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ABSTRACT

Regularization is a central topic in the study of the solutions of ill-posed inverse problems.9

High resolution seismic imaging using full waveform inversion belongs to this category of10

problems. Regularization through anisotropic diffusion, a technique which emerged in the11

field of image processing, is an interesting alternative to conventional regularization strate-12

gies. Exploiting the structural information of a given image, it has the capability to smooth13

this image along its main structures. The main difficulty is how to design the anisotropic14

diffusion operator. The concept of coherence enhancing proposed in 2D is extended in15
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3D and applied so as to filter and enhance the structural coherence of the model updates16

within a full waveform inversion algorithm. The benefits of this strategy are investigated on17

a 2D synthetic experiment before considering the multi-parameter inversion of a 3D field18

dataset from the North sea up to 10 Hz. From this data, the vertical velocity and the density19

are simultaneously reconstructed. Compared with a conventional nonstationary Gaussian20

regularization strategy, the models obtained using the coherence enhancing anisotropic dif-21

fusion strategy show an enhanced resolution, especially for the density model. The high22

resolution reflectivity image computed from the impedance volume clearly illustrates the23

benefit this filtering approach can deliver in terms of structural interpretation.24
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INTRODUCTION

Full waveform inversion (FWI) has become a prominent seismic imaging tool during the25

last decade. It is used at various scales, from global-scale (Bozdağ et al., 2016; Karaoǧlu26

and Romanowicz, 2018; Lei et al., 2020; Thrastarson et al., 2022), lithospheric/continental27

scales (Yuan et al., 2014; Fichtner and Villaseñor, 2015; Lu et al., 2020) and deep crustal28

scales (Górszczyk et al., 2017), to exploration scale with dense acquisition and active29

sources, with depth of investigation reaching few kilometers (Sirgue et al., 2010; Plessix30

and Perkins, 2010; Warner et al., 2013; Stopin et al., 2014; Vigh et al., 2014; Operto et al.,31

2015; Raknes et al., 2015; Solano and Plessix, 2019). In the last years, smaller scale ap-32

plications have also been increasingly investigated: from near surface scales (Koehn et al.,33

2018; Irnaka et al., 2022) to medical imaging (Guasch et al., 2020; Marty et al., 2021). A34

review on FWI and its application can be found for instance in Virieux et al. (2017).35

The essence of the FWI methodology is to match observed data with synthetic data36

generated from numerical modeling (Lailly, 1983; Tarantola, 1984). This matching pro-37

cedure is formulated as a local minimization problem. An initial estimate of the model is38

updated iteratively following descent directions computed from the gradient of the function39

calculating the data mismatch. From a mathematical stand-point, FWI is an ill-posed in-40

verse problem in a large dimensional space, requiring the use of regularization techniques41

to reduce the size of the search space (Virieux and Operto, 2009; Virieux et al., 2017).42

From this perspective, regularization can be interpreted as a way to inject prior infor-43

mation on the solution. This prior information can come from external sources, such as44

well logs or geological interpretation. It is also often injected in terms of prior assumptions45
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on the smoothness/roughness of the medium under investigation. From diffraction tomog-46

raphy analysis (Devaney, 1984; Wu and Toksöz, 1987; Sirgue and Pratt, 2004), the highest47

achievable resolution is equal to one-half of the local shortest wavelength. However, the48

numerical simulation of wave propagation underlying the FWI process requires a spatial49

discretization beyond this limit to avoid numerical dispersion.50

For this reason, the common practice for most FWI applications consists in using51

smoothing operators to restrain the exploration of the solution space to models satisfying52

a certain level of smoothness. This can be enforced in several ways. A well-known strat-53

egy in the context of the solution of ill-posed inverse problems is the addition of a penalty54

term. This penalty term measures the departure of the solution from a prior model, and/or55

the norm of the spatial derivatives of the model. This strategy is known as the Tikhonov56

strategy (Tikhonov et al., 2013). It has the advantage of being easy to implement with the57

addition of one or several penalty terms to the misfit function whose gradients are straight-58

forward to compute. One drawback is related to the need to set the weights of these penalty59

terms (hyperparameters) which is not trivial and is usually performed through trial and60

error. Another drawback, more fundamental, is that these penalty terms ensure the satisfac-61

tion of the constraints only at convergence, i.e. when the data misfit becomes comparable62

to the penalty term value.63

An alternative approach consists in applying a smoothing operator to the descent di-64

rection along the course of iterations. This provides an immediate remedy to the afore-65

mentioned problem: with this technique the smoothness of the model is guaranteed at each66

iteration. From a mathematical stand-point, applying this smoothing operator can be inter-67
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preted as a modification of the scalar product used to express the Taylor’s development of68

the misfit function at the core of local optimization (Zuberi and Pratt, 2017; Adriaens et al.,69

2021). This provides a nice mathematical framework to include different smoothing oper-70

ators with different properties. A common choice is to use a Gaussian smoothing operator,71

potentially non-stationary, with coherent lengths based on an estimation of the expected72

local resolution. The latter is estimated from the local velocity and a reference frequency73

(for instance the peak frequency of the inverted data). This strategy has been implemented74

in early FWI applications to field data (Operto et al., 2006)75

If the local structure of the model can be inferred from another source of information,76

for instance from geological interpretation or from migrated/reflectivity images, it is pos-77

sible to inject it in the smoothing operators. The usual way to do this is to extract dip78

and strike angle maps and perform a directional smoothing, to smooth strongly along the79

structures and weakly across the structures. This oriented smoothing can be implemented80

in many ways, for instance through directional Laplacian filtering (Guitton et al., 2012) or81

directional Bessel filtering (Trinh et al., 2017). One difficulty is related to the fact that in-82

formation on the structure is not always available when performing FWI, or not sufficiently83

reliable to extract relevant information. Also this information is fixed at the beginning of84

the inversion and can not be easily or automatically updated: the two processes, FWI on85

one side, extraction of the structural information on the other side, are separate processes,86

which leads to a lack of flexibility.87

There is an exception to this situation, which should be noted here though. In the con-88

text of reflection oriented waveform inversion (RWI, Xu et al. (2012) or JFWI, Zhou et al.89
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(2015)) the subsurface is parameterized with a smooth macro-velocity model and a reflec-90

tivity model which are jointly updated. It is thus possible to extract structural information91

from the updated reflectivity model to inject it to the smoothing operator applied in the92

reconstruction of the macro-velocity model. This strategy has been applied in Provenzano93

et al. (2022) based on a Bessel filtering approach. The same could be performed in the94

frame of migration velocity analysis (Symes, 2008), which relies on the same scale sep-95

aration between macro-velocity and reflectivity, and updates these two parameters in an96

iterative fashion. This has not yet been implemented in this framework to the best of our97

knowledge.98

Edge preserving smoothing through Total Variation (TV) regularization is also a con-99

ventional technique applied in FWI, with a special interest for the reconstruction of high100

contrast bodies such as salt bodies in exploration case studies (Strong and Chan, 2003; Pe-101

ters and Herrmann, 2017; Anagaw and Sacchi, 2018; Aghamiry et al., 2020). The bound-102

ary of these structures is sharp, while the mechanical properties are almost constant within103

them, making TV regularization an appropriate tool for their reconstruction.104

105

We shall also mention that a generalization of the concept of smoothing to make the106

model consistent with respect to the expected resolution has been proposed in Capdeville107

and Métivier (2018), based on the homogeneization theory (i.e. the theory of equivalent me-108

dia). Homogeneization theory for elastic wave propagation highlights the fact that a finite-109

frequency band wavefield behaves in a diffraction regime for subsurface heterogeneities110

down to the smallest propagated wavelengths (Capdeville and Marigo, 2013). For hetero-111
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geneities smaller than this reference scale, the effect on the wavefield is of an apparent112

anisotropy. A more general and elegant way to inject prior information on the smoothness113

of the medium is thus proposed in Capdeville and Métivier (2018) through homogeneiza-114

tion, where the solution of the FWI problem is searched in the space of equivalent media115

related to the bandwidth of the inverted data. This method is however currently at a more116

experimental stage and suffers from several drawbacks. First, the homogeneization theory117

and associated numerical tools are mainly developed for elastic media while most of the118

industrial applications of FWI are performed in the acoustic approximation. Homogeneiza-119

tion theory for acoustic media actually exists, and in the context of constant density media,120

it amounts to smooth the velocity model, which is consistent with the common practice of121

FWI (this is not true for variable density media however, an issue well explored in Cance122

and Capdeville (2015)). Second, implementing robust and efficient 3D homogeneization123

algorithms is still a challenge. An ill-conditioned elasto-static problem needs to be solved124

which incurs limitations for 3D applications (see Cupillard et al., 2020, for instance). Third,125

in the elastic approximation, the medium after homogeneization is fully anisotropic (21 co-126

efficient stiffness tensors) and how to deal with such parameterization in the context of an127

inverse problem is not straightforward.128

In this study, we are interested in an alternative smoothing approach coming originally129

from image processing (Weickert, 1998). The idea is first to rely on an anisotropic diffusion130

equation to smooth the gradient. Second, the anisotropic diffusion operator is built upon the131

structure tensor of the image. The diffusion is set to be strong in the direction of slow varia-132

tions and weak in the direction of fast variations so as to preserve the main structures of the133
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image. This idea has been exploited for instance in Lewis et al. (2014) and Lee and Pyun134

(2018) and to a certain extent in Xue et al. (2020). In those studies, the design of the diffu-135

sion operator is not really detailed, although it relies on the structure tensor associated with136

the gradient and its spectral decomposition. What we propose here is to generalize to 3D137

the coherence-enhancing diffusion strategy introduced by Weickert (1998) which is a spe-138

cific way to design the anisotropic diffusion operator. It uses a local measure of coherence139

along directions in the plane orthogonal to the direction of fastest variations, and a thresh-140

old function to control the transition from weak diffusion to strong diffusion depending141

on the orientation. We shall add that what makes this diffusion-type technique appealing142

over other aforementioned directional filtering techniques are the mathematical properties143

inherited from the partial differential equations formalism (preservation of the maximum,144

minimum and mean value, and the scale-space property) as well as the automation of the145

structure detection through the design of the anisotropic diffusion operator, without having146

to compute angle maps and correlation lengths prior the application of the filter, and the147

relatively limited number of tuning parameters (essentially the diffusion time). We have148

studied this technique already in the frame of 2D FWI, with the idea that it could be ap-149

plied in the model space to filter the gradient, and in the data space to filter and denoise150

the data while enhancing its low frequency content (Métivier and Brossier, 2022). In the151

present study, after providing some illustrations on a 2D synthetic example, we apply it to152

the 3D multi-parameter inversion of a North Sea OBC dataset up to 10 Hz. We provide a153

comparison between applying a conventional non-stationary Gaussian smoothing and our154

coherence enhancing smoothing. We show that an isotropic Gaussian smoothing has a ten-155

dency to destroy the structure, especially at depth, which is detrimental to the final model156
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resolution and also penalizes the convergence of the whole FWI algorithm. Conversely,157

the FWI strategy coupled with the coherence enhancing smoothing makes it possible to158

recover sharper interfaces in the whole domain. Then this also enhances the reconstruction159

of a sharper density model. The coherence enhancing strategy is also efficient to remove160

the footprint of the acquisition in the shallow part of the model, which is all the more im-161

portant when a source subsampling method is used to decrease the computational cost of162

FWI as is the case in our 3D OBC application. We believe these features are particularly163

valuable for high resolution FWI, a current trend in the industry to push FWI towards di-164

rectly interpretable models inverted from data in frequency bands similar as what is used165

for migration (Shen et al., 2018; Wang et al., 2019; Huang et al., 2021; Kalinicheva et al.,166

2020).167

The structure of the study is as follows. In the next Section we introduce the method-168

ology of our 3D coherence enhancing smoothing. Then we illustrate it on a 2D simple169

synthetic experiment. We present its application to the inversion of 3D OBC field data. A170

discussion of our results follows, before we present conclusion and perspectives.171

METHODOLOGY: A NONLINEAR ANISOTROPIC DIFFUSION

APPROACH

Generalities172

The structural smoothing technique we propose originates from the work of Weickert173

(1998) for image processing. Consider an image I(x) with x ∈ Ω ⊂ Rd, d being the174
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model dimension. In what follows, d = 2 for our synthetic example and d = 3 for the OBC175

data application.176

The fundamental idea consists in considering the following nonlinear anisotropic dif-177

fusion process to generate a smooth image Is(x) from I(x). Solve the partial differential178

equations179 

∂u

∂t
− div (D(u)∇u) = 0, on Ω× [0, T ]

u(x, 0) = I(x), on Ω

〈D(u)∇u,n〉 = 0, on ∂Ω× [0, T ],

(1)

where I(x) is the initial condition for the nonlinear anisotropic diffusion described by the180

d-by-d diffusion matrix D(u), n(x) ∈ Rd is the vector normal to the boundary at x ∈ ∂Ω,181

and < ., . > denotes the usual Euclidean scalar product in Rd. The smooth image Is(x) is182

defined as183

Is(x) = u(x, T ), (2)

for a chosen diffusion time T . The nonlinearity comes from the dependency of D to u.184

The anisotropy comes from the fact that D is a matrix. In the case where D = Id, where185

Id is the identity matrix, we recover the heat equation. In this case, there is an analytic186

solution for equation 1 which is expressed as the convolution of the initial condition with187

the Gaussian kernel K√2T (x):188

Is(x) = K√2T (x) ∗ I(x), (3)

with ∗ the convolution in space and189

Kσ(x) =
1

2πσ2
exp

(
−|x|

2

2σ2

)
. (4)
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This shows the equivalence between isotropic diffusion and Gaussian smoothing.190

The originality of the approach developed by Weickert (1998) is to consider an anisotropic191

diffusion process based on a specific matrix D(u) computed from the structure tensor ma-192

trix S(u), defined by193

S(u) = ∇u∇uT . (5)

A Singular Value Decomposition (SVD) of S(u) provides useful information. It has one194

positive eigenvalue λ1 = |∇u|2 and d−1 eigenvalues equal to 0. The eigenvector associated195

with λ1 is parallel to the gradient ∇u, while the others are perpendicular to the gradient.196

Note that an image might not be differentiable everywhere, if it exhibits strong small scale197

variations, for instance due to the presence of noise. Thus a pre-smoothing is applied to u198

to remove spurious oscillations smaller than a given reference scale σ, yielding the image199

uσ, such that200

uσ = Kσ ∗ u. (6)

Furthermore, the information embedded in S(u) being strictly local, Weickert (1998) pro-201

poses to use a local average over specific scales to analyze the image structure. We thus202

consider the matrix S`,σ(u) defined by203

S`,σ(u) = K`. ∗
(
∇uσ∇uTσ

)
, (7)

where .∗ denotes a term-by-term convolution operation (the convolution applies to each204

entry of the matrix). The scale ` is referred to as the coherence scale: it is a length over205

which the image is going to be averaged to perform the local analysis of its structure.206
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2D coherence enhancing filter207

To fix ideas, in the 2D case (d = 2), S`,σ(u) has two eigenvalues λ1 ≥ λ2 ≥ 0. The208

eigenvector v1 (resp. v2) gives the direction in which u(x) varies the most rapidly (resp.209

the most slowly). In what follows, the symbol � indicates “significantly larger than”.210

Different situations can occur, corresponding to particular structures in the image:211

• λ1 ' λ2 ' 0 identify zones with almost constant values;212

• λ1 � λ2 ' 0 identify zones with sharp edges;213

• λ1 ≥ λ2 � 0 identify corners.214

In addition the quantity (λ1 − λ2)2 is a measure of the local coherence of the image, which215

becomes large as soon as anisotropic structures with sharp edges are involved. This quantity216

is key in the design of the diffusion operator D(u).217

Weickert (1998) proposes the following definition of D(u) for a coherence-enhancing218

diffusion filter. Let S`,σ(u) = P (u)TΛ(u)P (u) be the SVD decomposition of S`,σ(u). The219

diffusion matrix D(u) is defined as220

D(u) = P (u)TΣ(u)P (u), (8)

where Σ(u) is defined as221

Σ(u) =

α 0

0 g
(
(λ1(u)− λ2(u))2

)
 , (9)
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with g a threshold function from α to 1222

g(x) =

∣∣∣∣∣∣∣∣
α if x = 0

α + (1− α) exp
(−C
x

)
else,

(10)

where α and C are user-defined scalar values. A profile of the threshold function g(x)223

depending on C for α = 10−2 is given in Figure 1. Playing with the constant C amounts224

to playing with the steepness of the threshold (how fast the function moves from α to225

1). Of note, in all the following numerical experiments with the diffusion filter, we use226

the steepest threshold function presented here, which corresponds to the parameter values227

α = 10−2 and C = 10−8. After testing different values it turns out that a stiff transition228

provides qualitatively better results for our application.229

[Figure 1 about here.]230

The diffusion matrix D(u) shares the same eigenvectors as S`,σ(u) but with different231

eigenvalues. Typically α takes small values while g(x) increases rapidly toward 1. When232

zones of large coherence are detected the quantity (λ1 − λ2)2 becomes large, and the dif-233

fusion weight along the slow variation direction v2 increases rapidly toward 1, resulting234

in a stronger smoothing along v2. In the opposite case, the smoothing remains isotropic235

(approximately same weight α in both direction) and relatively weak (α should be small).236

This adaptive diffusion makes it possible to follow the orientation of the main structures of237

the image, to smooth along the structures and not across them.238
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3D coherence enhancing filter239

In this study, we generalize this concept to 3D. Considering that in 3D the matrix S`,σ(u)240

has three eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 and corresponding eigenvectors v1, v2, v3, the241

following situations can occur:242

• λ1 ' λ2 ' λ3 ' 0 identify zones with almost constant values;243

• λ1 � λ2 ' λ3 ' 0 identify a planar structure in (v2, v3) with sharp discontinuity244

along v1;245

• λ1 ≥ λ2 � λ3 ' 0 identify a one dimensional structure in v3 orthogonal to the plane246

(v1, v2);247

• λ1 ≥ λ2 ≥ λ3 � 0 identifies a corner.248

The quantities (λ1 − λ2)
2 and (λ1 − λ3)

2 now measure the coherence along direction v2249

and v3 respectively.250

Based on this interpretation, we extend in this study the coherence-enhancing diffusion251

filter in 3D by defining the diffusion matrix D(u) as252

D(u) = P (u)TΣ(u)P (u), (11)

where Σ(u) is defined as253

Σ(u) =


α 0 0

0 g
(
(λ1(u)− λ2(u))2

)
0

0 0 g
(
(λ1(u)− λ3(u))2

)

 , (12)
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with g the same threshold function as in equation 10.254

In the same spirit as in the 2D case, following this definition of D(u), as soon as co-255

herent structures are detected along v2 or v3 by an increase of the quantities (λ1 − λ2)2 or256

(λ1 − λ3)2, the diffusion weight increases rapidly to 1 while remaining small and equal to257

α in the direction of the main variation v1. If no coherent structure is detected, the diffu-258

sion remains close to isotropic, with similar small α values in each direction. This extends259

the coherence-enhancing filter to the 3D case, with again the ability to smooth along de-260

tected structures and not across them. As for the 2D case, the detection of the structures is261

performed automatically thanks to the SVD of the averaged structure tensor S`,σ(u).262

Discretization of anisotropic diffusion equations263

Designing discretization schemes for anisotropic partial-differential equations is not a triv-264

ial task and is the matter of dedicated mathematical studies. In Weickert (1998), it is shown265

that the coherence enhancing anisotropic diffusion filter presented above enjoys very inter-266

esting mathematical properties at the continuous level, such as: conservation of the mean267

value, conservation of the minimum and maximum value (also known as min/max princi-268

ple), invariance to translation and rotations, and scale-space properties. The latter could be269

summarized as the property to generate smoother and smoother images by repetition of the270

application of the filter, without introducing structures with a finer scale.271

How to preserve these properties at the discrete level is a key question for designing272

discretization schemes for these equations. One central property is to be able to generate273
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non-negative discrete matrices D(u), i.e. matrices with non-negative off-diagonal terms.274

In Weickert (1998) a 2D scheme is proposed, which guarantees this non-negativity for any275

diffusion matrix such that the ratio λ1/λ2 between the highest and lowest eigenvalue in276

D(u) is bounded by 1 +
√

2 ≈ 2.41. This is the scheme we have used in Métivier and277

Brossier (2022). However no extension to 3D is proposed in Weickert (1998).278

In the current study, we rely on more sophisticated schemes proposed in Fehrenbach and279

Mirebeau (2014). These schemes are based on a Lattice-Basis-Reduction technique. They280

can be implemented in 2D and 3D, and can guarantee the non-negativity of the discretiza-281

tion of D(u) for any value of λ1/λ2 or λ1/λ3. The stencils are adapted to finite-difference282

Cartesian meshes. The computational complexity to build the stencils is low, which makes283

the method very efficient. Describing in detail how these schemes are derived is outside284

the scope of this paper, for this we refer the interested reader to Fehrenbach and Mirebeau285

(2014) and references therein.286

Implementation within a full waveform inversion algorithm287

We formulate FWI as288

min
m

f(m) = G (dcal[m], dobs) , (13)

where G(d1, d2) is a general positive function measuring the misfit between two datasets289

d1 and d2, dobs is the observed data, and dcal[m] is the calculated data obtained through290

dcal[m] = Ru[m], A(m)u = s. (14)
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In equation 14, u[m] is the modeled wavefield, solution of a wave propagation problem291

represented by the operator A(m), which can span a variety of wave propagation physics,292

from constant density acoustic to the visco-elastic anisotropic approximation. The right-293

hand side s represents the seismic active source, and R is a restriction operator extracting294

the value of the wavefield at the receiver positions to build the calculated data. In equa-295

tions 13 and 14, m represents the subsurface parameters we want to reconstruct through296

FWI, which depends on the choice of the operator A(m). In this study, we focus on the297

visco-acoustic approximation, and we perform a multi-parameter inversion for the P-wave298

velocity model and the density model in the field data application.299

The local optimization scheme for the solution of the FWI problem is: starting from an300

initial model estimation m0, build the sequence301

mk+1 = mk + αk∆mk, (15)

where αk is a linesearch parameter satisfying the Wolfe’s conditions (Nocedal and Wright,302

2006) to ensure convergence towards the nearest local minimum. The descent direction303

∆mk is computed as304

∆mk = −QkF (∇f(mk)) , (16)

where the operator F stands for the filtering/smoothing operator we apply to the gradient305

and Qk is a preconditioning matrix. We rely on the l-BFGS algorithm to estimate Qk as306

an approximation of the inverse Hessian operator (∇2f(mk))
−1 from l previously com-307

puted filtered gradient values F (∇f(mk)) ,F (∇f(mk−1)) , . . . ,F (∇f(mk−l+1)) (No-308

cedal, 1980). Note that the l−BFGS method makes it possible to combine Qk with any309

other preconditioning operator P approximating (∇2f(mk))
−1 (Métivier and Brossier,310
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2016).311

In this study, we illustrate the benefits that can be obtained from using a coherence en-312

hancing diffusion filter rather than a classical non-stationary Gaussian filter. As a reminder,313

the latter can be formulated as314

Is(x) = G(x) ∗ I(x), (17)

where315

G(x) = exp

(
− x2

2σx(x)2

)
exp

(
− y2

2σy(x)2

)
exp

(
− z2

2σz(x)2

)
. (18)

The nonstationarity of the filter comes from the functions σx(x), σy(x), σz(x) which de-316

pend on the space variable x. Based on diffraction tomography analysis (Devaney, 1984;317

Wu and Toksöz, 1987; Sirgue and Pratt, 2004), we relate these functions to a fraction of the318

local wavelength through the relations319

σx(x) =
rxvP (x)

f0
, σy(x) =

ryvP (x)

f0
, σz(x) =

rzvP (x)

f0
, (19)

where vP (x) is the P-wave velocity field, f0 is a user-defined reference frequency, and320

rx, ry, rz are three user-defined scalar parameters. The latter parameters determine the321

fraction of the local wavelength we want to take into account in the Gaussian filter.322

To implement this filter in an efficient way, we exploit the separability of the kernel323

G(x) to perform a series of 1D convolutions in space. This makes the computational cost324

of the application of this nonstationary Gaussian filter negligible compared to the gradient325

computation as is shown in the numerical experiments presented in the sequel.326
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SYNTHETIC EXPERIMENTS

We start by illustrating the properties of our coherence enhancing diffusion filter on a 2D327

synthetic case study based on the Marmousi II model.328

Data generation329

We generate observed data in the 2D acoustic approximation with variable density using330

our 2D/3D time-domain full waveform modeling and inversion engine TOYxDAC TIME,331

developed in the frame of the SEISCOPE project (Yang et al., 2018). This code uses a 4th332

order finite-differences spatial discretization and a 2nd-order finite-differences time dis-333

cretization of the velocity/stress equations. The reference data is built from the velocity334

and density models presented in Figure 2(a,b). These models have been obtained by up-335

scaling on a 5 m grid the original 1.25 m grid Marmousi II models (Martin et al., 2006). To336

generate the data, we use a fixed spread acquisition with 128 shot positions each 132.5 m337

apart, and 169 receivers each 100 m apart. The source wavelet, presented in Figure 2(c) is338

a Ricker wavelet centered on 5 Hz, low-cut below 2.5 Hz to mimic a realistic exploration339

scenario in which such low frequencies are not available. The spectrum of the wavelet is340

presented in Figure 2(d). A Gaussian white noise filtered in the frequency-band from 0 to341

12.5 Hz is added to the data. Two shot gathers of this reference dataset are presented in342

Figure 3.343

[Figure 2 about here.]344

[Figure 3 about here.]345
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Initial model and source wavelet estimation346

To generate the initial velocity model, we smooth the exact model on the 5 m grid using an347

isotropic Gaussian smoothing with a correlation length of 1250 m and we project it on a 25348

m grid. This is the “coarse” grid that we use for gradient computation and inversion. We349

compute an initial density model using Gardner’s law (Gardner et al., 1974)350

ρ(x) = 1741×
(
VP (x)

1000

)0.25

. (20)

These initial models are presented in Figure 4(a,b). We estimate the source wavelet from351

these initial velocity and density models using the deconvolution approach of Pratt (1999).352

The resulting estimated source wavelet and its spectrum are presented in Figure 4(c,d). Due353

to the inaccuracy of the initial velocity and density models and the noise on the data, the354

estimated wavelet exhibits a lower amplitude than the true wavelet as well as a less smooth355

amplitude spectrum.356

[Figure 4 about here.]357

Gradient: comparison between Gaussian and anisotropic diffusion fil-358

ter359

We start by comparing the FWI gradient obtained with the conventional Gaussian smooth-360

ing described in equations 17 to 19 with the one obtained through the anisotropic diffusion361

smoothing considered in this study.362

For the Gaussian smoothing, we set f0 in equation 19 to 5 Hz, which corresponds to the363
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central frequency of the wavelet used to generate the data. In Figure 5 we present the gra-364

dient without smoothing together with the gradient after a Gaussian smoothing is applied,365

with rx = rz and values for these two parameters varying from 0.1 to 0.5. The gradients are366

presented alone (left column), and with level set superimposed (right column) to emphasize367

the structural information. It can be seen that, as (rx, rz) increase, the smoothing effect is368

more and more pronounced. The structures at depth, below 2 km, are also progressively369

erased from the gradient.370

In comparison, we present in Figure 6 the same progressive smoothing using this time371

the coherence enhancing diffusion filter, with diffusion iterations going from 50 to 800.372

In this experiment the noise and coherence scales σ and ρ are both set to 50 m (two dis-373

cretization points on the coarse grid). As the number of iterations increases, the smoothing374

effect is also more pronounced however it appears that the structural information is pre-375

served along the smoothing process, especially at depths below 2 km. This displays all the376

interest of using this filter for FWI: the spurious small oscillations due to noise and uneven377

illumination are removed, while the main structures of the gradient are preserved.378

To further highlight this point, we compare in Figure 7 the gradient obtained with Gaus-379

sian smoothing and rx = rz = 0.4 with the gradient obtained with nonlinear anisotropic380

diffusion and 200 iterations. This provides approximately the same “level” of smoothing.381

However, one can appreciate how much of the structural information is preserved by using382

the diffusion filter. These observations are confirmed by kx, kz wavenumber spectra dis-383

played in Figures 7(b,d). We see that the extent of the two spectra is approximately the384

same in the kx dimension, while it is larger in the kz dimension for the gradient obtained385
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by anisotropic diffusion. The loss of structural information using the Gaussian smoothing386

appears indeed mostly in the vertical direction, while the level of details in the horizontal387

direction is approximately the same for the two gradients.388

[Figure 5 about here.]389

[Figure 6 about here.]390

[Figure 7 about here.]391

Computational cost: linear vs nonlinear filter, Weickert vs Fehrenbach392

stencil393

What is the increase in computational cost due to the nonlinear anisotropic diffusion filter?394

We present some statistics in Table 1. The computational cost is driven here by the solution395

of the forward and adjoint wave equations. The smoothing time using the non-stationary396

Gaussian filter is negligible. When it comes to the coherence enhancing diffusion filter,397

together with the stencil of Fehrenbach and Mirebeau (2014), this cost increases to 25% of398

the total computational time for the gradient. This is non-negligible and might be problem-399

atic in the perspective of 3D applications. The computational cost here might be actually400

driven by two factors: the finite-difference stencil, which might be wider when using the401

one from Fehrenbach and Mirebeau (2014) instead of the one from Weickert (1998), and402

the nonlinearity of the diffusion filter, which requires us to rebuild the diffusion tensor, and403

to perform as many SVD as grid points, at each iteration of the diffusion process.404
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As can be seen in Table 1, using the same nonlinear anisotropic diffusion with the sten-405

cil from Weickert (1998) slightly reduces the computational cost to 23%. In comparison,406

switching to a linear anisotropic diffusion process drastically reduces the computational407

effort: the time for smoothing is reduced to 3.7% of the total time for building the gradient.408

We compute the relative error e(x) between the gradient gnonlin(x) obtained after non-409

linear anisotropic diffusion filter and the gradient glin(x) obtained after using a linear410

anisotropic diffusion filter as411

e(x) = 100
gnonlin(x)− glin(x)

||gnonlin||L2

. (21)

In Figure 8, we present this error map for the gradients presented in Figure 7 and the ones412

obtained with a linear anisotropic diffusion filter. The highest error value reaches locally413

0.5%. The error is weaker and more localized for a small number of diffusion iterations414

(50) and simultaneously increases in amplitude and spreads over the model as the number415

of iterations grows (up to 800). This is expected: the nonlinear effect increases with the416

number of iterations as, on the one hand, the diffusion matrix D(u) is recomputed at each417

diffusion iteration (nonlinear diffusion) while, on the other hand, it is kept the same for all418

diffusion iterations (linear diffusion).419

Overall, the error remains small and relatively localized for the number of iterations420

considered here. This indicates that the nonlinearity of the filter does not play a significant421

role in this example. In the remainder of the study, we will thus rely on a linear anisotropic422

filtering, for which the anisotropic diffusion matrix D(u) is computed at the first diffu-423

sion iteration and is not updated throughout the diffusion iterations. We will also use the424

Fehrenbach and Mirebeau (2014) scheme, which presents better numerical properties and425
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is developed for 2D and 3D filtering.426

[Figure 8 about here.]427

[Table 1 about here.]428

Inversion: comparison between Gaussian and linear anisotropic diffu-429

sion filter430

To conclude this 2D synthetic test, we compare the results obtained after 50 FWI iterations431

using the non-stationary Gaussian filter and the linear anisotropic diffusion filter, starting432

from the P-wave velocity and density models presented in Figure 4(a,b). We invert only for433

the P-wave velocity, the density is not updated (passive parameter). We use the estimated434

wavelet presented in Figure 4(c,d). The results are presented in Figure 9. While the final435

models (Fig. 9(a,b)) are similar, especially in the shallowest part above 2 km depth, the436

resolution of the final model obtained with the anisotropic diffusion filter is higher. The437

bent layering structure below 3 km depth is better reconstructed especially in the central438

part between 6 and 12 km in horizontal distance. The central structure, between 1.5 and439

2.5 km depth and between 6 and 12 km in horizontal distance is also better resolved, with440

higher contrasts between fast and slow layers. This is confirmed in Figure 9(c,d) where441

we compare the decrease of the data misfit and the model misfit along the FWI iterations,442

depending on the choice of the filter. Using the anisotropic diffusion filter, both the data443

and model errors decrease faster.444
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[Figure 9 about here.]445

APPLICATION TO THE 3D OBC FIELD DATA

We apply in this section our coherence enhancing diffusion filter and compare it to the stan-446

dard nonstationary Gaussian convolution filter in the framework of time-domain FWI of a447

3D OBC field data. Unlike most of the studies performed on a similar environment (Sirgue448

et al., 2010; Operto et al., 2015; Kamath et al., 2021; Pladys et al., 2022), we consider here449

a multi-parameter P-wave velocity (vP ), density (ρ) inversion. The reconstruction of the450

density together with the vertical velocity from a similar dataset has been tackled only in451

the frequency-domain in the work of Operto and Miniussi (2018).452

Field data presentation and pre-processing453

The data we consider has been recorded in a shallow water environment, in the North sea.454

Several FWI studies have focused on similar data since the seminal paper of Sirgue et al.455

(2010), which presents the first 3D FWI application to industrial field data. The particular456

dataset we use is a 4-components ocean bottom cable (OBC) dataset, with 2048 receivers457

deployed on the seabed and 50824 shots at 5 m depth. The area covered by the shots is458

around 145 km2. We present in Figure 11 the acquisition layout. The field is characterized459

by a shallow water environment (the water column is approximately constant equal to 70460

m in the whole domain) and an anticlinal in chalk in the Upper Cretaceous Hod and Tor461

formations. An apparent low velocity anomaly in the upper part of the model from 1 km462
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to 2 km depth in the center of the volume is the main target in terms of imaging, as well as463

the structure below it, the imaging of which is made difficult by this low velocity anomaly.464

The Tertiary overburden is relatively simple and free of complex structures.465

[Figure 10 about here.]466

[Figure 11 about here.]467

We focus on the hydrophone component of the data. We apply source-receiver reci-468

procity to reduce the computational cost. Therefore, in the following, what is called469

common shot gather (CSG) refers actually to a common receiver gather (CRG). The pre-470

processing of the data is minimal: we apply a simple despiking, and apply a minimum-471

phase band-pass filter to the data to generate three distinct datasets in the 2.5 - 5 Hz, 2.5472

- 7 Hz and 2.5 - 10 Hz frequency band respectively. For each dataset, we compute the473

total amplitude of all CSG and remove the ones with anomalous amplitudes. Four of them474

are excluded in bands 2.5 - 5 Hz and 2.5 - 7 Hz, and one only is excluded in the band475

2.5 - 10 Hz (the signal over noise ratio increases with the frequency bandwidth). Finally,476

the visco-acoustic approximation we use makes it impossible to model the Schölte waves477

propagating at the fluid-solid interface. These waves are thus muted from the observed data,478

using a simple time-windowing based on a linear velocity of approximately 400 m.s−1 for479

these waves. As an illustration, we present in Figure 12 two CSG corresponding to the480

positions of cables A and B, before and after the mute is applied, filtered in the 2.5 - 10481

Hz band. We choose these CSG because cable A intersects the low velocity anomaly while482

cable B is further away from the low velocity anomaly. We reproduce a data anatomy anal-483
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ysis similar to the one presented in Operto et al. (2015). The red, white, black arrows point484

to the reflection from a shallow reflector, the top of the low velocity anomaly and the top485

of the structure below the low velocity anomaly, respectively. The solid arrows point to486

pre-critical reflections, while the dashed ones point to post-critical reflections.487

[Figure 12 about here.]488

FWI setup489

The inversion results presented here are obtained using the same 2D/3D time-domain visco-490

acoustic code we have used for the 2D Marmousi experiment (TOYxDAC TIME, Yang491

et al. (2018)). We use a 3D visco-acoustic anisotropic modeling under the vertically trans-492

verse isotropy (VTI) approximation. The most significant anisotropy effect can be approx-493

imated as a VTI anisotropy and occur mostly from 0.6 km to 3 km depth approximately.494

It is due to the presence of shale whose specific crystalline structure generate different495

wavespeeds for vertically and horizontally propagating waves (intrinsic anisotropy) and496

also interbedding of shale and sandstone in the shallow part, and claystone and limestone497

in the deeper part (extrinsic anisotropy). A similar situation is described in the work of498

Gholami (2012). Introducing attenuation is also found crucial to properly reproduce the499

field data: the low velocity anomaly exhibits a significant attenuation effect on the wave-500

field propagation.501

Five parameters are used to describe the subsurface mechanical properties: the vertical502

P-wave velocity vP , the density ρ, the quality factorQP , and the Thomsen parameters ε and503
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δ (Thomsen, 1986). During the inversion, we will invert only for vP and ρ, while keeping504

QP , ε and δ constant, equal to their initial values (passive parameters). The initial model for505

vP has been provided to us courtesy of AkerBP and is displayed in Figure 13. It is obtained506

through reflection travel-time tomography. On top of a sharp reflector between 2.7 and 2.8507

km depth, a smooth dark blue blob is visible, indicative of the low velocity anomaly . The508

inline and crossline vertical sections in Figures 13(b,c) show traversing and adjacent slices509

to this low velocity anomaly .510

The initial model for ρ is derived from the initial vP model based on the following511

Gardner’s law (Gardner et al., 1974)512

ρ = 309.6V 0.25
p . (22)

It is displayed in Figure 14 and exhibits the same structure as vP . The QP model is taken513

constant, equal to 1000 in the water layer, and equal to 200 everywhere else, as in Operto514

et al. (2015) and Kamath et al. (2021). It is shown in Kamath et al. (2021) that in the515

considered frequency band, inverting for the QP model and deriving a more refined QP516

estimation does not provide a substantial improvement in the data fit using a time-domain517

FWI algorithm. In terms of implementation, standard linear solid (SLS) approximation518

is used in TOYxDAC TIME to account for the attenuation. We use three mechanisms as519

in Kamath et al. (2021). The ε and δ models are obtained by tomography and well log520

information respectively, and have been provided courtesy of AkerBP as well. We display521

the parameter η in Figure 15, computed as522

ε− δ
1− 2δ

, (23)
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which can be roughly interpreted as a percentage of VTI anisotropy (Fig.15). The VTI523

anisotropy is pronounced starting from above 1 km depth at the top of the low velocity524

anomaly down to the reflector delineating the structure below. Anisotropy is absent further525

below.526

[Figure 13 about here.]527

[Figure 14 about here.]528

[Figure 15 about here.]529

We use a conventional multi-scale inversion (Bunks et al., 1995), where the model in-530

verted in band i−1 serves as initial model for the model in band i. The spatial discretization531

step h is set respectively to 70, 50 and 35 m for frequency bands 2.5 -5 Hz, 2.5 - 7 Hz, and532

2.5 - 10 Hz. This satisfies the usual criterion to have at least 4 points per wavelength us-533

ing our 4-th order finite difference discretization scheme in space to minimize numerical534

dispersion while ensuring minimal computational cost (Igel, 2017). To decrease the com-535

putational cost of the inversion further we rely on a source subsampling strategy (Warner536

et al., 2013; Kamath et al., 2021; Pladys et al., 2022). The initial ensemble of shots is de-537

composed in 16 groups, the first 15 being composed of 128 shots, and the 16th containing538

124 sources for the two bands 2.5 - 5 Hz and 2.5 - 7 Hz and 127 sources for the band 2.5539

- 10 Hz. One inversion over a given frequency band then consists in performing 3 l-BFGS540

iterations over each group, leading to 48 iterations in total. The 16 groups do not over-541

lap (one shot belongs to a single group) to ensure each shot is used once per inversion.542
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The computational savings are substantial compared to the same inversion ran with all the543

sources at the same time (reduction from a factor of 16) with a very weak imprint on the544

inversion result (Kamath et al., 2021).545

As the receivers are approximately all at the same shallow water depth (70 m), with sim-546

ilar coupling conditions, we consider a single source wavelet for all shots after reciprocity.547

To estimate this common source wavelet, we rely on the conventional frequency-domain548

deconvolution introduced by Pratt (1999). We use a time-windowing strategy to isolate the549

direct waves from the data, focusing on short offsets and limited propagation time. This550

estimation is performed once per frequency band, over 128 randomly selected shots. Note551

that this subgroup does not correspond to any of the 16 groups used in the inversion.552

The preconditioner we use is similar to the one used in Kamath et al. (2021, Appendix553

B). It applies both to vP and ρ gradient, and consists in an illumination compensation554

through the wavefield values. The Hessian approximation is diagonal where each element555

is computed as an integration over time and over shots of the source wavefield. For the556

shallow part, from z = 0 to z = 800 m, these wavefield based values are replaced with a557

linear function of depth to avoid a strong imprint of uneven illumination associated with the558

source subsampling strategy. We also use a unity-based normalization for both parameters559

to recast the values of the inverted parameters between 0 and 1, based on a given authorized560

range of variation for both parameters (Yang et al., 2018). The velocity is bounded between561

1280 m.s−1 and 3650 m.s−1. The density is bounded between 1000 kg.m−3 and 2800562

kg.m−3.563

As is documented in Pladys et al. (2022), outside a zone delineated by the envelope564
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of the shot positions, the subsurface model is weakly updated. The reason is the poor il-565

lumination hence a poor sensitivity to the seismic data in this zone. As a result, FWI has566

a tendency to create a fictitious boundary along this envelope that might finally result in567

artificial reflections in the synthetic data. To prevent this effect, we implement an extrapo-568

lation strategy using a nearest neighbor strategy. The points in the gradient outside the well569

illuminated zone are affected with the value of the nearest point within the well illuminated570

zone. We reduce the size of the extrapolation stencil progressively with depth to mimic571

the geometrical spreading of the wavefield and the resulting weaker illumination at depth.572

This is a systematization of what is implemented in Pladys et al. (2022), where the same573

extrapolation scheme is used on the final model after each inversion.574

To illustrate the benefit we can obtain from using an anisotropic diffusion filter for575

FWI, we perform a twin experiment. With the exact same configuration (multi-scale strat-576

egy, source subsampling groups, source wavelet estimation, preconditioner, extrapolation)577

we perform two inversions, one with the nonstationary Gaussian filter, the second with the578

anisotropic diffusion filter. For the Gaussian filter, the reference wavelength is computed579

from equation 18 where the reference frequency f0 is set to 3.75, 5.5 and 6.5 Hz respec-580

tively for the frequency bands 2.5 - 5 Hz, 2.5 - 7 Hz, and 2.5 - 10 Hz. The parameter rx, ry581

and rz from equation 19 are chosen as582

rx = 0.4, ry = 0.4, rz = 0.3, (24)

to account for the layered structure of the medium (smaller smoothing in the z direction),583

while remaining efficient to remove the acquisition footprint in the shallowest part of the584

model.585
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For the anisotropic diffusion filter, we rely on its linear version, and we use the 3D586

adaptive discretization stencil from Fehrenbach and Mirebeau (2014). The noise and co-587

herence scale σ and ` are adapted to the spatial direction x, y or z to reflect the layered588

structure of the medium as for the Gaussian filter design. The convolution steps described589

in equation 7 to build the diffusion tensor are thus performed using a Gaussian kernel as in590

equation 18 where we would have591

σx = 2h, σy = 2h, σz = h, (25)

with h varying from 70, 50 and 35 m depending on the frequency band as already stated. We592

use the same smoothing both from the noise and coherence scale (`x = σx, `y = σy, `z =593

σz). In addition, the number of iterations for the anisotropic diffusion is set respectively to594

80, 40 and 20 depending on the frequency band. These values have been set by trial and595

error on an initial gradient estimation for each band.596

Finally, we note here that in both cases (Gaussian and diffusion filters), the same filter597

is applied to the P-wave velocity and density gradients.598

Multi-parameter FWI results599

We present in Figures 16 and 17 several 2D slices of the final 3D velocity models estimated600

by FWI using the Gaussian and anisotropic diffusion filters respectively. As is documented601

in previous studies (Sirgue et al., 2010; Operto et al., 2015; Operto and Miniussi, 2018),602

we can see in the constant depth sections (Fig.16(a) and Fig. 17(a)) glacial sand channels603

deposits at z = 175 m, a low-velocity zone intersected by scrapes left by drifting icebergs604
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on the paleo-seafloor at z = 500 m, and the refined shape of the low velocity anomaly at605

z = 1000 m. These structures are absent from the initial tomography model in Figure 13.606

The layering horizontal structure of the low velocity anomaly is revealed by FWI from the607

smooth blob of the initial model in the traversing and adjacent slices presented in Figures608

16(b,c) and 17(b,c). A chimney connecting the low velocity anomaly to the top part of the609

model also appears (Fig. 16(b) and 17(b)). Deeper, the base cretaceous reflector between610

3.5 and 3.7 km depth is revealed.611

A comparison between the vP reconstruction results with the Gaussian (Fig. 16) and612

anisotropic diffusion (Fig.17) filters shows an enhancement of the resolution using the dif-613

fusion filter. This enhancement seems to vary with depth. In the shallow part, down to614

1 km, the results remain very similar, even if some differences can be noted, especially a615

sharper delineation of the top of the low velocity anomaly using the diffusion filter. Be-616

tween 1 km and the top of the structure below, the resolution enhancement is more visible.617

The low velocity anomaly layered structure is made finer and more coherent thanks to the618

diffusion filter. More details are also visible on the chimney displayed in the second inline619

section. Finally, the resolution enhancement is striking in the deeper part of the model.620

The reconstruction of the base cretaceous reflector between 3.5 and 3.7 km depth is much621

clearer using the diffusion filter compared with the Gaussian filter results.622

[Figure 16 about here.]623

[Figure 17 about here.]624

The same trend is visible when comparing the density reconstruction results (Fig.18625
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and 19). Of note, both density reconstructions are quite stable, without the need to rely626

on specific data-weighting workflow or complicated preconditioning strategy. The density627

reconstruction appears to be less simple in the frequency-domain FWI study of Operto and628

Miniussi (2018) where dedicated frequency grouping strategies have to be implemented to629

stabilize its reconstruction. We might benefit here from the large redundancy of the time-630

domain medium sampling compared with the frequency-domain approach. The density631

values which are attained seem compatible with geological interpretation, with low density632

values at the core of the low velocity anomaly . The density models are also richer in633

high wavenumbers, giving information on the structure of the model and making more634

evident the horizontal and sub-horizontal layers traversing the low velocity anomaly, and635

those below. Comparing the results obtained with the anisotropic diffusion filter with those636

obtained with the Gaussian filter, the resolution increase obtained thanks to the diffusion637

filter is striking. All the aforementioned features appear much clearer in the result obtained638

with the anisotropic diffusion filter, this resolution improvement, as for vP , increasing with639

depth.640

[Figure 18 about here.]641

[Figure 19 about here.]642

As we have access simultaneously to P-wave velocity and density, we build impedance643

cubes I(x) as644

I(x) = ρ(x)vP (x). (26)
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From it we derive a reflectivity image by computing the impedance derivative across the645

main interfaces, following646

∂I

∂n
=
∂I

∂x
sin θ cosφ+

∂I

∂y
sin θ sinφ+

∂I

∂z
cos θ, (27)

where θ(x) and φ(x) are dip and azimuth angles normal to the subsurface reflectors. To ob-647

tain θ(x) and φ(x), we proceed similarly as what we do to design the anisotropic diffusion648

tensor. We perform a SVD of the pre-smoothed structure tensor matrix associated with the649

impedance volume. This SVD provides us with the direction of main variation associated650

with the larger eigenvalues and the plane orthogonal to this direction of slower variations.651

From this orientation we can deduce the angles θ(x) and φ(x). This image building strat-652

egy has been popularized by Huang et al. (2021) under the name of full wavefield imaging.653

Its purpose is to derive interpretable images directly from high resolution FWI results.654

We present in Figures 20 and 21 a comparison between the reflectivity images obtained655

using the Gaussian filter and the anisotropic diffusion filter respectively. The resolution656

increase noted already on the velocity and density reconstruction is even more striking.657

Thin layers within and around the low velocity anomaly are made apparent in the shallow658

part around 1 km depth which are not visible using the Gaussian filter. The main reflector659

delineating the interface between the low velocity anomaly and the structure below is made660

flatter and thinner. The deeper structure of the model, below 3 km and down to 4 km is661

revealed, with a clearly visible base cretaceous reflector between 3.5 and 3.7 km.662

[Figure 20 about here.]663

[Figure 21 about here.]664
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The overall resolution of the reflectivity images obtained using the diffusion filter ap-665

pears higher. To further analyze this point, we compare in Figures 22 and 23 the wavenum-666

ber spectra of the reflectivity images vertical profiles presented in Figures 20(b,c) and667

21(b,c). The spread of the wavenumber spectrum of the images derived from the FWI668

results using the diffusion filter is broader than their counterpart obtained using the Gaus-669

sian filter, which is indicative of a higher resolution.670

[Figure 22 about here.]671

[Figure 23 about here.]672

We summarize this comparison with the 3D views of the velocity, density, and reflec-673

tivity volumes computed using the Gaussian (Fig.24) and anisotropic diffusion (Fig.25)674

filters. We have chosen to cut the cube in sections making clear the connection between675

what is identified as a chimney in the vertical section and the low velocity anomaly visible676

at 1 km depth in the constant depth section. In this 3D representation, the constant depth677

section at 3.5 km depth is also made visible to highlight the gain in resolution at this depth678

obtained using the anisotropic diffusion filter. This is particularly clear in the density and679

reflectivity image models.680

[Figure 24 about here.]681

[Figure 25 about here.]682
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Quality control683

To assess the quality of the results we start by investigating the decrease of the misfit684

function over the course of iterations, for the three frequency bands 2.5 - 5 Hz, 2.5 - 7685

Hz, 2.5 - 10 Hz (Fig. 26). The misfit function is normalized to 1 at the beginning of each686

band, and 48 iterations are performed on each band. As we rely on a source subsampling687

strategy, we can identify jumps in the misfit function, each 3 iterations, associated with688

the inversion of data associated with a new subgroup of sources. This pattern is especially689

visible in the first and last frequency band, while the convergence appears smoother in690

the second frequency band. Interestingly, we can observe that FWI using the anisotropic691

diffusion filter achieves a faster decrease of the misfit function on all of the three frequency692

bands. This is particularly pronounced on the 2.5 - 7 Hz band and at the beginning of the693

2.5 - 10 Hz but is also visible in the 2.5 - 5 Hz band. This confirms what has been observed694

on the 2D Marmousi synthetic experiment: enhancing the coherent features in the gradient695

can accelerate the convergence of the FWI machinery.696

[Figure 26 about here.]697

We compare the fit to the data on the two CSG aligned with cable A and cable B pre-698

sented in Figure 12. We adopt a mirror display, where the calculated data is presented699

surrounded by the observed data on its left and right sides. The calculated data is mirrored700

so as to highlight the fit at zero offset on the left and at far offset on the right. We per-701

form this comparison for the data calculated in the initial model and the two final models702

obtained using the two filters. This comparison is presented in Figures 27 and 28. We can703
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observe that both FWI results achieve a remarkable fit at far offset, which indicates a good704

match of diving events and post-critical reflections. This shows that the long wavelength705

structures of the model have been correctly resolved. As mentioned in Operto et al. (2015),706

the presence in the initial model of the main reflector makes it possible to predict the reflec-707

tions. No other reflected events are predicted by the initial model. In the two FWI models,708

the reflection on the shallow reflector on top of the low velocity anomaly and below are709

correctly matched. However, one can note a significant difference in the amplitude match710

of the reflections between the data predicted using the model obtained with the Gaussian711

filter and the data predicted using the model obtained using the anisotropic diffusion filter.712

In the latter, the amplitude of all the predicted reflected events is much stronger and closer713

to the energy of the reflected events in the field data.714

[Figure 27 about here.]715

[Figure 28 about here.]716

This is confirmed in Figure 29, where we superimpose the predicted data in blue/red717

colorscale to the field data in black/white colorscale. A good fit is indicated by the absence718

of white and red in the final image. We see that the predicted data in both Gaussian filter and719

anisotropic diffusion filter FWI models is satisfactory for the post-critical reflection part,720

however for the pre-critical reflection, the fit in amplitude of the reflected event achieved721

by the anisotropic filter FWI model is better, especially for late events (t > 4 s).722

[Figure 29 about here.]723
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To complement the quality control, we have three sonic logs, whose positions are dis-724

played in Figure 11. The fit to the sonic logs is presented in Figure 30. We can observe725

that both FWI models nicely follow the trend of the logs, correcting from the initial guess,726

as achieved in previous studies. The differences between the two FWI models are subtle727

but exist. In the low velocity anomaly (well log 1), stronger variations can be observed in728

the anisotropic diffusion filter FWI model, which is closer to the log data. Stronger varia-729

tions are also visible in the well log 2. Well log 3 is the only one providing information at730

depths, below 3 km. It appears that only the anisotropic diffusion filter FWI model presents731

variations in agreement with the log data at this depth and below. The Gaussian filter FWI732

model remains constant in this zone.733

[Figure 30 about here.]734

DISCUSSION

The results presented in the previous section bear different mark of interest. First, it appears735

that the use of the linear anisotropic diffusion filter significantly improves the resolution of736

the estimated models, especially in their deeper parts, compared with the use of a conven-737

tional Gaussian filter. In the multi-parameter settings we are exploring, this is especially738

true for the density model, which is much sharper in the estimation using the coherence739

enhancing diffusion filter. From this sharper density model, it is possible to build, together740

with the vertical velocity model, a high resolution impedance model, and derive from it a741

sharp reflectivity image volume which brings valuable structural information down to 4 km742

depth.743
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The reason why the coherence enhancing diffusion filter outperforms the Gaussian filter744

could be related to the crude estimation of the expected resolution which serves to deter-745

mine the correlation length used in the Gaussian filter. First, as the velocity increases at746

depth, the correlation length of the Gaussian filter naturally increases with depth, which747

provides a tendency to oversmooth the deeper parts of the model. This is also seen in the748

Marmousi synthetic experiment. Second, more accurate expected resolution maps could be749

inferred by integrating information on the illumination angles. From diffraction analysis750

(Devaney, 1984; Wu and Toksöz, 1987; Sirgue and Pratt, 2004), it is well known that the751

expected resolution is driven by the local velocity and mean frequency, multiplied by a752

cosine of half the illumination angle, where the illumination angle is the angle formed by753

the rays connecting the source and the receiver to the imaged diffraction point. In other754

words, by neglecting the information on the illumination angle, the resolution power of755

FWI is underestimated. In addition, the same smoothing is applied to both the velocity and756

density models, while the latter is sensitive only to short angle reflection data. This leads to757

sever oversmoothing of the density model and can explain the loss of resolution observed758

by using the Gaussian filter.759

On the other hand, the coherence enhancing diffusion filter only tries to enhance coher-760

ent features already present in the gradient, therefore avoiding conflict between expected761

resolution and actual features present in the gradient. This is to us the main interest for762

using this filter instead of the Gaussian filter.763

The tuning parameters for the anisotropic diffusion filter appear to be relatively light.764

The parameters to tune are: the constants α andC in the threshold function g in equation 10,765
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the noise and coherence scale σ and `, and the number of iterations to solve the anisotropic766

diffusion equation. Regarding α, a value of 10−2 ensure a total anisotropy ratio of a factor767

100 which seems sufficient to capture most of the structure in the gradient. The value768

of 10−8 for C ensures a fast transition from weak to strong diffusion. For the noise and769

coherence scale σ and `, it appears that selecting the same values for both parameters is770

efficient. This reduces the number of parameters to set. We have adapted them to the finite-771

difference grid used to solve the wave equation in our multi-scale approach, using a size of772

one or two discretization steps h depending on the direction. Given the fact that the model773

under investigation exhibits more regularity in the horizontal directions x and y we have774

taken σ and ` as respectively 2h, 2h and h in the x, y, z directions. This is a light injection775

of prior information on the model structure. Finally, regarding the number of diffusion776

iterations, we set it manually by trial-and-error, but an initial guess can be found benefiting777

from the analogy between Gaussian smoothing and isotropic diffusion (equations 3 and 4).778

Using this analogy, one can find a diffusion time T based on a given smoothing length L779

and devise the corresponding number of diffusion iterations based on the diffusion time-780

step, controlled by the CFL of the scheme of Fehrenbach and Mirebeau (2014). On top of781

that, the same filter is applied here to the velocity and density model without the need to782

design a specific filter for each parameter.783

We summarize the discussion regarding computational aspect in the Table 2. The re-784

sults reported here have been obtained on an Intel Skylake CPU machine with 32 cores785

at 2.1 GHz per node for the 2.5 - 5 Hz band (GRICAD/CIMENT local facility, Grenoble,786

France) and on Irene-ROME (TGCC, French national computing center), an AMD Epyc787
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CPU machine with 64 cores at 2.6 GHz per processors and 2 processors per node. Our code788

TOYxDAC TIME implements a double level of parallelization. The outer one is at the shot789

level. The inner one is an OpenMP acceleration for the computation of the incident and790

adjoint wavefields for each source. We activate it only for the 2.5 - 7 Hz and 2.5 - 10 Hz791

frequency bands. In these bands, we use respectively 8 and 64 OpenMP threads per source.792

As we use batches of 128 shots with our subsampling strategy, FWI thus runs on 128 cores793

on the 2.5 - 5 Hz band, then 1024 cores on the 2.5 - 7 Hz band, and 8192 cores on the 2.5 -794

10 Hz. We see in Table 2 that the elapsed time for the incident and adjoint field computation795

(plus the cost of recomputing the incident field backward in time, see Yang et al. (2016))796

remains almost constant along the frequency bands thanks to the OpenMP acceleration. We797

also see that the computational time for the Gaussian filter is always negligible, less than798

1% of the total time for the gradient computation. In counterpart, the computational time799

for the anisotropic diffusion filter, despite we use its linear version, is non negligible, and800

reaches almost 25 % of the computation time for one gradient in the last frequency band.801

This is due to the fact that the anisotropic diffusion filtering is performed on a single core802

and does not take advantage of the OpenMP acceleration. One shall keep in mind that the803

computational complexity of the diffusion process is roughly in O(N3) with N being the804

number of discrete points in one direction of space, while the complexity for solving the805

wave equation is in O(N4). This favors a better ratio between the time spent in filtering806

and the time spent in computing the wavefields at higher frequency. This is the reason807

why despite we lack the OpenMP parallelization for the anisotropic diffusion filter the in-808

crease in computational cost is maintained at a reasonable fraction of the global gradient809

computation time.810
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[Table 2 about here.]811

One clear improvement to bring to the current implementation is to take benefit from the812

inner level of parallelization within our FWI algorithm. While a first option is to implement813

OpenMP directive in the solution of the anisotropic diffusion equation, a more interesting814

alternative we are currently investigating is to move to a domain decomposition algorithm815

within the TOYxDAC TIME framework for the inner parallellization instead of OpenMP.816

This would make it possible to accelerate both the incident and adjoint field computation817

with small communications at each time steps, but also to solve the diffusion equation818

through this domain decomposition machinery. This is the strategy which is currently819

implemented in our (visco-)elastic full waveform modeling and inversion code SEM46820

(Trinh et al., 2017; Cao et al., 2022).821

This development would bring additional value to the current TOYxDAC TIME pack-822

age making it possible to target much larger acoustic FWI problems, as the scalability of823

the OpenMP directives is limited and depends on the number cores per node sharing the824

same memory. Moving to a domain decomposition paradigm could also alleviate the gra-825

dient computation by making it possible to store the incident wavefield on the subdomains826

and avoid recomputing it as we are currently doing. This recomputation strategy avoids827

memory bottleneck but is time consuming especially for viscous media such as the one we828

consider here (Yang et al., 2016). In the perspective of the field data application, such a do-829

main decomposition algorithm would make it possible to invert for higher frequency bands830

up to 20 Hz or higher. We are interested in performing such investigation as the results831

presented here are promising, especially regarding the multi-parameter aspect. We could832
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expect that on such a wider frequency-band, the data becomes more sensitive to attenua-833

tion variations. We would be interested in assessing if we can perform a high resolution834

inversion for the vertical velocity, the density, and the quality factor simultaneously, using835

our time-domain algorithm, as the attempt presented in Kamath et al. (2021). This could836

bring interesting discussion also regarding the current trend toward very high resolution837

FWI, which seems to be done with acoustic mono-parameter modeling, and sometimes in838

the limit of numerical dispersion regarding the modeling schemes which are used.839

On a side note regarding computing efficiency, we would like to mention that a porting840

of the coherence enhancing diffusion filter on GPU architecture has been performed. It is841

made available as a standalone open-source package1. This work differs from previous im-842

plementations of similar PDEs by the use of wide adaptive stencils, which allows to handle843

arbitrary anisotropy while preserving solution positivity, but could be expected to be less844

suited to GPUs due to data non-locality. Two points raise specific implementation difficul-845

ties. First, the computation of the eigenvalues of the structure tensors, for which a custom846

method was used, since the standard libraries were found to have excessively high memory847

usage and to be significantly slower. Second, the time step iterations, for which a custom848

kernel using atomic-addition operations is used, rather than the standard sparse matrix li-849

braries, for the same reasons. Other routines could be used as is from the standard libraries,850

such as the convolutions involved in the structure tensor construction, or are embarrassingly851

parallel hence could be implemented in a straightforward manner, such as a key ingredient852

of the chosen numerical method known as Selling’s matrix decomposition. Filtering the853

1https://github.com/Mirebeau/AdaptiveGridDiscretizations
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gradient for the field data application in the 2.5 - 10 Hz frequency band (131× 259× 459854

≈ 15 million points) was run on a laptop equipped with an NVIDIA RTX 4000 GPU. After855

a preprocessing step of 0.0046 s (construction of the diffusion tensors and of the scheme856

coefficients), a sequence of 20 time steps takes 0.179 s. This is a speed up by two orders of857

magnitude over the CPU implementation, which opens promising perspectives, despite its858

current limitation to a specific subtask of the seismic imaging pipeline.859

Finally, the next leap forward regarding the inversion of such shallow environment OBC860

field data relies on interpreting the multi-component data, which is currently disregarded.861

This should be done taking into account a more accurate visco-elastic modeling of the862

wave propagation, with the potentiality to recover both P-wave and S-wave velocities. This863

is another line of investigation we are currently following (Cao et al., 2022).864

CONCLUSION

We present in this study a novel filtering technique for the gradient smoothing step in FWI.865

This filtering technique is based on the solution of an anisotropic diffusion equation. The866

diffusion tensor is built automatically from the structure tensor associated with the gradient,867

using a coherence enhancing technique. Compared to other directional filtering methods,868

this diffusion based method inherits from the stability properties of a partial-differential-869

equations based smoothing technique: preservation of the minimum, maximum and mean870

values, independence to translation and rotations, scale-space property. Compared to pre-871

vious work on diffusion based smoothing in FWI, what we propose here is a systematic872

3D extension of the coherence-enhancing technique of Weickert (1998) which provides873
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a natural and efficient way to build the anisotropic diffusion operator. We illustrate the874

behavior of this filtering technique first on a 2D synthetic experiment on Marmousi. By875

comparison with a conventional isotropic Gaussian smoothing, we show the interest of a876

structure-oriented smoothing, which makes it possible to accelerate the convergence of the877

FWI scheme. We then study the interest for such a filtering technique in the framework878

of a 3D field data application on a North Sea OBC dataset. The results obtained using the879

coherence enhancing diffusion filter are compared with those obtained using the conven-880

tional nonstationary Gaussian technique. The resolution of the former is improved at depth,881

making more visible deep reflectors at the reservoir level. The 3D density volume is much882

better resolved, and a 3D reflectivity image volume deduced from the vertical velocity and883

density models clearly illustrate the improvement of the overall resolution of the estimated884

models. Standard quality controls are applied to show that the fit of the reflected energy885

is better achieved using the coherence enhancing diffusion filter, which we relate to the886

resolution improvement we observe.887
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Figure 1: Threshold function g(x) depending on the constant C for α = 10−2.

61



Figure 2: (a) Velocity and (b) density 5 m grid models used as reference to build the data
for the Marmousi II synthetic experiment. (c) Source wavelet used to generate the data
using these models and (d) its spectrum.
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Figure 3: (a) Left most and (b) central shot gather computed using the models and the
source wavelet presented in Figure 2.
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Figure 4: (a) Initial velocity and (b) initial density. (c) Estimated source wavelet compared
to the true source wavelet. (d) Comparison of the corresponding two amplitude spectra.
Due to the inaccuracy of the initial velocity and density models and the noise on the data,
the estimated wavelet exhibits a lower amplitude shift than the true wavelet as well as a less
smooth amplitude spectrum.
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Figure 5: Evolution of the gradient for different Gaussian smoothing with rx = rz from 0.1
to 0.5. On the left column the gradient alone is presented, while on the right column, the
level set of the gradient are superimposed to better delineate its main structures. Gradient
with (a,b) no smoothing, (c,d) rx = rz = 0.1, (e,f) rx = rz = 0.2, (g,h) rx = rz = 0.3,
(i,k) rx = rz = 0.4, (k,l) rx = rz = 0.5.

65



Figure 6: Evolution of the gradient along the nonlinear anisotropic diffusion iterations
using the stencil from Fehrenbach and Mirebeau (2014). On the left column the gradient
alone is presented, while on the right column, the level set of the gradient are superimposed
to better delineate its main structures. Gradient with (a,b) no smoothing, after (c,d) 50
iterations, (e,f) 100 iterations, (g,h) 200 iterations (i,j) 400 iterations (k,l) 800 iterations.
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Figure 7: Comparison between the initial gradient obtained after (a,b) a Gaussian smooth-
ing (c,d) 200 iterations of nonlinear anisotropic diffusion using the stencil from Fehrenbach
and Mirebeau (2014). In (a) and (c) the gradients are presented, while in (b) and (d) their
corresponding kx, kz spectrum are plotted. The gradient (a) corresponds to the one in Fig-
ure 5i while the gradient (c) corresponds to the one in Figure 6g.
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Figure 8: Difference in percentage (following equation 21) between a gradient obtained af-
ter nonlinear anisotropic diffusion and a gradient after linear anisotropic diffusion. Com-
parison for (a) 50 diffusion iterations, (b) 100 diffusion iterations, (c) 200 diffusion iter-
ations, (d) 400 diffusion iterations, (e) 800 diffusion iterations. The maximum error in
percentage reaches 0.5 %.
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Figure 9: Final P-wave velocity model after 50 FWI iterations using (a) Gaussian smooth-
ing (b) linear anisotropic diffusion smoothing. (c) Model error depending on the iteration
number. The use of the linear anisotropic diffusion filter accelerates the convergence to-
wards the exact model.
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Figure 10: Location of the Valhall field on the North Sea (from Thurin (2020)).
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Figure 11: Layout of the acquisition overlapped on an horizontal P-wave velocity slice at 1
km depth obtained by FWI. Location of sources (gray dots) and receivers (blue diamonds).
Two receivers positions (A and B) are located with black stars. Cables A (x = 2950 m), B
(x = 5530 m) and C (x = 3080 m) are identified. Black dots denote the position of three
available P-wave velocity sonic-logs.
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Figure 12: (a) CSG aligned with the positions of cable A before muting the Schölte. (b)
CSG aligned with the positions of cable B before muting the Schölte waves. (c) CSG
aligned with the positions of cable A after muting the Schölte waves. (d) CSG aligned with
the positions of cable B after muting the Schölte waves. We reproduce the data anatomy
analysis presented in Operto et al. (2015). The red, white, black arrows point on the re-
flection from a shallow reflector, the top of the low velocity anomaly and the top of the
reservoir, respectively. The solid arrow points on the pre-critical reflections, while the
dashed ones points on the post-critical reflections.
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Figure 13: Initial vP model. (a) Constant depth slices at, from top to bottom: z = 175 m, z
= 500 m, z = 1000 m, in black and white colorscale. (b) Constant x slices at, from top to
bottom: x = 2.95 km (passing through the low velocity anomaly ), and x = 3.95 km (nearby
its periphery). (c) Constant y slices at, from top to bottom: y = 9 km and y = 6 km.
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Figure 14: Initial density model. (a) Constant depth slices at, from top to bottom: z = 175
m, z = 500 m, z = 1000 m, in black and white colorscale. (b) Constant x slices at, from
top to bottom: x = 2.95 km (passing through the low velocity anomaly ), and x = 3.95 km
(nearby its periphery). (c) Constant y slices at, from top to bottom: y = 9 km and y = 6 km.
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Figure 15: Initial anisotropy model η. (a) Constant depth slices at, from top to bottom: z
= 175 m, z = 500 m, z = 1000 m, in black and white colorscale. (b) Constant x slices at,
from top to bottom: x = 2.95 km (passing through the low velocity anomaly ), and x = 3.95
km (nearby its periphery). (c) Constant y slices at, from top to bottom: y = 9 km and y = 6
km.
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Figure 16: Final vP model with non-stationary Gaussian smoothing. (a) Constant depth
slices at, from top to bottom: z = 175 m, z = 500 m, z = 1000 m, in black and white
colorscale. (b) Constant x slices at, from top to bottom: x = 2.95 km (passing through the
low velocity anomaly ), and x = 3.95 km (nearby its periphery). (c) Constant y slices at,
from top to bottom: y = 9 km and y = 6 km.
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Figure 17: Final vP model with linear anisotropic diffusion smoothing. (a) Constant depth
slices at, from top to bottom: z = 175 m, z = 500 m, z = 1000 m, in black and white
colorscale. (b) Constant x slices at, from top to bottom: x = 2.95 km (passing through the
low velocity anomaly ), and x = 3.95 km (nearby its periphery). (c) Constant y slices at,
from top to bottom: y = 9 km and y = 6 km.
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Figure 18: Final ρ model with non-stationary Gaussian smoothing. (a) Constant depth
slices at, from top to bottom: z = 175 m, z = 500 m, z = 1000 m, in black and white
colorscale. (b) Constant x slices at, from top to bottom: x = 2.95 km (passing through the
low velocity anomaly ), and x = 3.95 km (nearby its periphery). (c) Constant y slices at,
from top to bottom: y = 9 km and y = 6 km.
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Figure 19: Final ρ model with linear anisotropic diffusion smoothing. (a) Constant depth
slices at, from top to bottom: z = 175 m, z = 500 m, z = 1000 m, in black and white
colorscale. (b) Constant x slices at, from top to bottom: x = 2.95 km (passing through the
low velocity anomaly ), and x = 3.95 km (nearby its periphery). (c) Constant y slices at,
from top to bottom: y = 9 km and y = 6 km.
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Figure 20: Final “full wavefield images” with Gaussian smoothing. (a) Constant depth
slices at, from top to bottom: z = 175 m, z = 500 m, z = 1000 m. (b) Constant x slices at,
from top to bottom: x = 2.95 km (passing through the low velocity anomaly ), and x = 3.95
km (nearby its periphery). (c) Constant y slices at, from top to bottom: y = 9 km and y = 6
km.
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Figure 21: Final “full wavefield images” with linear anisotropic diffusion smoothing. (a)
Constant depth slices at, from top to bottom: z = 175 m, z = 500 m, z = 1000 m. (b)
Constant x slices at, from top to bottom: x = 2.95 km (passing through the low velocity
anomaly ), and x = 3.95 km (nearby its periphery). (c) Constant y slices at, from top to
bottom: y = 9 km and y = 6 km.
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Figure 22: (a,b) Wavenumber spectrum of the reflectivity images depth sections in Figure
20b obtained with a Gaussian filter. (c,d) Wavenumber spectrum of the reflectivity images
depth sections in Figure 21b obtained with the coherence enhancing diffusion filter.

82



Figure 23: (a,b) Wavenumber spectrum of the reflectivity images depth sections in Figure
20c obtained with a Gaussian filter. (c,d) Wavenumber spectrum of the reflectivity images
depth sections in Figure 21c obtained with the coherence enhancing diffusion filter.
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Figure 24: 3D view of the velocity model (top), density model (middle), reflectivity image
(bottom) obtained by FWI with the nonstationary Gaussian filter.
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Figure 25: 3D view of the velocity model (top), density model (middle), reflectivity image
(bottom) obtained by FWI with the anisotropic diffusion filter.
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Figure 26: Misfit function decrease along the course of iterations over the three frequency
bands 2.5 - 5 Hz, 2.5 - 7 Hz, 2.5 - 10 Hz.
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Figure 27: Data fit in mirror display for cable A. (a) Data fit in the initial model. (b) Data fit
in the final model obtained using a Gaussian filter. (c) Data fit in the final model obtained
using an anisotropic diffusion filter.
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Figure 28: Data fit in mirror display for cable B. (a) Data fit in the initial model. (b) Data fit
in the final model obtained using a Gaussian filter. (c) Data fit in the final model obtained
using an anisotropic diffusion filter.
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Figure 29: Comparison of the data fit by superposition of the field data in black/white
colorscale and the predicted data in a red/blue colorscale. A good match is indicated by
the absence of white and red color. (a,b) Data fit in the initial model for (a) cable A and
(b) cable B. (c,d) Data fit in the FWI model obtained using a Gaussian filter for (c) cable
A and (d) cable B. (e,f) Data fit in the FWI model obtained using an anisotropic diffusion
filter for (e) cable A and (f) cable B. The red, white, black arrows point on the reflection
from a shallow reflector, the top of the low velocity anomaly and the top of the structure
below, respectively. The solid arrow points on the pre-critical reflections, while the dashed
ones points on the post-critical reflections.
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Figure 30: Comparison between sonic logs and velocity model values at the location of the
wells where the sonic logs have been extracted. The sonic logs appear in solid black line.
The initial model is in dotted-red line. The FWI model using a Gaussian filter is in solid
orange line. The FWI model using an anisotropic diffusion filter is in solid purple line.
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Type Inc. field Adj. field Smoothing Total % smoothing
Gaussian rx = rz = 0.4 9.5 s 29.5 s ≤ 0.1 s 39 s ' 0%

Nonlin. Fehrenbach 9.5 s 29.5 s 13.6 s 52.6 s 25.8 %
Nonlin. Weickert 9.5 s 29.5 s 12.1 s 51.1 s 23.7 %
Lin. Fehrenbach 9.5 s 29.5 s 1.5 s 40.5 s 3.7 %

Table 1: Comparison of different computation times depending on the type of smooth-
ing which is applied. The Gaussian smoothing over truncated windows benefits from the
possibility to tensorize the operation which makes it negligible in terms of computational
cost. In comparison, the diffusion filter requires to solve a parabolic partial differential
equation. The nonlinear version, independently of the stencil which is used, generates a
non-negligible computational cost increase. The smoothing operation becomes 25% of the
total time to build the gradient. The linear version, however, offers computational time
closer from those associated with the use of Gaussian smoothing, for the 2D Marmousi
experiment.
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2.5 - 5 Hz (1 OMP) 2.5 - 7 Hz (8 OMP) 2.5 - 10 Hz (64 OMP)
inc. field 163 s 150 s 154 s

adj. + inc. fields 649 s 632 s 609 s
Gaussian filt. 0.6 s (< 1% total time) 1.3 s (< 1% total time) 3.8 s (< 1% total time)

Linear aniso. filt. 142 s (' 14 % total time) 149 s (' 18 % total time) 285 s (' 26 % total time)
Table 2: Computational cost associated with the filtering approach on the three different
frequency bands 2.5 - 5 Hz, 2.5 - 7 Hz and 2.5 - 10 Hz. The total time refers to the total time
for computing a single gradient. Depending on the frequency bands, a different number of
OpenMP process are used, 1 for the 2.5 - 5 Hz band, 8 for the 2.5 - 7 Hz band, and 64 for
the 2.5 - 10 Hz band. The Gaussian and anisotropic diffusion filter implementations do not
enjoy OpenMP acceleration, which explains why the computational cost associated to the
filtering part increases while the average elapsed time for building the incident and adjoint
field remains similar.
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