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On the instability of threshold solutions of
reaction-diffusion equations,

and applications to optimization problems.

Grégoire Nadin∗

Abstract

The first part of this paper is devoted to the derivation of a technical result, re-
lated to the stability of the solution of a reaction-diffusion equation ut−∆u = f(x, u) on
(0,∞)×RN , where the initial datum u(0, x) = u0(x) is such that limt→+∞ u(t, x) = W (x)
for all x, with W a steady state in H1(RN ). We characterize the perturbations h such
that, if uh is the solution associated with the initial datum u0 + h, then, if h is small
enough in a sense, one has uh(t, x) > W (x) (resp. u(t, x) < W (x)) for t large. This
condition depends on the sign of

∫
RN h(x)p(0, x)dx, where p is an adjoint solution,

which satisfies a backward parabolic equation on (0,∞) and is uniquely defined [8].
We then provide two applications of our result. We first address an open problem

stated in [7] when N = 1 and f is a bistable nonlinearity independent of x. Namely,
we compute the derivative of the critical length L∗(r) associated with the initial datum
I(−L−r,−r)∪(r,L+r), that is the length L above (resp. below) which u(t, x) converges to
1 (resp. 0) as t → +∞.

Lastly, again when N = 1 and f is a bistable nonlinearity independent of x,
we prove the existence and characterize with a bathtub principle the initial datum
u0 minimizing some cost function

∫
R j(u0) and guaranteeing at the same time that

lim inft→+∞ u(t, x) > 0 for all x.

Key-words: bistable reaction-diffusion equation, optimization with respect to initial data,
threshold solution, backward parabolic equation, principal Floquet bundles, bathtub princi-
ple
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1 Introduction and statement of the main result

1.1 Statement of the problem

We address in this paper the following optimization problem. Consider the solution u of the
reaction-diffusion equation

ut −∆u = f(u) on (0,∞)× RN , u(0, x) = u0(x) for all x ∈ RN (1.1)

associated with an initial datum u0. We will mostly consider in this paper bistable reaction-
diffusion nonlinearities, that is, f ∈ C2([0, 1] satisfying

∃β∗ ∈ (0, 1) s.t.
∫ β∗

0
f = 0,

∫ u

0
f < 0, ∀u ∈ (0, β∗),

f(u) > 0, ∀u ∈ (β∗, 1),

f ′(1) < 0, f ′(0) < 0.

(Hbist)

Under such hypotheses, we can define θ := sup{s ∈ (0, 1), f(s) = 0}.
We want to determine what are the initial data u0 ensuring a convergence to the steady

state 1, and to minimize, in a sense, u0 under this constraint. More precisely, consider a
closed subset A ⊂ {u0 ∈ L∞(RN), 0 ≤ u0 ≤ 1} as a class of admissible initial data, and
J : A → R+ a cost function. We want to characterize the functions

u0 ∈ A such that J(u0) = inf
{
J(u0), u0 ∈ A, u(t, x) → 1 loc. unif. in x as t→ +∞

}
.
(1.2)

In order to illustrate the main features of this problem, consider the trivial case where
A is the set of constant functions with respect to x, and J(u0) = u0. Clearly, the solution u
of (1.1) does not depend on x in this case, it satisfies u′ = f(u) in (0,∞), u(0) = u0. Hence,
as t → +∞, it converges to 1 if u0 > θ, it stays constant equal to θ if u0 = θ, and it stays
below θ if u0 < θ. We thus want to minimize J(u0) = u0 over the constant functions u0 > θ.
The infimum is reached for u0 = θ, which does not lead to a convergence to 1 but to the
unstable steady state θ, hence it is not a minimum. Moreover, if u0 > u0, then u(t) → 1
as t → +∞, while if u0 ≤ u0, then lim supt→+∞ u(t) ≤ θ. This trivial example shows that
initial data leading to a convergence to unstable steady states will play a crucial role in the
optimization problem (1.2).

We will first prove a general technical result for a multi-dimensional heterogeneous equa-
tion in Section 1.2, characterizing more precisely the stability of an initial datum converging
to a threshold solution W ∈ H1(RN). We will then present two applications of this result in
Sections 1.3 and 1.4.

1.2 Statement of the technical result

We consider in this section a general parabolic equation over RN , with a nonlinearity de-
pending on x:
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ut −∆u = f(x, u) on (0,∞)× RN , u(0, x) = u0(x) for all x ∈ RN (1.3)

Here, f does not necessarily satisfies (Hbist), and we only assume that f = f(x, u) is C2

with respect to u ∈ [0, 1] uniformly in x ∈ RN and L∞(RN × [0, 1]), and that

∃σ > 0 s.t. ∀x ∈ RN , f(x, 0) = f(x, 1) = 0, ∂uf(x, 0) ≤ −σ. (H0)

We make the following hypothesis

there exists an unstable positive solution W ∈ H1(RN) of −∆W = f(x,W ) in RN . (H1)

In the sequel, we will use the terminology introduced by Polacik (see [15] for example)
and call such a solution a threshold solution. Here, by unstable, we mean the following.
Consider the principal eigenvalue λ ∈ R associated with the linearization around the steady
state W , that is, the unique λ ∈ R such that there exists a solution φ ∈ H1(R) of

−∆φ− ∂uf(x,W (x))φ = λφ in RN , φ > 0. (1.4)

When we say that W is unstable, we mean that λ < 0.
The existence and uniqueness of (λ, φ) are classical since x 7→ ∂uf(x,W (x)) is negative

for |x| large (here φ is unique up to multiplication by a positive constant). In the sequel we
will always consider the normalization ∥φ∥L∞(RN ) = 1.

Note that as W ∈ H1(RN), one could easily prove that for all δ <
√
σ, there exists A > 0

such that W (x) ≤ Ae−δ|x|. Also, it is well-known that hypothesis (H1) is satisfied if f does
not depend on x and the bistability hypothesis (Hbist) is satisfied.

The next Lemma is classical and proved in Section 2.1 for the sake of completeness.

Lemma 1.1. If f does not depend on x, then for any positive solution W ∈ H1(RN) of
−∆W = f(W ) in RN , one has λ < 0.

We will now adapt the classical control and optimization theory to the present framework
by introducing an adjoint solution p associated with (1.3). As the problem is stated for all
positive time t ∈ (0,∞), p needs to be defined for all t ∈ (0,∞), and to be the solution of
the adjoint equation associated with the linearization of (1.3) near u. In other words, it will
be the solution of a backward parabolic equation over (0,∞). Such solutions are not always
defined. However, here we will consider u0 a measurable initial datum such that 0 ≤ u0 ≤ 1
in RN and u(t, x) → W (x) uniformly in x as t → +∞, with W ∈ H1(RN), where u is the
solution of the Cauchy problem (1.3). Using this hypothesis, we will be able to prove in
Proposition 2.2, using a strong result due to Huska and Polacik in [8], that the following
equation admits a unique positive solution p up to normalization:

−pt −∆p = f ′(x, u(t, x))p in (0,∞)× RN .

We are now in position to state our main result. We say that a perturbation h ∈ L∞(RN)
is admissible if 0 ≤ u0 + h ≤ 1.
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Theorem 1.2. Assume (H0) and (H1) and consider u0 a measurable initial datum such that
0 ≤ u0 ≤ 1 in RN and u(t, x) → W (x) uniformly in x as t → +∞, where u is the solution
of the Cauchy problem (1.3).

Then, for all c > 0 and q ∈ [1,∞], there exists εq > 0 such that for all admissible
perturbation h ∈ Lq(RN), if uh is the solution associated with the initial datum u0 + h, then

• if
∫
RN p(0, x)h(x)dx ≥ c∥h∥Lq(RN ) and ∥h∥Lq(RN ) ≤ εq, one has, lim inft→+∞ uh(t, x) > W (x)

for all x ∈ RN ,

• if
∫
RN p(0, x)h(x)dx ≤ −c∥h∥Lq(RN ) and ∥h∥Lq(RN ) ≤ εq, one has, lim supt→+∞ uh(t, x) < W (x)

for all x ∈ RN ,

where p = p(t, x) is uniquely defined by Proposition 2.2.

We provide several examples in the next sections of initial data satisfying the hypotheses
of Theorem 1.2, together with applications of this result.

As a corollary of Theorem 1.2, we derive the following result, which identifies somehow
the stable manifold near u0 associated with the threshold solution W .

Corollary 1.3. Under the hypotheses of Theorem 1.2, one has
∫
RN p(t, x)∂tu(t, x)dx = 0 for

almost every t > 0.

Note that it is not clear whether
∫
RN p(t, x)∂tu(t, x)dx makes sense when t = 0 or not

since u0 could be very singular (only L∞). This is why we need to state this result for almost
every t > 0.

Lastly, let us state a simplified version of Theorem 1.2, by doing two simplifying hypothe-
ses. First, let us consider f independent of x satisfying the bistability hypothesis (Hbist).
Second, assume that the perturbation takes the form u0 + εh for some given h.

Corollary 1.4. Assume that f does not depend on x and satisfies (Hbist). Consider u0 a
measurable initial datum such that 0 ≤ u0 ≤ 1 in RN and u(t, x) → W (x) uniformly in x as
t → +∞, where W ∈ H1(RN) is a solution of −∆W = f(W ) in RN , and u is the solution
of the Cauchy problem (1.3).

Then, for all admissible perturbation h ∈ Lq(RN), there exists ε0 = ε0(h) > 0 such that
for all ε ∈ (0, ε0), if u

εh is the solution associated with the initial datum u0 + εh, then

• if
∫
R p(0, x)h(x)dx > 0, one has limt→+∞ uεh(t, x) = 1 locally in x ∈ RN ,

• if
∫
R p(0, x)h(x)dx < 0, one has limt→+∞ uεh(t, x) = 0 uniformly in x ∈ RN ,

where p = p(t, x) is uniquely defined by Proposition 2.2.

We leave the proof of this corollary to the reader since it is a straightforward application
of Theorem 1.2.
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1.3 Application 1

Assume that f does not depend on x and satisfies the additional bistability hypothesis
(Hbist).

Consider a family of initial data (ψL)L>0 such that

• ψ0 ≡ 0, for all L > 0, ψL is a nonnegative measurable initial datum such that
0 ≤ ψL ≤ 1,

• L ∈ (0,∞) 7→ ψL ∈ L1(RN) is a continuous mapping, and monotone increasing in the
sense that if ℓ < L, then ψℓ ≤ ψL and the strict inequality holds on a set of positive
measure,

• there exists a ball B ⊂ RN such that
∫
B
ψL → +∞ as L→ +∞.

Under these hypotheses, it has been proved in [15] that there exists L∗ > 0 such that if we
denote by uL the solution associated with the initial datum ψL, one has

• for all 0 ≤ L < L∗, uL(t, x) → 0 as t→ +∞ uniformly in x,

• for all L > L∗, uL(t, x) → 1 as t→ +∞ locally in x,

• for L = L∗, uL∗(t, x) → W (x) as t → +∞ uniformly in x, for some positive, radially
symmetric with respect to some ξ ∈ RN , solution W ∈ H1(RN) of (H1).

The last statement could be found in Section 6 of [15]. This situation provides a family of
examples of initial data giving rise to solutions converging toW as t→ +∞, hence satisfying
the hypotheses of Theorem 1.2.

This type of properties has first been derived by Zlatos [17] when ψL := I(−L,L), where
IA is the indicatrix function of the set A. It was known since the pioneering work of Kanel
[9] that uL(t, x) → 0 as t → +∞ if L is too small, while uL(t, x) → 1 as t → +∞ when
L is large enough. Zlatos proved that this transition is indeed sharp. There have been
many generalizations of this result, we just cite here Polacik’s [15], that fits to our present
framework.

Our aim is to understand how the threshold L∗ depends on the parameters of the
equation. Let us consider for N = 1 and for all r ≥ 0 the family (ψr

L)L>0 defined by
ψr
L := I(−L−r,−r)∪(r,L+r). For all r ≥ 0, this family satisfies the previous hypotheses and one

could thus derive the existence of a critical length L∗(r). We want to find r minimizing
r ≥ 0 7→ L∗(r).

This problem has been addressed by Garnier, Hamel and Roques [7], who computed the
limit of L∗(r) when r → +∞, and performed numerical simulations supporting the conjecture
that r > 0 in some situations. In other words, there might exist r > 0 and L > 0 such that
the solution associated with I(−L−r,−r)∪(r,L+r) converges to 1, while the one associated with
I(−L,L) converges to 0 as t→ +∞. This conjecture has remained open since then.

Here, we do not prove this conjecture, but we provide a computation of the derivative of
the threshold L∗(r) with respect to r.
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Proposition 1.5. The function L∗ : r ∈ (0,∞) → (0,∞) is derivable and

(L∗)′(r) =
pr(0, r)

pr(0, L∗(r) + r)
− 1,

where pr is the unique (up to multiplication by a constant) positive solution of

−pt −∆p = f ′(uL∗(r)(t, x)
)
p in (0,∞)× RN .

As a corollary, if one manages to prove that p0(0, 0) < p0(0, L∗(0)), then (L∗)′(0) < 0 and
thus r > 0.

The method we develop to prove this result is quite general and can enable us to address
much more general families of functions (ψr

L)L>0 indexed by some r > 0. Here, we just stick
to N = 1 and ψr

L := 1(−L−r,−r)∪(r,L+r) since the computation of (L∗)′(r) is already quite
technical. We leave other types of applications for future works.

Let us also mention here some related works. In [2], the authors computed an equivalent
for L∗(ε), where the nonlinearity reads f(u) = u(1 − u)(u + 1/2 + ε). In [3] estimates are
derived for a nonlocal equation. In [6], another nonlocal equation arising in neural fields
modeling is considered, for which some explicit computations could be carried out. In [4],
the authors investigate the influence of fragmentation of the initial datum on the large time
behaviour.

1.4 Application 2

Consider the case N = 1. Under hypotheses (H0), it has been proved by Du and Matano
in [5] that for any compactly supported initial datum 0 ≤ u0 ≤ 1, the associated solution
u converges to a stationary solution of (1.1) which is either a constant or a symmetric
decreasing solution with respect to some ξ ∈ R.

We could thus try to characterize the initial data u0 minimizing some cost function∫
R j(u0) and, at the same time, giving rise to a solution of the Cauchy problem u = u(t, x)
taking off from 0 as t→ +∞.

A related problem has been investigated by the author, with Mazari and Toledo, in
[12, 14]. Namely, for T > 0 and m ∈ (0, |Ω|) given, we investigated the maximization of∫
Ω
u(T, x)dx with respect to initial data u0 such that 0 ≤ u0 ≤ 1 and

∫
Ω
u0 = m. In [14],

we proved that any maximizing initial datum u0 could be characterized thanks to some
adjoint problem, and we provided some numerical simulations showing that the maximizers
could be very singular. This result has been extended by Abdul Halim and El Smaily
in [1] to heterogeneous questions, with an advection term. In [12], we pushed further the
characterization by analyzing the abnormal set, that is, the set where the adjoint is constant.

Here, we change our point of view: we want to minimize a cost function
∫
R j(u0), the

constraint on u0 being that the associated solution does not converge to 0. We expect the
problem addressed in [12, 14] to be a good approximation of the present problem when T is
large enough, but we leave such an approximation result for a possible future work.

Let us first prove that the problem under scrutiny here admits a minimizer.
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Lemma 1.6. Assume (H0) and let

B := {u0 ∈ L1(R), 0 ≤ u0 ≤ 1, lim sup
t→+∞

sup
x∈R

u(t, x) > 0}.

Assume that B is not empty. Consider a convex cost function j : [0,∞) → [0,∞) such that
j(0) = 0 and j(s) > 0 for all s > 0. Then there exists u0 ∈ B minimizing

∫
R j(u0) over B.

We now assume that f is bistable, in the sense of hypothesis (Hbist). We would like to
push further the characterization of u0.

Under hypothesis (Hbist), Matano and Polacik proved (see Theorem 2.5 and its discussion
in [11]), that for any continuous function u0 such that 0 ≤ u0 ≤ 1 and limx→±∞ u0(x) = 0,
then u(t, ·) converges as t→ +∞, either locally uniformly to 1, uniformly to 0, or uniformly
to a positive threshold solution W ∈ H1(R) satisfying (H1). It is easy to see that this result
still holds for any u0 ∈ L1(R) such that 0 ≤ u0 ≤ 1 by applying Matano-Polacik’s result to
u(τ, ·) for some τ > 0. Using this intermediate result, we will be able to show that u0 gives
rise to a solution of the Cauchy problem u = u(t, x) converging to some intermediate solution
W ∈ H1(R). Hence, we could apply Theorem 1.2 to provide ”bathtub characterization” of
u0.

Proposition 1.7. Assume (Hbist). Consider a convex and derivable cost function
j : [0,∞) → [0,∞) such that j(0) = 0 and j(s) > 0 for all s > 0. Let u = u(t, x)
associated with an initial datum u0 ∈ B minimizing

∫
R j(u0) over B.

1. One has limt→+∞ u(t, x) = W (x) uniformly in x ∈ R, for some W satisfying (H1).

2. Moreover, let p the unique (up to multiplication by a constant) positive solution of

−pt −∆p = f ′(u(t, x))p in (0,∞)× R.

There exists c > 0 such that

• for a.e. x ∈ R such that p(0, x) > cj′(u0(x)), one has u0(x) = 1,

• for a.e. x ∈ R such that p(0, x) < cj′(u0(x)), one has u0(x) = 0.

It follows that p(0, ·) ≡ cj′(u0) almost everywhere on {0 < u0 < 1}.

It is also possible to state such a result in RN , by restricting B to radial initial data,
using Polacik’s results from [16]. We leave such a result for possible future works.

Lastly, we derive an application of this result when j(u) ≡ u.

Corollary 1.8. Assume (Hbist). Then the function W = W (x) is not a minimizer of
u0 7→

∫
R u0 over B.

7



2 Proof of Theorem 1.2

2.1 Preliminaries: principal Floquet bundles for linear parabolic
equations

We describe and apply in this section the results proved by Huska and Polacik in [8], enabling
us to define uniquely the adjoint solution p in particular.

Lemma 2.1. Assume that u0 is a measurable initial datum such that 0 ≤ u0 ≤ 1 in RN and
u(t, x) → W (x) uniformly in x as t → +∞. There exists R > 0 such that f ′(x, u(t, x)) ≤ 0
for all t ≥ 0 and |x| ≥ R.

Proof. As W ∈ H1(RN), one has lim|x|→+∞W (x) = 0. Let κ > 0 such that f(x, s) ≤ 0
for all x ∈ RN , s ∈ [0, κ], R > 0 such that W (x) < κ/2 for all |x| ≥ R, and T > 0 such
that ∥u(t, ·) − W∥L∞(RN ) < κ/2 for all t ≥ T . It follows that 0 ≤ u(t, x) ≤ κ, and thus
f ′(x, u(t, x)) ≤ 0, for all t ≥ T and |x| ≥ R.

Next, we remark that

ut −∆u ≤ Ku in (0,∞)× RN

with K = ∥∂uf∥∞. Hence,

u(t, x) ≤ eKt

(4πt)N/2

∫
RN

e−
|x−y|2

4t u0(y)dy.

As limr→+∞ esssup|x|>ru0(x) = 0, one gets from the dominated convergence theorem that
u(t, x) → 0 as |x| → +∞ locally uniformly with respect to t ≥ 0. Hence, even if it means
increasing R, we can assume that u(t, x) ≤ κ for all t ≥ 0 and |x| ≥ R.

Let us extend u on R by u(t, x) := u0(x) for all t ≤ 0. The following result follow easily
from [8].

Proposition 2.2. Assume that u0 is a measurable initial datum such that 0 ≤ u0 ≤ 1 in RN

and u(t, x) → W (x) uniformly in x as t→ +∞. There exist two positive solution p and v of

−pt −∆p = f ′(x, u(t, x))p in R× RN ,

vt −∆v = f ′(x, u(t, x))v in R× RN .

These positive solutions are unique up to multiplication by a positive constant.
Moreover, for all 0 < δ <

√
−λ, there exists C > 0 such that

p(t, x) ≤ Ce−δx∥p(t, ·)∥L∞(R),

v(t, x) ≤ Ce−δx∥v(t, ·)∥L∞(R),

and
∥p(t, ·)∥L∞(RN ) ≤ Ce−δ2(t−s)∥p(s, ·)∥L∞(RN ) for all t > s.

∥v(t, ·)∥L∞(RN ) ≥
1

C
eδ

2(t−s)∥v(s, ·)∥L∞(RN ) for all t > s.

In the sequel, we will normalize these functions by ∥v(0, x)∥L∞(RN ) = 1 and
∫
RN p(0, x)v(0, x)dx = 1.
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Proof. This follows from Theorem 2.1 of [8] as soon as we can verify hypothesis (H2) of [8].

That is, we need to prove that for all λ̃ > λ, there exists C > 0 such that for all s0 ∈ R,
there exists a solution ṽ of

∂tṽ −∆ṽ = f ′(x, u(t, x))ṽ in (s0,∞)× RN

such that
∥ṽ(t, ·)∥L∞(RN ) ≥ e(λ̃−λ)(t−s)∥ṽ(s, ·)∥L∞(RN ) for all t > s ≥ s0.

We take ṽ(s0, x) ≡ 1. Let T > 0 so that:

|f ′(x, u(t, x))− f ′(x,W (x)
)
| ≤ λ̃− λ for all x ∈ RN and t ≥ T.

If s0 < T , then one can easily prove using the comparison principle that ṽ(t, x) ≥ e−K(t−s0)

for all t > s0 for K = ∥f ′∥∞. In particular, ṽ(T, x) ≥ e−K(T−s0) ≥ e−K(T−s0)φ(x) since φ ≤ 1.
Moreover, one has:

∂tṽ −∆ṽ ≥
(
f ′(x,W (x)

)
− δ2

)
ṽ in (T,∞)× RN .

As φ(x)e−K(T−s0)−λ̃(t−T ) is a subsolution of this equation, we obtain

ṽ(t, x) ≥ e−K(T−s0)−λ̃(t−T )φ(x) for all t > T,w ∈ RN .

It follows that
∥ṽ(t, ·)∥L∞(RN ) ≥ e−K(T−s0)−λ̃(t−T ) for all t > T.

This proves Hypothesis (H2) of [8] and the result follows.

For any h ∈ L1(RN), one can define{
∂tu̇−∆u̇− f ′(x, u(t, x))u̇ = 0 in (0,∞)× RN ,
u̇(0, x) = h(x).

(2.5)

The next result shows exponential separation between the solutions of (2.5) that are
orthogonal to p and the principal Floquet bundle generated by v.

Theorem 2.3. [Theorem 2.2 of [8].] Assume that u0 is a measurable initial datum such that
0 ≤ u0 ≤ 1 in RN and u(t, x) → W (x) uniformly in x as t → +∞. There exists γ > 0 and
C > 0 such that for all h ∈ L∞(RN), if

∫
RN h(x)p(0, x)dx = 0, then for all t > s > 0:

∥u̇(t, ·)∥L∞(RN )

∥v(t, ·)∥L∞(RN )

≤ Ce−γ(t−s)∥u̇(s, ·)∥L∞(RN )

∥v(s, ·)∥L∞(RN )

.

The next lemma states that the principal Floquet bundle converges, in a sense, to the
classical notion of principal eigenvalue when the linearized equation becomes independent of
t.
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Lemma 2.4. One has

p(t, ·)/∥p(t, ·)∥L∞(RN ) → φ and v(t, ·)/∥v(t, ·)∥L∞(RN ) → φ as t→ +∞

uniformly in x, where φ is the principal eigenfunction defined by (1.4) and normalized by
∥φ∥L∞(RN ) = 1.

Proof. These are immediate consequences of the uniqueness result stated in Proposition 2.5
of [8].

Lastly, the notion of principal Floquet bundle on RN could be approximated by the one
on BR when R → +∞, in the following sense.

Proposition 2.5. For all R > 0, there exists a unique (up to multiplication by a positive
constant) positive solution vR of{

∂tvR −∆vR = f ′(x, u(t, x))vR in R×BR,
vR = 0 on R× ∂BR.

Moreover, if we normalize it by ∥vR∥L∞(BR) = 1, then one has

lim
R→+∞

vR(t, x) = v(t, x) loc. unif. in (t, x) ∈ R× RN .

Lastly, for all λ̃ ∈ (λ, 0), there exists R0 such that for all R ≥ R0:

∥vR(t, ·)∥L∞(BR) ≥ e−λ̃(t−s)∥vR(s, ·)∥L∞(BR) for all t > s.

Proof. This is proved along the proof of Theorems 2.1 and 2.4 in [8].

We conclude this section with the proof of Lemma 1.1.

Proof of Lemma 1.1. We notice that ∂xi
W is an H1(RN) eigenfunction associated with the

eigenvalue λ̃ = 0. As the principal eigenvalue λ is the smallest eigenvalue, one has λ ≤ λ̃ = 0.
Moreover, if λ = λ̃ = 0, then ∂xi

W is proportional to the principal eigenfunction, which as a
sign. This would mean that W is strictly monotone with respect to xi for all i. This would
contradict W ∈ H1(RN). Hence, λ < 0.

2.2 The case of a perturbation which is positive on a large ball

We begin with the case where the perturbation h is positive on a ball BR, with R large.

Proposition 2.6. There exist ε∞ and R0 > 0 such that for all R ≥ R0+1, for any admissible
perturbation h ∈ L∞(R) such that ess infBR

h > 0 and ∥h∥L∞(RN ) < ε∞, one has:

inf
(t,x)∈(0,∞)×BR−1

(uh − u)(t, x) > 0.

10



Proof. Our aim is to construct a subsolution u of the equation satisfied by uh, using the
linearized equation near u.

Take λ̃ ∈ (λ, 0), R0 as in Proposition 2.5, R > R0 + 1, r ∈ (R − 1, R) and h satisfying
the hypotheses of the Proposition.

Define
β(t) := ln(∥vr(t, ·)∥L∞(Br)).

Hence, if we define

⌊β′⌋ := sup
t>0

(
inf
s>0

1

t

∫ s+t

s

β′(τ)dτ

)
,

one has ⌊β′⌋ > −λ̃ by Proposition 2.5. Lemma 3.2 of [13] yields that

⌊β′⌋ = sup
A∈W 1,∞(0,∞)

(
ess inf
(0,∞)

(β′ + A′)

)
.

Take A ∈ W 1,∞(0,∞) such that β′ + A′ ≥ −λ̃ a.e. in (0,∞). Let

wr(t, x) := vr(t, x)e
−β(t)−A(t).

Even if it means adding a constant to A, we could assume that wr(0, ·) ≡ vr(0, ·). This
function satisfies

∂twr −∆wr − ∂uf
(
x, u(t, x)

)
wr ≤ λ̃wr in (0,∞)×Br,

with sup(0,∞)×Br
wr ≤ e∥A∥∞ and inf(0,∞)×Br′

wr > 0 for any r′ ∈ (0, r) thanks to the Harnack
inequality. We could thus take c small enough so that v(0, x) ≥ cwr(0, x) for all x ∈ Br,
where v is defined by Proposition 2.2.

Next, let us prove the following claim: there exists δ > 0 such that one has
∂nvr(t, x) ≤ −δ∥vr(t, ·)∥L∞(Br) for all x ∈ ∂Br and t > 0. If this was not true, there would
exist a sequence

(
(tk, xk)

)
k
in (0,∞) × ∂Br such that ∂nvr(tk, xk) ≥ − 1

k
∥vr(tk, ·)∥L∞(Br).

If (tk)k is bounded, we can assume up to extraction that
(
(tk, xk)

)
k
converges to a limit

(t∗, x∗) in [0,∞) × ∂Br such that ∂nvr(t∗, x∗) ≥ 0, which contradicts the Hopf Lemma. If
tk → +∞ as k → +∞ along a subsequence, then as the sequence

(
vr(tk, ·)/∥vr(tk, ·)∥L∞(Br)

)
k

is bounded in L∞(Br), using parabolic regularity, it converges to a function v∗(0, ·) in C2(Br)
as k → +∞, that we could extend to a nonnegative solution v∗ of

∂tv∗ −∆v∗ − ∂uf
(
x,W (x)

)
v∗ = 0 in R×Br, v∗ = 0 over R× ∂Br.

Moreover, one has ∂nv∗(0, x∗) ≥ 0. The Hopf Lemma yields that v∗(0, ·) ≡ 0 in Br, a
contradiction since ∥v∗∥L∞(Br) = 1. This proves the claim, from which it follows from the
definition of wr that ∂nwr ≤ −δe−∥A∥∞ for all x ∈ ∂Br and t > 0.

Even if it means increasing r, we can assume that ∂uf
(
x, u(t, x)

)
≤ ∂uf(x, 0)/2 for

all t ≥ 0 and |x| ≥ r by Lemma 2.1 since ∂uf(x, 0) < 0. Let α > 0 and define
w(x) := B

(
e−α(|x|−r) − 1

)
, for some small B > 0 that will be prescribed later. For α > 0

small enough (independent of B), one has

−∆w ≤ 0 ≤
(
∂uf

(
x, u(t, x)

)
− ∂uf(x, 0)/2

)
w in RN\Br.
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since w(x) < 0 in RN\Br.
We now define w(x) := wr(x) if x ∈ Br, w(x) if |x| ≥ r. First, one has ∂nw(x) = −αB

for all x ∈ ∂BR, where n is the normal vector leaving Br. We now take B ≤ δe−∥A∥∞/α.
This yields ∂nw = −αB ≥ ∂nwr over ∂Br if B is large enough. Second, as w(x) < 0 and

∂uf
(
x, u(t, x)

)
≤ ∂uf(x, 0)/2 if |x| ≥ r for all t > 0 and λ̃ < 0, one has

∂tw −∆w − ∂uf
(
x, u(t, x)

)
w ≤ −σ|w| in (0,∞)× RN , (2.6)

in the weak sense since there is a jump of the derivatives over ∂Br, where we choose σ > 0
such that σ < min{− supx∈RN ∂uf(x, 0)/2,−λ̃}.

Let κ0 > 0 such that for all κ ∈ R such that |κ| ≤ κ0,∣∣∣f(x, u(t, x) + κ)− f(x, u(t, x))− ∂uf(x, u(t, x))κ
∣∣∣ < σ|κ|.

As sup(0,∞)×Br
wr <∞ and sup(0,∞)×(RN\Br) |w| ≤ B, we can assume that κ is small enough

so that∣∣∣f(x, u(t, x) + κw(t, x)
)
− f

(
x, u(t, x)

)
− ∂uf

(
x, u(t, x)

)
κw(t, x)

∣∣∣ < σ|κw(t, x)| (2.7)

for all (t, x) ∈ (0,∞)×Br.
Define u(t, x) := u(t, x) + κw(t, x). Gathering (2.6) and (2.7), one gets

∂tu−∆u < f(x, u) on (0,∞)× RN .

As ess infBR
h > 0 by hypothesis, we can take κ small enough such that h ≥ κw on

BR. Let ε∞ := κB(1 − e−α(R−r)). Then for all h such that ∥h∥L∞(RN ) < ε∞, noticing that

w(x) ≤ −B(1− e−α(R−r)) for all x such that |x| ≥ R, one has h ≥ κw over RN\BR. Hence
h ≥ κw on RN .

As

u(0, x) = u(0, x) + κw(0, x) ≤ u(0, x) + h(x) = uh(0, x) for all x ∈ RN ,

the parabolic comparison principle yields

u ≤ uh on (0,∞)× RN .

This implies:
inf
BR−1

(
uh(t, ·)− u(t, ·)

)
≥ κ inf

BR−1

wr > 0 on (0,∞),

which concludes the proof.

2.3 The general case

We are now in position to prove our main result.
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Proof of Theorem 1.2. Let R̃0 as in Proposition 2.6 and take R ≥ R̃0.
Let m :=

∫
RN u̇(t, ·)p(t, ·) (an easy integration by parts yields that this quantity does not

depend on t). We will prove the first case in the Theorem, that is, if m ≥ c∥h∥Lq(RN ), then
uh(t, x) → 1 as t→ +∞ locally in c. We first use Theorem 2.3 to get:

u̇(t, x) = mv(t, x) + u̇(t, x)−mv(t, x)

≥ mv(t, x)− ∥u̇(t, ·)−mv(t, ·)∥L∞(RN )

≥ mv(t, x)− Ce−γt∥u̇(1, ·)−mv(1, ·)∥L∞(RN )

∥v(t, ·)∥L∞(RN )

∥v(1, ·)∥L∞(RN )

= ∥v(t, ·)∥L∞(RN )

(
m

v(t, x)

∥v(t, ·)∥L∞(RN )

− Ce−γt∥u̇(1, ·)−mv(1, ·)∥L∞(RN )

∥v(1, ·)∥L∞(RN )

)
.

As m =
∫
RN u̇(t, ·)p(t, ·), one has

∥u̇(1, ·)−mv(1, ·)∥L∞(RN ) ≤ ∥u̇(1, ·)∥L∞(RN )

(
1 +

∫
RN p(1, ·)∥v(1, ·)∥L∞(RN )

)
≤ 2∥u̇(1, ·)∥L∞(RN )

∫
RN p(1, ·)∥v(1, ·)∥L∞(RN )

since
∫
RN p(1, ·)v(1, ·) = 1 (since this quantity is independent of t and

∫
RN p(0, ·)v(0, ·) = 1

by normalization, see Proposition 2.2). Moreover,

|u̇(1, x)| ≤ eK

(4π)N/2

∫
RN

e−
|x−y|2

4 |h(y)|dy ≤ Cq∥h∥Lq(RN ),

where K = ∥∂uf∥∞ and Cq > 0 is a constant only depending on q, K and N .
We thus conclude that

u̇(t, x) ≥ ∥v(t, ·)∥L∞(RN )

(
m

v(t, x)

∥v(t, ·)∥L∞(RN )

− 2CCqe
−γt

∫
RN

p(1, ·)∥h∥Lq(RN )

)
and as m ≥ c∥h∥Lq(RN ), one gets

u̇(t, x) ≥ ∥v(t, ·)∥L∞(RN )∥h∥Lq(RN )

(
c

v(t, x)

∥v(t, ·)∥L∞(RN )

− 2CCqe
−γt

∫
RN

p(1, ·)
)
.

Lemma 2.4 yields that there exists T > 0 such that for all t ≥ T and x ∈ BR:

v(t, x)

∥v(t, ·)∥L∞(RN )

≥ 1

2
min
BR

φ.

Moreover, we could assume that T is large enough so that

2Ce−γTCq

∫
RN

p(1, ·) ≤ c

4
min
BR

φ.
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It follows that
min
BR

u̇(T, ·) ≥ c

4
∥v(T, ·)∥L∞(RN ) min

BR

φ∥h∥Lq(RN ).

As f ∈ C2([0, 1]), there exists M > 0 such that for all t > 0, x ∈ RN , one has

|f
(
uh(t, x)

)
− f

(
u(t, x)

)
− ∂uf

(
x, u(t, x)

)
(uh(t, x)− u(t, x))|| ≤M |uh(t, x)− u(t, x)|2.

Let zh := uh − u− u̇. One has zh(0, ·) ≡ 0 and

∂tz
h −∆zh − ∂uf

(
x, u(t, x)

)
zh = f(x, uh)− f(x, u)− ∂uf(x, u)(u

h − u).

Hence,
|∂tzh −∆zh| ≤M |uh − u|2 +K|zh|,

where K = ∥∂uf∥∞. Moreover,

|uh(t, x)− u(t, x)| ≤ eKt

(4πt)N/2

∫
RN

e−
|x−y|2

4t h(y)dy ≤ eKtCq∥h∥Lq(RN ).

It follows from comparison arguments that

∥zh(t, ·)∥L∞(RN ) ≤ CqMt1−N/2eKt∥h∥2Lq(RN ).

Take εq small enough such that

CqMT 1−N/2eKT εq ≤
c

8
∥v(T, ·)∥L∞(RN ) min

BR

φ.

This defines εq. Then as ∥h∥Lq(RN ) < εq, one has

∥zh(T, ·)∥L∞(RN ) ≤
c

8
∥v(T, ·)∥L∞(RN )∥h∥Lq(RN ) min

BR

φ

and thus for all x ∈ BR:

hT (x) := uh(T, x)− u(T, x)

= zh(T, x) + u̇(T, x) ≥
(
− c

8
∥v(T, ·)∥L∞(RN ) min

BR

φ+
c

4
∥v(T, ·)∥L∞(RN ) min

BR

φ
)
∥h∥Lq(RN )

=
c

8
∥v(T, ·)∥L∞(RN )∥h∥Lq(RN ) min

BR

φ.

Moreover,
|hT (x)| = |uh(T, x)− u(T, x)| ≤ eKTCq∥h∥Lq(RN ).

Hence, ∥hT∥L∞(RN ) < ε∞ if ∥h∥Lq(RN ) < εq := e−KT ε∞/Cq.
We could thus apply Proposition 2.6, with initial time at t = T . This yields that if we

denote by uhT the solution of

∂tu
h
T −∆uhT = f(x, uhT ) on (T,∞)× RN , uhT (T, x) = u(T, x) + hT (x) for all x ∈ RN

then infBR−1

(
uhT (t, ·) − u0T (t, ·)

)
> 0 for all t > 0. But, due to the definition of

hT , uhT (T, ·) ≡ uh(T, ·) and thus uhT is nothing else but the function uh. Hence,
infBR−1

(
uh(t, ·) − u(t, ·)

)
> 0 for all t > T and thus lim inft→+∞

(
uh(t, x) − W (x)

)
> 0

for all x ∈ BR−1. As this is true for any R large enough, this concludes the proof.
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2.4 Proof of Corollary 1.4

Proof of Corollary 1.4. As 0 ≤ u ≤ 1, parabolic regularity estimates yield ∂tu ∈ L2
(
(0, T ), L2(RN)

)
for all T > 0. The Lebesgue differentiation theorem yields that for a.e. t0 ∈ [0, T ), one has:

1

τ
∥u(τ + t0, ·)− u(t0, ·)∥L2(RN ) → ∥∂tu(t0, ·)∥L2(RN ) as τ → 0

We take such a t0. Assume by contradiction that
∫
RN p(t0, x)∂tu(t0, x)dx > 0. Let c > 0

such that ∫
RN

p(t0, x)∂tu(t0, x)dx = 2c∥∂tu(t0, ·)∥L2(RN ).

Let ε2 associated with c as in Theorem 1.2, but with initial time t0 instead of 0.
For all τ > 0, we define hτ := u(τ + t0, ·) − u(t0, ·). This is clearly an admissible

perturbation since 0 ≤ u(τ + t0, ·) ≡ u(t0, ·) + h ≤ 1. Clearly, uh
τ ≡ u(· + τ + t0, ·) and in

particular, uh
τ
(t, x) → W (x) as t→ +∞ uniformly in x ∈ RN .

On the other hand, 1
τ
∥hτ∥L2(RN ) → ∥∂tu(t0, ·)∥L2(RN ) and

∫
RN p(t0, x)h

τ (x)dx→
∫
RN p(t0, x)∂tu(t0, x)dx

as τ → 0. Hence, we can assume that τ is small enough so that∫
RN

p(t0, x)h
τ (x)dx ≥ c∥hτ∥L2(RN ) and ∥hτ∥L2(RN ) < ε2.

As c > 0, it would then follow that uh
τ
(t, x) → 1 as t → +∞ locally in x ∈ RN , a

contradiction. Similarly, if
∫
RN p(t0, x)∂tu(t0, x)dx < 0, then uh

τ
(t, x) → 0 as t → +∞,

providing the contradiction. Hence,
∫
RN p(t0, x)∂tu(t0, x)dx = 0, and this is true for a.e.

t0 ≥ 0.

3 Derivation of the applications results

Proof of Proposition 1.5. Let r > 0, L = L∗(r) the associated critical length. First, by
definition of L∗(r), one has uL∗(r)(t, x) → W (x) as t → +∞ uniformly in x ∈ R for some
positive, even solution W ∈ H1(R) of (H1). Hence, the hypotheses of Theorem 1.2 are
satisfied and p is well-defined.

For all ε > 0 small and ν ∈ R, we define uε the solution of (1.1) associated with the
initial datum

uε0 :=

{
1 if r + ε < |x| < r + ε+ L+ νε,
0 otherwise.

We now denote u0 := 1(−L−r,−r)∪(r,r+L) and u the associated solution.
Define

hε := uε0 − u0 =


1 if L+ r < |x| < r + ε+ L+ νε,
−1 if r < |x| < r + ε,
0 otherwise.

Assume first that ν > pr(0,r)
pr(0,L+r)

− 1. Then

lim
ε→0

1

ε

∫
R
hε(x)p(0, x)dx = 2νpr(0, L+ r)− 2pr(0, r) > 0.
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On the other hand, ∥hε∥L1(RN ) = 2(1 + ν)ε. Let c :=
(
νpr(0, L + r) − p(0, r)

)
/(1 + ν) > 0.

We could apply Theorem 1.2: there exists ε1 > 0 such that for all ε such that 2(1+ν)ε < ε1,
one has uε(t, x) → 1 locally uniformly in x as t → +∞. By definition of L∗(r + ε), this

implies in particular that L∗(r+ ε) < νε+L∗(r) for ε small enough for all ν > pr(0,r)
pr(0,L+r)

− 1.

Similarly, one can show that L∗(r+ε) > νε+L∗(r) for ε small enough for all ν < pr(0,r)
pr(0,L+r)

−1.

Analogous inequalities could be derived for ε < 0. We conclude that L∗ is derivable on (0,∞)

and (L∗)′(r) = pr(0,r)
pr(0,L∗(r)+r)

− 1.

Proof of Lemma 1.6. Consider a minimizing sequence (un0 )n in B. As 0 ≤ un0 ≤ 1 for all
n and

∫
R j(u

n
0 ) is bounded, we can assume that

(
j(un0 )

)
n
converges weakly in the space of

measures. Let β := limn→+∞
∫
R j(u

n
0 ).

Step 1. Assume that there exists α ∈ (0, β) such that for all ε ∈ (0, β − α), there exist
two compactly supported sequences (un0,1)n and (un0,2)n such that for n large enough:

∥j(un0 )− j(un0,1)− j(un0,2)∥L1(R) < ε,
∣∣ ∫

R
j(un0,1)− α

∣∣ < ε

and limn→+∞ d
(
suppun0,1, suppu

n
0,2

)
= ∞. For all n, let un1 and un2 the solution of (1.1)

associated respectively with the initial data un0,1 and un0,2.
This part of the proof is now inspired by the proof of Theorem 2 in [7]. Let vn the

solution associated with the initial datum vn0 := un0 − un0,2. As α < β and ε < β −α, one has∫
R j(v

n
0 ) < β and we know by definition of β that limt→∞ supx∈R v

n(t, x) = 0. Let t∗ > 0 such
that vn(t∗, x) ≤ θ/4 for all x ∈ R, where θ := inf{s ∈ (0, 1], f(s) > 0}, which is well-defined
since f(1) = 0, and positive since f ′(0) < 0.

Next, up to symmetrization, we can always assume that an := sup suppun0,1 ≤ 0
and bn := inf supp un0,2 ≥ 0, and by translation we can assume that bn = −an. As

limn→+∞ d
(
supp un0,1, supp u

n
0,2

)
= ∞, one has bn → +∞ since d

(
supp un0,1, supp u

n
0,2

)
= 2bn.

Let wn = un − vn. One has wn(0, ·) ≡ un0,2 and

wn
t − wn

xx = f(un)− f(vn) ≤ Kwn,

where K = ∥f ′∥∞. Moreover, suppwn ⊂ (bn,∞), and thus wn(0, ·) converges weakly to 0 as
n → +∞ since bn → +∞. It follows that the function wn(t, ·) converges locally uniformly
to 0 as n → +∞ for all t > 0. In particular, wn(t∗, 0) ≤ θ/4 for n large enough. Moreover,
for all t > 0, wn(t, ·) is increasing over R− by Lemma 2.1 of [5], and thus wn(t∗, x) ≤ θ/4 for
all x ≤ 0. It follows that un(t∗, x) = wn(t∗, x) + vn(t∗, x) ≤ θ/2 for all x ≤ 0. One can prove
using un1 instead of un2 that un(t∗, x) ≤ θ/2 for all x ≥ 0. Hence un(t∗, ·) ≤ θ/2 over R.

Consider the solution N of N ′ = f(N ), N (0) = θ/2. As f(s) < 0 for all s ∈ (0, θ),
one has N (t) → 0 as t → +∞. Thus, as un(t, ·) ≤ N (t) for all t ≥ t∗, we conclude that
un(t, x) → 0 as t → +∞ uniformly over R, for any n large enough. This is a contradiction.
Hence, dichotomy is discarded.

Step 2. Assume that (un0 )n vanishes, in the sense that for all R > 0:

sup
y∈R

∫
BR+y

j(un0 ) → 0 as n→ +∞.
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Let K = ∥f ′∥∞. Let ε > 0 such that j(s) > ε for all s > 2θe−K/3. Take R large enough
so that

1√
4π

∫
|x|>R

e−|x|2/4dx < ε/(2j(1)).

Assume that n is large enough so that

1√
4π

sup
y∈R

∫
BR+y

j(un0 ) ≤ ε/2.

We now notice that
unt − unxx = f(un) ≤ Kun in (0,∞)× R.

It follows that, as un0 ≤ 1, using Jensen’s inequality and the convexity of j:

j
(
e−Kun(1, y)

)
≤ j

(
1√
4π

∫
R e

−|y−z|2/4un0 (z)dz
)

≤ 1√
4π

∫
R e

−|y−z|2/4j
(
un0 (z)

)
dz

≤ 1√
4π

∫
|z−y|≤R

j
(
un0 (z)

)
dz + 1√

4π

∫
|z−y|>R

e−|y−z|2/4j(1)dz

≤ ε

for n large enough. It follows from the definition of ε that e−Kun(1, y) ≤ 2θe−K/3. Com-
paring with the solution N of N ′ = f(N ), N (0) = 2θ/3, we conclude that un(t, y) → 0 as
t→ +∞ for n large enough uniformly in y ∈ R. This is a contradiction since un0 ∈ B. Hence,
vanishing is discarded.

Step 3. We conclude from Lions’ concentration-compactness method [10] that, up to
translation, for all ε > 0, there exists R > 0 such that

∫
BR
j(un0 ) ≥ β − ε for all n large

enough. As 0 ≤ j(un0 ) ≤ j(1) for all n, it follows that
(
j(un0 )

)
n
converges, up to extraction,

in L1 (see [10]). As j is bijective on [0,∞), let j(u0) its limit.
It is only left to prove that if u is the solution of (1.1) associated with the initial datum

u0, then lim supt→+∞ supx∈R u(t, x) > 0. Assume by contradiction that u(t, ·) converges
uniformly to 0 as t→ +∞. Let t∗ such that u(t∗, x) ≤ θ/4 for all x ∈ R. Let ε > 0 such that
j(s) > ε√

4πt∗
for all s > θe−Kt∗/4. Take n large enough so that ∥j(un0 )− j(u0)∥L1(R) ≤ ε. We

notice that, as j is convex, nondecreasing and j(0) = 0, one has j(u + v) ≥ j(u) + j(v) for
all u, v ≥ 0, from which we could easily derive that j(|u− v|) ≤ |j(u)− j(v)| for all u, v ≥ 0.
It follows that

j
(
e−Kt∗|un(t∗, x)− u(t∗, x)|

)
≤ j

(
1√
4πt∗

∫
R e

− |x−y|2
4t∗ |un0 (y)− u0(y)|dy

)
≤ 1√

4πt∗

∫
R e

− |x−y|2
4t∗ j

(
|un0 (y)− u0(y)|

)
dy (Jensen inequality)

≤ 1√
4πt∗

∫
R e

− |x−y|2
4t∗ |j

(
un0 (y)

)
− j

(
u0(y)

)
|dy

≤ ε√
4πt∗

.
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It follows from the definition of ε that |un(t∗, x) − u(t∗, x)| ≤ θ/4 and thus un(t∗, x) ≤ θ/2
for all x ∈ R. By comparison with N , one gets limt→+∞ un(t, x) = 0 uniformly in x ∈ R.
This contradicts un0 ∈ B. We conclude that u0 ∈ B.

Proof of Proposition 1.7. First, by (H0) and (Hbist), as u0 ∈ L1(R), it follows from [11]
applied to u(1, ·) that u(t, ·) converges as t → +∞, either locally uniformly to 1, uniformly
to 0, or uniformly to a positive solution W ∈ H1(R) of (H1). The limit 0 is excluded since
u0 ∈ B.

Assume by contradiction that u(t, ·) → 1 as t → +∞, locally uniformly in x. Then it
is well-known (see Lemma 4.2 of [5] for example) that under hypotheses (H0) and (Hbist),
for any α ∈ (β∗, 1), there exists Rα such that the solution uα associated with the initial
datum αI(−Rα,Rα) converges to 1 as t → +∞ locally uniformly in x. Take T > 0 such that
u(t, x) ≥ (1 + α)/2 for all t > T and x ∈ (−Rα, Rα). Let h ∈ L1(R) a nonnegative function

such that u0 ≥ h, and eKT
√
4πT

∥h∥L1(R) < (1 − α)/2, with K = ∥f ′∥∞. Let uh the solution
associated with u0 − h. Using arguments that have already been developed in this paper,
one easily gets

∥uh(T, ·)− u(T, ·)∥L∞(R) ≤
eKT

√
4πT

∥h∥L1(R) < (1− α)/2.

In particular, uh(T, x) ≥ α on (−Rα, Rα) and thus uh(t, x) → 1 as t → +∞ locally in x.
But as

∫
R j

(
uh(0, ·)

)
<

∫
R j(u0), this would contradict the minimality of u0.

Hence the only possible choice is u(t, x) → W (x) uniformly in x as t → +∞ and thus
the hypotheses of Theorem 1.2 are satisfied. We can thus define p.

Define the set S0 = {x ∈ R, u0(x) < 1} (resp. T 0 = {x ∈ R, u0(x) > 0}) and for every
k = 1, 2, . . . the set S0

k = {x ∈ R, 0 ≤ u0(x) < 1− 1
k
} (resp. T 0

k = {y ∈ R, 0 ≤ u0(y) >
1
k
});

As u0 ∈ L1(R), one has u0 ̸≡ 1 and thusmeasS0 > 0. Also, u0 ̸≡ 0, otherwise one would have
u(t, ·) ≡ 0 for all t > 0, contradicting lim supt→+∞ supx∈R u(t, x) > 0, and thus measT 0 > 0

The Lebesgue density theorem yields that for almost every x∗ ∈ S0
k , y

∗ ∈ T 0
k , there exists

r sufficiently small such that µ(B(x∗,r))
µ(B(x∗,r)∩S0

k)
< 2 and µ(B(y∗,r))

µ(B(y∗,r)∩Tk)
< 2. Take λ > 1, and define

h(x) :=
meas(B(x∗, r))

meas(B(x∗, r) ∩ S0
k)

IB(x∗,r)∩S0
k

j′(u0)
− λ

meas(B(y∗, r))

meas(B(y∗, r) ∩ Tk)

IB(y∗,r)∩Tk
j′(u0)

,

where I is the indicatrix function. Then for 0 < ε < 1
2k
, one has 0 ≤ u0 + εh ≤ 1. As λ > 1,

one has
∫
R j

′(u0)h < 0 and thus
∫
R j(u0 + εh) <

∫
R j(u0). The minimality of u0 yields that

u0 + h ̸∈ A, that is, the solution uh associated with the initial datum u0 + εh converges
uniformly to 0 as t→ +∞.

Assume by contradiction that
∫
R p(0, x)h(x) > 0. Then Theorem 1.2 yields that

uεh(t, x) → 1 locally uniformly in x as t → +∞, a contradiction. Hence
∫
R p(0, x)h(x) < 0,

that is:

1

meas(B(x∗, r) ∩ S0
k)

∫
B(x∗,r)∩S0

k

p(0, x)

j′(u0(x))
dx ≤ λ

1

meas(B(y∗, r) ∩ Tk)

∫
B(y∗,r)∩Tk

p(0, x)

j′(u0(x))
dx.
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Letting r → 0, this yields p(0,x)
j′(u0(x))

≤ λ p(0,y)
j′(u0(y))

for all λ > 1. As this is true for almost every

x ∈ S0
k and y ∈ T 0

k , and as S0 = ∩∞
k=1S0

k and T 0 = ∩∞
k=1T 0

k ,we have thus proved that

p(0, x)

j′(u0(x))
≤ p(0, y)

j′(u0(y))
for almost every x ∈ S0, y ∈ T 0.

As p(0, ·) is continuous, the conclusion follows by letting c := supS0
p(0,·)
j′(u0)

= infT 0
p(0,·)
j′(u0)

since

S0 ∪ T 0 = RN .

Proof of Corollary 1.8. Assume by contradiction that W = W (x) is a minimizer of
u0 7→

∫
R u0 over B. If u0 = W , then, clearly, u(t, x) = W (x) for all (t, x) ∈ (0,∞) × R,

and p(t, x) = Cφ(x)eλt for some constant C > 0 by uniqueness. As 0 < W < 1 over R,
Proposition 1.7 would give p(0, ·) ≡ c over R for some c > 0. In other words, φ would be
constant, and thus f ′(W ) would be constant over R, equal to f ′(0) < 0 since W (x) → 0
as |x| → +∞. This would give f(s) = f ′(0)s for all s ∈ [0,maxRW ]. On the other hand,
equation (H1) yields that if W (x) = maxRW , then f

(
W (x

)
= −∆W (x) ≥ 0, contradicting

f ′(0) < 0.
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