differential equations{

(δl)′ = 0,

(δz)′ = (φ((z(x)) + e1f(x))δl + φ′((z(x))δz(x) + e1δf(x).

In the sequel, we denote

X =

(
l
z

)
=


l
z1
. . .
zn

 ∈ Rn+1, δX =

(
δl
δz

)
=


δl
δz1
. . .
δzn

 ∈ Rn+1,

w =

(
X
f

)
=

 l
z
f

 ∈ Rn+2, δw =

(
δX
δf

)
=

 δl
δz
δf

 ∈ Rn+2.

Let us represent the above system in matrix form (δX)′ = AδX + Bδf , where A
is a (n+ 1) × (n+ 1) matrix, B is a (n+ 1) × 1 matrix such that

A =

(
0 0⊤n

φ(z(x)) + e1f(x) φ′((z(x))

)
, B =

(
0
e1

)
, 0⊤n = (0, . . . , 0) ∈ Rn⊤.

It is convenient to present

A :=

(
0 0⊤n
Azl Azz

)
, where Azl = φ(z(x)) + e1f(x), Azz = φ′((z(x)).

Compare quadratic form (29) with the standard form (see (2.3)):

Ω(δw) =

∫ l

0

(
⟨RδX, δX⟩ + 2(δX)⊤Sδf + U(δf)2

)
dt,

where R is the symmetric (n+ 1)× (n+ 1) matrix, S ∈ Rn+1 is the column vector, U
is the number. Let us find the matrix R. Denote

R =

(
Rll Rlz

Rzl Rzz

)
,
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where Rll, Rlz, Rzl = R⊤
lz , Rzz = R⊤

zz are matrices of orders 1× 1, 1×n, n× 1, n×n,
respectively. Then,

⟨RδX, δX⟩ = Rll(δl)
2 + 2Rlzδzδl + ⟨Rzzδz, δz⟩.

Using (29), we obtain

⟨RδX, δX⟩ =
[(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)
x2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
x
]
· (δl)2

+
〈(
p(x)φ′′(z(x)) + In

)
δz(x), δz(x)

〉
+2

[(
p(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤ − x
(
(z∗)′(x)

)⊤]
δz(x) · δl.

Consequently,

Rll =
(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f∗)′(x)]2 − (f(x) − f∗(x))(f∗)′′(x)
)
x2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f∗(x))(f∗)′(x)

)
x, (31)

Rzz = p(x)φ′′(z(x)) + In, (32)

Rlz = R⊤
zl =

(
p(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤ − x
(
(z∗)′(x)

)⊤
. (33)

Further, U = 1, and finally, S has the form

S =

(
Sl

0n

)
∈ Rn+1,

where Sl = p1(x) + f(x)− f∗(x)− x(f∗)′(x). Recall that the Riccati equation has the
form

d

dx
Q+QA+ATQ+R− (S +QB)U−1(ST +BTQ) = 0, x ∈ [0, l],

where

Q(x) =

(
Qll Qlz

Qzl Qzz

)
(x),

Qll(x) ∈ R, Qzl(x) =

 Qz1l

. . .
Qznl

 (x) ∈ Rn,

Qlz(x) = Q⊤
zl(x) =

(
Qlz1 . . . Qlzn

)
(x) ∈ Rn⊤,
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and

Qzz(x) =

 Qz1z1 . . . Qz1zn

. . . . . . . . .
Qznz1 . . . Qznzn

 (x)

is n× n symmetric matrix. Since U = 1, we have

(S +QB)U−1(S⊤ +B⊤Q) = (S +QB)(S +QB)⊤.

Further,

QB =

(
Qll Qlz

Qzl Qzz

)(
0
e1

)
=

(
Qlze1
Qzze1

)
.

Hence

S +QB =

(
Sl

0

)
+

(
Qlze1
Qzze1

)
=

(
Qlze1 + Sl

Qzze1

)
.

Consequently,

(S +QB)(S +QB)⊤ =

(
Qlze1 + Sl

Qzze1

)(
Qlze1 + Sl, e

⊤
1 Qzz

)
=

(
(Qlze1 + Sl)

2 (Qlze1 + Sl)e
⊤
1 Qzz

Qzze1(Qlze1 + Sl) (Qzze1)(e⊤1 Qzz)

)
.

Moreover,

QA =

(
Qll Qlz

Qzl Qzz

)(
0 0⊤n
Azl Azz

)
=

(
QlzAzl QlzAzz

QzzAzl QzzAzz

)
, A⊤Q =

(
QlzAzl A

⊤
zlQzz

A⊤
zzQzl A

⊤
zzQzz

)
.

Here QlzAzl, QlzAzz, QzzAzl, QzzAzz are matrices of order 1× 1, 1×n, n× 1, n×n,
respectively. Consequently,

QA+A⊤Q =

(
2QlzAzl QlzAzz +A⊤

zlQzz

QzzAzl +A⊤
zzQzl QzzAzz +A⊤

zzQzz

)
.

Thus, according to (12), we obtain the matrix Riccati equation in the form

d

dx

(
Qll Qlz

Qzl Qzz

)
+

(
2QlzAzl QlzAzz +A⊤

zlQzz

QzzAzl +A⊤
zzQzl QzzAzz +A⊤

zzQzz

)
+

(
Rll Rlz

Rzl Rzz

)

−
(

(Qlze1 + Sl)
2 (Qlze1 + Sl)e

⊤1Qzz

(Qlze1 + Sl)Qzze1 (Qzze)(e
⊤
1 Qzz)

)
= 0, x ∈ [0, l], (34)

where the blocks of the matrix R are determined by formulas (31)-(33). Further, the
matrix M has the form

M =

(
Q(0) 0

0 −Q(l)

)
.

We set

δξ =

(
δX(0)
δX(l)

)
.
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Then

⟨Mδξ, δξ⟩ = ⟨Q(0)δX(0), δX(0)⟩ − ⟨Q(l)δX(l), δX(l)⟩,
where

δX(0) =

(
δl

δz(0)

)
, δX(l) =

(
δl
δz(l)

)
, (δl)′ = 0, i.e., δl = const .

The condition Eδξ = 0 in the definition of Σ (see Section 2.3) means Kz0δz(0) +
Kzlδz(l) = 0, (δl)′ = 0. Consequently,

δX0 := δX(0) =

(
δl

δz(0)

)
, δXl := δX(l) =

(
δl
δz(l)

)
.

Similarly to Theorem 2.4 the following theorem holds.
Theorem 3.4 Assume that the strengthened Legendre condition is satisfied, CH = 0,
and there exists a symmetric solution Q (with the entries belonging to C1) of the
Riccati matrix equation (3.5) on [0, l] such that

(a) the matrix M is nonnegative definite;
(b) for all pairs of vectors in Rn+1

δX0 =

(
δl
δz0

)
, δXl =

(
δl
δzl

)
the conditions Kz0δz0 + Kzlδzl = 0, δl ∈ R, ⟨Q(0)δX0, δX0⟩ − ⟨Q(l)δXl, δXl⟩ = 0
imply that δX0 = 0 or δXl = 0. Then the quadratic form Ω is positive definite on the
subspace Σ.

4 Numerical example

4.1 Example 1

Consider a steady state scenario involving a single beam, governed by a semilinear
differential equation. The control system has the form

z′(x) = φ(z(x)) + f(x), x ∈ [0, l], z(l) = 0,

where z is one dimensional and l is not fixed. The beam’s behavior is described by the
function

φ(z) = z − z2.

Set

l∗ = 1, z∗(x) = −2 + x+ x2, f∗(x) = 7 − 3x− 4x2 + 2x3 + x4.

It is easy to check that the triple (l∗, z∗, f∗(x)) defines an admissible process of a given
control system.
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The cost functional is expressed as:

J =
1

2

∫ l

0

(
(z(x) − z∗(x))2 + (f(x) − f∗(x))2

)
dx+

1

2
(l − l∗)2 → min .

The parameter l is constrained l ∈ [ 12 ,
3
2 ].

Obviously, (l∗, z∗, f∗(x)) is the solution to this problem. But assume that this
solution is unknown and let us write down the necessary optimality conditions of
Theorem 3.1.

Since
∫ l

0
(x − l∗) dx = 1

2 (l − l∗)2 − 1
2 (l∗)2, we can consider the equivalent problem

of minimizing the functional

J =

∫ l

0

F (x, z(x), f(x)) dx

with F (x, z, f) = 1
2

(
(z − z∗(x))2 + (f − f∗(x))2

)
+ x− l∗.

Let the triple (l, z(·), f(·)) be a solution to this problem. Then, according to
Theorem 3.1 there are numbers α0 ≥ 0, β, and a continuously differentiable function
p : [0, l] → R such that

z′(x) = φ(z(x)) + f(x), z(l) = 0,

−p′(x) = p(x)φ′(z(x)) + α0Fz(x, z(x), f(x)), x ∈ [0, l],

p(0) = 0, p(l) = β,

p(x) + α0Ff (x, z(x), f(x)) = 0, x ∈ [0, l].

If α0 = 0, then p(x) = 0 and β = 0. Therefore, α0 > 0, and we put α0 = 1. Hence,
taking into account that φ(z) = z − z2, φ′(z) = 1 − 2z, Fz(x, z, f) = (z − z∗(x)), and
Ff (x, z, f) = f − f∗(x), we get a system

z′(x) = z(x) − z2(x) + f(x), z(l) = 0,
−p′(x) = p(x)(1 − 2z(x)) + z − z∗(x), p(0) = 0
p(x) + f(x) − f∗(x) = 0.

 (35)

Theorem 3.1 gives one more necessary optimality condition for determining
(l, z(·), f(·)). Recall that we are considering l close to l∗ = 1, which means a < l < b
with a = 0.5, b = 1.5. As we know, in this case cH = 0. Since α0 = 1, this condition
looks like

cH = px(x) + p(x)
(
φ(z(x)) + f(x)

)
+ F (x, z(x), f(x)) = 0 ∀x ∈ [0, l],

where px(x) = α0

∫ l

x
Fx(y, z(y), f(y)) dy, x ∈ [0, l]. Considering that px(l) = 0, z(l) =

0, and −p(l) = f(l) − f∗(l), we get

0 = p(l)
(
φ(z(l)) + f(l)

)
+ F (l, z(l), f(l))
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= p(l)
(
φ(0) + f(l)

)
+ F (l, 0, f(l))

= p(l)f(l) +
1

2
(z∗(l))2 +

1

2
((f(l) − f∗(l))2 + l − 1

= p(l)f(l) +
1

2
(z∗(l))2 +

1

2
(p(l))2 + l − 1,

that is

p(l)f(l) +
1

2
(z∗(l))2 +

1

2
(p(l))2 + l − 1 = 0. (36)

Conditions (35) and (36) constitute a complete system of necessary optimality con-
ditions for determining (l, z(·), f(·)). Obviously, the triple p(x) = 0, f(x) = f∗(x),
z(x) = z∗(x) is a solution to this system.

We will now show numerical results for this problem. We conducted the computa-
tion using the finite element method and the Newton method to handle the nonlinear
component. Here are the results. Fig. 2 illustrates the variation of the cost functional
with respect to the length parameter. It is observed that the cost functional attains
its minimum value at l = 1 = l∗, indicating the optimality of this length. This sig-
nifies that the length l = 1 is the optimal choice based on the minimization of the
cost functional. In Fig. 3, we show the optimal control and state under the optimal
length. Then, we computed the L2 norm error between the numerical solution and the
analytical solution to assess the accuracy of the results:

ferr = ||f(x) − f∗(x)|| = 1.6236e− 12, zerr = ||z(x) − z∗(x)|| = 4.5426e− 11.

Fig. 2 Cost with respect to l

4.2 Example 2

Consider the steady state for a single beam governed by the semilinear differen-
tial equation (Eq. 7). We present results from numerical simulations. The flexibility
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Fig. 3 Optimal control and optimal state

matrices are given by

C = diag (c1, c2, c3, c4, c5, c6)
−1

= diag
(
104, 104, 104, 500, 500, 500

)−1
.

In Eq. (14), setting f∗(x) = −1, then the steady state values are z∗1 = −x + 1, z∗2 =
0, . . . , z∗6 = 0. For IGEB model, the function

φ(r) = −E(x)r + L(r)Cr,

and its derivative is given by

φ′(r) = −E(x) + (L(r)Cr)′ := −E(x) + Ḡ(r).

The optimality system of equations can be written as
z′(x) = −E(x)z(x) + L(z)Cz(x) + e1(f∗ − p1(x)), x ∈ [0, l]

−p′(x) = −p(x)E(x) + p(x)Ḡ(z) + z(x) − z∗(x), x ∈ [0, l]

zi(l) = 0, i = 1, 2, . . . , 6

pi(0) = 0, i = 1, 2, . . . , 6.

The weak form of this system is given by:

−
∫ l

0

〈
dψ

dx
, z

〉
dx− z(0)ψ(0) +

∫ l

0

⟨Ez, ψ⟩ dx−
∫ l

0

⟨CL(z)z, ψ⟩ dx

+

∫ l

0

e1 ⟨p, ψ⟩ dx =

∫ l

0

e1 ⟨f∗, ψ⟩ dx, ∀ψ ∈ V1∫ l

0

〈
dη

dx
, p

〉
dx− p(1)η(1) +

∫ l

0

⟨Ep, η⟩ dx−
∫ l

0

〈
Ḡ(z)p, η

〉
dx

−
∫ l

0

⟨z, η⟩ dx = −
∫ l

0

⟨z∗, η⟩ dx, ∀η ∈ V2,

(37)
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where
V1 := {ψ ∈ H1

(
0, l;R6

)
, ψ(1) = 0},

and
V2 := {η ∈ H1

(
0, l;R6

)
, η(0) = 0}.

In numerical discretization, the interval [0, l] is discretized into Nx points {xk}Nx

k=1,
where x1 = 0 and xNx

= l. Each subinterval ωe := [x2e−1, x2e+1] for e ∈ {1, 2, . . . , Ne}
constitutes an element. These elements are defined by the points x2e−1, x2e, and
x2e+1 and have a uniform length he = x2e+1 − x2e−1. It is important to note that
Nx = 2Ne + 1.

We utilize P2 (quadratic) elements to define function spaces V1,h and V2,h as
described below:

V1,h : =
{
ψ ∈ C0

(
[0, l];RN6

)
: ψ|ωe ∈ (P2)

N6 for all e ∈ {1, . . . , Ne} , ψ(1) = 0
}
,

V2,h : =
{
η ∈ C0

(
[0, l];RN6

)
: η|ωe ∈ (P2)

N6 for all e ∈ {1, . . . , Ne} , η(0) = 0
}
.

The approximations for zi(x) and pi(x) are represented by the following expressions:

zi(x) =

Nx∑
j=1

Zi,jψj(x), pi(x) =

Nx∑
j=1

Pi,jηj(x),

where Zi,j denotes the value of zi at the P2 basis function ψj , which value is 1 at node
xj and 0 at other nodes, and similarly for Pi,j . In the discretized system, we define
the following matrices and vectors:

A1 =

∫ l

0

ψψ⊤, A2 =

∫ l

0

ψ(ψ′)⊤, A3[z] =

∫ l

0

zψψ⊤,

Ā1 =

∫ l

0

ηη⊤, Ā2 =

∫ l

0

η(η′)⊤, Ā3[z] =

∫ l

0

zηη⊤,

where ψ = (ψ1, ψ2, · · · , ψNx)⊤ and η = (η1, η2, · · · , ηNx)⊤. The matrix form of Eq. 37
can be written as

−Ks,1Z −MCL(z)Z + ē1M̄P = ē1F̂ ,

Ks,2P −MG(z)P − M̄Z = −Ẑ,
(38)

i.e., (
−Ks,1 ē1M̄
−M̄ Ks,2

)(
Z
P

)
−
(
MCL(z)

MG(z)

)(
Z
P

)
=

(
ē1F̂

−Ẑ

)
, (39)

where ē1 = diag(INx
,ONx

,ONx
,ONx

,ONx
,ONx

). ONx
is the zeros matrix. Further-

more, the vectors Z and P are defined as:

Z = (Z1,1, · · · , Z1,Nx
, · · · , Z6,1, · · · , Z6,Nx

)
⊤
,

P = (P1,1, · · · , P1,Nx
, · · · , P6,1, · · · , P6,Nx

)
⊤
.
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Similarity,

Ẑ =
(
Ẑ1,1, · · · , Ẑ1,Nx

, · · · , Ẑ6,1, · · · , Ẑ6,Nx

)⊤
,

F̂ =
(
F̂1, · · · , F̂Nx

,ONx
,ONx

,ONx
,ONx

,ONx

)⊤
,

where Ẑi,j represents the value of z∗i at the basis function ψj and F̂j represents the
value of f∗ at the basis function ηj .

The other matrices are defined by:

Ks,1 =


A2

A2

A2

A2

A1 A2

−A1 A2

 , Ks,2 =


Ā2

Ā2

Ā2

Ā2

−Ā1 Ā2

Ā1 Ā2

 ,

MG(z) =


0 c6Ā3(z6) −c5Ā3(z5) 0 −c5Ā3(z3) c6Ā3(z2)

−c6Ā3(z6) 0 c4Ā3(z4) c4Ā3(z3) 0 −c6Ā3(z1)
c5Ā3(z5) −c4Ā3(z4) 0 −c4Ā3(z2) c5Ā3(z1) 0

0 (c3 − c2)Ā3(z3) (c3 − c2)Ā3(z2) 0 (c6 − c5)Ā3(z6) (c6 − c5)Ā3(z5)
(c1 − c3)Ā3(z3) 0 (c1 − c3)Ā3(z1) (c4 − c6)Ā3(z6) 0 (c4 − c6)Ā3(z4)
(c2 − c1)Ā3(z2) (c2 − c1)Ā3(z1) 0 (c5 − c4)Ā3(z5) (c5 − c4)Ā3(z4) 0

,

MCL(z) =


0 0 0 0 −c5A3(z3) c6A3(z2)
0 0 0 c4A3(z3) 0 −c6A3(z1)
0 0 0 −c4A3(z2) c5A3(z1) 0
0 −c2A3(z3) c3A3(z2) 0 −c5A3(z6) c6A3(z5)

c1A3(z3) 0 −c3A3(z1) c4A3(z6) 0 c6A3(z4)
−c1A3(z2) c2A3(z1) 0 −c4A3(z5) c5A3(z4) 0

,

M̄ = diag(A1, A1, A1, A1, A1, A1).

Denote

A =

(
−Ks,1 ē1M̄
−M̄ Ks,2

)
, NL(z) =

(
MCL(z)

MG(z)

)
, W =

(
Z
P

)
, F =

(
ē1F̂

−Ẑ

)
.

So Eq. (39) become as:

AW −NL(z)W = F, (40)

where NL(z) represents the nonlinear component. The iterative process is governed
by the equation:

AW [n+1] −NL(z[n])W [n+1] = F,
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where the superscript [n] denotes the n-th iteration. Define the function Sn by

Sn(ζ) = Aζ −NL(z[n])ζ − F.

Equation (40) can also be expressed as Sk(W [n+1]) = 0. To find an approximate
solution to Sn(ζ) = 0, we employ the Newton-Raphson method, i.e., find ζ such that
Sn(ζ) = 0, by means of the scheme:

ζn+1 = ζn − (JacSn (ζn))
−1
Sn (ζn) ,

where JacSn = A−NL(z[n]).
For our problem, the initial data is set to zero. The following Algorithm 1 outlines

the steps taken to approximate the solution to Eq. (37). The results of this iterative
scheme are visually presented in Fig. 4. These figures demonstrate that the optimal
state and control closely approach z∗ and f∗ respectively when l = l∗. Furthermore,
Fig. 5 illustrates that the cost is convex with respect to the length of beam with the
unique minimizer. The optimal design corresponds to the length l = l∗ = 1.

Algorithm 1: Solve the obtained ODE for W

Set C, f∗, z∗ ;
Given initial guesses z0 ;
while convergence do

ζn+1 = ζn − (JacSn (ζn))
−1
Sn (ζn) ;

end
W = ζn+1

Fig. 4 Optimal state z(left) and optimal force f(right) (l = l∗)
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Fig. 5 Cost with respect to l

5 Network modeling: optimal control problem P

5.1 Statment of Problem P

Consider now the following optimal control problem that arises in network modeling.
Let zi(xi) be state variables, fi(xi) be controls, where xi ∈ [0, li], li > 0, i = 1, . . . ,m.
Here zi = (zi1, . . . , zin)⊤ ∈ Rn, fi ∈ R, i = 1, . . . ,m. We assume that zi(x) are
continuously differentiable functions and fi(xi) are continuous functions, i = 1, . . . ,m.
Problem P : The control system has the form

dzi(xi)

dxi
= φ(zi(xi)) + e1fi(xi), xi ∈ [0, li], i = 1, . . . ,m, (41)

where e1 = (1, 0, . . . , 0)⊤ ∈ Rn, φ : Rn → Rn is a twice continuously differentiable
function. Additionally, there is a constraint:

K(z1(0), z1(l1) . . . , zm(0), zm(lm)) = 0, (42)

where K = (K1, . . . ,Kr) ∈ Rr. The cost to be minimized is:

J =

m∑
i=1

∫ li

0

Fi(xi, zi(xi), fi(xi)) dxi, (43)

where

Fi(xi, zi, fi) =
1

2
|zi − z∗i (xi)|2 +

1

2
(fi − f∗i (xi))

2, xi ∈ [0, li],

z∗i (·) and f∗i (·) are given twice continuously differentiable functions, i = 1, . . . ,m. The
lengths of the intervals li satisfy the constraints

li ∈ [a, b], where 0 < a < b.

We assume that z∗i and f∗i are given on [0, b], i = 1, . . . ,m.
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We will be interested in optimality conditions in problem P for an admissible
process

(zi(xi), fi(xi) | xi ∈ [0, li])
m
i=1. (44)

This is not a standard optimal control problem, since it has many independent
variables xi, and each independent variable changes on its own interval [0, li]. Now our
goal is to represent this problem as a standard problem with one independent variable.

5.2 Change of independent variables xi. Problem P̃ on the
interval [0, 1].

Rewrite this problem on the interval [0, 1]. Let t ∈ [0, 1] be a new independent variable.
We set xi = x̃i(t) = li · t, t ∈ [0, 1], i = 1, . . . ,m. Then x̃i(t) ∈ [0, li], i = 1, . . . ,m.
We consider each xi = x̃i(t) as a new state variable, i = 1, . . . ,m. Moreover, we treat
each li = l̃i(t) also as a new state variable, that is constant on [0, 1], i = 1, . . . ,m.
Therefore, we have

dl̃i(t)

dt
= 0,

dx̃i(t)

dt
= l̃i(t), t ∈ [0, 1], x̃i(0) = 0, i = 1, . . . ,m.

Further, we set z̃i(t) = zi(x̃i(t)) = zi(lit), f̃i(t) = fi(x̃i(t)) = fi(lit), t ∈ [0, 1], i =
1, . . . ,m. Then

dz̃i
dt

=
dzi
dxi

l̃i, i = 1, . . . ,m.

Also, note that

J :=

m∑
i=1

∫ li

0

Fi(xi, zi(xi), fi(xi)) dxi =

m∑
i=1

∫ 1

0

l̃i(t)Fi(x̃i(t), z̃i(t), f̃i(t)) dt.

In what follows, we will continue to use the tilde for variables in the interval [0, 1].
Thus, we get a Problem P̃ on [0,1]:

dl̃i(t)

dt
= 0,

dx̃i(t)

dt
= l̃i(t), t ∈ [0, 1], i = 1, . . . ,m, (45)

dz̃i(t)

dt
= l̃i(t)

(
φ(z̃i(t)) + e1f̃i(t)

)
, t ∈ [0, 1], i = 1, . . . ,m, (46)

x̃i(0) = 0, −l̃i(0) + a ≤ 0, l̃i(0) − b ≤ 0, i = 1, . . . ,m, (47)

K(z̃1(0), z̃1(1) . . . , z̃m(0), z̃m(1)) = 0, (48)

J =

m∑
i=1

∫ 1

0

l̃i(t)Fi(x̃i(t), z̃i(t), f̃i(t)) dt→ min . (49)
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5.3 Local minimum principle for Problem P̃

The endpoint Lagrange function is:

L̃ =
∑m

i=1 αai(−l̃i(0) + a) +
∑m

i=1 αbi(l̃i(0) − b)

+
∑m

i=1 βxix̃i(0) + βK(z̃1(0), z̃1(1) . . . , z̃m(0), z̃m(1)),

where αai, αbi, βxi are numbers, β ∈ Rr⊤ is a row vector of dimension r. The
Hamiltonian is:

H̃ =

m∑
i=1

p̃xi l̃i +

m∑
i=1

p̃zi l̃i
(
φ(z̃i) + e1f̃i

)
+ α0

m∑
i=1

l̃iFi(x̃i, z̃i, f̃i),

where α0, p̃xi are numbers and pzi are row vectors of dimension n. It is convenient to
introduce

H̃i := l̃i
(
p̃xi + p̃zi

(
φ(z̃i) + e1f̃i

)
+ α0Fi(x̃i, z̃i, f̃i)

)
, i = 1, . . . ,m.

Then H̃ =
m∑
i=1

H̃i.

Let us write down the necessary first-order optimality conditions at an admissible
point

(l̃i(·), x̃i(·), z̃i(·), f̃i(·))mi=1, (50)

which corresponds to the process (44).
The partial derivatives of H̃ with respect to l̃i, x̃i, z̃i, f̃i have the form

H̃l̃i
= p̃xi + p̃zi

(
φ(z̃i) + e1f̃i

)
+ α0Fi(x̃i, z̃i, f̃i) = H̃i

l̃i
,

H̃x̃i
= α0 l̃iFix̃i

(x̃i, z̃i, f̃i) = −α0 l̃i
(
z̃i − z∗i (x̃i)

)⊤
(z∗i )′(x̃i) − α0 l̃i(f̃i − f∗i (x̃i))(f

∗
i )′(x̃i),

H̃z̃i = p̃zi l̃iφ
′(z̃i)

T + α0 l̃i
(
z̃i − z∗i (x̃i)

)⊤
,

H̃f̃i
= p̃zi l̃ie1 + α0 l̃iFf̃i

(x̃i, z̃i, f̃i) = p̃zi l̃ie1 + α0 l̃i(f̃i − f∗i (x̃i)).

We use these formulas below. In what follows we remember that l̃i(t) = li = const.

The LMP conditions at the point (50) in problem (45) -(49) are as follows.

(a) The nonnegativity conditions: α0 ≥ 0, αai ≥ 0, αbi ≥ 0, i = 1, . . . ,m.

(b) The nontriviality condition: α0 +
m∑
i=1

αai +
m∑
i=1

αbi +
m∑
i=1

|βxi| + |β| > 0.

(c) The complemantarity conditions: αai(l̃i(0)−a) = 0, αbi(l̃i(0)−b) = 0, i = 1, . . . ,m.
(d) The adjoint equations:

− dp̃li(t)

dt
= p̃xi(t) + p̃zi(t)

(
φ(z̃i(t)) + e1f̃i(t)

)
+ α0F (x̃i(t), z̃i(t), f̃i(t)), (51)

− dp̃xi(t)

dt
= −α0li

(
z̃i(t) − z∗i (x̃i(t))

)⊤
(z∗i )′(x̃i(t))
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−α0li
(
f̃i(t) − f∗i (x̃i(t))

)
(f∗i )′(x̃i(t)), (52)

− dp̃zi(t)

dt
= p̃zi(t)liφ

′(z̃i(t)) + α0li
(
z̃i(t) − z∗i (x̃i(t))

)⊤
, (53)

t ∈ [0, 1], i = 1, . . . ,m.

(e) The transversality conditions:

−p̃li(0) = −αai + αbi, p̃
li(1) = 0,

−p̃xi(0) = βxi
, p̃xi(1) = 0,

−p̃zi(0) = βKzi(0), p̃zi(1) = βKzi(1), i = 1, . . . ,m.

Integrating equation (51) over [0, 1] and using the first two transversality conditions,
we obtain

αai − αbi =

∫ 1

0

(
p̃xi(t) + p̃zi(t)

(
φ(z̃i(t)) + e1f̃i(t)

)
+ α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
dt.

Multiplying this equality by li, we get

(αai − αbi)li =

∫ 1

0

H̃i(t) dt, i = 1, . . . ,m,

where H̃i(t) := li

(
p̃xi(t) + p̃zi(t)

(
φ(z̃i(t)) + e1f̃i(t)

)
+ α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
.

(f) The conditions H̃f̃i
= p̃zi(t)lie1 + α0li

(
f̃i(t) − f∗i (x̃i(t))

)
= 0, i = 1, . . . ,m.

Since li > 0 and p̃zi(t)e1 = p̃zi1 (t), we get

p̃zi1 (t) + α0

(
f̃i(t) − f∗i (x̃i(t))

)
= 0, t ∈ [0, 1], i = 1, . . . ,m.

(g) Finally, the condition H̃(t) = const has the form: there exists a constant ĉH such
that

m∑
i=1

li

(
p̃xi(t)+ p̃zi(t)

(
φ(z̃i(t))+e1f̃i(t)

)
+α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
= c̃H ∀ t ∈ [0, 1].

Integrating equation (g) over [0, 1] and using the condition H̃ =
m∑
i=1

H̃i, we get

c̃H =

m∑
i=1

∫ 1

0

H̃i(t) dt.

Equations

dl̃i
dt

= 0,
dx̃i
dt

= H̃i
p̃xi ,

dz̃i
dt

= H̃i
p̃zi , − dp̃xi

dt
= H̃i

x̃i
, − dp̃zi

dt
= H̃i

z̃i , H̃i
f̃i

= 0
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imply d
dt
H̃i(t) = 0, whence it follows that H̃i(t) = const ∀ t ∈ [0, 1], i = 1, . . . ,m.

We set
H̃i(t) = c̃Hi , t ∈ [0, 1], i = 1, . . . ,m.

Then ∫ 1

0

H̃i(t) dt = c̃Hi , i = 1, . . . ,m.

Consequently,

c̃H =

m∑
i=1

c̃Hi , H̃(t) = c̃H , t ∈ [0, 1].

Using the relation (αai − αbi)li =
∫ 1

0
H̃i(t) dt, we obtain

c̃Hi = (αai − αbi)li, i = 1, . . . ,m.

From these relations together with the complementary slackness conditions (c) the
following statements follow: for any i = 1, . . . ,m we have

(1) if a < li < b, then αai = αbi = 0 and, therefore, c̃Hi = 0,
(2) if li = a, then αbi = 0 and, therefore, c̃Hi = αaili ≥ 0,
(3) if li = b, then αai = 0 and, therefore, c̃Hi = −αbili ≤ 0,
(4) moreover, if c̃Hi > 0, then αai > 0, and, therefore, li = a; if c̃Hi < 0, then αbi > 0,

and, therefore, li = b.

Thus, we obtain the following result. If (l̃i(·), x̃i(·), z̃i(·), f̃i(·))mi=1 is a local minimum in
problem P̃ , then there exist a number α0 ≥ 0, a row vector β ∈ Rr⊤ and continuously
differentiable functions p̃xi(t), p̃zi(t), t ∈ [0, 1], i = 1, . . . ,m such that the following
system of optimality conditions holds:

dl̃i(t)

dt
= 0, dx̃i(t)

dt
= l̃i(t), t ∈ [0, 1], i = 1, . . . ,m,

dz̃i(t)

dt
= l̃i(t)

(
φ(z̃i(t)) + e1f̃i(t)

)
, t ∈ [0, 1], i = 1, . . . ,m,

x̃i(0) = 0, −l̃i(0) + a ≤ 0, l̃i(0) − b ≤ 0, i = 1, . . . ,m,

K(z̃1(0), z̃1(1) . . . , z̃m(0), z̃m(1)) = 0,

− dp̃xi (t)

dt
= −α0li

(
z̃i(t) − z∗i (x̃i(t))

)⊤
(z∗i )′(x̃i(t))

−α0li
(
f̃i(t) − f∗i (x̃i(t))

)
(f∗i )′(x̃i(t)), p̃

xi(1) = 0, t ∈ [0, 1], i = 1, . . . ,m,

− dp̃zi (t)

dt
= p̃zi(t)liφ

′(z̃i(t)) + α0li
(
z̃i(t) − z∗i (x̃i(t))

)⊤
, t ∈ [0, 1], i = 1, . . . ,m,

−p̃zi(0) = βKzi(0), p̃zi(1) = βKzi(1), i = 1, . . . ,m,

p̃zi1 (t) + α0

(
f̃i(t) − f∗i (x̃i(t))

)
= 0, t ∈ [0, 1], i = 1, . . . ,m.

Further, each function

H̃i(t) := li

(
p̃xi(t)+ p̃zi(t)

(
φ(z̃i(t))+e1f̃i(t)

)
+α0Fi(x̃i(t), z̃i(t), f̃i(t))

)
, i = 1, . . . ,m
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is constant on [0, 1]. Set

c̃Hi := H̃i(t), t ∈ [0, 1], i = 1, . . . ,m. (54)

Then for every i = 1, . . . ,m the following is true:

if a < li < b then c̃Hi = 0,
if li = a, then c̃Hi ≥ 0,
if li = b, then c̃Hi ≤ 0.

Moreover, if c̃Hi > 0, then li = a; if c̃Hi < 0, then li = b.
Note that the equation (52) for p̃xi and the transversality conditions for p̃xi imply

p̃xi(t) = −α0li

∫ 1

t

((
z̃i(τ)−z∗i (x̃i(τ))

)⊤
(z∗i )′(x̃i(τ))+

(
f̃i(τ)−f∗i (x̃i(τ))

)
(f∗i )′(x̃i(τ))

)
dτ,

where t ∈ [0, 1]. This is a complete information following from the LMP for Problem P̃ .
The adjoint variable p̃xi can be excluded from the system of optimality conditions.

For this we can use the formula c̃Hi = H̃i(1), i = 1, . . . ,m, following from (54). Since
p̃xi(1) = 0, we get

c̃Hi = H̃i(1) := li

(
p̃zi(1)

(
φ(z̃i(1))+e1f̃i(1)

)
+α0Fi(x̃i(1), z̃i(1), f̃i(1))

)
, i = 1, . . . ,m.

This allows us to define the sign of c̃Hi (only that sign is important) without using p̃xi .
Let us represent the above conditions using independent variables xi ∈ [0, li],

i = 1, . . . ,m.
Fix any i ∈ {1, . . . ,m}. Recall that xi = li·t, t ∈ [0, 1], z̃i(t) = zi(lit), f̃i(t) = fi(lit).

We set pxi(xi) = p̃xi(t), pzi(xi) = p̃zi(t), where t = xi/li, xi ∈ [0, li]. Then it is easy
to see that for a given i we get a system on [0, li], where a ≤ li ≤ b:

dzi(xi)

dxi
= φ(zi(xi)) + e1fi(xi), xi ∈ [0, li],

K(z1(0), z1(l1) . . . , zi(0), zi(li), . . . , zm(0), zm(lm)) = 0,

− dpxi (xi)

dxi
= −α0

(
zi(xi) − z∗i (xi)

)⊤
(z∗i )′(xi(xi)) − α0

(
fi(xi) − f∗i (xi)

)
(f∗i )′(xi(t)), xi ∈ [0, li],

pxi(li) = 0,

− dpzi (xi)

dxi
= pzi(xi)φ

′(zi(xi)) + α0

(
zi(xi) − z∗i (xi)

)⊤
, xi ∈ [0, li],

−pzi(0) = βKzi(0), pzi(li) = βKzi(li),

pzi1 (xi) + α0

(
fi(xi) − f∗i (xi)

)
= 0, xi ∈ [0, li].

Moreover, the function

Hi(xi) := pxi(xi) + pzi(xi)
(
φ(zi(xi)) + e1fi(xi)

)
+ α0Fi(xi, zi(xi), fi(xi))
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is constant on [0, li], where

pxi(xi) = −α0

∫ li

xi

((
zi(x)−z∗i (x)

)⊤
(z∗i )′(x)+

(
fi(x)−f∗i (x)

)
(f∗i )′(x)

)
dx, xi ∈ [0, li].

Set cHi := Hi(xi), xi ∈ [0, li]. Then for every i = 1, . . . ,m the following is true: if
a < li < b, then cHi = 0; if li = a, then cHi ≥ 0; if li = b, then cHi ≤ 0. Moreover, if
cHi > 0, then li = a; if cHi < 0, then li = b.

It is convenient to use formulas

cHi = Hi(li) = pzi(li)
(
φ(zi(li)) + e1fi(li)

)
+ α0Fi(li, zi(li), fi(li)), i = 1, . . . ,m,

which does not require calculations pxi(xi).
Note that only the constraint K(z1(0), z1(l1) . . . , zi(0), zi(li), . . . , zm(0), zm(lm)) =

0 and the corresponding transversality conditions −pzi(0) = βKzi(0), p
zi(li) =

βKzi(li), i = 1, . . . ,m do not break up and unite system of necessary conditions for
Problem P .

5.4 Problem Pi and its relation to Problem P

Let (l̃0i (·), x̃0i (·), z̃0i (·), f̃0i (·))mi=1 be a solution to Problem P̃ . Set ζ̃i = (z̃i(0), z̃i(1)),
ζ̃0i = (z̃0i (0), z̃0i (1)), i = 1, . . . ,m. Fix any i and define the function

Ki(ζ̃i) := K(ζ̃01 , . . . , ζ̃
0
i−1, ζ̃i, ζ̃

0
i+1, . . . , ζ̃

0
m).

Consider the following Problem P̃i on [0,1]:

dl̃i(t)

dt
= 0, dx̃i(t)

dt
= l̃i(t),

dz̃i(t)

dt
= l̃i(t)

(
φ(z̃i(t)) + e1f̃i(t)

)
, t ∈ [0, 1],

x̃i(0) = 0, −l̃i(0) + a ≤ 0, l̃i(0) − b ≤ 0,

Ki(z̃i(0), z̃i(1)) = 0,

Ji =
∫ 1

0
l̃i(t)Fi(x̃i(t), z̃i(t), f̃i(t)) dt→ min .

The following assertion holds for any i = 1, . . . ,m.
Lemma 1 If a point (l̃0i (·), x̃0i (·), z̃0i (·), f̃0i (·))mi=1 is a solution to Problem P̃ , then the
point (l̃0i (·), x̃0i (·), z̃0i (·), f̃0i (·)) is a solution to Problem P̃i.
The proof is trivially carried out by contradiction.

Necessary first-order optimality conditions in Problem P̃i are given in Section
3.2. Sufficient second-order optimality conditions in Problem P̃i are given in Sections
3.3–3.5.

Similar relations between problems can be formulated on intervals [0, li]. Let

(l0i , z
0
i (·), f0i (·))mi=1
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be a solution to Problem P . Set ζi = (zi(0), zi(li)), ζ
0
i = (z0i (0), z0i (li)), i = 1, . . . ,m.

Fix any i and define the function Ki(ζi) := K(ζ01 , . . . , ζ
0
i−1, ζi, ζ

0
i+1, . . . , ζ

0
m). Consider

the following Problem Pi on [0, li]:

dzi(xi)

dxi
= φ(zi(xi)) + e1fi(xi), xi ∈ [0, li],

a ≤ li ≤ b, Ki(zi(0), zi(li)) = 0,

Ji =
∫ li
0
Fi(xi, zi(xi), fi(xi)) dt→ min .

For any i = 1, . . . ,m, the following assertion holds.
Lemma 2 If (l0i , z

0
i (·), f0i (·))mi=1 is a solution to Problem P , then (l0i , z

0
i (·), f0i (·)) is a

solution to Problem Pi.
First and second order optimality conditions in Problem Pi are given in sections 3.2,
3.3–3.5.

5.5 Example

Consider the following control system described by second-order differential equations
for a three-beam network:

d2zi(xi)

dx2i
= φi(zi(xi), fi(xi)), xi ∈ [0, li], i = 1, 2, 3

The endpoint conditions are as follows:

z1(0) = 0, z2(l2) = 0, z3(l3) = 0,

z1(l1) − z2(0) = 0, z2(0) − z3(0) = 0,

z′1(l1) − z′2(0) − z′3(0) = 0.

Here zi(xi) are one-dimensional state variables, fi(xi) are one-dimensional controls.
We assume that fi(·) are continuous functions, and zi(·) are twice continuously
differentiable functions, i = 1, 2, 3. We refer to Fig. 6 for visualization.

Let us represent this system in an equivalent way as a system of first-order
differential equations, introducing new one-dimensional state variables yi(xi):

dzi(xi)

dxi
= yi(xi),

dyi(xi)

dxi
= φi(zi(xi), fi(xi)), xi ∈ [0, li], i = 1, 2, 3, (55)

z1(0) = 0, z2(l2) = 0, z3(l3) = 0, (56)

z1(l1) − z2(0) = 0, z2(0) − z3(0) = 0, (57)

y1(l1) − y2(0) − y3(0) = 0. (58)

In addition to this system, there is a constraint on the length of the intervals

l1 + l2 + l3 = µ, (59)
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x = 0

x = l3 x = l2

x = l1

Fig. 6 The three-star graph

where li > 0, i = 1, 2, 3, µ > 0 is a given number. The cost that needs to be minimized
is:

J =

3∑
i=1

∫ li

0

(1

2
(zi(xi) − z∗i (xi))

2 +
1

2
(fi(xi) − f∗i (xi))

2
)

dxi → min, (60)

where z∗i (·) are given twice continuously differential functions, f∗i (·) are given continu-
ous functions, and φi(·, ·) are given Lipschitz continuous functions i = 1, 2, 3. Problem
(55)-(60) will be called Problem PE .

This problem is not a special case of problem P studied in this section, but we will
show that the method of reduction to a standard optimal control problem used in this
section can also be applied to problem PE . Thus, this method has a much broader
application than was shown in Section 5. Here, we restrict ourselves to first-order
optimality conditions only.

Problem P̃E on the interval [0, 1] has the form

˙̃
li(t) = 0, ˙̃xi(t) = l̃i(t), ˙̃zi(t) = l̃i(t)ỹi(t), ˙̃yi(t) = l̃i(t)φi(z̃i(t), f̃i(t)), i = 1, 2, 3,

x̃1(0) = 0, x̃2(0) = 0, x̃3(0) = 0,

z̃1(0) = 0, z̃2(1) = 0, z̃3(1) = 0,

z̃1(1) − z̃2(0) = 0, z̃2(0) − z̃3(0) = 0,

ỹ1(1) − ỹ2(0) − ỹ3(0) = 0,

l̃1(0) + l̃2(0) + l̃3(0) = µ,

J =
3∑

i=1

∫ 1

0

(
1
2 (z̃i(t) − z∗i (x̃i(t)))

2 + 1
2 (f̃i(t) − f∗i (x̃i(t)))

2
)

dt→ min .

Let (l0i , z
0
i (·), y0i (·), f0i (·))i=1,2,3 be an optimal solution of problem PE . Set

l̃0i = l0i , x̃0i (t) = l̃0i t, z̃0i (t) = z0i (l0i t), ỹ0i (t) = y0i (l0i t), f̃0i (t) = f0i (l0i t).
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Then (l̃0i , x̃
0
i (·), z̃0i (·), ỹ0i (·), f̃0i (·))i=1,2,3 is an optimal solution of Problem P̃E . Let

α0 ≥ 0 be the cost Lagrange multiplier for this solution. Recall that α0 = 1 in the
normal case and α0 = 0 in the abnormal case.

Let us write down the LMP conditions. Here,

L̃ = γ1x̃1(0) + γ2x̃2(0) + γ3x̃3(0) + β1z̃1(0) + β2z̃2(1) + β3z̃3(1)
+β4(z̃1(1) − z2(0)) + β5(z̃2(0) − z3(0)) + β6(ỹ1(1) − ỹ2(0) − ỹ3(0))

+δ(l̃1(0) + l̃2(0) + l̃3(0) − µ),

H̃ =

3∑
i=1

p̃xi
l̃i +

3∑
i=1

p̃zi l̃iỹi +

3∑
i=1

p̃yi
l̃iφi(z̃i, f̃i) + α0

3∑
i=1

l̃iFi(x̃i, z̃i, f̃i),

where

Fi(x̃i, z̃i, f̃i) =
1

2
(z̃i − z∗i (x̃i))

2 +
1

2
(f̃i − f∗i (x̃i))

2.

Set

H̃i = p̃xi l̃i + p̃zi l̃iỹi + p̃yi l̃iφi(z̃i, f̃i) + α0 l̃iFi(x̃i, z̃i, f̃i),

Then H̃ =
3∑

i=1

H̃i.

The adjoint system and the condition Hi
fi

= 0 have the form:

− ˙̃pli(t) = p̃xi
(t) + p̃zi(t)ỹ

0
i (t) + p̃yi

(t)φi(z̃
0
i (t), f̃0i (t)) + α0Fi(x̃

0
i (t), z̃0i (t), f̃0i (t)),

− ˙̃pxi
(t) = −α0 l̃

0
i

(
z̃0i (t) − z∗i (x̃0i (t))

)
(z∗i )′(x̃0i (t)) − α0 l̃

0
i

(
f̃0i (t) − f∗i (x̃0i (t))

)
(f∗i )′(x̃0i (t)),

− ˙̃pzi(t) = p̃yi
(t)l̃0iφiz̃i(z̃

0
i (t), f̃0i (t)) + α0 l̃

0
i (z̃0i (t) − z∗i (x̃0i (t))),

− ˙̃pyi
(t) = p̃zi(t)l̃

0
i ,

pyi(t)l̃
0
iφif̃i

(z̃0i (t), f̃0i (t)) + α0 l̃
0
i

(
f̃0i (t) − f∗i (x̃0i (t))

)
= 0

for all i = 1, 2, 3. Moreover, there exist constants c̃Hi such that

H̃i(t) := l̃0i
(
p̃xi

(t)+p̃zi(t)ỹ
0
i (t)+p̃yi

(t)φi(z̃
0
i (t), f̃0i (t))+α0Fi(x̃

0
i (t), z̃0i (t), f̃0i (t))

)
= c̃Hi

for all t ∈ [0, 1], i = 1, 2, 3.
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The transversality conditions are:

−p̃l1(0) = δ, p̃l1(1) = 0,

−p̃x1(0) = γ1, p̃x1(1) = 0,

−p̃z1(0) = β1, p̃z1(1) = β4,

−p̃y1
(0) = 0, p̃y1

(1) = β6,

−p̃l2(0) = δ, p̃l2(1) = 0,

−p̃x2
(0) = γ2, p̃x2

(1) = 0,

−p̃z2(0) = −β4 + β5, p̃z2(1) = β2,

−p̃y2
(0) = −β6, p̃y2

(1) = 0,

−p̃l3(0) = δ, p̃l3(1) = 0,

−p̃x3
(0) = γ3, p̃x3

(1) = 0,

−p̃z3(0) = −β5, p̃z3(1) = β3,

−p̃y3
(0) = −β6, p̃y3

(1) = 0.

This implies that

p̃l1(0) = p̃l2(0) = p̃l3(0) = −δ,
p̃l1(1) = p̃l2(1) = p̃l3(1) = 0,

p̃x1
(1) = 0, p̃x2

(1) = 0, p̃x3
(1) = 0

p̃y1
(0) = 0, p̃y2

(1) = 0, p̃y3
(1) = 0,

p̃y1
(1) = p̃y2

(0) = p̃y3
(0),

p̃z1(1) − p̃z2(0) − p̃z3(0) = 0.

It follows from the condition of the constancy of the Hamiltonian H̃i and the
transversality conditions for p̃li that c̃Hi = −δ, i = 1, 2, 3. Consequently,

c̃H1 = c̃H2 = c̃H3 .

The nontriviality condition means that α0 = 1 or not all adjoint variables are equal
to zero.

Let us reformulate these conditions in the intervals [0, l0i ]. We set

pxi
(xi) = p̃xi

(t), pyi
(xi) = p̃yi

(t), pzi(xi) = p̃zi(t), where t =
xi
l0i
, xi ∈ [0, l0i ].
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Then it is easy to see that for a given i we get a system on the intervals [0, l0i ]:

−(pxi)
′(xi) = −α0

(
z0i (xi) − z∗i (xi)

)
(z∗i )′(xi) − α0

(
f0i (xi) − f∗i (xi)

)
(f∗i )′(xi),

−(pzi)
′(xi) = pyi

(xi)φizi(z
0
i (xi), f

0
i (xi)) + α0(z0i (xi) − z∗i (xi))

−(pyi)
′(xi) = pzi(xi),

pyi(xi)φifi(z
0
i (xi), f

0
i (xi)) + α0

(
f0i (xi) − f∗i (xi)

)
= 0,

where xi ∈ [0, l0i ], i = 1, 2, 3. Moreover,

pxi(l
0
i ) = 0, i = 1, 2, 3, py1(0) = 0, py2(l02) = py3(l03) = 0,

py1(l01) = py2(0) = py3(0), pz1(l01) − pz2(0) − pz3(0) = 0.

}
(61)

Set

pi(xi) := pyi(xi), xi ∈ [0, l0i ], i = 1, 2, 3.

Then

p′i(xi) = −pzi(xi), xi ∈ [0, l0i ], i = 1, 2, 3.

Thus, we obtain

(pi)
′′(xi) = pi(xi)φizi(z

0
i (xi), f

0
i (xi)) + α0(z0i (xi) − z∗i (xi)),

pi(xi)φifi(z
0
i (xi), f

0
i (xi)) + α0

(
f0i (xi) − f∗i (xi)

)
= 0,

where xi ∈ [0, l0i ], i = 1, 2, 3.
The condition of the constancy of the Hamiltonian H̃i becomes

Hi(xi) := pxi
(xi) + pzi(xi)y

0
i (xi) + pyi

(xi)φi(z
0
i (xi), f

0
i (xi)) +α0Fi(xi, z

0
i (xi), f

0
i (xi)).

whence it follows that

Hi(xi) = pxi(xi) − p′i(xi)y
0
i (xi) + pi(xi)φi(z

0
i (xi), f

0
i (xi)) + α0Fi(xi, z

0
i (xi), f

0
i (xi)),

and there exists a constant cHi such that

Hi(xi) = cHi ∀xi ∈ [0, l0i ], i = 1, 2, 3.

In particular, for xi = l0i we get

cHi = Hi(l0i ) = −p′i(l0i )y0i (l0i )+pi(l
0
i )φi(z

0
i (l0i ), f0i (l0i ))+α0Fi(l

0
i , z

0
i (l0i ), f0i (l0i )), i = 1, 2, 3.

Here,

pi(l
0
i ) = pyi(l

0
i ) = 0, i = 1, 2.

Moreover,

cH1 = cH2 = cH3 .
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Note that the adjoint equation for p̃xi and the condition pxi(l
0
i ) = 0 give

pxi
(xi) = −

∫ l0i

xi

(
α0

(
z0i (x) − z∗i (x)

)
(z∗i )′(x) + α0

(
f0i (x) − f∗i (x)

)
(f∗i )′(x))

)
dx.

To the resulting system of necessary optimality conditions, we have to add the
transversality conditions (61), which are equivalent to the system

p1(0) = p2(l02) = p3(l03) = 0, p1(l01) = p2(0) = p3(0), p′1(l0i ) − p′2(0) − p′3(0) = 0.

Moreover, α0 = 1 or not all p1, p2, p3 are equal to zero.

To conclude this section, we write Problem PE
i for each beam. It has the form:

dzi(x)

dx
= yi(x), dyi(x)

dx
= φi(zi(x), fi(x)), x ∈ [0, li],

Ki(li, zi(0), yi(0), zi(li), yi(li)) = 0,

Ji =
∫ li
0

(
1
2 (zi(x) − z∗i (x))2 + 1

2 (fi(x) − f∗i (x))2
)

dx→ min,

where li > 0 is not fixed. Here K1 = 0 means

z1(0) = 0, z1(l1) − z02(0) = 0, y1(l1) − y02(0) − y03(0) = 0, l1 + l02 + l03 = µ,

K2 = 0 means

z2(l2) = 0, z01(l01) − z2(0) = 0, z2(0) − z03(0) = 0, y01(l01) − y2(0) − y03(0) = 0,

l01 + l2 + l03 = µ,

and K3 = 0 means

z3(l3) = 0, z02(0) − z3(0) = 0, y01(l01) − y02(0) − y3(0) = 0, l01 + l02 + l3 = µ,

We know that (l0i , z
0
i (·), y0i (·), f0i (·)) is the optimal solution to problem PE

i , i = 1, 2, 3.

6 Conclusion

We consider the optimal control problem combined with the optimum design prob-
lem in one optimization problem for networks. The analysis of steady state model is
useful for dynamic models with the so-called control systems with turnpike property.
We refer the reader to the optimum design of the linear wave equation on networks in
the forthcoming paper entitled Network design and control. The turnpike property for
wave equation, by Martin Gugat, Mezhi Qian and Jan Sokolowski, where the bilevel
optimization problems is considered. The results are presented at MMAR 2023 [15].
The numerical analysis of the optimum design for nonlinear control systems on net-
works is still to be performed. Two main examples of such systems are networks of
nonlinear elastic beams and the gas transportation networks.
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