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INTRODUCTION

Polarimetric Synthetic Aperture Radar (PolSAR) is based on the coherent measurement of microwave scattering diversity in two orthogonal polarization bases. As in any data analysis field, both supervised and unsupervised classification methods have been used with this complex multidimensional data. Whereas supervised algorithms use a wide variety of input features, the unsupervised ones are consistent in this regard. Coherent methods use the scattering matrix/vector and the incoherent ones, by far the largest and befitting category in practical applications, use the covariance/coherency matrices.

Within unsupervised methods, the clustering-based subfield is undeniably popular, amidst which the unsupervised Wishart [START_REF] Lee | Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[END_REF] (and derivations) have reached cross-domain applicability (with the best results when used for homogeneous, complex-Gaussian distributed data). Because of its versatility and algorithmic similarity to the proposed technique, we use the method as benchmark.

The remainder of this paper is organised as follows. Section 2 briefly introduces the main theoretical aspects and offers details on the proposed algorithm and Section 3 presents results of real data evaluation. Conclusions are given in Section 4.

POLAR DECOMPOSITION, HERMITIAN FACTORS AND THE RIEMANNIAN MANIFOLD

Polar decomposition

The polar decomposition can be used to decompose the Pol-SAR scattering matrix into a product of two factors [START_REF] Souyris | Polarimetric analysis of bistatic SAR images from polar decomposition: A quaternion approach[END_REF]:

S = UH (1) 
The first term is unitary (U, UU H = I, U ∈ C 2×2 ) and the second is Hermitian (H, H H = H, H ∈ C 2×2 ). By convention, ( 1) is known as the right polar decomposition and is the form used in this paper. This decomposition is the matrix equivalent of the well-known polar form, which writes every non-zero complex number s = s 1 +js 2 , s ∈ C, as the product of a modulus and a phase element:

s = |s| • e jθ , θ ∈ [-π, π].
Analogously, the H and U factors of the decomposition represents a linear "boost" and a rotation, respectively [START_REF] Souyris | Polarimetric analysis of bistatic SAR images from polar decomposition: A quaternion approach[END_REF]. The unitary matrices are the complex counterpart of orthogonal matrices. They preserve lengths and many distance functions are unitary-invariant. It is more common to refer to the orthogonal matrices as to (real) rotations 1 . However, a 2×2 unitary matrix can be expressed as the product between a diagonal phase matrix and a special SU (2) matrix, or equivalently, as the product of two phase matrices and one real rotation [START_REF]Factorization of unitary matrices[END_REF]. That is, the action of a unitary matrix is that of both a rotation and of phase changes. As the modulus of a complex number allows to obtain a quantity's phase-invariant amplitude and the discharge of a real rotation in PolSAR gives a rotation-invariant element, we argue that the H-factor from the polar decomposition can be seen as both phase and rotation invariant. Based on this desirable property of the Hermitian H-factors, we propose a geometric unsupervised clustering which exploits their Riemannian geometry.

Hermitian factors and Riemannian manifold

The positive definite matrices, as the H-factors, are naturally embedded in a non-linear, smooth, differentiable, Riemannian manifold. In this space, the shortest path connecting any 1 real rotation complex rotation cos θ -sin θ sin θ cos θ cos θ -sin θe -jφ sin θe jφ cos θ two points is no longer a straight line (as in the Euclidean space), but a path which follows the curvature of the space and known as a geodesic. The most commonly employed metrics in the Riemannian manifold of positive Hermitian matrices are the affine invariant Riemann metric (AIRM) and the Log-Euclidean metric. They both allow the definition of a distance function in closed-form. These two geometric metrics have been used in previous PolSAR applications operating in the Riemannian embedding of coherency/covariance matrices [START_REF] Formont | On the Use of Matrix Information Geometry for Polarimetric SAR Image Classification[END_REF][START_REF] Zhong | Unsupervised classification of polarimetric SAR images via Riemannian sparse coding[END_REF]. Another metric used in PolSAR is the angular geodesic, which can be seen as an approximation of the true geodesic, but only when restricting the shape of the Riemannian manifold to that of a unit sphere [START_REF] Ratha | Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance[END_REF].

For any two positive definite matrices H 1 and H 2 , AIRM gives the minimum distance along the Riemannian geodesic2 

d(H 1 , H 2 ) = || Log(H 1 -1/2 H 2 H 1 -1/2 )|| F . (2) 
For m positive definite matrices {H 1 , H 2 , . . . , H m }, m > 2, the Riemannian barycenter, i.e., the geometric center of mass (known also as the geometric mean) [START_REF] Bhatia | The Riemannian Mean of Positive Matrices[END_REF], is a point H 0 which attains the minimum dispersion, i.e., arg min

H0 m i=1 d(H 0 , H i ) 2 . ( 3 
)
While there is no closed-form solution for the minimization problem in (3), it was shown that the minimum always exists and is unique [START_REF] Barachant | Multiclass brain-computer interface classification by Riemannian geometry[END_REF]. Moreover, when the dispersion is not excessive the minimizer can be attained with probability 1 by a simple gradient descent algorithm [START_REF] Formont | On the Use of Matrix Information Geometry for Polarimetric SAR Image Classification[END_REF].

Proposed method

The proposed method is presented in pseudo-code (Algorithm 1).

EXPERIMENTAL RESULTS

PolSAR Dataset

The experimental study uses a PolSAR dataset acquired by the SAR ElectroMagnetic Institute Synthetic Aperture Radar (EMISAR) instrument over the Foulum test site [START_REF] Skou | A high resolution polarimetric Lband SAR-Design and results[END_REF]. It shows a mixture of vegetation areas (different crop fields, forest), small urban areas and a lake/water reservoir (Pauli composite in Fig. 1a).

Algorithm 1: Riemannian k-means using polar Hfactors.

Input: Full-polarimetric data in scattering matrix format, S. 1 Decompose S via the polar decomposition and obtain the H-factors. 2 Evaluate the presence of coherent scatterers (method: 98 th percentile criterion by Lee et al. [START_REF] Lee | Polarimetric SAR speckle filtering and the extended Sigma filter[END_REF], evaluation: 3×3 boxcar). Compose binary map of incoherent/coherent scattering positions. 3 Mask-out positions of coherent scatterers and compute for each remaining position the H-factor barycenter. (Evaluation method: square, sliding neighbourhood). 4 Apply the geometrical k-means clustering method 3 .

For positions of coherent scatterers, their Hermitian H-factor is used. Random initialization is applied for class centres and the intra/inter-cluster evaluation is based on the AIRM metric. 5 Stop algorithm when the predefined threshold (accuracy/nr. of runs) is reached.

The EMISAR Foulum full-polarimetric dataset is wellknown in the PolSAR community and a number of publications show incomplete descriptions of the area's perennial/permanent vegetation content, as for example [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF][START_REF] Skriver | Agriculture classification using PolSAR data[END_REF][START_REF] Doulgeris | Scale mixture of gaussian modelling of polarimetric SAR data[END_REF]. Due to its richness of natural elements it has been used for vegetation studies [START_REF] Skriver | Agriculture classification using PolSAR data[END_REF], statistical assessments in homogeneous/inhomogeneous regions [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF] and others. Recently, incomplete ground truth representations have been proposed for evaluation of machine learning architectures and we display one such example in Fig. 1(b) [START_REF] Dong | PolSAR image classification with lightweight 3D convolutional networks[END_REF].

Clustering comparison

For illustration purposes, Fig. 1(c) shows the amplitude in the h 1,1 channel of the Hermitian barycenters. A gray scale display of the span in the original image will give similar results, which can even be motivated mathematically.

The remaining subfigures display three clustering results. Fig. 1(d) is obtained applying the proposed, Riemannian k-means method, while Fig. 1(e) is the result of the classical Wishart method. For Fig. 1(f), a different implementation is proposed, based on the same k-means framework/initialization as with Wishart, but using the cosine geodesic distance as inter/intra-cluster metric. The main differences between the three implementations are summarized in Table 1.

Comparing the three results, the large scale features seem to be well identified by all methods, while the texture information is better preserved when using the two geometrical distances (Figs. 1d &f). However, the proposed Riemannian k-means seems to exhibits better accuracy, as it is able to Table 1: Differences in clustering algorithms implementation.

Method

Input matrices Initialization Metric (intra/inter-class)

Riemannian k-means 3 S random AIRM (2) Wishart C H-α d(C 1 , C 2 ) = ln|C 2 | + tr(C 2 -1 C 1 ), [1] Cosine GD k-means 3 C H-α d(C 1 , C 2 ) = cos -1 tr(C1 H C2) √ tr(C1 H C1) √ tr(C2 H C2)
, [START_REF] Ratha | Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance[END_REF] discriminate crop fields which are not retrieved by the other two methods. For example, the beet and winter wheat fields, from the ground truth (yellow and dark blue, respectively), are correctly separated as distinct classes, both when in close proximity and farther apart in the image.

CONCLUSION

This paper focuses on the use of the Riemannian framework throughout all stages of a PolSAR clustering application. The use of the polar decomposition allows both a reduction in dimensions and phase/rotation invariance of the input features.

Intrinsically, the proposed framework represents a shift in the current PolSAR computation paradigm.

From an algebraic perspective, the true informational space for polarimetric measurements through the 2×2 scattering matrix is C 2×2 , while the extension to covariance Hermitian C 3×3 is only through second order statistics. That is why, instead of statistically averaging the scattering vectors (as for covariance/coherency matrix estimation), a geometrical local mean (i.e., barycenter) is computed based on a geodesic distance associated to the manifold. In other words, the algorithm does not modify the algebraic and geometric structure of the input features, rather it takes advantage of them. 
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Notations: Log = matrix logarithm. ∥•∥ F = Frobenius norm.

Note: From a computer science perspective, the better name to be used is k-medoids. It refers to a clustering technique, similar to k-means, apart from the centroid computation. While in k-means the class centroid may be different from the existing elements of a class (as a result of averaging), the metric criteria for k-medoids selects the center/centroid from inside a class' elements. Nonetheless, we stick to the more common name in PolSAR.