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Highlights

• Need for segmentation of healthy and infarcted tissues in delayed-enhancement MRI.
• Lack of robustness and contour accuracy of the state of the art methods.
• Use of probability map instead of binary segmentation for a better sensibility and robustness.
• Use of an adapted contours loss function.
• Outperforms the state of the art for infarction segmentation.
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Abstract

Background and Objective: Automatic segmentation of myocardial infarc-
tion is of great clinical interest for the quantitative evaluation of myocardial
infarction (MI). Late Gadolinium Enhancement cardiac MRI (LGE-MRI) is
commonly used in clinical practice to quantify MI, which is crucial for clinical
diagnosis and treatment of cardiac diseases. However, the segmentation of
infarcted tissue in LGE-MRI is highly challenging due to its high anisotropy
and inhomogeneities.

Methods: The innovative aspect of our work lies in the utilization of a
probability map of the healthy myocardium to guide the localization of in-
farction, as well as the combination of 2D U-Net and U-Net transformers to
achieve the final segmentation. Instead of employing a binary segmentation
map, we propose using a probability map of the normal myocardium, ob-
tained through a dedicated 2D U-Net. To leverage spatial information, we
employ a U-Net transformers network where we incorporate the probability
map into the original image as an additional input. Then, To address the
limitations of U-Net in segmenting accurately the contours, we introduce an
adapted loss function.

Results: Our method has been evaluated on the 2020 MICCAI EMIDEC
challenge dataset, yielding competitive results. Specifically, we achieved a
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Dice score of 92.94% for the myocardium and 92.36% for the infarction.
These outcomes highlight the competitiveness of our approach.

Conclusion: In the case of the infarction class, our proposed method
outperforms state-of-the-art techniques across all metrics evaluated in the
challenge, establishing its superior performance in infarction segmentation.
This study further reinforces the importance of integrating a contour loss
into the segmentation process.

Keywords: Late gadolinium magnetic resonance imaging, Left ventricle
scar, Segmentation, Transformers network, U-Net

1. Introduction

Late Gadolinium Enhancement Magnetic Resonance Imaging (LGE-MRI)
is widely used for infarcted area detection after a myocardial infarction (MI).
It results to a good contrast of the infarct tissues, enabling to characterize
the position and size of the scar in the myocardium. The infarct to healthy
tissue ratio is an important indicator to choose an adapted treatment in
clinical routine [1]. The delineation of the infarcted area is thus a key to an
optimal clinical diagnosis and treatment planning. Cardiologists have good
experience to delineate the infarction area in MRI-LGE, however a manual
segmentation is tedious and time-consuming and may lead to a high inter-
observer variability [2]. Therefore a way to meet the clinical needs is to
develop a fully-automatic infarction segmentation.

However, LGE-MRI segmentation is a challenging task, due to contrast
and heart shape variations between images. Furthermore, the inter-slices
spatial resolution is poor, hence it is difficult to exploit a volumic information.
This limits the efficiency of conventional methods [3] based on semi-automatic
thresholding techniques like n-Standard Deviations [4] (n-SD), Full Width at
Half Maximum (FWHM) [5] and expectation–maximization (EM) algorithm
coupled with morphology filters (watershed) [6]. A manual region-of-interest
(ROI) selection is required for these three techniques.

Machine learning based methods like conditional random fields (CRF) [3] [7],
enable a fully-automatic segmentation of LGE-MRI with good results. How-
ever, they require an amount of engineering or prior knowledge to achieve a
good level of accuracy. On the other hand, deep-learning (DL) based methods
discovers automatically complex features from data. It makes DL methods
more flexible to use and establishing themselves as the new standard [8].
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Among the numerous existing architectures, the U-Net has emerged as
a prominent and widely recognized architecture for medical image segmen-
tation [9]. The fully convolutional network (FCN) architecture has a main
limitation, it lies in its dependence on fully connected layers, which results
in a loss of spatial information and ultimately leads to a decline in overall
performance. In contrast, the U-Net architecture is specifically tailored to
address the challenges encountered in medical image segmentation tasks and
has been extensively used [10].

The primary drawback of FCN stems from its reliance on fully connected
layers, which leads to a loss of spatial information and consequently results
in a decline in overall performance.

The U-Net architecture consists of two branches connected by skip con-
nections. The encoder branch extracts features and creates a compact rep-
resentation of the information contained in the image. This compression is
primarily achieved through successive convolutions. The decoder branch re-
constructs an image from the compact representation with transposed convo-
lutional layers. The skip connections between each stage connect the encoder
and the decoder. It ensures the reuse of feature maps of the same dimension
from previous layers through concatenation.

Upendra et al. [11] proposed a novel method that combines the U-Net
architecture with Cine-MRI registration on LGE-MRI to accurately segment
the key cardiac structures, including the myocardium, left ventricle, and
right ventricle. The dataset used is the 2019 MS-CMRSeg challenge and
the method obtained an average Dice score of 84.73% and 71.49% for the
Cine-MRI and LGE-MRI respectively.

Decourt et al. [12] proposed an innovative approach that leverages Gener-
ative Adversarial Networks (GANs) to generate precise left ventricle segmen-
tations for pediatric MRI scans. This method offers the distinct advantage of
achieving comparable performance with fewer data requirements compared
to traditional U-Net approaches.

Cao et al. [13] developed the SwinUnet, a 2D U-Net architecture that
exclusively utilizes transformers. This architecture demonstrates remark-
able performance on the ACDC dataset, which comprises Cine-MRI scans.
Specifically, it achieves a Dice score of 88.55% for the right ventricle, 85.62%
for the myocardium, and 95.83% for the left ventricle. However, this net-
work primarily emphasizes 2D slices, whereas in our application, we aspire
to harness the potential of both the 2D and 3D dimensions while maintaining
convolution as a valuable complement to the transformers.
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Zabihollahy et al. [14], [15] introduced a novel approach known as the
Cascaded Multi-Planar U-Net (CMPU-Net). This method involves training
two subnetworks, each consisting of three U-Nets, utilizing 2D slices extracted
from the axial, sagittal, and coronal views of the 3D LGE-MRI scans. This
method achieves a Dice score of 85.14% for the myocardium and 88.61%
for the infarction. However, in our specific application, the acquired images
exhibit significant anisotropy along the Z-axis. This anisotropy results in
poor resolution in the Z-axis, which imposes limitations on methods that
solely rely on a 3D approach.

In 2020, a MICCAI challenge was proposed to stimulate research on
segmentation of cardiac structures of patients with myocardial infarction.
It included 100 LGE-MRI images with associated ground truth segmenta-
tions. The best ranked Zhang [16] of the 2020 MICCAI EMIDEC challenge
dataset [17], introduced a method based on a cascaded 2D-3D U-Net [9] that
achieved on a 5 folds cross-validation an average Dice score of 94.4% for
the myocardium and 72.08% for the infarction. They were close to the best
results which were obtained later by Brahim et al. [18], who did not take
part in the challenge.The latter method introduce a shape prior framework
composed of a 3D U-Net combined with a 3D auto-encoder with a Dice score
of 95.10% and 76.14% for the myocardium and the infarction respectively.

These two methods are based on two steps, provide hard segmentation at
the first step and exploit only convolutional networks. They provide rather
low Dice scores for the infarction class compared to the myocardium class.
This has a strong influence on the infarct to healthy tissue ratio. In order
to improve infarction segmentation, in this paper we proposed a refined cas-
caded framework based on transformers and CNN trained and evaluated on
the EMIDEC dataset, for a fully-automatic segmentation of the myocardium
and the infarction.

2. Methods

In the EMIDEC challenge [19] the two best methods [16] were based on
Fully Convolutional Neural Networks (FCNN). A new type of neural net-
works recently emerged for image segmentation task, the transformers net-
works [20] [21]. Combined with CNN this kind of networks outperform the
standard U-Net in several problems [22]. Previous methods propose, as a
first step, to segment the myocardium, but the presence of infarct tissue may
lead to a poor detection. To overcome these problems, we propose first to
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Figure 1: Overall pipeline of the proposed method. It begins with a 2D-UNet as the first
stage, which generates a probability map of the normal myocardium. This map is then
concatenated with the original image. The augmented image is fed into the UNETR, a
U-net architecture enhanced with transformers.

extract a probability map of the myocardium healthy tissue, as this class is
balanced and its location and shape vary little. We used a 2D U-Net with
residual (MultiResUnet in Fig.1) to compute this probability map of the my-
ocardium, in order to get the maximum information in 2D. This probability
map is concatenated as a second channel to the original image to increase
information as input of a second network. As this second network has to
swipe through the whole image, it must take into account global information
and not only the local one. We thus used transformers [20] which has a large
receptive field with a positional encoding (Fig.2) of different features. In
the considered case, the infarction is always contained in the myocardium.
The objective is to leverage the structure of the probability map to achieve
two goals. Firstly, it serves as a guidance mechanism for the second network
(UNETR) in accurately segmenting the healthy myocardium. Secondly, by
detecting areas with holes or gaps, it offers valuable cues for identifying in-
farction regions.

Moreover, to improve the accuracy on the edges, we propose to add a
contour loss [23] based on the Root Means Square Error (RMSE) between
the contours map of the ground truth and the prediction.

2.1. First stage : Extraction of a probability map with the MultiResUnet

The MultiResUnet [24] is an enhanced version of the U-Net. The encoder
features map are passed through a sequence of convolutional layers with
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residual connections (ResPath) before concatenation to the decoder branch.
As a result, the number of filters in the convolutional layers is doubled. We
used a sigmoid function for the output layer, in order to keep the infarction
information represented by a hole in the probability map (e.g decreasing val-
ues caused by the presence of the infarction), instead of a hard segmentation
which may exclude infarcted areas.

These modifications enabled to retrieve more spatial information in dif-
ferent context size in the image. We have chosen for the loss function a
combination of binary cross-entropy (CE) and Dice score as it proved its
efficiency [16]. It can be summarized as follows :

L2D = λ1LCE + λ2LDice (1)

LDice = 1 − 2 ∗
∑I

i ytrue(i) ∗ ypred(i) + ϵ∑I
i y

2
true(i) + y2pred(i) + ϵ

(2)

LCE = −1

I

I∑
i

ytrue(i) log(ypred(i)) + (1 − ytrue(i)) log(1 − ypred(i)) (3)

Where I is the number of pixels and ypred, ytrue the prediction and ground
truth respectively; the weights λ1 = λ2 = 1.

2.2. Second stage: 3D U-Net with transfomers

The U-Net with transformers (UNETR) [22] is a U-shape based network
using transformers for the encoder (Fig. 2). The input image is 3D volume
v ∈ Rh×w×d×c. with a resolution (H,W,D) and C the input channels, with
the probability map as second channel, is divided into 3D non over-lapping
patches with a resolution (PH , PW , PD). Then these patches are flattened
to obtained a 1D sequence with a length N = (H × W × D × C)/(PH ×
PW × PD). To preserve the spatial information of the extracted patches,
a 1D learnable vector of positional embedding is added to the sequence, in
order to encode the relative position of each patches. Then, a stack of twelve
transformer blocks composed of multi-head self-attention [20] (MSA) and
multilayer perceptron [25] (MLP) is used as encoder. Analogous to the U-
Net [9], the multiple features from the encoder are concatenated with the
decoder branch, which is composed of deconvolutional layers.

6



Figure 2: In the 3D U-Net with transformers, the embedding process begins by subdi-
viding the image into patches, with each patch having a corresponding relative positional
encoding. Inspired from [21]

2.3. Loss function

The most commonly used loss function is the combination of cross-entropy
and Dice (combo-loss). However a precise location and delineation of the
infarction is crucial to medical applications, and the combo-loss may produce
irregular contours. We thus added a contour quality to our loss function. The
loss function is a combination of Cross-Entropy (CE), Dice, and a contour
loss to increase the accuracy at the boundaries:

L3D = λ1LCE + λ2LDice + λ3Lcontour (4)

with the weights λ1 = λ2 = λ3 = 1. The contour loss was defined
by the Root Mean Square Error (RMSE) between the extracted edges of the
prediction and the ground truth. Let’s consider Ωpred and Ωtrue as the ground
truth contour and the predicted contour. The contour loss is defined as :

Lcontour = (
1

J

J∑
j

1

I

I∑
i

(Ωpred(i, j) − Ωtrue(i, j))
2)

1
2 (5)

Where J is the number of classes and I the number of voxels belonging
to the contour.
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The contours are extracted using morphological filters. Let’s consider an
image I, the binary morphological erosion ⊖ and B the structural element,
the contours Ω is defined as :

Ω = I − (I ⊖B) (6)

With the contours defined as such, it is possible to vary the thickness
of the contours Ω by changing the size of the structural element B, which
makes the contour loss eq. (5) more or less punitive.

3. Experiments

3.1. Dataset and evaluation metrics

To evaluate this method, we used the EMIDEC [17], [19] training set.
Composed of 100 LGE-MRI exams, including 67 pathological cases and 33
healthy cases. Manual delineations are provided, with label 0 for the back-
ground, 1 for the left ventricular cavity, 2 for the healthy myocardium, 3 for
the myocardial infarction and 4 for the no-reflow which is characterized by
an hypo-signal caused by reduced blood flow [26].

In this paper, our primary focus is on the segmentation task of myocardial
infarction in hyper-signal. It is important to note that we are not specifically
addressing the no-reflow areas in hypo-signal. Clinically, the no-reflow phe-
nomenon is considered as a part of the infarction; however, previous studies
have shown that the no-reflow phenomenon tends to diminish after a few
months [27], leading to the development of fibrosis in hyper-signal. In our
application, we classify the no-reflow as part of the myocardium, although
this may not align with clinical practice. This does not affect the perfor-
mance of our application, which focuses on the assessment of fibrosis at the
time the image is acquired.

The evaluation metrics used are based on the code provided in the chal-
lenge [28]. It is composed of Dice score, volume difference, Hausdorff distance
and the volume difference ratio according to the volume of myocardium (only
for the infarcted tissue). The Dice score is computed in 3D and the Hausdorff
distance is defined as the maximum surface distance between the objects.

3.2. Implementation details

All the models were implemented in Pytorch [29] and trained on a GPU
NVIDIA [30] A100 Tensor Core 40GB.
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The MultiRes-Unet was trained with a batch size of 16 and used the
Adam optimizer [31] with initial learning rate of 0.001. The UNETR was
trained with a batch size of 8 and used the AdamW optimizer [32] with initial
learning rate of 0.0003. It uses a patch size of (8× 8× 1). We employed five-
fold cross validation with each testing fold composed of 67% of pathological
cases and 33% of healthy cases.

A simple 2D preprocessing composed of cropping and padding by 128 ×
128 × 16, a median filter and histogram equalization were used for all im-
ages. In addition, we used data augmentation made with the framework
TorchIO [33]. It is composed of random geometric transformations such as
rotation, scaling, translation, flip, elastic deformation and random intensity
transformations such as blur and gamma. A morphology filter (connected
components filtering) was applied on the prediction to get the final segmen-
tation.

3.3. Ablation study

To measure experimentally the contribution of the contour loss eq. (5)
and the probability map, we have conducted an ablation study as follows:

1. No contour loss (only Dice score and cross-entropy)

2. No probability map and no contour loss

The implementation details and evaluation metrics are unchanged.

4. Results

4.1. Whole method

The Table 1 gathers the results of the different metrics obtained by our
method. In order to test the robustness of the method, we used a k-fold
validation. The best overall results are for the fold 2. In term of Dice score
for the infarcted tissue, the fold 3 obtained the best results with 96.76%.
Moreover the standard deviation is relatively small compared to the average,
with 3.2% for the Dice score of the infarction class and and 0.85% for the
myocardium. This demonstrates the robustness of the method. The proposed
method achieves an average Dice score of 92.36% for the myocardium class
and 92.94% for the infarction class. For the infarction, all metrics results are
better than the state-of-the-art [18] (Table 2).

The Fig. 3 illustrates two cases with a Dice score close to the average Dice
score (≈ 92%) for the myocardium and infarcted tissue. For both cases the
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Case Ground truth Prediction Probability map

(a) (b) (c) (d)

(e) (f) (g) (h)

Infarction
Normal Myocardium

from (a) to (d) Case 1
from (e) to (h) Case 2

Figure 3: Examples of two cases corresponding to Dice scores close to the average Dice
score (≈ 92%) with the associated myocardium probability map, compared to the ground
truth
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Table 1: Quantitative 5-fold cross-validation results for the proposed method

Class Metrics fold0 fold1 fold2 fold3 fold4 Average SD

Dice(%) 90.74 92.26 93.07 92.77 92.95 92.36 0.85

Myocardium VolDif(mm3) 1176.77 953.74 659.05 525.07 764.52 815.83 228.5

HSD(mm) 4.9 4.06 2.91 3.57 3.07 3.7 0.72

Dice(%) 91.45 92.63 95.93 96.76 87.91 92.94 3.2

Infarction VolDif(mm3) 296.48 96.74 75.32 128.45 158.94 151.19 77.98

Ratio(%) 2.09 0.48 0.37 0.66 1.22 0.96 0.63

Table 2: Comparison study. (Best values in bold font)

Classe Metrics Methods

Zhang [16] Brahim [18] Ours

Dice(%) 94.40 95.10 92.36

Myocardium VolDif(mm3) 6474.38 266.41 815.85

HSD(mm) 17.21 4.40 3.7

Dice(%) 72.08 76.14 92.94

Infarction VolDif(mm3) 4179.5 264.91 151.19

Ratio(%) 3.41 5.32 0.96

resulting segmentation (Fig. 3g) is very close to the ground truth (Fig. 3f).
The edges are smooth (Fig. 4m, Fig. 4l), the infarction and the myocardium
are connected which corresponds to the biological reality. As expected the
hole in the probability map covers the infarcted region of the myocardium.
Moreover we can see on the edges of the probability map that the values
decrease sharply, which means that the first network (MultiResUnet) [24]
has moderate confidence on the contours delineation. This justifies the use
of a contour loss for the second network (UNETR) [22].

To study more precisely the impact of the contour loss and probability
map, we present in the next two sections ablation studies.
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Image Ground truth Proposed method No cont.loss. No cont.loss no prob.map

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Infarction
Normal Myocardium

Figure 4: Qualitative results for the ablation study

Table 3: Quantitative results for the ablation study

Classe Metrics No cont. loss No prob.map and no cont. loss

Average SD Average SD

Dice(%) 91.05 1.7 91.33 0.96

Myocardium VolDif(mm3) 1021.17 272.23 795.34 201.51

HSD(mm) 4.98 1.31 5.22 0.75

Dice(%) 80.07 6.35 74.41 4.99

Infarction VolDif(mm3) 213.49 158.23 196.99 125.8

Ratio(%) 1.38 1.15 1.26 0.9
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4.2. The role of the contour loss

The Table 3 contains the quantitative results of the ablation study. For
each metric previously seen, we have the average and standard deviation
that are given for both studies (without the contour loss and without the
probability and the contour loss). For the infarction, the Dice score is lower
without the use of contour loss than with the proposed method (80.07%
versus 92.94%). The volume difference is also higher without the contour
loss (296.48 versus 151.19). For the myocardium the Hausdorff distance
is also higher (4.98mm versus 3.7mm). Without the contour loss, we can
observe that the results contain false positive and also that the myocardium
boundaries are less detected and less consistent.

The figure 4 illustrates qualitative results for the ablation study and shows
three examples. The contour loss that we added improves the Dice score and
avoids false positive cases (Fig.4.m versus Fig.4.n). Thus the probability map
makes it more robust for the infarction class and it also gives more consistent
myocardium contours on difficult cases (Fig.4.m versus Fig.4.o).

4.3. The role of the probability map

The ablation study shows that by removing the contour loss and the
probability map the standard deviation increases (Table 1 versus Table 3,
column SD).

For the infarction, the Dice score is lower than the proposed method
(Table 3: 74.41% versus 92.94%) and even lower than the method without
the contour loss (Table 3: 74.41% versus 80.07%). For the myocardium the
Hausdorff distance increased without the contour loss (4.98 mm) and without
the probability map (5.22mm), compared to the proposed method (3.7mm).

Without the probability map and the contour loss the network (UNETR)
is less sensitive to detect the infarction (Fig.4.c versus Fig.4.e). It results
in less regular myocardium contours (Fig.4.m versus Fig.4.o) and moreover
in false positives on difficult cases (Fig.4.h versus Fig.4.j). Moreover, the
figure 5 shows the qualitative results on one difficult case close the apex, with
a Dice score of 95.35% for the myocardium and 93.5% for the infarction. Our
method has been able to detect the infarction whereas without the probability
map and the contour loss, it failed to detect it.
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Image Ground truth Proposed method No cont.loss no prob.map

(a) (b) (c) (d)

(e) Prob.map

Infarction
Normal Myocardium

Figure 5: Qualitative results for a difficult case close to the apex

5. Discussion and Conclusion

In this paper, we introduce a novel approach for automated myocardial
infarction segmentation from LGE-MRI using a hybrid cascaded neural net-
work with transformers. The first network, a 2D CNN, generates a probabil-
ity map of healthy myocardium tissues. This map is then concatenated with
the original images, effectively increasing the available information for input
into the second network.

This approach successfully addresses the challenge posed by a substan-
tial slice thickness. However, it’s important to note that at the edges of
the probability map, there’s a rapid decrease in values, indicating a moder-
ate confidence in contour delineation by the first network. To address this
limitation, we introduce a contour loss in the second network.

The second network is a 3D hybrid CNN with transformers, enabling the
network to spatially link feature maps. Spatial relationships can be incor-
porated into CNNs through texture analysis techniques like the Gray-Level
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Co-Occurrence Matrix (GLCM), as demonstrated in the approach by At-
talah et al. [34]. However, it’s important to note that these methods were
primarily employed for detection and diagnosis purposes and not specifically
for segmentation. The UNETR utilizes transformers as encoders for 3D im-
ages. However, a novel approach introduced by Abdelhamed et al. [35] known
as Nested Hierarchical Transformer (NesT) employs basic local transformer
modules on non-overlapping image blocks and hierarchically aggregates them
but it’s important to note that this method is currently applied exclusively
to 2D images.

Additionally, the inclusion of a contour loss enhances performance at the
edges. The utilization of transformers in handling highly anisotropic images
proves to be more efficient compared to convolution-based networks. This
observation is attributed to transformers’ ability to capture long-range depen-
dencies and model spatial relationships, which is particularly advantageous
for handling the challenges posed by highly anisotropic data.

The intended operation of the contour loss, resulting in smoother contours
and a reduction in false positive detections. From a clinical perspective, pre-
cise contour definitions are essential for accurate analysis and interpretation.

Our proposed method outperforms state-of-the-art techniques across all
evaluated metrics in the challenge [17], demonstrating superior performance
in infarction segmentation. However, it’s important to note that it does not
incorporate the no-reflow class as part of the infarction, which is particularly
challenging to segment. Furthermore, the method’s robustness has not been
tested on alternative datasets.

To further enhance the method, exploring the integration of Generative
Adversarial Networks (GANs), as exemplified by the approach employed by
Hendriks et al. [36], holds significant promise. GANs possess the capability
to generate realistic synthetic samples, which can lead to improved data
augmentation, particularly benefiting scenarios involving rare cases. This
strategic augmentation approach has the potential to bolster the model’s
robustness and enhance its generalization capabilities by introducing greater
diversity into the training data.

Additionally, to enhance the model’s robustness and flexibility, we can
consider incorporating different CMR-sequences, such as bSSFP CMR, which
provides clear boundaries of the myocardium and left ventricle, into the net-
work training, following the approach demonstrated by Qiu et al. [37].

Furthermore, in addressing class imbalance concerns, we may consider
implementing a dedicated network for region of interest (ROI) extraction,
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drawing inspiration from the work of Langarizadeh et al. [38].
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