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Abstract

Full waveform inversion is a seismic imaging method which requires solving a large-scale minimization problem,
typically through local optimization techniques. Most local optimization methods can basically be built up
from two choices: the update direction and the strategy to control its length. In the context of full waveform
inversion, this strategy is very often a line search. We here propose to use instead a trust-region method, in
combination with non-standard inner products which act as preconditioners. More specifically, a line search
and several trust-region variants of the steepest descent, the limited memory BFGS algorithm and the inexact
Newton method are presented and compared. A strong emphasis is given to the inner product choice. For
example, its link with preconditioning the update direction and its implication in the trust-region constraint
are highlighted. A first numerical test is performed on a 2D synthetic model then a second configuration,
containing two close reflectors, is studied. The latter configuration is known to be challenging because of
multiple reflections. Based on these two case studies, the importance of an appropriate inner product choice is
highlighted and the best trust-region method is selected and compared to the line search method. In particular
we were able to demonstrate that using an appropriate inner product greatly improves the convergence of all
the presented methods and that inexact Newton methods should be combined with trust-region methods to
increase their convergence speed.

Keywords: numerical optimization, large-scale inverse problems, trust-regions methods, operator
preconditioning, seismic imaging, full waveform inversion.

Highlights

• Unified presentation and comparison of line search and trust-region globalization methods

• Innovative introduction of preconditioning through the inner product

• Comprehensive comparison of the steepest, the l-BFGS and the Newton descent directions

• First extensive comparison of their combinations for full waveform inversion based on two case studies

1. Introduction

Full waveform inversion is a high-resolution seismic imaging technique formulated as a data fitting problem,
whose aim is to recover some model parameters by minimizing the discrepancy between recorded data and
data simulated by solving wave propagation problems [43, 53, 55]. By nature these data are oscillatory and
consequently the misfit quantifying the discrepancy features local minima [4, 30]. Global optimization tech-
niques should ideally be used but the typically very high dimensions of the search space prohibits their use
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and only local optimization tools can practically be employed, with care [10]. A straightforward direction
to iteratively update the model properties is of course the gradient, i.e. the direction of steepest decrease.
However it is well-known that the inverse Hessian plays a crucial role in the reconstruction in addition to offer-
ing the possibility to account for coupling effects between parameter classes for multi-parameter inversion. A
theoretically simple way to incorporate these second-order derivatives is to minimize the misfit using Newton
methods. Preliminary studies on small synthetic test cases have shown the benefits of inverting the exact
Hessian operator, for both mono-parameter [43] and multi-parameter [38, 33] inversions, but they have also
highlighted the computational cost of such inversions. In practice, the pure Newton method is too computa-
tionally intensive to implement, specifically because it requires inverting the Hessian operator. In addition, the
misfit in full waveform inversion is not quadratic, thus the exact Newton direction is not necessarily appropri-
ate. Consequently, it is natural to turn to inexact Newton methods, where the search direction is constructed
iteratively to approximate the pure Newton direction, or to quasi-Newton methods. State-of-the-art methods
rely on the quasi-Newton l-BFGS algorithm, which implicitly builds an approximation of the inverse Hessian
operator from l previously saved gradients and model parameters [8, 32, 50]. However it has been illustrated
that on some specific cases involving multiple reflections, such quasi-Newton methods fail to provide an accu-
rate reconstruction where inexact Newton methods do succeed [28]. The latter compute the descent direction
through a few iterations of a linear system involving the Hessian operator (the Newton system). One of the
first implementation of such methods in the context of full waveform inversion is due to [12], which solved the
Gauss-Newton system, a positive-definite approximation of the Newton system, with the conjugate gradient
algorithm. Since then, the approach has been extended to solve the indefinite Newton system and extensively
compared to quasi-Newton methods, first in the frequency domain [28], then in the time domain [57]. The
benefits of Newton approaches were finally confirmed through their application for multiparameter inversions
on real data sets in 2D [25, 26]. One advantage over l-BFGS is the locality of the quadratic approximation:
such methods do not rely on the convergence history of the algorithm, which might yield inaccurate inverse
Hessian approximation for non quadratic misfit functions. The bottleneck of these methods lies in the compro-
mise to find between a direction built in few iterations, but which hardly takes the Hessian into account and a
nearly exact direction which is very expensive to compute. A complementary strategy to reduce this number
of inner iteration is to apply a preconditioner to both sides of the Newton system. Most widely used precondi-
tioners are approximations of the inverse Hessian operator, and more specifically approximations of the inverse
Gauss-Newton Hessian operator: firstly because it is positive definite and secondly because it can be expressed
analytically in terms of receiver-side and emitter-side Green’s functions - emitter-side Green’s function appear
because the shot which generates the wavefield is often modeled by a point source, while receiver-side Green’s
functions appear in the context of the adjoint state method [1, 17, 40], which expresses the misfit derivatives in
terms of an artificial wavefield back-propagated from the receivers, which are also considered as point sources.
The simplest preconditioners are obtained when using analytical formulas for the Green’s functions and keep-
ing only the diagonal of the resulting operator [6, 41]. Computing instead the exact Green’s function yields
more accurate preconditioners, but at some extra cost, as the receiver-side Green’s functions are typically not
computed during the inversion [3]. For that specific reason, pseudo Hessian operators are also often used.
Pseudo Hessian operators are constructed by slightly modifying the analytical expression of the exact Hessian
operator, in order to reduce its computational burden [37, 41, 46]. These operators have also been used for
multi-parameter inversions through diagonal [7, 34] or block diagonal preconditioners [21, 26, 54]. Alterna-
tively, to avoid computing the receiver-side Green’s functions, phase encoding methods can also be used [35].
Less conventional strategies have also been explored, such as a band diagonal Hessian approximation, which
thus required solving a band diagonal system [20], or exploiting the preconditioning properties of a change of
variable, i.e. a model reparametrization [2]. Finally, in the context of Newton methods, the l-BFGS inverse
operator itself can be used as the preconditioner [36, 37].

To implement any of the three above mentioned schemes, i.e. the steepest descent, the l-BFGS method or
a Newton method, one can rely either on line search algorithms, or on trust-region methods. In the former
case, once a direction is chosen, the outer iteration is completed by finding the optimal length of the step
that should be performed along that direction. Among the non linear optimization community, it is sometimes
argued however that line search is not well suited with Newton directions, especially when the Hessian is nearly
singular. Indeed when the Hessian is nearly singular, the Newton direction becomes excessively long such that
the local quadratic approximation implicitly made when computing it ceases to hold. Much computational
effort must then be made by the line search procedure to reduce the step size [32]. Stopping the iterative
solution of the Newton system earlier appears as a solution to this problem. For example, its convergence
requirements could be relaxed such that they reflect the accuracy of the local quadratic approximation [11, 25].
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Alternatively, a trust-region method could be used instead [1, 24, 56, 58, 59]. The latter limits the length of the
update direction depending on the accuracy of the local quadratic approximation. The length of a direction
is given by its norm, itself induced by the inner product chosen for the model parameters space [50].

The choice of this inner product is thus pivotal in the implementation of a trust-region method [8, 22].
Moreover changing the inner product modifies both the gradient and the Hessian and is equivalent to applying
a preconditioner [31]. Consequently it also has a major impact on line search based local optimization methods
[9, 16, 23, 60]. It is important to highlight here that even though the gradient and the Hessian are modified
by the inner product, the misfit to be minimized remains the same. Modifying the inner product or the misfit
function are two distinct, complementary strategies to define non-standard update directions. Only the former
is considered in this work.

In this paper, we tackle the three following important questions:

• Which descent direction to compute: the gradient, the l-BFGS direction or an inexact Newton direction?

• Which globalization method to select: a line search method or a trust-region method?

• Which preconditioning strategy to apply? How to enforce it?

Answering these three questions and determining the good combinations (good practices) between them is
crucial for effective full waveform inversion. From our study, it appears that preconditioning is essential
and that enforcing preconditioning through the inner product is elegant and, more interestingly, implies no
modification to the practical implementation of the optimization algorithms. The l-BFGS method is found to
be the most efficient method for the considered single-parameter inversions. It is also found to be insensitive
to the globalization choice. Inexact Newton methods should not be discarded though, as considering the exact
Hessian might lead to better model parameter decoupling in the case multi-parameter inversions. When using
inexact Newton methods, our case studies show that using a trust region globalization consistently improves
convergence.

The paper is organized as follows. In the first part, full waveform inversion is stated very generally. The
optimization problem and its solution procedures using either a line search or a trust-region are introduced.
The Newton system, which is pivotal in local minimization theory, is also derived. A particular emphasis
is given to the inner product choice. More specifically, its link with preconditioning the Newton system is
established. Local minimization methods commonly used in the context of full waveform inversion are then
recalled. In the second part, the application to acoustic imaging is detailed. The (adjoint) procedure to
compute gradients and Hessian vector products is given and its computational cost is explained. The overall
computational cost of each optimization method is then deduced. Finally, convergence results on the acoustic
Marmousi case study are analyzed to determine the best inner product and the best parameters for a trust-
region method. This best candidate is then compared to line search methods on both the Marmousi model
and on a case study involving strong reflectors.

2. Local optimization methods

Full wave inversion is an imaging method based on the minimization of a misfit functional J , which exclusively
depends on some model parameters m. The recovered model parameters m∗ are defined as the minimizer of
this misfit, i.e. m∗ = arg min J(m). Local optimization techniques are based on a local quadratic expansion
of the misfit J around the current model estimate

J(m+ δm) ≈ J(m) + {DmJ}(δm) +
1

2
{D2

mmJ}(δm, δm). (1)

This expansion can also be written in terms of the gradient j′ and the Hessian operator H once an inner
product 〈·, ·〉M is chosen for the model space M

J(m+ δm) ≈ J(m) + 〈j′, δm〉M +
1

2
〈Hδm, δm〉M . (2)

The pure Newton direction pN is then defined as the minimizer of this local quadratic expansion, which is also
the solution of a linear system

pN = arg min
p∈M

J(m) + 〈j′, p〉M +
1

2
〈Hp, p〉M or HpN = −j′. (3)
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The large-scale nature of this linear system requires either the use of approximate Hessian operators that are
straightforward to invert, or the use of Hessian-free iterative methods. Both approaches are usually referred to
as quasi-Newton methods and inexact Newton methods. In the latter case, the conjugate gradient method is
the ideal candidate for the iterative solver because the Hessian operator is symmetric. The conjugate gradient
method is however designed for positive definite operators while the full Hessian can be indefinite, especially
far from the global minimum [28, 43]. As a consequence, either an additional safeguard is added to exit
prematurely when directions of negative curvature are encountered or the exact Hessian is modified such that
it becomes positive definite, e.g. using the Gauss-Newton approximation [37]. Loops appearing inside the
computation of this descent direction, e.g. the conjugate gradient algorithm, are referred to as inner loops,
in contrast to the optimization loop that updates the model for a given direction at each iteration, which is
referred to as the outer loop. In the sequel, quantities computed at the nth outer iteration will be denoted
with the subscript ‘n’, while the subscript ‘k’ is rather used for inner iterations.

2.1. Globalization methods

As mentioned in the introduction, the misfit is not quadratic and thus the pure Newton direction or its
approximations are not always the best directions. For that reason the length of the search direction is often
tweaked using a line search or a trust-region method, which ensures convergence towards the nearest stationary
point [8, 11, 15, 14, 32]. However, the meaning of ‘nearest’ depends again on the metric and could thus differ
depending on the inner product choice [8, 50].

2.1.1. Line search

When using a line search procedure, a direction p must first be identified. An appropriate length γ is then
given to this direction p, ideally the global minimum along the line m+ γp. In practice however less stringent
satisfactory conditions are used instead to spare expensive wave problem resolutions. The most widely used
examples are strong Wolfe conditions

J(m+ γp) ≤ J(m) + c1γ{DmJ(m)}(p) (4)

|{DmJ(m+ γp)}(p)| ≤ c2 |{DmJ(m)}(p)| (5)

for some constant c1 and c2 such that 0 < c1 < c2 < 1. The first condition is called the sufficient decrease
condition. It ensures that updating the model in the direction γp produces a decrease smaller than a fraction c1
of what is expected from a local linear approximation of the misfit. The second condition, called the curvature
condition, ensures that the updated model m+γp is sufficiently close to a local minimum along the line, where
the directional derivative {DmJ(m+γp)}(p) would be zero. When this derivative is very smaller (resp. larger)
than zero, then a larger (resp. smaller) step could produce a significantly bigger decrease. We choose here a
line search algorithm that satisfies strong Wolfe conditions and accepts steps easily (Algorithm 3.2 from [32]
with c1 = 10−4, c2 = 0.9). The outer loop is finally obtained by repeating these two steps iteratively until
convergence.

2.1.2. Trust region

At the opposite when using a trust-region method, first a maximum length ∆ is chosen. Then the best
approximate solution, meaning the direction that minimizes a local prediction of the misfit but smaller than
this length, is used

p = arg min
p∈M,‖p‖M≤∆

[
Jpred(m; p) := J(m) + 〈j′(m), p〉M + 0.5

〈
H̃(m)p, p

〉
M

]
. (6)

This local misfit prediction Jpred is typically constructed based on the local quadratic approximation (2)
through a particular choice of some approximate Hessian operator H̃. Of course the approximate Newton
direction H̃p = −j′ is the solution of this problem if it lies inside the trust region. There are several possibilities
to choose this length ∆ and our particular choice is detailed later. More importantly, as we pointed out in
the introduction, the length constraint is formulated in terms of the norm induced by the inner product
‖p‖2M = 〈p, p〉M ≤ ∆2. Modifying this inner product therefore changes the shape of the trust region and it
is then desirable to choose it carefully [8]. The size of the trust region is actually controlled by the outer
iterations. The decision of modifying the trust region is based on the accuracy of the local prediction of the
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misfit. When the prediction is accurate but the updates are limited by the length constraint, then the trust
region radius is increased. At the opposite, when the updates are out of the range of validity of the prediction,
then the trust region radius is decreased. The decrease (resp. increase) rate of the radius is controlled by some
parameter c0 < 1 (resp. c1 > 1). The quality of the prediction is quantified by the ratio between the actual
decrease δJa := J(mn)− J(mn+1) and the decrease predicted by the local prediction of the misfit. There are
two ways to compute this predicted decrease [14]. On the one hand the expansion can be written in terms of
the gradient and the Hessian operator at the previous model estimate

J(mn+1) = J(mn + pn) (7)

≈ J(mn) + 〈j′(mn), pn〉M + 0.5
〈
H̃(mn)pn, pn

〉
M

= Jpred(mn; pn) (8)

which defines the prospective predicted decrease

δJp,p := J(mn)− Jpred(mn; pn) (9)

= −〈j′(mn), pn〉M − 0.5
〈
H̃(mn)pn, pn

〉
M
. (10)

On the other hand, it can also be written in terms of the gradient and the Hessian operator at the next model
estimate

J(mn) = J(mn+1 − pn)

≈ J(mn+1)− 〈j′(mn+1), pn〉M + 0.5
〈
H̃(mn+1)pn, pn

〉
M

= Jpred(mn+1;−pn)

which defines the retrospective predicted decrease

δJp,r := Jpred(mn+1;−pn)− J(mn+1) (11)

= −〈j′(mn+1), pn〉M + 0.5
〈
H̃(mn+1)pn, pn

〉
M
. (12)

These ratios between the actual decrease and one of both the predicted decreases ρp := δJa/δJp,p and ρr :=
δJa/δJp,r are actually both equal to one when the approximate Hessian in the update direction and the second
order expansion (2) are exact. When the misfit is not quadratic or the Hessian approximation is not accurate,
then these ratios can go away from one. Using anything else than the full Newton method can degrade
these ratios, even if the misfit is quadratic. In particular for a pure quadratic misfit, neglecting the negative
definite part of the Hessian makes the prospective ratio bigger than one (δJp,p is underestimated) and the
retrospective ratio smaller than one (δJp,r is overestimated). Standard trust-region methods directly control
the radius ∆. However it is an absolute quantity, in the sense that it is compared to ‖p‖M , which depends
on the inner product. Thus, it seems more natural to control this radius relatively to the gradient norm
(∆ = µ ‖j′‖M ), which provides a length reference for the (approximate) Newton system. In this way, even
when the (approximate) Newton system changes scale from one iteration to another, the trust region remains
relevant. This particular variant (Algorithm 1) has been first introduced in [15]. According to this algorithm,
a direction pn is rejected when the prospective misfit prediction Jpred

n used to compute it is not accurate, in
the sense that the prospective ratio is smaller than some threshold ρ0. If not rejected, then the trust region
size is updated according to either the prospective or the retrospective ratio, based on a comparison with a
second threshold ρ1. Because the updated radius ∆n+1 constrains the direction search around the next model
estimate mn+1, it makes sense to use the retrospective ratio which also involves the next model estimate mn+1

and not the prospective ratio which involves the current model estimate mn. Using the retrospective ratio
is however slightly more expensive because the next (approximate) Hessian operator in the current direction
must be computed in addition. Moreover the accuracy of the retrospective prediction might be good in the
direction −pn while still being bad in the direction pn+1 and inversely. There is also no safeguards for large
value of the ratios, which means that when the model is not accurate but the predicted decrease underestimates
the true decrease, the radius can still be increased.

Three sets of values for the threshold ρ1 and the rates c0/c1 have been tested. The acceptance threshold ρ0 is
always tiny such that steps are often accepted, similarly to the line search algorithm.

(A) ρ0 = 10−4, ρ1 = 0.25 and c0 = 0.20, c1 = 5.
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(B) ρ0 = 10−4, ρ1 = 0.75 and c0 = 0.25, c1 = 2.

(C) ρ0 = 10−4, ρ1 = 0.90 and c0 = 0.50, c1 = 2.

The first one (A) is very similar to what was originally proposed in [14]. The other two (B,C) are more cautious
because they modify the radius more rarely and when they do, it increases by a smaller factor. Note that the
second one (B) is also close to what is proposed in [32].

Algorithm 1 Fan trust-region algorithm

Require: retrospective or prospective, 0 ≤ ρ0 < ρ1 < 1 and 0 < c0 < 1 < c1
µ0 = 1
loop

∆n = µn ‖j′(mn)‖M

pn =


− µnj

′
n

(28) with ∆ = ∆n

Algorithm 5 with ∆ = ∆n

δJa = J(mn)− J(mn + pn) and δJp,p = J(mn)− Jpred(mn; pn)
ρp = δJa/δJp,p

if ρp ≥ ρ0 then mn+1 = mn + pn else mn+1 = mn

if prospective or ρp < ρ0 then
ρ = ρp

else if retrospective then
δJp,r = Jpred(mn+1;−pn)− J(mn+1)
ρ = ρr = δJa/δJp,r

end if
if ρ < ρ1 then µn+1 = c0µn

else if ρ ≥ ρ1 and ‖pn‖M > 0.5∆n then µn+1 = c1µn

else then µn+1 = µn

end loop

2.2. Inner product

The choice of the inner product plays a central role in the inversion because it defines through the norm how
directions length are measured but also because it defines both gradients and Hessian operators. Indeed the
equivalence between both expansions (1) and (2) is granted by the defining property of the gradient and the
Hessian operator in terms of directional derivatives

〈j′, δm1〉M := {DmJ} (δm1) ∀δm1, (13)

〈Hδm2, δm1〉M :=
{
D2

mmJ
}

(δm1, δm2) ∀δm1, δm2. (14)

This link between directional derivatives and kernels is actually a straightforward application of the Fréchet-
Riesz representation theorem [19].

The model parameter space is a function space defined on some region Ω and conventionally, the inner product
is chosen as the L2(Ω) inner product

〈m2,m1〉M = 〈m2,m1〉 :=

∫
Ω

m1(x)m2(x) dΩ. (15)

This straightforward choice leads to the conventional gradient j′L2
and the conventional Hessian operator

HL2
, that can both be computed efficiently using the adjoint state method [1, 17, 40]. As an illustration, a

conventional gradient is represented in Fig. 1b. It is actually the first gradient computed during the acoustic
imaging of the Marmousi model. This case study is described in detail in subsection 3.1. As can be seen,
shallow contributions have much greater amplitudes than deeper parts [29, 35, 41, 42, 43, 46]. This actually
reflects the bad scaling properties of this inner product and motivates the use of a spatially weighted inner
product

〈m2,m1〉M :=
〈
m2

√
w,
√
w m1

〉
, (16)
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Figure 1: Diagonal part of the Gauss-Newton Hessian (a). Conventional gradient (b). Weighted gradient (c). Weighted and
thresholded gradient (d). Weighted and smoothed gradient (2πlc = 0.250 [km])(e). The level curve whose value is the stabilization
parameter ε is given graphically in the top figure ( ). All quantities are computed for the initial Marmousi model Fig. 2b. The
case study is described in detail in subsection 3.1.

with an appropriate spatially dependant weight w. Insights on how to design w can be gained by relating the
conventional and the weighted gradients. Indeed, both are defined by (13) then by transitivity of the equality〈

j′L2
, δm1

〉
=
〈
j′
√
w,
√
w δm1

〉
∀δm1 such that j′ = w−1j′L2

. (17)

The same reasoning can be applied to both Hessian operators (H = w−1HL2). Choosing this weight close to
the Hessian operator then makes the gradient closer to the pure Newton direction and the Hessian operator
closer to the identity. In other words, the Newton system (3) is better conditioned and iterative solvers are
therefore expected to converge faster. We choose here to take this weight as the diagonal part of the Gauss-
Newton Hessian (w = diag (HGN)) because it can be computed semi-analytically for a given model at no extra
computational cost under certain circumstances [37]. A weight that has the same units as the Hessian also
has the advantage that the corresponding weighted gradient has the same units than the model parameters.
Model parameters, weighted gradients and weighted Hessian vector products therefore all have the units of
model parameters and the coefficients between them, for example the length γ and µ involved respectively
in line search and trust region techniques, are then always dimensionless and thus easier to interpret. The
weights and the corresponding weighted gradient are given in Fig. 1a and 1c respectively. As expected, the
weighted inner product compensates for the geometrical spreading and restores balance between shallow and
deep contributions. It is however dangerous to use this weight alone because it can be very close to zero in
poorly illuminated zones as for example in the corners of the model. In these regions, the weighted inner
product is insensitive and consequently the preconditioner is unstable. The simplest stabilization strategy
consists in the introduction of a threshold ε in the weights

〈m2,m1〉M :=
〈
m2

√
w,
√
w m1

〉
+ ε 〈m2,m1〉 . (18)

The corresponding preconditioning effect is to keep silent some regions, where the weight is much smaller than
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the threshold. Another strategy is to use an inner product with the following stabilization term

〈m2,m1〉M :=
〈
m2

√
w,
√
w m1

〉
+ ε l2c 〈∇m2,∇m1〉 (19)

where lc is a characteristic length. This second term, related to spatial derivation, increases the norm of
directions that are rapidly varying and also prevents the inner product from being insensitive in regions
where the diagonal Hessian is close to zero. In regions where the diagonal Hessian is close to the threshold,
then directions with details smaller than the characteristic length lc are penalized with respect to smoother
directions. This inner product is actually very similar to the one introduced in [60], except that the Gauss-
Newton diagonal Hessian weight is used in addition. As far as preconditioning is concerned, this inner product
can be reformulated through an integration by parts as

〈m2,m1〉M := 〈w m2,m1〉 − ε l2c 〈∆m2,m1〉 . (20)

Then as previously, conventional and preconditioned gradients are linked

〈j′, δm1〉M =
〈
j′L2

, δm1

〉
∀δm1 (21)〈(

w − ε l2c∆
)
j′, δm1

〉
=
〈
j′L2

, δm1

〉
∀δm1 ⇔ j′ =

(
w − ε l2c∆

)−1
j′L2

. (22)

From the point of view of preconditioning, this inner product generates a rescaling thanks to the Gauss-
Newton diagonal Hessian weight and a Laplacian filtering, whose smoothing length equals 2πlc where the
diagonal Hessian equals the threshold. The effect of these inner products is illustrated in Fig. 1d and 1e. In
addition of stabilizing the weights, [60] have shown that a filtering inner product can help the convergence of
full waveform inversion by mitigating its non linearity.

In general, any inner product that can be related to the conventional inner product (15) through some pre-
conditioner P yields a preconditioned gradient and a preconditioned Hessian operator

〈m2,m1〉M = 〈Pm2,m1〉 ⇒ j′ = P−1j′L2
and H = P−1HL2 . (23)

Changing the inner product is formally equivalent to preconditioning both the gradient and the Hessian
operator. We choose to introduce preconditioning through a change in the inner product rather than through
the application of an operator because it appears more elegant and rigorous to us. Moreover, this approach has
the pedagogical advantage to include preconditioning inside the inner product choice and thus it does not need
to appear explicitly in the description of the optimization algorithms. In terms of practical implementation,
it implies that the optimization routines need not be rewritten, only the subroutine which computes the inner
product has to be modified, hence providing a lot of flexibility. Basically, a different choice for the inner product
does not modify the pure Newton direction because the same preconditioner is applied to both sides of the
Newton system (3), but does modify the subspace constructed by the conjugate gradient method and does
modify norms which are involved in any stopping criterion. A good choice can thus lead to better approximate
directions and better truncation rules.

2.3. Steepest descent

The steepest descent is actually the simplest local optimization algorithm. It consists in taking the search
direction as the opposite gradient. This is the best direction at first order (H̃ = 0) but it can also be seen as
a quasi-Newton step where the approximate Hessian operator is the identity operator (H̃ = I). In practice
however, this approximation is very crude because the Hessian operator is far from the identity operator, even
after preconditioning. The downside of this simple method is its linear convergence rate. This slow convergence
speed is one of the main motivation for the investigation of higher order algorithms.

2.3.1. Line search globalization

No length information can be captured from the approximate Hessian operator in this case, because it is simply
the identity operator (H̃ = I). The first trial step length is then chosen based on the history of the outer
iterations to save as many step length trials as possible e.g. γ = 2(J(mn)− J(mn−1))/{DmJ}(−j′) [32].
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2.3.2. Trust region globalization

Trust-region methods are barely used with steepest descent. Mostly because the linear misfit prediction

Jpred(m; p) := J(m) + 〈j′(m), p〉M (24)

is not accurate enough. Moreover the solution to the trust-region sub-problem (6) is trivially p = −µj′ and is
always on the boundary, because of the absence of a second order term. An upper bound on the relative size
of the trust region (µ) is then added to compensate the fact that the trust-region algorithm will never keep it
constant. This bound is set to µmax = 4, 4, 5 for parameter sets A, B, C respectively.

2.4. Limited memory BFGS method

Quasi-Newton methods are expected to provide a huge improvement over the steepest descent and an attractive
alternative to Newton methods because they do not involve any expensive Hessian vector product. In place
of the exact Hessian, an approximation H̃ = B is used instead. This approximation is built only with the
successive gradients and model parameters of each iteration. Moreover, since expensive Hessian vector product
are avoided, quasi-Newton methods are sometimes more efficient than Newton methods. The Broyden-Fletcher-
Goldfarb-Shanno algorithm, abbreviated BFGS, is maybe the most widely used quasi-Newton method. This
method constructs a symmetric and positive definite approximation of the Hessian operator based on all the
previous gradients and model parameters. This approximation Bn+1 is chosen such that it verifies the secant
equation

Bn+1∆mn = ∆j′n with ∆mn = mn+1 −mn and ∆j′n = j′n+1 − j′n (25)

while being close to the previous approximation Bn and positive definite. Note that imposing the positive def-
initeness of this approximation also imposes that the update direction must satisfy the (BFGS) curvature con-
dition 〈∆mn,∆j

′
n〉M > 0. One of the biggest advantage of the BFGS algorithm is that it is possible to directly

build the approximate inverse Hessian operator B−1
n from the memorized gradients and model parameters.

However building explicitly this inverse operator in the context of large-scale optimization is still prohibitively
expensive, as well as storing in memory all the previous gradients and model parameters. For these reasons,
a limited memory version of the algorithm has been derived. Instead of memorizing all the previous iterates,
it only requires the l last iterates and above all, it comes with a two-loop recursive procedure to compute the
application of the inverse operator on any direction. The approximate Newton direction associated with the
l-BFGS operator is therefore straightforward to compute. This two-loop recursive l-BFGS algorithm is given
in Algorithm 2. A constant initial Hessian approximation, i.e. B0

n =
〈
∆mn−1,∆j

′
n−1

〉
M
/
〈
∆j′n−1,∆j

′
n−1

〉
M

,
is here chosen [8, 32].

Algorithm 2
Inverse l-BFGS operator application

Require: q, ∆mk, ∆j′k, ∀k ∈ [n− l, n− 1]
for k = n− 1 down to k = n− l do
αk = 〈∆mk, q〉M / 〈∆j′k,∆mk〉M
q = q − αk∆j′k

end for
r = B0

n q
for k = n− l up to k = n− 1 do
βk = 〈∆j′k, r〉M / 〈∆j′k,∆mk〉M
r = r + (αk − βk)∆mk

end for

return r
(
= B−1

n q
)

Algorithm 3
Direct l-BFGS operator application

Require: q, ∆mk, ∆j′k, ∀k ∈ [n− l, n− 1]
for k = n− l up to k = n− 1 do
bk = ∆j′k/

√
〈∆j′k,∆mk〉M

ak = B0
n∆mk

for i = n− l up to i = k − 1 do
ak = ak + 〈bi,∆mk〉 bi − 〈ai,∆mk〉 ai

end for
ak = ak/

√
〈∆mk, ak〉M

end for
r = B0

n q
for k = n− l up to k = n− 1 do
r = r + bk 〈bk, q〉M − ak 〈ak, q〉M

end for
return r (= Bn q)

It is important to highlight here that this method also benefits from the modification of the inner product.
Indeed the building blocks of this approximate Hessian operator are the successive gradients, which are precon-
ditioned through the inner product. By measuring gradient variations, this method constructs a representation
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of the misfit which is good enough to produce super-linear convergence, a great improvement over the steepest
descent, at no extra cost. This approximation is however positive definite while the exact Hessian might be
indefinite, especially during the early iteration of the inversion. In such cases, this quasi-Newton method may
fail to provide an accurate reconstruction while Newton methods may succeed [28].

2.4.1. Line search globalization

The unit step length γ = 1 is always tried first because the length information should be captured by the
inverse approximate Hessian. Importantly, it can be shown that the (BFGS) curvature condition is always
satisfied if the strong Wolfe conditions (4) and (5) are enforced [32]. Therefore the l-BFGS algorithm combined
with a line search will always construct a positive definite approximate Hessian operator B.

2.4.2. Trust region globalization

Finding the exact solution to the trust-region sub-problem (6) with the l-BFGS predicted misfit

Jpred(m; p) := J(m) + 〈j′(m), p〉M + 0.5 〈Bp, p〉M (26)

is difficult for a general trust region radius. However when this radius is large enough, in particular larger
than the unconstrained solution pu := −B−1j′, then it is actually also the exact constrained solution. On
the other hand, when the radius is small enough, the quadratic term in the misfit prediction is negligible
and the sub-problem is equivalent to the steepest descent, which indicates following the gradient up to the
boundary. Based on these solutions for the extreme value of the radius, the exact solution to the sub-problem
(6) might be substituted by an interpolation between these two solutions. Namely, the gradient is followed
each time the minimum of the misfit prediction along the gradient, i.e. the Cauchy point pc = −αj′ (with
α = 〈j′, j′〉M / 〈Bj′, j′〉M ), is outside the radius. Then for intermediate radii, which contains this Cauchy point
but not the unconstrained solution, an interpolation between both is done

p(∆) = pc + τ∗ (pu − pc) with 0 < τ∗ < 1 such that ‖p‖M = ∆. (27)

Finally for large radii, the unconstrained solution is accepted. In summary

p(∆) =


pu when ‖pu‖M ≤ ∆,

− µj′ when ‖pc‖M ≥ ∆,

pc + τ∗(pu − pc) when ‖pc‖M ≤ ∆ ≤ ‖pu‖M .

(28)

The approximate solution (28) to the trust-region sub-problem (6) is called the dogleg method [8, 32].

A huge difference with the line search implementation of the l-BFGS algorithm is that now the direct appli-
cation of the approximate Hessian operator B on some directions must be computed. Unfortunately there is
no equivalent to Algorithm 2 for the direct l-BFGS operator and its application must then be computed from
its recursive definition at iteration n

Biq = B0
nq +

i−1∑
k=n−l

bk 〈bk, q〉M − ak 〈ak, q〉M (29)

with ak =
Bk∆mk√

〈Bk∆mk,∆mk〉M
and bk =

∆j′k√
〈∆j′k,∆sk〉M

. (30)

It is important to highlight that the sequence of directions ak could not be memorized because at each iterations
the oldest information is discarded, which modifies the whole ak sequence. A complete procedure to compute
the application of the direct l-BFGS operator is given in Algorithm 3. Faster but more sophisticated procedure
do exist [32]. However, manipulations in the model parameter space are computationally negligible with respect
to wave propagation problems hence the speedup would also be negligible. Thanks to this procedure the
prospective and retrospective predicted decrease (10) and (12) can be evaluated. Interestingly, the prospective
decrease is evaluated with the current Hessian approximation Bn while the retrospective decrease is evaluated
with the next Hessian approximation Bn+1. The retrospective ratio is therefore expected to be more often close
to one because this next Hessian approximation Bn+1 is specifically constructed from the update direction
pn = ∆mn = mn+1 −mn.
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2.5. Newton methods

In contrast to quasi-Newton methods, Newton methods use the Hessian operator explicitly, as they try to solve
the Newton system (3). The interest of these method lies in their independence on the convergence history
and in their quadratic convergence rate in the vicinity of the minimum. Far from this minimum, the Hessian
operator might however be indefinite, which complicates the solution procedure for the Newton system. For
that reason, it is frequent to make the Gauss-Newton approximation (H̃ = HGN), which consist in keeping
only the positive definite part of the Hessian operator. The downside of this approximation is then that the
second order representation (2) of the misfit is less accurate, especially if the negative definite part of the
Hessian is not negligible, which might prevent the method from reaching an accurate reconstruction. In this
section, we present inexact Newton methods based on a line search procedure or a trust region method. Both
are valid for the full Hessian and for its Gauss-Newton approximation.

2.5.1. Line search globalization

Newton methods can be combined with a line search procedure. In this case a direction p is first found by
solving the Newton system approximately with the conventional conjugate gradient method (Algorithm 4) [32].
This algorithm constructs iteratively the solution of a linear system without requiring the explicit expression
of the Hessian matrix but only its action in particular directions. The iterative procedure is stopped when the
residuals have decreased more than some threshold, called the forcing sequence η, which is typically close to
zero

(‖rk‖M :=) ‖Hpk + j′‖M < η ‖j′‖M (= η ‖r0‖M ) . (31)

Over-solving is here avoided through this forcing term η, which is not systematically close to zero but which is
instead chosen to reflect the accuracy of the second-order expansion. Three possible choices for this sequence
have been described and studied by [11]. These three choices were then compared in the context of acoustic
imaging in [28], who advise to use the forcing sequence

ηn =
‖j′(mn)− j′(mn−1)− γn−1H(mn−1)pn−1‖M

‖j′(mn−1)‖M
. (32)

If the accuracy of the local quadratic approximation is good then this forcing term is close to zero and the
Newton system is solved accurately. If not, then iterations are truncated sooner. This forcing sequence plays a
similar role than the prospective ratio for trust-region method. It is however based on a (prospective) expansion
of the gradient while the prospective ratio is based on an expansion of the misfit. Additional safeguards are also
added to prevent this forcing term to decrease too fast or to increase above η0 = 0.9. Interestingly, directions
of negative curvatures are never investigated, except if it is the gradient. As previously an appropriate length
γ is then given to this direction p through a line search. The unit step length γ = 1 is again tried first because
it is the best choice if the misfit were quadratic.

2.5.2. Trust region globalization

When the Newton method is associated with a trust-region technique, the direction is found by minimizing
the local quadratic expansion of the misfit

Jpred(p) := J(m) + 〈j′, p〉M + 0.5 〈Hp, p〉M (33)

inside a sphere of radius ∆. The constraint ‖p‖M ≤ ∆ limits the size of the direction and aims at preventing
over-solving. This trust-region sub-problem can be solved approximately with the Steihaug conjugate gradient
method (Algorithm 5) [8, 49]. This method actually exploits two properties of the conjugate gradient algorithm:
successive approximate solutions always grow in norm (‖pk‖M < ‖pk+1‖M ) while the misfit prediction always
decrease (Jpred(pk) > Jpred(pk+1)). The underlying idea of the method is then to minimize the second order
expansion of the misfit iteratively using the conventional conjugate gradient algorithm until either convergence
is achieve, either the boundary is reached. Basically there are only two modifications compared to Algorithm 4.
First, the inner iterations are cropped to the trust region radius ∆ when the unconstrained solution increases
beyond it. Second, when a direction of negative curvature is encountered, it is followed up to the boundary of
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the trust region and the algorithm is stopped. Interestingly these directions were never investigated in the con-
ventional version. The convergence criterion is unchanged but here the forcing term is kept constant (η = 0.5).

Algorithm 4
Conventional conjugate gradient algorithm

Require: 0 < η ≤ 1
p0 = 0, r0 = j′, q0 = −j′
if 〈Hj′, j′〉M ≤ 0 then return −j′
loop
if 〈Hqk, qk〉M ≤ 0 then return pk

αk = 〈rk, rk〉M / 〈Hqk, qk〉M

pk+1 = pk + αkqk and rk+1 = rk + αkHqk
if ‖rk+1‖M<η ‖j′‖M then return pk+1

βk+1 = ‖rk+1‖2M / ‖rk‖2M
qk+1 = −rk+1 + βk+1qk

end loop

Algorithm 5
Steihaug conjugate gradient algorithm

Require: 0 < η ≤ 1 and ∆ > 0
p0 = 0, r0 = j′, q0 = −j′

loop
if 〈Hqk, qk〉M ≤ 0 then
τ∗ = τ > 0 | ‖pk + τqk‖M = ∆
return pk + τ∗qk

end if
αk = 〈rk, rk〉M / 〈Hqk, qk〉M
if ‖pk + αkqk‖M ≥ ∆ then
τ∗ = τ > 0 | ‖pk + τqk‖M = ∆
return pk + τ∗qk

end if
pk+1 = pk + αkqk and rk+1 = rk + αkHqk
if ‖rk+1‖M<η ‖j′‖M then return pk+1

βk+1 = ‖rk+1‖2M / ‖rk‖2M
qk+1 = −rk+1 + βk+1qk

end loop

3. Numerical investigations

Numerical studies are performed in the context of subsurface acoustic imaging in the frequency domain [43, 47].
In that particular case, the misfit is conventionally chosen as the least-squares distance between some acoustic
pressure measurements dωer (at some receiver r, for several excitation sources e and for different frequencies
ω) and the corresponding computed acoustic pressures pωe(xr), obtained by solving the Helmholtz equation

J(s2) = 0.5
∑
ω,e,r

∣∣pωe(xr; s2)− dωer

∣∣2 with ∆p+ ω2s2p = δ(x− xe). (34)

It is here chosen that the subsurface model parameter is the slowness squared distribution s2 [s2/km2] (also
called the sloth), as could be guessed from the expression of the Helmholtz operator Aω(s2) := ∆ +ω2s2. The
slowness squared s2 is actually the squared inverse of the velocity v. Several other parametrizations are also
possible but it has been shown that the slowness squared can yield a fast convergence and accurate results
[2, 5, 18, 39]. Implementation of any of the above described local optimization algorithms requires an efficient
procedure to compute the misfit and the gradient for a given slowness squared distribution s2 and the action of
the Hessian operator for any given slowness squared perturbation δs2. The well-known adjoint state method
has been developed for that specific purpose. It is summarized here below and detailed in [1, 17, 40]. The two
terms in gray should be removed under the Gauss-Newton approximation. Also note that the preconditioning
operator P in steps 3 and 6 need not to be constructed explicitly: the preconditioned gradient and Hessian are
actually computed from their defining property (13) and (14), which express them in terms of inner products.

1. Find the forward fields pωe such that

Aω(s2)pωe = δ(x− xe). (35)

2. Find the adjoint fields p†ωe such that

Aω(s2)p†ωe =
∑
r

(pωe(xr)− dωer)δ(x− xr). (36)
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3. Find the preconditioned gradient j′ such that

Pj′ = −
∑
ω

ω2
∑
e

p†ωepωe. (37)

4. Find the perturbed forward fields δpωe such that

Aω(s2)δpωe = −ω2δs2pωe. (38)

5. Find the perturbed adjoint fields δp†ωe such that

Aω,e(s
2)δp†ωe =

∑
r

δpωe(xr)δ(x− xr)−ω2δs2p†ωe. (39)

6. Find the preconditioned Hessian operator Hδs2 in the direction δs2 such that

PHδs2 = −
∑
ω

ω2
∑
e

(δp†ωepωe+p
†
ωeδpωe). (40)

Independently of any practical solver for these wave propagation problems, a misfit evaluation only requires
performing step 1 and thus only requires solving a single wave propagation problem. A gradient evaluation
requires steps 1 to 3, thus a single supplementary wave propagation problem must be solved if the misfit has
already been computed. Similarly, steps 1 to 6 are necessary for the application of the (Gauss-)Newton Hessian
operator in a particular direction, thus again two supplementary wave propagation problems if the gradient
has already been computed for the same model parameters.

Consequently the steepest descent and the l-BFGS directions require solving two wave problems while any
Newton-based direction has an initial cost of four wave propagation problems and each supplementary conju-
gate gradient iteration requires two more wave problems. To the price of the directions must be added the cost
of the line search or the trust-region methods. Line search typically accepts a step length if it verifies sufficient
conditions (4) and (5) which involves the misfit and its gradient. Thus it requires one or two additional wave
problems each time a trial step length is rejected. Prospective trust-region has no additional cost because the
evaluation of the trust region only depends on quantities already computed. At the opposite, retrospective
(Gauss-)Newton trust-region requires the application of the Hessian operator on the preceding direction and
thus needs to solve two additional wave propagation problems. When a trust-region iteration fails, the model
parameter is not updated and both the misfit and the gradient can be re-used for the following iteration,
without solving any new wave propagation problem. Hessian-vector products could also be remembered to
spare computational cost after a failed trust-region (Gauss-)Newton iteration, but the number of fields to
memorize is larger, as it is proportional to the number of inner iterations. Hence, we choose not to store the
Hessian vector products from the previous iteration. Because failed trust-region (Gauss)-Newton iterations
barely appears, the speedup would be small anyway. Table 1 summarizes this accounting.

Base CG LS TR
SD 2 - 2NLS 0
l-BFGS 2 - 2NLS 0
LS-NCG 2 2NCG 2NLS -
TR-NCG (P) 2 2NCG - 0
TR-NCG (R) 2 2NCG - 2

Table 1: Wave propagation problem solution count for a single outer iteration of the steepest descent (SD), the l-BFGS (LB) or the
(Gauss-)Newton (NCG) methods combined with a line search (LS) or a trust region (TR) with a prospective (P) or retrospective
(R) radius update. NCG is the number of inner iteration of the conjugte gradient algorithm. NLS is the number of rejected values
of γ during the line search.

It is interesting to highlight here that the first inner iteration of any conjugate gradient Newton method is sim-
ply the steepest descent but it is twice more expensive because the curvature is computed. Subsequent inner
iterations must therefore provide large decrease of the misfit to compensate this high entry cost. This phe-
nomenon is even worse with the retrospective trust region algorithm because there is a systematical additional
cost to update the trust region radius.
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In this work, solutions to partial differential equations (35) to (40) are obtained numerically with the finite
element method. In what follows, we specify the exact numerical procedure in that context. Note however
that the analysis would nearly be identical with finite differences. As far as wave equations in the frequency
domain are concerned, direct or hybrid solvers are typically used, because they outperform standard iterative
methods, for which no robust preconditioner currently exists for the high-frequency regimes encountered in full
waveform inversion [13, 48]. In that context, finite element discretization assembles operators into matrices
and source terms into vectors. Wave propagation problems (35), (36), (38) and (39) therefore transform into a
linear system whose left-hand-side matrix A is always the same for a given frequency while the right-hand-side
source b is different for any field type, frequency and excitation index. The solution of this system is obtained
by first computing its lower-upper factorization then by performing an upward-backward substitution for each
right-hand-side source

Ap = b ⇔ A = LU, Lq = b and Up = q. (41)

Huge computational reduction is therefore obtained because only one matrix per frequency is assembled and
factorized. The computation of any wave field then requires the assembly and the upward-backward substi-
tution of a vector per excitation source, but no more matrix factorization. The numerical equivalence of the
preceding six steps procedure is given here below.

1. • Factorize wave propagation operators (nω)

• Substitute forward sources (nω × ne)

2. • Substitute adjoint sources (nω × ne)

3. • Factorize the preconditioner (1)

• Substitute the conventional gradient (1)

4. • Substitute perturbed forward sources (nω × ne)

5. • Substitute perturbed adjoint sources (nω × ne)

6. • Substitute the conventional Hessian (1)

It is interesting to highlight that model problems (steps 3 and 6) are negligible with respect to wave prob-
lems. Indeed while wave problems involve a matrix per frequency and a vector per excitation source, model
problems only involve a single matrix (i.e the preconditioner) and a single source vector (i.e the conventional
gradient or Hessian). Moreover the model discretization is usually coarser than the wave field discretization.
Consequently not considering these model problems when quantifying the computational complexity is not
dramatic. It should however be highlighted that forward problems are more expensive than the corresponding
adjoint problem, because the matrix factorization is reused. Moreover the perturbed forward problem and the
perturbed adjoint problem are slightly heavier than the adjoint problem, because both their sources are dense,
at the opposite of forward and adjoint sources, which are sparse. Nevertheless we weight equally all of these
four problems when quantifying the computational complexity.

In the next two sections, two synthetic numerical case studies are investigated. The first one is based on the
widely used Marmousi benchmark [52] while the second one, replicated from [28], is inspired from a near-
surface imaging of close concrete structures and features important multiple scattering. Multiple scattering
is responsible for the indefiniteness of the Hessian operator, which, as mentioned in the previous part, is
challenging for optimization algorithms [17, 28, 27, 43]. This second example is thus chosen to emphasize
which optimization methods are able to overcome such difficulties. For both case studies, the influence of the
inner product choice on the convergence speed and the quality of the inverted model is studied first. Once the
inner product is chosen, prospective and retrospective trust-region methods with different parameter sets are
compared and the best option is selected. Advantages and drawbacks of trust-region methods in the context
of full waveform inversion are then finally discussed based on a comparison with the corresponding line search
methods. In the remainder of this section, data misfit are normalized such that the misfit corresponding to
the initial model is one and computational complexity is measured in numbers of forward problems solved, as
explained above.
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3.1. Case study 1

Numerical inversions are performed on the 2D Marmousi model (Fig. 2a) [52] in the frequency domain. Three
frequencies (4, 6 and 8 [Hz]) are inverted simultaneously. The surface acquisition system is composed of 122
equally spaced (72 [m]) excitation sources and 243 equally spaced (36 [m]) receivers. Outer iterations are
stopped when satisfying the convergence criterion J(s2)/J(s2

init) < 10−3. A smoothed version of the exact
Marmousi model is used as an initial guess (Fig. 2b). This initial model is computed with a Laplacian filter
s2

init = (1−l2c∆)−1s2
exact with 2πlc = 2 [km]. Slowness squared fields and pressure fields at the three frequencies

are discretized on a square grid (36 [m]) by hierarchical finite elements, respectively of order 1 and of order
2, 3, 4. A water layer (216 [m]) is also added at the top of the model but it is kept constant during the
inversion. The model is spatially truncated by Sommerfeld boundary conditions [45] on all four sides. The
top boundary is thus not a free surface. Recorded data are generated synthetically using the same hierarchical
finite elements setting than for the inversion. An inversion result, i.e. an estimated squared slowness, is shown
in (Fig. 2c). From a relatively low resolution initial guess, full waveform inversion indeed provides a high-
resolution estimation of the exact model. Images obtained with the other methods do not differ significantly.
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Figure 2: Marmousi model (a), initial guess (b) and inversion results using a line search l-BFGS algorithm with a weighted and
thresholded inner product (c).

3.1.1. Inner product

As explained earlier, the inner product has an influence on both the gradient and the Hessian. Its choice is
therefore expected to influence the convergence speed but also the particular minimizer that is reached [8]. To
illustrate both these effects, the line search l-BFGS algorithm has been applied with the four different inner
products introduced in this work, i.e. the conventional inner product (15), the weighted inner product (16)
and its regularized variants (18) or (19). For the smoothing inner product (19), the characteristic length is
set to the smallest propagated wavelength, i.e. lc = 250 [m]. In the context of full waveform inversion, the
expected resolution is a fraction of the wavelength. Enforcing a much smaller smoothing length therefore has
hardly no effect. The smallest propagated wavelength actually provides an appropriate lower bound for the
characteristic length. Corresponding convergence curves and error maps are given in Fig. 3 and 4 respectively.
Both these figures are also summarized in Table 2. As can be seen from these figures, all weighted inner
product increase the convergence speed with respect to the conventional, i.e. unweighted, one. However the
minimizer obtained with the weighted inner product alone is further away from the exact solution, in particular
in the right corner of the model. Avoiding such artifacts is precisely one of the reasons for the introduction
of regularized inner products, as they dampen the contributions in these poorly illuminated regions. Both
the thresholding and the smoothing strategy perform similarly in reducing the error back to the same level
than the unweighted solution but the thresholding strategy converges faster. It is thus kept for the sequel of
this case study. The advantages of the smoothing inner product will be highlighted during the second case
study. In the next three subsections, the behaviour of the steepest descent method, the l-BFGS method, the
full Newton and the Gauss-Newton methods is analysed. Convergence curves and interesting statistics for all
these methods are given in Fig. 5 and Table 3 respectively.
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Figure 3: Data misfit as a function of the number of wave propagation problem solved for the line search l-BFGS algorithm with
a conventional (• •), only weighted (- •), weighted and thresholded (- -) or weighted and smoothed (–) inner product.

Wave sol. (tot) Error rms ([s2/km2])
Conventional 78 0.0174
Weighted only 61 0.0202

and thresholded 57 0.0174
and smoothed 68 0.0173

Table 2: Number of wave propagation problem solved and root-mean squared error for the line search l-BFGS algorithm with
different inner products.
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Figure 4: Final inversion error for the line search l-BFGS algorithm with a conventional (a) or a weighted (b) inner product.
Inversion errors for both regularized inner products are not shown because these are very similar to those obtained with the
conventional inner product.

3.1.2. Steepest descent

There is no dramatic improvement when using one or another direction scaling method, because actually the
direction itself is bad. Nevertheless, it appears that methods which reject less frequently the proposed update
direction are faster, i.e the prospective trust-region method with the more cautious parameters sets (B and
C) and the line search method. Retrospective radius update does not speed up convergence. Actually we
observed that the retrospective predicted decrease (12) sometimes largely underestimates the actual decrease,
illustrating that the retrospective misfit prediction is very not accurate, but still producing an increase of the
trust region radius. Finally, among the three best methods, the slope is slightly steeper for the two trust-region
methods, probably because they systematically try to increase the length given to the gradient direction.

3.1.3. Limited memory BFGS method

There is hardly no difference between all the methods combined with the l-BFGS algorithm. We observed
that the line search method only rejects the unit step length γ = 1 for the first two iterations. Similarly,
we observed that the retrospective ratio is always very close to one, such that the trust region radius for
retrospective methods quickly becomes large and thus the pure l-BFGS direction is always accepted after the
first few iterations. An algorithm that unconditionally follows the pure l-BFGS direction would therefore
already be very good and neither a line search nor a trust-region method can actually drastically improve it,
as far as convergence speed is concerned. Nevertheless the more cautious prospective trust-region methods
(B,C) also converge fast, which shows that, on the other hand, constraining the size of the update directions
does not slow down the inversion.
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SD

LS 244 128 111 - 10 - -
TR-P (A) 317 198 198 - 40 100 -
TR-P (B) 272 140 140 - 6 100 -
TR-P (C) 258 132 132 - 5 100 -
TR-R (A) 328 164 164 - 20 100 -
TR-R (B) 354 177 177 - 20 100 -
TR-R (C) 330 165 165 - 25 100 -

LB

LS 57 29 27 - 7 - -
TR-P (A) 57 29 29 - 3 10 -
TR-P (B) 57 29 29 - 3 34 -
TR-P (C) 60 32 32 - 13 50 -
TR-R (A) 58 29 29 - 3 10 -
TR-R (B) 56 28 28 - 0 11 -
TR-R (C) 56 28 28 - 0 11 -

FN

LS 139 24 17 2.9 12 - 29
TR-P (A) 171 22 22 3.0 32 77 0
TR-P (B) 106 13 13 3.1 0 69 0
TR-P (C) 106 16 16 2.3 0 75 0
TR-R (A) 144 14 14 3.1 14 64 0
TR-R (B) 128 14 14 2.6 0 79 0
TR-R (C) 142 17 17 2.2 0 82 0

GN

LS 124 15 15 3.13 0 - -
TR-P (A) 130 11 11 4.9 0 10 -
TR-P (B) 98 10 10 3.9 0 30 -
TR-P (C) 98 10 10 3.9 0 30 -
TR-R (A) 152 11 11 4.9 0 10 -
TR-R (B) 132 14 14 2.7 0 79 -
TR-R (C) 184 24 24 1.8 0 83 -

Table 3: Statistics related to the implementation of the steepest descent (SD), the l-BFGS (LB), the full Newton (FN) method and
the Gauss-Newton (GN) methods combined with a line search (LS) or a trust region (TR) with a prospective (P) or retrospective
(R) radius update with different parameter sets (A,B,C).
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Figure 5: Data misfit as a function of the number of wave propagation problem solved for the steepest descent (a), the l-BFGS
(b), the full Newton (c) and the Gauss-Newton (d) methods combined with either a line search ( ) or a prospective trust region
(A ( ), B ( ), C ( )) or a retrospective trust region (A ( ), B ( ), C ( )).

3.1.4. Newton methods

As far as trust-region methods are concerned, it first clearly appears that the retrospective radius update is
not worth its computational cost. Indeed it does not require less wave solutions than the best prospective
ones, even if the computation cost of the retrospective predicted decrease is withdrawn (two wave solutions
per outer iterations). Retrospective radius update has been introduced to anticipate and prevent failures.
However the prospective Newton method combined with the more cautious parameters sets (B and C) does
already not reject any direction and there is then no interest in computing the retrospective ratio.

Among the prospective methods, it appears that the two more cautious (B and C) yield the fastest convergence.
Convergence speed decreases when using parameter set A with both the full Newton method and the Gauss-
Newton method but for two different reasons. With parameter set A, the trust-region radius grows quickly
and the full Newton method is thus allowed to explore large directions, beyond the validity of the exact second
order expansion (2). Such directions produce a high rejection rate (32%) and thus a waste of computational
effort. At the opposite, the Gauss-Newton method never rejects a direction and the explanation for its slower
convergence can therefore not be the same. During the earliest iterations, far from the global minimum, the
Gauss-Newton approximation is not valid (because data residuals are not small yet) and thus the Gauss-Newton
Hessian is quiet different from the full Hessian. The misfit prediction under the Gauss-Newton approximation
is thus cruder than the exact second order expansion (2) and the ratio ρp is even more likely to be away from
one. This ratio ρp is given in Fig. 6c. As can be seen, during the first few iterations, this ratio is actually
very larger than one, which indicates that the misfit prediction is indeed not accurate. Nevertheless, the trust
region radius is still increased and the system is solved accurately while the Hessian and the misfit are not
approximated accurately. This effect generates over-solving the system at the earliest iteration and slows down
the Gauss-Newton method, as can be seen by comparing the initial slopes between variant A and B/C in Fig.
5d. This effect would be even more dominant if the convergence requirements, i.e. the forcing sequence η, was
smaller. With the large value η = 0.5 chosen here, convergence of the conjugate gradient algorithm is attained
relatively fast. Actually variant B and C perform better than variant A only because it takes more iterations
for the trust region constraint to become inactive. Starting with a larger initial radius would result in the
same convergence speed than variant A. Also, it is interesting to highlight that when using the retrospective

18



radius update with the Gauss-Newton approximation, the situation is reversed because the retrospective ratio
is then smaller than one. Instead of over-solving, under-solving then appears. Therefore we believe that it is
better to use trust-region methods with the full Newton Hessian, because it constructs the best possible misfit
prediction while it does not introduce supplementary difficulties.

The full Newton method and the Gauss-Newton method are slightly slower when combined with a line search
method and also require more wave operator factorization. As far as the full Newton method is concerned,
directions of very small curvature can produce large update directions, far beyond the validity of the expansion
(2). In such cases the initial length γ = 1 is rejected and some computational cost must be involved to reduce
it to satisfy Wolfe conditions. This effect has actually been observed twice using the full Newton method.
Moreover during the first fifth outer iterations, the full Newton method using the line search globalization
stops because a direction of negative curvature is encountered. At the opposite of its trust-region counterpart,
the line search variant of the conjugate gradient algorithm discard any direction of negative curvature, thus
wasting the associated computational cost. Of course within the Gauss-Newton approximation this second
effect can not appear (and the first one was actually not observed). The line search globalization therefore
seems more suited with the Gauss-Newton approximation. Nevertheless it is not much faster. In the context
of line search globalization, the accuracy of the second order local expansion is expressed through the forcing
sequence η, which is, as can be seen in Fig. 8, away from zero during the first few iterations. Consequently,
the convergence of the conjugate gradient algorithm is quickly reached and only a few inner iterations are
performed per outer iterations as can be seen from Fig. 7c. Fig. 7c actually show how hard it is to stop the
Gauss-Newton inner iterations at the right time: the fastest method is the prospective trust region B/C and
it performs less inner iterations then the variant A but more than the line search method. The difficulty to
pick up an appropriate stopping criterion for the Gauss-Newton method is another motivation to use the full
Newton method instead. Using the full Newton method, the line search variant actually suffers from directions
of small or negative curvature while trust-region methods do not. Based on this case study, we would therefore
recommend to use the full Newton method combined with a trust-region method and a prospective radius
update.

Conclusions regarding the l-BFGS method and the full Newton method have been reinforced by a slightly
modified example, in which noise is introduced into the data. The results and parameters of this additional
case study are discussed in more detail in Appendix A.
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Figure 6: Prospective ratio ρp (a,c) or retrospective ratio ρr (b,d) during the outer iterations of the full Newton method (a,b) and
the Gauss-Newton method (c,d) with different parameter sets using a prospective radius update (a,c) (A ( ), B ( ), C ( )) or
a retrospective radius update (b,d) (A ( ), B ( ), C ( )).
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Figure 7: Inner iterations per outer iteration for the full Newton method (a,b) and the Gauss-Newton method (c,d) with different
parameter sets using a prospective radius update (a,c) (A ( ), B ( ), C ( )) or a retrospective radius update (b,d) (A ( ), B
( ), C ( )).
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Figure 8: Forcing sequence η for the full Newton (a) and the Gauss-Newton (b) methods combined with a line search method
( ). The forcing sequence for methods combined with a trust-region is constant (η = 0.5).
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3.2. Case study 2

The configuration of this second case study is replicated from [28]. The true velocity distribution is given
in Fig. 10a. It presents two T-shaped concrete structures (vc = 4 [km/s]) embedded in a homogeneous
background (vb = 0.3 [km/s]) with a horizontal layer reflector in the bottom (vr = 0.5 [km/s]). The depth of
investigation is limited to 3 [m] while the width is 30 [m]. The aspect ratio and the propagation scales are
thus very different from the Marmousi model. These two concrete foundations, buried at few meters deep,
generate high-amplitude reflections because of the very high velocity contrast with the background. Moreover,
important multiple scattering appears between the two structures, as they are relatively close to each other.
The acquisition system is divided into three segments: one on the surface and the two others inside boreholes
on both lateral sides. Sources and receivers are equally spaced (15 [cm]) along these three segments. Note
that the surface sources and receivers that would lie inside the two concrete structures are not considered in
the modelling, leading to an actual number of sources and receivers totaling 227. Nine frequencies (100, 125,
150, 175, 200, 225, 250, 275, and 300 [Hz]) are inverted simultaneously from an initial model composed of the
homogeneous background and the bottom reflector only. For this second case study, a logarithmic slowness
squared parametrization is used m := ln s2. This parametrization has the advantage to be unable to produce
negative values of the slowness squared. Inverting the slowness squared actually drives it into negative values,
because of the two concrete structures whose slowness squared is really close to zero. Outer iterations are
stopped when satisfying the convergence criterion J(ln s2)/J(ln s2

init) < 10−2. Slowness squared fields and
pressure fields at the nine frequencies are discretized on a square grid (15 [cm]) by hierarchical finite elements,
respectively of order 1 and of order 2, 3, 4. At the light of the first case study, trust-region methods with
parameter sets A and C will no longer be considered, as both were systematically outperformed by parameter
set B.

3.2.1. Inner product

Illumination of the medium is nearly perfect and consequently, the diagonal part of the Gauss-Newton Hessian
that we previously used as a weight can reasonably be approximated by a constant hGN. However the part

related to the change of variable is varying spatially δs2 = ds2

d ln s2 δ ln s2 = s2 δ ln s2. Hence the weight for the
inner product is chosen as w = hGN s4. As previously, the line search l-BFGS algorithm has been applied with
the four different inner products introduced in this work. Convergence curves are given in Fig. 9 while inversion
results are given in Fig. 10. For the weighted and smoothed variant, the threshold is set as ε = hGN s4

b while the
characteristic length for the smoothing inner product is set to lc = 3 [m]. It is important to highlight that this
length is greater than the smallest wavelength in the background medium (1 [m]) while for the first case study,
this length was actually close to the smallest wavelength. The weighted and thresholded variant has been
tested for several values of the threshold, from ε = hGN s4

c to ε = hGN s4
b but none of them provided inversion

results significantly different from the conventional or the weighted inner products. Only the smoothing inner
product is able to reconstruct the model parameter accurately, provided the smoothing length is sufficiently
large, e.g. lc = 3 [m]. When the smoothing length is decreased below the wavelength (1 [m]), convergence issues
appear again because the smoothing effect becomes negligible and the situation is then the same than with the
conventional inner product. This smoothing inner product actually mitigates the non-linearity of the misfit,
because spatial roughness is incorporated progressively in the model parameter [60]. During the inversion, the
model parameter never explores extremely high velocity values, at the opposite of the other variants. It is thus
able to converge to an accurate solution while more straightforward optimization is not, because of a numerical
breakdown. Adding a regularization term to the misfit function, e.g. a Tikhonov penalization [51], eliminates
this numerical breakdown but, depending on the value of the regularization parameter, the reconstruction then
either features a lower contrast or the convergence is much slower compared to the smoothing inner product.
Consequently, this smoothing inner product is used for the remainder of this study. The performance of the
three optimization methods is described in the next three subsections. Convergence curves, inversion results
and statistics are given in Fig. 12 and 11 and in Table 4 respectively.
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Figure 9: Data misfit as a function of the number of wave propagation problem solved for the line search l-BFGS algorithm with
a conventional (• •), only weighted (- •) or weighted and smoothed (–) inner product.
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Figure 10: Near-surface concrete structures velocity model (a) and inversion results using a line search l-BFGS algorithm with a
conventional (b), a weighted only (c) or a weighted and smoothed (d) inner product.
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Figure 11: Inversion results for the steepest descent (a), the l-BFGS (b), the full Newton (c) and the Gauss-Newton (d) methods
combined with trust-region method using a prospective radius update (B). Note the the upper color scale limit is only 2 [km/s].
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Figure 12: Data misfit as a function of the number of wave propagation problem solved for the steepest descent (a), the l-BFGS
(b), the full Newton (c) and the Gauss-Newton (d) methods combined with either a line search ( ) or a trust-region with a
prospective (B ( )) or a retrospective (B ( )) radius update. Dots on (Gauss)-Newton curves indicate outer iterations.
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SD
LS∗ 803 403 400 - 1 - -
TR-P (B)∗ 766 400 400 - 9 100 -
TR-R (B)∗ 800 400 400 - 18 100 -

LB
LS 186 98 88 - 8 - -
TR-P (B) 173 87 87 - 1 23 -
TR-R (B) 174 87 87 - 2 6 -

FN
LS 468 57 35 5.3 23 - 17
TR-P (B) 352 34 34 4.2 0 56 0
TR-R (B) 424 31 31 4.8 3 68 0

GN
LS∗ 923 65 60 6.6 8 - -
TR-P (B) 680 38 38 7.9 0 42 -
TR-R (B) 672 39 39 6.6 0 41 -

Table 4: Statistics related to the implementation of the steepest descent (SD), the l-BFGS (LB), the full Newton (FN) and the
Gauss-newton (GN) methods combined with a line search (LS) or a trust-region (TR) with a prospective (P) or retrospective (R)
radius update with parameter set B. Star marker ∗ indicates methods that have been stopped before convergence.
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3.2.2. Steepest descent

The steepest descent method is not able to reach convergence in a reasonable amount of computations. Pro-
gressively decreasing the smoothing length lc during the inversion would accelerate the convergence [60], but
it is not needed for more sophisticated methods and thus it is not done here neither. As for the first test
case, the slope of trust-region methods is slightly steeper than the line search method. The prospective radius
update rejects less often directions and hence converges faster than the retrospective radius update.

3.2.3. Limited memory BFGS method

Similarly to the first test case, the influence of the globalization method on the convergence speed is small.
Trust-region methods actually spare a part of the line search cost, in terms of both the number of wave
solutions and system factorizations, but it already represents only a tiny fraction (20 wave solutions) of the
overall computational cost (186 wave solutions). Retrospective ratio is again always very close to one and
the only difference between retrospective and prospective radius update is the frequency the size constraint is
active, although it does not influence the convergence speed.

3.2.4. Newton methods

For this case study, the full Newton method clearly outperforms the Gauss-Newton method, independently of
the globalization method used. On the one hand, the convergence speed is much higher and on the other hand
the accuracy of the inversion results is superior. As demonstrated in [28], the missing negative definite part of
the Hessian can prevent the Gauss-Newton method from reaching an accurate reconstruction. Here, thanks
to the inner product preconditioning, every method is able to find a relevant minimum but the invalidity of
the Gauss-Newton approximation impacts the convergence speed and the inversion results. Interestingly, for
the Gauss-Newton method, the retrospective radius update succeeds to compensate its cost (2 wave solutions
per outer iteration). Indeed, during the earliest outer iterations when the Gauss-Newton and the full Hessian
are different, we observed that the retrospective ratio is smaller than one while the prospective ratio is bigger
than one. Consequently the retrospective method performs less inner iterations per outer iterations than the
prospective method (Fig. 13b), and thus avoids early over-solving. In the end both methods still converge at
the same speed, but the retrospective method has spent less time in the computation of linear system solutions
(680 versus 672−2×39 = 594 wave solutions). At the opposite, for the full Newton method, the retrospective
method spent even more time in the computation of linear system solutions than the prospective method.
The prospective method is actually already efficient because the prospective misfit prediction is accurate. The
line search globalization also provides fast convergence in this case, despite the fact that directions of negative
curvature are often encountered (12 wasted wave solutions) and that the unit step length is often rejected.
However the flow of the method is very different from trust-region methods and particularly, requires much
more wave operator factorizations. Indeed line search methods have a tendency to compute a single very
accurate system solution, followed by several very inaccurate system solutions as can be seen from Fig. 13a
and from the dots spacing in Fig. 12c while trust-region methods perform a nearly steadily increasing number
of inner iterations per outer iteration. Whether a flow is better than the other has not been emphasized by
our case studies, except that trust-region methods require less wave system factorization. In the case of noisy
data, we however believe it could have an influence.
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Figure 13: Inner iterations per outer iteration for the full Newton method (a) and the Gauss-Newton method (b) combined with
either a line search ( ) or a trust-region with a prospective (B ( )) or a retrospective (B ( )) radius update.
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4. Conclusion

In this work, we investigated the use of trust-region methods in the context of full waveform inversion in the
frequency domain. At the heart of any trust-region method is the trust-region constraint, which is expressed
in terms of the inner product chosen for the model parameter space. Consequently we began our analysis by
investigating different inner product choices that could be implemented. We showed that changing the inner
product does not only modify how lengths are measured but also acts as a preconditioner on both the gradient
and the Hessian operator. Based on two numerical case studies, we showed that moving from a conventional
inner product to a smoothed and/or weighted inner product can accelerate the convergence and mitigate the
non-linearity of the misfit, for any optimization method independently of the globalization method (line search
or trust region).

In parallel with this inner product choice, we also introduced line search and trust-region variants of the steepest
descent, the l-BFGS and the (Gauss-)Newton methods. The number of wave propagation problems to be solved
for each method was derived in order to compare them fairly. For each optimization method, the line search
and the trust-region globalizations were then compared based on two different case studies. Thanks to the
inner product preconditioning, every combination actually already yields very satisfying results. Nevertheless,
we showed that trust-region methods outperform line search methods in numerous situations. In particular,
we observed that the steepest descent converges slightly faster, because the trust-region methods always tried
to increase the step length. As far as the l-BFGS method is concerned, very few differences were noted, but
interestingly, constraining the size of the update direction did not decrease the convergence speed. The more
dramatic differences appeared when using the full Newton method. Trust-region methods actually overcome
the difficulties that appeared when using a line search method with the full Newton method. The Gauss-
Newton approximation is not required with trust-region methods and actually degrades their performances,
because this approximation also degrades the misfit prediction.

We believe that more sophisticated optimization methods, for example combining l-BFGS and Newton meth-
ods, could increase even more the convergence speed. Future works should also investigate the behaviour of
inner product preconditioned trust-region methods in the presence of noise, possibly with new inner products
that involve prior information on the model parameter space. We believe that the size constraint could act as
a regularization method per se. Based on our study and these potential extensions, trust-region methods and
inner product preconditioning seem to be two very useful tools for full waveform inversion.
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and by the Walloon Region.

Appendix A. Case Study 1 with noisy data

In this appendix, the Marmousi case study is performed on noisy data. Specifically, a band limited (B = 15
[Hz]) Gaussian noise (SNR = 4 [-]) is added to the noise-free data in the time domain, before frequency
extraction. A Tikhonov penalization [51] is also added to the misfit for regularization. Only the l-BFGS
method with a line-search or a retrospective/prospective trust-region and the full Newton method with a
line search or a prospective trust-region are considered here, as these methods are the most efficient for the
noise-free case. The iterative algorithm is here stopped when the total misfit drops below some absolute
threshold.

The inversion result for the l-BFGS method combined with a line-search is given in Figure A.14. Inversion
results for the other four methods are again very similar. The convergence curves are given in Figure A.15
while some statistics are given in Table A.5. These results show that there is no significant difference with
noise-free situation. Indeed, the main conclusions remain valid: the l-BFGS method is not very sensitive to the
globalization method while the full Newton method should better be combined with a trust-region method, as
it is more efficient to prevent over-solving.
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Figure A.14: Inversion results for the Marmousi model using a line search l-BFGS algorithm on noisy data, regularized with a
Tikhonov additive misfit penalization.
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LB
LS 53 28 25 - 12 - -
TR-P (B) 58 30 30 - 7 30 -
TR-R (B) 68 34 34 - 15 32 -

FN
LS 197 41 11 6.5 55 - 55
TR-P (B) 101 17 17 2.0 6 71 0

Table A.5: Statistics related to the implementation of the l-BFGS (LB) and the full Newton (FN) combined with a line search
(LS) or a trust-region (TR) with a prospective (P) or retrospective (R) radius update with parameter set B, for the Marmousi
model with noisy data.
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Figure A.15: Data misfit as a function of the number of wave propagation problem solved for the l-BFGS (a) and the full Newton
(b) combined with either a line search ( ) or a trust-region with a prospective (B ( )) or a retrospective (B ( )) radius update,
for the Marmousi model with noisy data.
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