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Respiratory sinus arrhythmia (RSA), the natural variation in heart rate synchronized with respiration, has been
extensively studied in emotional and cognitive contexts. Various time or frequency-based methods using the
cardiac signal have been proposed to analyze RSA. In this study, we present a novel approach that combines
respiratory phase and heart rate to enable a more detailed analysis of RSA and its dynamics throughout the
respiratory cycle. To facilitate the application of this method, we have implemented it in an open-source
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Significance Statement

Respiratory sinus arrhythmia (RSA), the natural variation in heart rate synchronized with respiration, has
been extensively studied in emotional and cognitive contexts. Various time or frequency-based methods
using the cardiac signal have been proposed to analyze RSA. This work presents a novel approach that
combines respiratory phase and heart rate to enable a more detailed analysis of RSA and its dynamics over
time and throughout the respiratory cycle. It is implemented in an open-source toolbox that incorporates
\this framework in easily configurable functions and readable code. /

Python toolbox called physio. This toolbox includes essential functionalities for processing electrocardiogram
(ECG) and respiratory signals, while also introducing this new approach for RSA analysis. Inspired by previous
research conducted by our group, this method enables a cycle-by-cycle analysis of RSA providing the possi-
bility to correlate any respiratory feature to any RSA feature. By employing this approach, we aim to gain a

more accurate understanding of the neural mechanisms associated with RSA.

Key words: cycle-by-cycle; respiration; respiratory sinus arrhythmia; toolbox

Introduction

Brain and body have a strong bi-directional interaction
through a wide range of rhythms, explained by the ple-
thoric literature on the topic (Thayer and Lane, 2009;
Azzalini et al., 2019; Sevoz-Couche and Laborde, 2022).
Thus, noninvasive recordings of neurophysiological sig-
nals are now widely used to gain new insights in cognitive
neuroscience. Many toolboxes have been developed to
standardize the processing of signals, such as respiration
and heart signals [electrocardiogram (ECG)], to extract
respiration features, heart rate variability (HRV), and the
amplitude of respiratory sinus arrhythmia (RSA; Noto et
al., 2018; Makowski et al., 2021; Kirk et al., 2022).

RSA, which refers to the natural variation in heart rate
synchronized with respiration, has gained significant at-
tention as a noninvasive marker of autonomic nervous
system activity and cardiovascular health (Porges, 2011).
Various methods have been developed characterize RSA,
but most of them focused only on its amplitude (Grossman
et al., 1990; Lewis et al., 2012).

Our group previously developed and used a framework
to analysis neural events and its relations to the respira-
tory cycle (Roux et al., 2006). The main idea was to get a
phase representation of the respiratory cycle as a normalized
time basis, enabling standardized data collection across
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different subjects and facilitating the averaging of respi-
ratory driven activity. We found particularly relevant to
reuse this method to analyze RSA and its dynamic along
the respiratory signal. Indeed, given the link between
respiration and heart rate, it appears essential to be able
to characterize both (1) the RSA dynamics (2) the respiration
RSA phase-locking as a function of respiration duration
and/or amplitude. For this purpose, cycle-by-cycle analysis
is relevant. This has already been partly tackled by previous
work (Kotani et al., 2000; Gilad et al., 2005). But, to go fur-
ther, combining these approaches would be particularly
useful.

For this purpose, we propose a new python toolbox,
named physio, that incorporates this framework into the
classical RSA extraction pipeline, aiming at enhancing the
understanding of heart rate dynamics in relation to the re-
spiratory cycle. Our toolbox provides easily configurable
functions and readable code. It includes functions for
processing ECG and respiratory signals providing cycle-
by-cycle respiratory features. These are necessary for
computing RSA. Last but not least, users have access to
key parameters concerning the normal range of heart or
respiratory rate, making the toolbox applicable to both
humans and animals.

Materials and Methods

Toolbox description
Overview

physio was developed in Python and its well estab-
lished scientific toolstack (NumPy, SciPy, pandas). Code,
documentation, and tutorials are freely available here:

® (Code: https://pypi.org/project/physio

® Documentation: https://physio.readthedocs.io

® Notebooks for generating figures: https://github.com/
samuelgarcia/physio_benchmark

Our method requires the processing of both ECG and
respiration signals to compute RSA dynamics. Our aim
was to provide for the user a possibility to access to key
parameters of these two processing steps through low-

eNeuro.org
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Figure 1. Pipeline and features extraction. A, Overview of the pipeline. The dark green and yellow boxes highlight the uniqueness
of the toolbox. B, Respiratory features. All features are individually collected for each cycle. C, RSA features detection. All features

are individually collected for each cycle.

level functions and light readable code. Processing steps
are similar for humans and animals even if key parameters
could differ. In the following paragraphs, we will detail the
processing steps using human model parameters (tool-
box defaults). These steps are presented in a schematic
view presented in Figure 1A. The different processing
stages are as follows.

Respiration cycle detection (Fig. 2A)

The first step aims at extracting respiratory timestamps
that will be used as a template to explore heart rate dy-
namics. Example of detection is presented in Figure 2A
with inhalation starting times shown by green dots and
exhalation starting times shown by red dots.

® Respiratory signal preprocessing: constant detrending

(mean/median subtraction), filtering (low-pass, Bessel,
7 Hz) and optional temporal smoothing (Gaussian ker-
nel, 60 ms, working also as a low-pass filter).

Baseline estimation using signal median or signal
mode.

Respiratory cycle detection: baseline crossings were time-
stamped, and labeled as inhalation start if corresponding
signal is decaying, or labeled as exhalation start if
corresponding signal is rising.

Computing respiration features: cycle-by-cycle respi-
ratory features such as duration, amplitude, volume
(Fig. 1B).

Octobre 2023, 10(10) ENEURO.0197-23.2023

® (Cleaning respiration features: remove cycle outliers
due to artifacts or poor detection, using log-transform
of the respiratory volume and threshold based on the
median absolute deviation (MAD; 4 by default). Thus,
respiratory cycles that are too short in time and/or in
amplitude are removed.

ECG to heart rate

The second step, consisting in processing ECG to ex-
tract heart rate dynamics across time (heart rate signal),
was processing as follows:

® ECG signal preprocessing: filtering (bandpass, Bessel,
5 to 45 Hz). These parameters allow for an increase in
signal-to-noise ratio, signal being the R peak, noise
being outer frequency components (slow drift, Pand T
cardiac cycle wave, line-noise).

Normalization: median subtraction before division by
median absolute deviation (MAD) which is defined by
kxmedian(|x; — median(x)|) where k = 1.4827 and x
corresponds to the traces values. MAD provides a dis-
persion statistical metric that is more robust to outliers
than SDs.

R peak detection (Fig. 2B, purple dots): only the traces
whose amplitude is greater than an automatically cal-
culated threshold are kept (K MAD deviations from the
median). In these traces, the peaks are detected using
a sliding window which finds the local maxima.

eNeuro.org



eMeuro

Research Article: New Research 4 0f 8

A
kel
-
o
[
&
100 110 120 130 140 150
B N . S
20 A
I A e
g o
ol 1] T AR RRARE
100 110 120 130 140 150
C 10
[}
2 — 100
= / /\
£8 80 RS
S
T 60
100 110 120 130 140 150
Time [s]
D E c \
S
© exhalation
Stretch and = D\ 4
stack cycles a0
&
0.0 0.2 0.4 0.6 0.8 1.0
One respiratory cycle (2 segments)
F 120

Heart rate
[bpm]
3

NS halation

WS
S

0.0 0.2 0.4 0.6 0.8 1.0
One respiratory cycle (2 segments)

Figure 2. Computational procedure for RSA extraction. A, Respiratory cycle detection. Baseline crossing points are detected on
preprocessed signal: inhalation and exhalation starts and represented by green and red dots, respectively. B, R peak detection on
ECG. After ECG filtering, R peaks are detected by finding local maxima (purple dot). C, Instantaneous Heart rate signal reconstruc-
tion. RR intervals in seconds are converted to beats per minute. RR intervals are interpolated on regularly sampled time series.
Respiratory epochs are displayed by pink and green time zones for exhalation and inhalation respectively. D, Cyclical deformation
of heart rate epochs. Heart rate signals are windowed according to respiratory cycle epochs. Each epoch time axis is rescaled to a
respiratory phase basis with alternating inhalation and exhalation phases. E, Respiratory cycles stretched. 0: inhalation starting
phase point; 0.4: inhalation-exhalation transition phase point; 1: exhalation stop phase point. The average waveform is plotted in or-
ange. F, RSA dynamics along respiratory phase. With the same process, heart rate dynamics are computed and plotted along respi-
ratory phase. Various heart rate epochs (black traces) are averaged across cycles to get the mean RSA dynamic along the

respiratory phase (orange).

® R peak cleaning: only peaks separated by a minimum
interval (400 ms by default) are kept for analysis.

® R-Rintervals were computed by taking the time differ-
ence between R peak times. By default, RRI interval
units (or heart periods) are converted to beats per mi-
nute (60/RRI time differences in seconds), units more
commonly used in physiology. Note that at this step,
RR time periods can be statistically characterized as a
distribution whose position and dispersion metrics
give access to time domain heart rate variability (HRV)
metrics (mean, median, MAD, RMSSD, SD, coefficient
of variation).

® |nstantaneous heart rate signal construction by interpo-
lation of RRI values on regularly sampled time vector

Octobre 2023, 10(10) ENEURO.0197-23.2023

(default 100 Hz). This provides an instantaneous heart
rate signal (in beats per minute) or an instantaneous
heart period signal (in milliseconds) depending on the
preferred unit. Here, frequency components of this sig-
nal can be computed through fast Fourier transform
(FFT) in ordered to compute classical frequency do-
main HRV metrics (low-frequency power, high-frequency
power).

Respiratory phasing of RSA: method incorporation

In the next section we provide a brief overview of the
RSA extraction pipeline implementing the new framework
that is more deeply explained below, Respiratory phasing
of RSA.

eNeuro.org
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® (Cyclical deformation of heart rate signal based on re-
spiratory cycle timestamps.

® This heart rate signal cyclically deformed is sliced ac-
cording to respiratory timestamps (Fig. 2D) in order to
get one trace by respiratory cycle (Fig. 2F).

® (Cycle-by-cycle feature extraction of heart rate respira-
tory epochs. Peak to trough amplitude differences of
each heart rate epoch are computed to obtain cycle-
by-cycle RSA amplitude (Fig. 1C). Each heart rate
deformed epoch provides one amplitude value by
respiratory phase bins (default is N = 50 bins). This
phase-amplitude representation allows for computing
features of RSA dynamics (Fig. 1C) such as rising/
decaying duration, amplitude, and slope.

Key parameters availability

The previous section outlined the primary computation-
al steps involved in the transformation of raw signals for
RSA exploration. Each major step consists of multiple
substeps, and it was our intention to provide users with
access to key parameters at both levels of the algorithm
hierarchy. As a result, the major steps can be easily con-
figured using a few high-level functions, using preset pa-
rameters that are appropriately adjusted for “normal”
breathing humans by default, or for “normal” breathing
animals such as rodents.

Depending on the experimental conditions, the respira-
tory features of the subjects may vary from normal to
slower (e.g., slow-paced breathing) or faster (e.g., running
human and/or naturally fast-breathing animals). In such
cases, the traditionally set parameters of many toolboxes
cannot be used, as they assume a typical respiratory fre-
quency ranging from 0.12 to 0.40 Hz. To address this, we
have made the parameters of the low-level functions ac-
cessible, allowing users to customize their analysis based
on their specific experimental conditions.

Respiratory phasing of RSA

This method is an update from several previous works
(Kotani et al., 2000; Gilad et al., 2005; Roux et al., 2006).
This work was initially made to deal with the rhythmic vari-
ability of respiratory cycle duration, making it impossible
to average oscillatory neural patterns along respiration
phase. Briefly, the time component of respiratory epochs,
which can differ from trial to trial, was converted into a
phase component defined as [—4r,0] and [0, ] for inspira-
tion and expiration, respectively. As opposed to time rep-
resentation, the phase representation is common to all
epochs regarding the phase axis. Thus, this phase repre-
sentation of the respiratory cycle can be used as a normal-
ized time basis allowing to collect results in a standardized
data format across different subjects and providing a way
to average oscillatory components of the activity. This is a
particularly relevant method to characterize activity such
as heart rate dynamics normalized on a respiratory time
basis.

The original method have been upgraded with two con-
cepts: first, the respiratory phase is scaled into [0-1]
(rather than the previous [—,77]) so that it can be divided

Octobre 2023, 10(10) ENEURO.0197-23.2023
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into one or more segments. For instance, the inhalation
phase can be stretched to [0-0.4] and the exhalation phase
[0.4-1], this ratio can be change to fit the per subject real
inhalation/exhalation duration ratio. We can also divide the
respiratory cycle into more segments using extremum of
inhalation or exhalation and even pauses in the respiratory
phase. Example in Figure 2 are shown with two segments
(inhalation/exhalation). Second, the method uses a sim-
pler and faster linear interpolation rather than the FFT
for interpolation.

This is why we reused this process as summarized in
Figure 2:

® Heart rate signal is segmented into successive respi-
ratory cycles with alternating inspiration and expiration
windows.

® FEach window is re-sampled with a linear interpolation
that keeps the same number of bins per segment. This
width is a configurable parameter that depends on the
desired precision (default is N = 40 bins).

® The phases of the inspiration and expiration windows
are taken linearly between [0,0.4] and [0.4,1]. This lat-
ter parameter is configurable by the user.

Thus, instantaneous heart rate time series is re-scaled
to a respiratory phase basis with alternating inhalation
and exhalation phases, allowing an acute dynamic de-
scription of heart rate according to respiratory phase. See
documentation of the toolbox for examples.

Datasets

We tested our tools on two datasets coming from two
free-breathing models: human and rodents (rat). Datasets
are available on the Zenodo platform at https://zenodo.
org/record/8019849.

Human dataset. Human dataset consisting of 15 healthy
adults subjects (age: 30.9 = 9.5 years old). All participants
gave informed consent to take part to the study, and all ex-
periments were approved by the national French committee
(CPP number 4090). They were sitting quietly and instructed
just to relax. Recording lasted 5 min.

® Respiration signal was recorded from a nasal sensor
(Sensortechnics GmbH) at a sampling rate of 1000 Hz,
amplified by actiCHamp Plus amplifier (Brain Products
GmbH).

® ECG signal was recorded from three skin electrodes
(right forearm, left forearm, left iliac region), at a sam-
pling rate of 1000 Hz (same amplifier).

Animal dataset

Animal dataset consisting of eight healthy adults rodents
(rats). The experiments were carried according to the ethical
guidelines of the European Communities Council Directive
of November 24, 1986 (86/609/EEC), as well as the approval
16979 of the Lyon 1 University CEEA-55 ethical committee
and of the Ministry of Higher Education, Research and
Innovation. Recording lasted 5min during which they were
freely behaving. Respiration signal and ECG were recorded
from a thoraco-abdominal telemetric jacket (DECRO, by

eNeuro.org
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Figure 3. Some examples of respiratory phased RSA use. A, Intersubject variability of the mean RSA. Subjects are color coded.
Shades correspond to 1 SD. B, Intrasubject variability of the RSA. Cycle-by-cycle RSA of one subject are represented. Color pal-
ette, from dark to light warm colors, encodes the amplitude of the corresponding inhalation (from dark to yellow). The subject corre-
sponds to the one colored in dark gray in Figure 1A. C, RSA to inhalation volume correlations. Only significant slopes are

represented.

Etisense). Recordings were performed at a sampling rate of
500 Hz, amplified by Etisense acquisition unit (Etisense).

Results

We tested our tools on both human and animal data-
sets. Figures 3 and 4 presents some examples of compu-
tations that can be obtained thanks to the toolbox. More
examples are presented in attached Jupyter notebooks.

Humans

The following outputs were obtained using the default
parameters.

Cyclically deformed and sliced heart rate signal process
provides a 2D array containing stacked magnitude heart
rate according to respiratory phase * respiratory cycle data

from which are computed RSA features. This can be used
to get cycle-by-cycle dynamics and also the averaged heart
rate dynamic across several respiratory cycle (Fig. 2F, or-
ange trace) and the process can be iterated over subjects to
display average dynamics by subject (Fig. 3A). On this latter
figure, note the variability in amplitude and phase of the
modulation of heart rate according to the subjects (col-
ors coded). Figure 3B allows to visualize the intrasub-
ject variability of RSA dynamic in term of its phasing
and its amplitude.

Then, two major cycle tables (also known as dataframes)
can be obtained: one for cycle-to-cycle respiration features
and the other for cycle-to-cycle RSA features. Both sharing
the same number of rows (respiratory cycles), they can be
concatenated to correlate cycle by cycle respiration to
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Figure 4. Examples of processing rat dataset. A, Respiratory signal. Fast breathing periods are displayed by a shadow color zone.
B, ECG signal. ECG peaks have been detected thanks to rodent preset of parameters. C, Heart rate. D, Respiratory phased RSA av-
erage. Average of all RSA cycles while splitting the respiratory cycle in “fast” (<600 ms) and “slow” (>600 ms). Shadow represents

1 SD on each side.
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RSA features. Then, it is possible to correlate RSA fea-
tures to respiration features to explore effects of respi-
ration cycle duration-derived features or respiration
cycle amplitude-derived features. Correlations could be
then computed to explore, for instance, intersubject
variability as shown in Figure 3C where we can see dif-
ferent regression slopes between subjects when ex-
ploring the RSA amplitude according to the inhalation
volume.

Animals

Switching from human to animal default preset parame-
ters provides the same outputs. Figure 4 presents an ex-
ample of processing of rat data. We can see in Figure 4A
some examples of detection of different types of respira-
tory cycles (slow or fast cycles). Figure 4C displays the in-
stantaneous heart rate computed thanks to the previous
detection of ECG peaks shown in Figure 4B. Note the RSA
frequency component in the heart rate that is well corre-
lated to the respiratory signal. Cycle-to-cycle analysis al-
lows separating RSA dynamics according to breathing
cycle duration: slow respiratory cycles being correlated to
larger amplitude modulation of RSA compared with fast re-
spiratory cycles, as shown in Figure 4D.

Discussion

The physio package provides a new open-source py-
thon toolbox aggregating tools for processing ECG and
respiratory signals to accurately characterize the respira-
tory sinus arrhythmia phenomenon.

RSA, the natural variation in heart rate synchronized with
respiration, is one form of cardio-respiratory coupling, physi-
ologically independent of another phenomenon, the cardio-
respiratory synchronization (Bartsch et al., 2012). RSA has
been the subject of numerous studies investigating the role
of vagal tone under various emotional or cognitive experi-
mental conditions. However, the computation of RSA ampli-
tude, which serves as a potential indicator of vagal tone
(Song and Lehrer, 2003; Porges, 2011), has been a matter
of debate throughout history (Grossman et al., 1990; Lewis
et al., 2012). Despite methodological variations, the literature
has concluded that the different methods are equivalent
(Grossman et al., 1990), leaving it to the users to choose the
method that best suits their research needs. Additionally,
certain studies have highlighted the varying phase patterns
of the RSA phenomenon during different breathing regimes
(Kotani et al., 2000; Gilad et al., 2005). This is corroborated
with a more recent work that evidenced the difference of
vagal tone during inhalation compared with exhalation
phase (Marmerstein et al., 2021). Therefore, the physio
toolbox aims at providing a set of easily readable and
configurable functions to explore both RSA amplitude
and dynamics, applicable to various breathing regimes
and models (e.g., normal breathing humans, slow-paced
breathing humans, fast-paced breathing humans, ro-
dents, etc.).

The main computational steps involve: (1) computing
the ECG to extract the instantaneous heart rate time se-
ries (HRV metrics can also be obtained); (2) processing
the respiratory signal to detect respiratory cycles and

Octobre 2023, 10(10) ENEURO.0197-23.2023
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extract respiratory features; and (3) cyclical deformation
of heart rate time series on the basis of respiratory cycle
time to extract cycle-by-cycle RSA amplitude modulation
features in parallel with RSA dynamic features, a process
adapted from a previously published method (Roux et al.,
2006). These major steps are implemented through high-
level functions that can be configured by the user using
preset parameters. The default configuration is set for
processing normal human data, but it can be adjusted
for animal data as well. Customization of key computa-
tional parameters is possible through the use of easily
configurable low-level functions, providing flexibility to
accommodate specific experimental tasks or models
that involve nonstandard physiological variables.

While there are other well-established software tools like
Neurokit2, BioSPPy, that propose methods for analyzing
heart and respiratory signals together, physio introduces
some novel elements. It offers a cycle-by-cycle RSA explo-
ration with innovative metrics, in addition to the possibility
of correlating any dynamic phenomena to respiratory phase.
Going back to the Figure 1A, the dark green and yellow
boxes highlight the uniqueness of the toolbox.

Thus, we provided human and rodent datasets from
which figures and documentation have been supplied.
In addition to the precise visualization of RSA dynamics
along respiration phase across different subjects (Fig.
3A), we illustrated the possibility to correlate RSA features
to respiratory features, enabled by the cycle-by-cycle
analysis provided in the final cycle tables (Fig. 3B). As the
examples displayed in Figure 3C illustrate, we can see the
different regression slope when plotting RSA amplitude ac-
cording to inhalation volume. One could speculate that this
result is because of differences in autonomic tone between
the subjects as this could modulate the relationship be-
tween respiratory cycle and RSA amplitude. Furthermore,
examples of RSA dynamics along respiration phase shown
in Figure 3A emphasize the intersubject variability concern-
ing the amplitude and the phase of dynamical changes of
heart rate. This visualization also highlights the pronounced
steepness of the decaying phase of heart rate compared
with its rising phase, around the inhalation to exhalation
phase transition (see also Fig. 2C). Deep exploration of
RSA dynamics is essential for uncovering the underlying
neural mechanisms responsible for this phenomenon.

Thus, we firmly believe that to accomplish the objec-
tive of capturing the maximum amount of information
that RSA could bring to cognitive neurosciences, it is
essential to accurately extract both respiratory and
ECG features for analyzing RSA amplitude in relation
to the respiratory phase. Only a detailed cycle-by-
cycle analysis of RSA dynamics offered by the physio
toolbox can provide the relevant framework necessary
for understanding the whole phenomenon of cardio-
respiratory coupling.

In conclusion, physio offers valuable tools for compre-
hending heart rate dynamics in relation to the respiratory
cycle in diverse models. It aims to achieve this by provid-
ing easily configurable functions encoded in a concise
and readable algorithm, enabling researchers to adapt
their analysis strategies to their specific data conditions.
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