N
N

N

HAL

open science

ExaNBody: a HPC framework for N-Body applications
Thierry Carrard, Raphaél Prat, Guillaume Latu, Killian Babilotte, Paul

Lafourcade, Lhassan Amarsid, Laurent Soulard

» To cite this version:

Thierry Carrard, Raphaél Prat, Guillaume Latu, Killian Babilotte, Paul Lafourcade, et al.. ExaN-
Body: a HPC framework for N-Body applications. 2023. hal-04278912

HAL Id: hal-04278912
https://hal.science/hal-04278912

Preprint submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04278912
https://hal.archives-ouvertes.fr

ExaNBody : a HPC framework for N-Body
applications

Thierry Carrard"?, Raphaél Prat3, Guillaume Latu?, Killian Babilotte!?, Paul
Lafourcade-?, Lhassan Amarsid?, and Laurent Soulard®-?

! CEA, DAM, DIF, F-91297 Arpajon, France
2 Université Paris-Saclay, LMCE, 91680 Bruyéres-le-Chatel, France
3 CEA, DES, IRESNE, DEC, Cadarache F-13108 Saint-Paul-Lez-Durance, France

Abstract. Increasing heterogeneity among Hpc platforms requires ap-
plications to be frequently ported and tuned, adding burden to develop-
ers. Fast evolution of hardware mandates adaptation of algorithms and
data structures to get higher performance, while application complex-
ity constantly grows accordingly. Ensuring portability while preserving
high performance at large scale along with minimal changes to an al-
ready existing application is an actual challenge. Separation of concerns
to decouple performance from semantics in simulation codes are typ-
ically required. We describe a specialized programming framework for
N-Body simulations that provides such separation. It allows one to de-
velop computation kernels in the form of sequential-looking functions,
while self-generating multi-level parallelism. EXANBODY possesses both
an application layer with its own input data format, a way to define spe-
cific computation kernels and a separate runtime system that can address
both Cpus and Gprus. The framework enables performance portability
for N-Body simulations, bringing both flexibility and a set of handy tools.
Performance results and speedups up to 32k cores with two distinct ap-
plications based on EXANBoODY are discussed.

Keywords: N-body simulation - Hpc- MpPI- OPENMP - Framework

1 Introduction

Collisional N-body simulations are extensively used in several scientific domains.
One challenge is the realistic modeling of atomistic systems or particle-based and
granular materials containing multi-million of elements. Discrete element method
(DEM), classical molecular dynamics (MD), and smoothed-particle hydrodynam-
ics (SPH) methods fall into this category of N-body approaches. N-body modeling
becomes challenging as the computational domain size and complexity rise. An
always renewed challenge for tools in this field is to take advantage from the
increasing power of distributed memory machines in order to mimic real sys-
tems. As supercomputers complexity tends to increase, this requires to revisit
algorithms in order to use computing units at their full potential. The EXAN-
Bobpy framework is modular, customizable, and allows to build a wide variety
of different problems.

2 T. Carrard et al.

In this paper, we focus on the scalability of a set of numerical methods
for performing N-body simulations embedded into a comprehensive framework
offering genericity and portable performance.

EXANBODY provides features for numerically integrating Newton’s equation
of motion for each particle, resulting from short/long range interactions or con-
tact between objects (in the case of DEM simulations). Interactions computa-
tion methods rely on neighbor search algorithms and numerical time integration
schemes.

To fasten developments, we propose a HpcC framework to build N-body ap-
plications. The main contributions of this paper are the following. First, we
introduce the framework and its features to address N-Body problems in a flex-
ible way. Then, the framework architecture, based on a Mpi+X parallelism is
explained. Finally, EXANBODY is evaluated throughout target applications on
thousands of CPU cores, as well as on a set of GPUs.

2 Background : N-body simulations
2.1 N-body methods

N-body methods encompass a variety of techniques used to model the behavior
and interactions of a set of particles over time. These methods consist in solv-
ing Newton’s equation of motion f = ma for each particle at each time step,
where f corresponds to the sum of the forces applied to the particle, a its accel-
eration and m its mass. The forces are deduced from the interactions between
particles according to their types, i.e. contact, short-range, or long-range inter-
actions, and external forces applied to the sample (i.e. gravity). Velocities are
then deduced from the accelerations and subsequently used to update the par-
ticle positions at the next time step. This process is repeated, typically with a
fixed time step A;, according to an integration scheme* until the desired du-
ration is reached. The collection of particle configurations over time allows to
study a wide range of phenomena, from granular media movements, with the
Discrete Element Method (DEM), to material crystal plasticity at the atomic
scale using Molecular Dynamics (MD), going up to the galaxy formation with
the Smoothed-Particle Hydrodynamics (SPH).

2.2 N-body simulation codes

The development of a N-body code is led by the need to figure out the neigh-
borhood of a given particle for every timestep in order to process interactions of
different kinds.

Particle interactions can be categorized as short-range and long-range.
Short-range interactions are considered negligible beyond a specified cut-off ra-
dius. To optimize calculations, neighboring particle detection algorithms are
employed to eliminate unnecessary computations with distant particles. Each
N-Body method employs a wide variety of short-range interactions that cap-
ture different particle physics. For example, visco-elastic contacts in DEM follow

* For example, Velocity Verlet integrator can be used [13].

ExaNBody : a HPC framework for N-Body applications 3

Hooke’s law or Hertz law to model contact elasticity between rigid particles,
while pair potentials like Lennard-Jones or Morse are used for gas or liquid
atom interactions in classical MD. Long-range interactions, on the other hand,
can sometimes not be neglected and result in algorithmic complexity of O(N?).
Such interactions, like gravitation in astrophysics, or electrostatic forces in MD,
are typically modeled using the Ewald summation method. Fortunately, calcu-
lation approaches such as the fast multipole method can achieve a complexity
of O(N), thanks to an octree structure, and can be efficiently parallelized [1].
Although this paper primarily focuses on short-range interactions, both types of
interaction can be dealt with in EXANBODY.

Neighbor lists are built, using different strategies, to shorten the process of
finding out the neighbors of a particle within the simulation domain. It helps
optimizing the default algorithm having a complexity of O(N?) that tests every
pair of particles (if NV is the number of particles). The most common strategy to
deal with any kind of simulation (static or dynamic, homogeneous and heteroge-
neous density) is a fusion between the linked-cell [7] method and the Verlet list
method [24]. The combination of these methods has a complexity of O(N) and
a refresh rate that depends on the displacement of the fastest particle. This al-
gorithm is easily thread-parallelized. Others less-used neighbor search strategies
have been developed to address specific simulations, such as for static simulation
with particles respecting a regular layout [10].

Domain decomposition is usually employed in N-Body methods to address
distributed memory parallelization[17], assigning one subdomain to each MPI
process. This implies the addition of ghost areas (replicated particles) around
subdomains to ensure each particle has access to its neighborhood. Over time,
many algorithms have been designed to improve load-balancing such as: Re-
cursive Coordinate Bisection (RCB), the Recursive Inertial Bisection (RIB), the
Space Filling Curve (SFc), or graph method with PARMETIS. Note that the
library Zoltan gathers the most popular methods. To ease neighbor list construc-
tion (i.e. employing the linked-cell method), the simulation domain is described
as a cartesian grid of cells, each of which containing embedded particles. Each
subdomain then consists in a grid of entire cells assigned to one MPI process. In
contrast, concurent iteration over the cells of one subdomain’s grid provides the
basis for thread parallelization at the NUMA node level.

Commonalities are shared across N-body simulation codes, such as numerical
schemes, neighbor particle detection, or short/long-range interactions. The com-
putation time dedicated to interaction and force calculations can be significant
(over 80% of the total time) depending on the studied phenomenon complex-
ity. Additional factors, such as neighbor lists construction computational cost,
can impact overall simulation time. For dynamic simulations involving rapidly
moving particles and computationally inexpensive interactions, more than 50%
of the total time may be spent on neighbor list construction. The computa-
tionally intensive sections of the code vary depending on methods and phenom-
ena studied, requiring optimizations such as MPI parallelization, vectorization,
multi-threading, or GPU usage.

4 T. Carrard et al.

A short review of N-body HPC' codes shows that a significant amount of re-
search has been devoted to adapting N-Body specific optimizations to supercom-
puter architectures evolutions. One of the most significant code in the scientific
community is the state-of-the-art MD code LAMMPS [22]. LAMMPS has been con-
tinuously developed for nearly three decades and includes MpP1+X parallelization
using native languages such as OPENMP or CUDA. An interesting package of
LAMMPS is the package LIGGGHTS [12] which reuses data structures of LAMMPS
to perform DEM simulations. Others widely used MD codes are GROMACS and
NAMD working with a hybrid MpP1+X parallelization. Although more confiden-
tial, we introduce here EXASTAMP [8,18], a MD code that has demonstrated
twice the performance of the LAMMPS code on micro-jetting case composed of
billions of particles[19]. Several codes are devoted to DEM applications such as
MERCURYDPM including a hybrid parallelization MP1+OPENMP and non open
source software like EDEM and ROCKYDEM (including multi-GPU paralleliza-
tion). Overall, the HPC community has put a lot of efforts in parallelizing those
physics codes on thousands of cores, as for the SPH method on both CpuU[16]
and Gpu [0], or the DEM [12].

3 Parallel programming models

With the emergence of heterogeneous Hpc platforms and the intensive use of
GPUs, the HPC community has developed portable solutions to help developers
optimize their codes on a wide variety of supercomputers. These solutions can be
classified into four catgories: (1) libraries proposing a set of parallel routines and
equipped with several back-ends, (2) high-level directive-based instructions, (3)
algorithms accessible through a programming language with parallel execution
policies, and (4) Domain Specific Language (DSL).

Two commonly used parallel libraries are KOKKOS [23] and RAJA [4]. For in-
stance, KOKKOS is one of the available parallel back-end in LAMMPS and achieves
similar multi-threaded performances compared to the OPENMP back-end [11]
while being portable on GPU. Note that KOKKOS does not manage MP1 level par-
allelization. Similarly, RAJA currently proposes back-ends support for OPENMP,
TBB, SiMD, CubA, Hip, OPENMP target offloading and SYCL. KOKKOs and
RAJA provide high-level abstractions for expressing the parallel constructs that
are mapped onto a runtime to achieve portable performance.

Although these programming models propose a high-level portability, the per-
formance penalty is low but not negligible. Indeed, Martineau et al.[14,15] have
reported a penalty from 5 to 30% using Kokkos and RAJA against OPENMP,
CupA or OpenCL version. Artigues et al.[2] have evaluated the performance
portability for a Particle-In-Cell (PIC) code using KOkkOs and RAJA on V100
GPU. They concluded that KOKKOS and RAJA are at least twice longer than
the CUDA version to carry out the calculations while the KOKKOS version was
about 14% slower than the OPENMP version on CPU. A tuning step is sometimes
expected to improve performance on GPUs. On the other hand, less-intrusive
programming models than KokKos-like solutions exist such as the directive-
based programming models (2) like OPENMP for thread parallelism on Cpu,

ExaNBody : a HPC framework for N-Body applications 5

or OPENMP and OPENACC on Gpu. Nevertheless, the use of programming
directives often requires a non-trivial tuning process according to the computing
platform considered.

STDPAR is the C++ standard’s parallel programming model (3) targeting
both CpU and GPU. STDPAR exposes parallel versions of the STL’s main algo-
rithms like std::for_each , expressing potential parallelism through an execution
policy, such as std::execution::par _wunseq. STDPAR has been tested on GPU and
achieved similar performances compared to KOKK0s or OPENMP for some mini-
apps[3] and is less intrusive. THRUST and BOOST propose similar approaches.

Finally, DSL based solutions (4) for N-body problems has been less inves-
tigated by the HPC community. Beni et al. [5] propose the unique DSL (to our
knowledge) to solve N-body problems with a slight average runtime overhead of
5%. Overall, DSL has the advantage to drastically reduce the number of lines
while proposing a very high-level of abstraction. Nevertheless, this DSL does not
include MPI parallelization which is a major limiting factor. While identifying
an efficient, flexible and portable way to model N-body problems on current
supercomputers is still an open issue; our contribution aims at providing HPC
optimized software shared by a wide variety of N-Body problems in a framework
between a DSL and an ad-hoc N-Body code using native languages and tools.

4 Contribution

EXANBODY offers a user-friendly and practical solution to harness the power of
cutting-edge supercomputers. Its flexibility enables easy extension and special-
ization to meet specific hardware architectures and application requirements.

4.1 ExaNBody in a nutshell

EXANBODY is a software platform developed at the french Alternative Energies
and Atomic Energy Commission (CEA) for N-body problems involved in differ-
ent fields of physics. Originally designed as part of EXASTAMP, a MD code for
atomistic simulation, EXANBODY has achieved nearly linear speedups on thou-
sands of cores (100,000+) for simulations involving highly heterogeneous density
scenarios, such as droplet splashing [21] or micro-jetting [20], with half a tril-
lion atoms. Customized algorithms and data structures have been developed to
achieve these results, whether for storing neighbor lists or processing communi-
cations. These advancements have made the code base increasingly generic and
customizable to accommodate a growing number of physical models, while also
progressively supporting GPU equipped supercomputers. As a result, the au-
thors decided to extract the N-Body core, EXANBODY, as a standalone project,
making it available for other N-Body simulation codes. EXANBODY now evolves
alongside EXASTAMP, focusing on flexibility, performance and portability, using
industry standards as its software stack basis and providing application-level
customizability (see Fig. la). EXANBODY encompasses various aspects of N-
Body simulation codes construction. Firstly, it provides a high level of flexibility
through a component-based programming model. These components serve as

6 T. Carrard et al.
Inter node communication through MPI

hd. in 1 hd. in2 hd. n

Application

(1)

exaNBody
N-Body parallel algorithms
MPI + Threads + GPU support
Tools, I/0, In-Situ analyses, etc.

N-Body
framework

Subdomain area

support

Low-level ~ Execution

@
[
C++17|YAML| | = S © ®
<] Ghost zone Each cell
duplicates particles stores quantities of owned particles| [-o :
from nearby subdomains| [is a compute work unit RCB split
(a) Software stack of sim- |and receive updates (1) ||can be divided into subcells (AMR) subdomains
ulation codes based upon
EXANBoDY.

(b) Overview of domain decomposition and inter process
communications in EXANBoODY framework.

Fig. 1: Overview of the EXANBODY software stack (a) and coarse grain structure
of a parallel application based upon it (b)

building blocks and are assembled using YAML formatted files. Secondly, it of-
fers portable performance by providing developers with a collection of algorithms
and programming interfaces specifically designed for common N-Body compute
kernels. Additionally, the programming tools aforementioned are natively com-
patible with different CPU and GPU architectures, thanks to the Onika execution
support library. Before diving into these features, let us now describe how a sim-
ulation developer starts setting up its application.

4.2 Application level specialization

First of all, the internal units to be used are specified as well as the physical
quantities to be stored as particle attributes. These quantities (or fields), are
defined using a symbolic name associated with a type, e.g. velocity as a 3D
vector. A field set is a collection of declared fields. One of the available field
sets is selected and used at runtime, depending on simulation specific needs. As
depicted in Fig. 1b, particles are dispatched in cells of a cartesian grid spanning
the simulation domain. In short, the data structure containing all particles’ data
will be shaped as a cartesian grid of cells, each cell containing all fields for all
particles it (geometrically) contains. More specifically, the reason why fields and
field sets are defined at compile time is that particle data storage at the cell
level is handled via a specific structure guaranteeing access performance and low
memory footprint, detailed in section 4.4.

4.3 Flexible and user friendly construction of N-Body simulations

A crucial aspect for software sustainability is to maintain performance over time
while managing software complexity and evolution. Complex and rapidly evolv-
ing scientific software often encounter common pitfalls, such as code duplication,

ExaNBody : a HPC framework for N-Body applications 7

uncontrolled increase in software inter-dependencies, and obscure data/control
flows. This observation has led us to develop our component-based model to avoid
these pitfalls. In our model, individual software components are implemented
using C++17 and are application structure oblivious, meaning they only know
their input and output data flows. Application obliviousness is a crucial aspect of
the present design, promoting reusability while preventing uncontrolled growth
of internal software dependencies. Each component is developed as a class, in-
heriting from a base class OperatorNode and explicitly declares its input and
output slots (data flow connection points). Once compiled, these components
are hierarchically assembled at runtime using a Sequential Task Flow (STF) [1],
with a YAML syntax, as shown in Fig. 2.

YAML component assembly

check_and_update_particles: >\ numerical_scheme_verlet: compute_iteration:
- particle_displ_test \ -push_f v_r - next_time_step
- move_particles _plo - Push__v:{dt_scale: 0.5} 7% - numerical_scheme
- migrate_cell_particles ::_0 - check_and_update_particles - thermodynamic_state
- ghost_update / - compute_force - check_remaining_time
/ - force_to_accel - write_dump
compute_force : - push_f_v: { dt_scale: 0.5} 2 - insitu_analysis 3
- reset_force Q_
- gravity_force P ks P
- hook_force s Se~ao
. P -
- wall A
Component graph =~ D Component
Gravity Hook ‘Wall ;
strength parameters position Data from ;?rewous
| | component’s output
I
reset_force gravity_force 1] Data from user
Particle S Py e input (YAML file)
data
_______ B mkout data slot
______ CF Imp. wtation inastration =<
struct WallForceFunctor {) ADD_SLOT(MPI_Comm , mpi , INPUT , MPI_COMM_WORLD);
Plane3d plane; ADD_SLOT(Domain , domain , INPUT , REQUIRED);
double stiffness ; ADD_SLOT(Plane3d , plane , INPUT , {1,0,0,0});
ONIKA_HOST_DEVICE_FUNC ADD_SLOT(double , stiffness , INPUT , 1.0);
inline void operator () (vec3d r, ADD_SLOT(GridT , grid , INPUT_OUTPUT);
Vec3d& f) const public:
f += compute_wall force(plane,r) ; inline void execute() override final
}; WallForceFunctor func { *plane, *stiffness };
compute_cell particles(*grid, func,
Template<class GridT> FieldSet<field::pos, field: : force>{},
class Particlewall : public gpu_execution_context());
OperatorNode
i

Fig. 2: Tllustrative sample of components assembly using YAML description. 1)
C++ developed components are assembled and connected in the manner of a
STF, creating a batch component. 2) and 3) illustrate batch components aggre-
gation to higher and higher level components, up to full simulation task flow.

A set of base components are already available to developers, embedded
within EXANBODY, such as: common computations, checkpoint/restart, visual-
ization and In-Situ analytics, allowing developers to focus on their application
specific components. We also observed that this component based approach not
only prevents some development pitfalls, but enables various simulation code
structures. YAML formatted component configuration makes it simple for a
user to amend or fine tune the simulation process. For instance it can be used
to change the numerical scheme or even to insert In-Situ analysis components
(such as proposed in [9]) at specific stages of the simulation process, leveraging
In-Situ processing to limit disk I/O. Finally, this component based splitting of

8 T. Carrard et al.

the code gives EXANBODY the opportunity to provide integrated profiling fea-
tures that automatically give meaningful performance metrics for each part of
the simulation. It allows the user to access computation time spent on CPU and
GPU, as well as imbalance indicator. It can also interoperate with nSight System
from NVIDIA and summarize memory footprint with detailed consumption.

4.4 Performance and portability

The complex and ever-changing architectures of modern supercomputers make it
difficult to maintain software performance. EXANBODY aims at providing per-
formance portability and sustainability on those supercomputers with robust
domain decomposition, automated inter-process communications algorithms,
adaptable particle data layout, and a set of hybrid (Cpu/GPU) parallelization
templates specialized for N-Body problems.

Spatial domain decomposition and inter-process communications are critical
to ensure scalability at large scales. Indeed, the coarsest parallelization level can
become the main bottleneck due to network latencies and load imbalance issues.
To take advantage of this first level of parallelization, the simulation domain is
divided into subdomains using an RCB algorithm, as depicted in Fig. 1b, assign-
ing one subdomain to each MpI process. This is achieved thanks to three main
components: cell cost estimator, RCB domain decomposition, and particle mi-
gration. Particle migration can be used as-is by any N-Body application, thanks
to the underlying generic particle data storage (see Section 4.4). It supports
heavily multi-threaded, large scale, simulations while lowering peak memory us-
age. Additionally, the migration algorithm is also customizable to fit specific
application needs, keeping unchanged the core implementation. For instance,
MD simulations may transport per-cell data fields and DEM simulations may
migrate friction information related to pair of particles. Finally, ghost particle
updates are available to any N-Body application, via customizable components.

Particle data layout and auxiliary data structures are two essential features
to maximize performance at the NUMA node level. In EXANBODY, particle data
are packed independently in each cell using a container specifically designed to
match both CPu’s SIMD and GPU’s thread blocks requirements concerning data
alignment and vectorization friendly padding. This generic container, available
in Onika toolbox, not only adapts to specific hardware characteristics at compile
time, but ensures minimal memory footprint with as low as 16 bytes overhead
per cell regardless of the number of data fields, allowing for very large and sparse
simulation domains. N-Body simulations also heavily depend on particles’ neigh-
bors search algorithm and storage structure. The search usually leverages the
grid of cell structure to speed up the process, and neighbors lists data structure
holds information during several iterations, see Section 2.2. However, depending
on the simulation, particles may move rapidly while their distribution may be
heterogeneously dense. Those two factors respectively impact neighbor list up-
date frequency and its memory footprint. On the one hand, EXANBODY takes
advantage of an Adaptive Mesh Refinement (AMR) grid [18] to accelerate (fre-
quent) neighbor list reconstructions. On the other hand, a compressed neighbor

ExaNBody : a HPC framework for N-Body applications 9

struct GravityForceFunctor { execute() override final

Vec3d m_g; {

ONIKA_HOST_DEVICE_FUNC using ComputeFields = FieldSet< field::mass, field::force >;

Compute kernel void operator () (double mass, Vec3d& force) const { static constexpr ComputeFields compute_field_set {};
(functor) force += m_g * mass; GravityForceFunctor func { {0,0,-9.8} };
compute_cell_particles(*grid, false, func, compute_field_set
¥ . gpu_execution_context()
. gpu_time_account_func());

template<> struct }

N N ComputeCellParticlesT DEM:: i {
Execution traits static bool Req e all = false;
static bool CudaCi = true;

¥

| Component implementation |

Fig. 3: Example of a particle centered computation executable on both CPU and
Gpu. Three ingredients: a user functor (the kernel), static execution properties
(via traits specialization), a ready to use parallelization function template.

list data structure saves up to 80% of memory (compared to uncompressed lists)
while still ensuring fast access from both the Cpu and the Gpu.

Intra-node parallelization API is available in EXANBODY to help developers
express parallel computations within a MPI process. This API offers a set of
parallelization templates associated with three types of computation kernels:
local calculations on a particle, calculations coupled with reduction across all
particles, and, most importantly, calculations involving each particle and its
neighbors. When a developer injects a compute function into these templates,
computation may be routed to CPU or GPU, as illustrated in Fig. 3. While thread
parallelization on the CPU is powered by OPENMP, CUDA is employed to execute
the computation kernel on the GPU, using the same provided function. The main
difference between the two execution modes is that each cell is a unitary work
unit for a single thread in OPENMP context but it is processed by a block of
threads in CUDA. Those two parallelization levels (multi-core and GPU) are easily
accessible to developers thanks to the execution support layer of Onika. Onika
is the low-level software interface that powers EXANBODY building blocks. It is
responsible for aforementioned data containers, memory management (unified
with GPU), and it is the foundation for hybrid execution abstraction layer.

5 Numerical experiments: MD and DEM simulations

The present framework was evaluated with two applications : EXASTAMP, which
employs MD, and EXADEM (coded with as few as 5500 lines) which relies on the
DEeM. Different OPENMP /MP1 configurations (number of cores/threads per MP1
process) have been tested to balance multi-level parallelism. Both simulations
were instrumented during 1,000 representative iterations. The performance of
EXANBoODY was evaluated using up to 256 cluster nodes, built on bi-socket 64-
core AMD® EPYC Milan 7763 processors running at 2.45 GHz and equipped
with 256 GB of RAM. We also ran CPU/GPU comparisons (512 CPU cores vs
16 NVidia A100 Gprus) to show GPU gains. Also, not included here, results
show GPU gains of up to x11 on al00 versus one node depending on the force
computation kernel.

Molecular Dynamics performance is evaluated with the simulation of an im-
pacted 640 million Tantalum atoms sample surrounded by air, leading to spal-

10 T. Carrard et al.

Molecular Dynamics (MD)
o

rocess o
000400 5 10 15 20 25 3les0l

! ! o
64 1 — Pperfect H 16384 T — Perfect H
—— 32C-per-mpi 8102 4. — 8C-per-mpi ||
—— 1C-per-mpi —— 1C-per-mpi
32 + —— 128C-per-mpi H 4096 T __ 128C-permpi 1
2048 Y/
) 1024
= 2R 16 512
temperature -
-3.3e+03 le+6 2.2e+0 et g g 256 /
- - g 8 § 128
& & 64
. 2
Discrete Element Method (DEM) 4 3 y/
16
/ 8
4
2
1

2
1
I.. 512(x1) 4096(x8) 32768 (x64) 18 64 512 16384
l / o g Number of cores Number of cores

(b) Speedup for different OPENMP /MPI con-
figurations. Left) MD simulation tested with
8, 32, and 128 threads per MPI process.
Right) DEM simulation with 1, 8, and 128
threads per MPI process.

(a) Visualization of the MD simula-
tion of metal spalling (upper) and the
DEM simulation of spheres in a rotating

drum.

1009 — Perfect

[0 —— update_particles
1 —— neighbor_search

804 — compute_force

—— check_verlet
77— 100% 16 — other
60 — update_particles

—— neighbor_search
1 — compute_force
| — check_verlet
— other

==

speedup
w
3
speedup
@

512 1024 2048 4096 8192 16384 32768 512 1024 2048 4096 8192 16384 32768
Number of cores Number of cores

(c) Operator time ratios at different par- (d) Per operator speedup according to the
alellization scales. total number of cores used.

Fig.4: Results with two different applications : MD simulation of a 640 million
atoms bulk and DEM simulation of 100 million spheres in a rotating drum.

lation due to shock-waves reflection on free surfaces (see figure 4a). This bench-
mark challenges MD application for two reasons: firstly, high velocity particles
renders difficult to keep track of particle neighborhoods (Verlet list algorithm).
Secondly, while Tantalum is a dense material, nucleation and growth of cavities
creates large and increasing voided regions, leaving more and more cells empty
(with no particle), making crucial subdomain partitioning for overall load bal-
ance. Moreover, the computation domain expands rapidly as the front of the bulk
is propelled forward. The employed Modified Embedded Atom Model (MEAM)
force model is another challenge: it involves second order neighbors, and must
also be executed on ghost particles to get correct results. This intrinsically limits

ExaNBody : a HPC framework for N-Body applications 11

MPp1 scaling, because number of ghost particles drastically increase with smaller
and smaller subdomains, and in turn prevents the 1 core per MPI process to
have decent performances. Despite this flaw, we observe speedup gains when
scaling from 512 to 32,768 cores, although not ideal (i.e. linear). Left graph
of figure 4b shows relative speedups for different MP1/OPENMP configurations,
ranging from 1 to 128 cores per MPI process, with 32 cores per MPI process be-
ing the best combination for this case. This configuration is detailed in figure 4d
and figure 4c¢ which highlight how different parts of the simulation scale and how
their relative costs evolve.

Discrete Element Method performance is evaluated with a simulation of a ro-
tating drum containing 100 million spherical particles, see Fig. 4a. This setup is a
tough benchmark as particles are rapidly moving all around the heterogeneously
dense domain, due to gravity. Additionally, the employed Hooke force model has
a low arithmetic intensity, and EXADEM must handle pairwise friction informa-
tion, that is updated by kernel and must migrate between MPI processes when
subdomains are redistributed. Those two characteristics highlight EXANBoDY
framework overall overhead as well as its ability to fit different simulation meth-
ods. Different MP1 and OPENMP configurations were also tested, showing best
performance with 8 threads OPENMP per MPI process. This difference with MD
demonstrates that DEM is less sensitive to subdomain decomposition and more
sensitive to memory bandwidth, 8 being the number of cores sharing L3 cache.
Note that compute operators (neighbors and compute), fall to respectively from
32.3% to 12.9% and from 43.5% to 13.1% for 1 and 16, 384 cores whereas these
operator speedups are almost perfect, respectively 14,281 and 18,943 (NUMA
effect). The loss of performance is due to the expensive collective MPI functions
(MPI_ Allreduce), 4.74% for 128 cores, 18.8% for 2,048 cores, and 49.75% for
16,384 cores, that become predominant as the subdomains shrink. In conclusion,
the application EXADEM based on EXANBODY shows good parallel performance
in strong scaling from 1 to 16,384 cores for a large scale simulation on a recent
Hpc platform (CPU cores are used).

6 Conclusion and Future Works

Simulation codes portability on modern HpC platforms is increasingly complex
and costly. As far as N-Body methods are concerned, the EXANBODY frame-
work presented here, driven by performance and portability, provides hybrid
parallelization (MP1 + OPENMP + GPU) application building blocks. Our solu-
tion is halfway between a general purpose library like KOKKOS and a DSL. We
have exhibited the concepts in EXANBODY architecture that address specific
needs of various types of N-body methods like DEM, MD, or SPH. EXANBODY
has been evaluated over largely unbalanced test cases in MD and DEM with up
to 32, 768 cores on strong scaling and shows continuous performance gains.

EXANBODY should soon become open source and widely available. Before
that, we want to compare current implementation of EXANBODY core, using
home grown Onika execution layer, with one based on KOKKOS, RAJA or STDPAR
in order to measure potential benefits of these tools regarding portability.

12

T. Carrard et al.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Agullo, E., et al.: Bridging the gap between OpenMP and task-based runtime
systems for the fast multipole method. IEEE TPDS 28(10), 2794-2807 (2017)
Artigues, V., et al.: Evaluation of performance portability frameworks for the im-
plementation of a particle-in-cell code. CCPE 32(11), 5640 (2020)

Asahi, Y., et al.: Performance portable Vlasov code with C++ parallel algorithm.
In: IEEE/ACM Int. Workshop P3HPC. pp. 68-80. IEEE (2022)

. Beckingsale, D.A.] et al.: RAJA: Portable performance for large-scale scientific

applications. In: IEEE/ACM Int. Workshop P3HPC. pp. 71-81. IEEE (2019)
Beni, L.A.; et al.: Portal: A high-performance language and compiler for parallel
n-body problems. In: IPDPS. pp. 984-995. IEEE (2019)

Cercos-Pita, J.L.: AQUAgpusph, a new free 3D SPH solver accelerated with
OpenCL. CPC 192, 295-312 (2015)

Ciccotti, G., Frenkel, D., Mc Donald, I.R.: Simulation of liquids and solids (1987)
Cieren, E., et al.: ExaStamp: a parallel framework for molecular dynamics on
heterogeneous clusters. In: Euro-Par 2014 Workshops. pp. 121-132. Springer (2014)
Dirand, E., Colombet, L., Raffin, B.: Tins: A task-based dynamic helper core strat-
egy for in situ analytics. In: SCFA 2018. pp. 159-178. Springer (2018)

Hu, C., et al.: Crystal MD: The massively parallel molecular dynamics software
for metal with BCC structure. CPC 211, 73-78 (2017)

Jeffers, J., et al.: Chapt. 20 - optimizing classical molecular dynamics in LAMMPS.
In: Intel Xeon Phi Proc. High Perf. Prog. (2nd Edition), pp. 443-470 (2016)
Kloss, C., Goniva, C., Hager, A.,; Amberger, S., Pirker, S.: Models, algorithms and
validation for opensource DEM and CFD-DEM. Progress in Computational Fluid
Dynamics, an International Journal 12(2-3), 140-152 (2012)

Leimkuhler, B.J., et al.: Integration methods for molecular dynamics. Mathemat-
ical Approaches to biomolecular structure and dynamics pp. 161-185 (1996)
Martineau, M., McIntosh-Smith, S., Boulton, M., Gaudin, W.: An evaluation of
emerging many-core parallel programming models. In: Proceedings of the 7th Int.
Workshop on PMAM. pp. 1-10 (2016)

Martineau, M., et al.: Assessing the performance portability of modern parallel
programming models using TeaLeaf. CCPE 29(15), e4117 (2017)

Oger, G., other: On distributed memory MPI-based parallelization of SPH codes
in massive HPC context. CPC 200, 1-14 (2016)

Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Journal
of computational physics 117(1), 1-19 (1995)

Prat, R., et al.: Combining task-based parallelism & adaptive mesh refinement
techniques in molecular dynamics simulations. In: Proc. ICPP. pp. 1-10 (2018)
Prat, R., et al.: AMR-based molecular dynamics for non-uniform, highly dynamic
particle simulations. CPC 253, 107177 (2020)

Soulard, L.: Micro-jetting: A semi-analytical model to calculate the velocity and
density of the jet from a triangular groove. J. of App. Phys. 133(8), 085901 (2023)
Soulard, L., Carrard, T., Durand, O.: Molecular dynamics study of the impact of
a solid drop on a solid target. Journal of Applied Physics 131(13), 135901 (2022)
Thompson, A.P., et al.: LAMMPS - a flexible simulation tool for particle-based ma-
terials modeling at atomic, meso, and continuum scales. CPC 271, 108171 (2022)
Trott, C.R., et al.: Kokkos 3: Programming Model Extensions for the Exascale Era.
IEEE TPDS 33(4), 805-817 (2022)

Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical proper-
ties of Lennard-Jones molecules. Physical review 159(1), 98 (1967)

	ExaNBody : a HPC framework for N-Body applications

