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Main objectives

In this study, we propose a receiver-extension strategy for full waveform inversion, using time-dependent
receiver position relocalization. This allows to fit multiple arrivals, when the model estimate is poor at
the early iterations of FWI, mitigating cycle-skipping.

New aspects covered

We obtain an optimal receiver position correction as a function of time, fitting multiple arrivals using a
pseudo-global optimization strategy at each FWI iteration, which puts the observed and the calculated
data in phase and the correct model update is obtained from the amplitude discrepancy.

Summary (200 words)
Full waveform inversion suffers from the cycle-skipping issue due to the non-linearity of the problem.
In this work, we devise a new extension strategy of the FWI misfit function, in which we introduce ad-
ditional degrees of freedom to the receiver position, generating receivers positions corrections which are
time-dependent. This allows the fit multiple arrivals in the observed and calculated data. Our extension
strategy aims at eliminating the kinematic mismatch at earlier FWI iterations, when the model estimate
is poor, and conventional FWI is prone to cycle-skipping. The FWI gradient is computed using the
corrected receiver position, giving a correct model update. This is implemented using nested loops op-
timization strategy, the outer loop solves for the model parameters using a quasi-Newton strategy, while
the inner loop solves for the optimal receiver position correction time profiles, using a simulated an-
nealing method. We constrain the receiver position, and the receiver speed by introducing penalty terms
to the FWI problem. A simple numerical experiment shows that a fit for two arrivals can be obtained,
showing an improvement on the FWI gradient compared to conventional FWI and time-independent
receiver extension. Lastly, we show the effect our strategy has on the convexity of the misfit function.
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Receiver extension strategy using a time-dependent relocalization approach for time-domain FWI

Introduction
Full waveform inversion (FWI) aims at reconstructing the subsurface parameters in order to explain the
entirety of the seismic waveforms. It is solved by iteratively improving the fit between the calculated
and the observed data, using a local optimization scheme. The non-linearity of the forward modeling
operator with respect to the model parameters causes the least-squares misfit function to be non-convex.
Therefore, the convergence to a meaningful solution strongly depends on the starting model. This is
the well known problem of cycle skipping (Virieux and Operto, 2009), which occurs when the time
shift between the observed and calculated data is larger than half the dominant wavelength. Strategies to
circumvent this issue have been investigated for a long time with various approaches (Bunks et al., 1995;
van Leeuwen and Mulder, 2010; Métivier et al., 2016; Luo and Sava, 2011; Symes, 2008; van Leeuwen
and Herrmann, 2013)). In this study we are interested in extension strategies, where additional degrees of
freedom are introduced to help fit the data at earlier iterations of FWI, which are reduced gradually along
the convergence path. Métivier and Brossier (2022) have proposed a receiver extension strategy, where
one additional degree of freedom is introduced at each receiver position (for each source). This approach
estimates the best horizontal spatial shift for each receiver (fixed in time), in order to compensate for
the kinematic mismatch of the velocity model and fit the data when the model estimate is poor. This
approach has showed promising results in several two-dimensional tests. However, it is noted that a
fit for multiple arrivals may not be obtained with a constant spatial receiver shift: this is due to the
time-independent receiver position correction that is driven by the arrival with the largest amplitude,
while other weaker arrivals may require different position correction values. The purpose of the present
study is to introduce a time-dependency to the receiver position correction, facilitating the fit of multiple
arrivals at the earlier stages of FWI iterations.
Formalism
We write the receiver-extension problem

min
m,∆rs

f (m,∆rs) =
1
2

Ns

∑
s=1
||R(xr +∆rs)us[m]−dobs,s||2D+

α

2

Ns

∑
s=1

||dobs,s||2∞
L2 ∆r2

s , (1)

where A(m)us = bs, (2)
and

R(xr +∆rs)us =
∫

Ω

δ (x− (xr +∆rs))us[m](x, t)dx. (3)

The first term on the right hand side in equation (1) is the conventional least-squares misfit function. The
wavefield us[m] is the solution to the wave equation (equation 2), where A(m) is the forward modeling
operator and bs is the source term. R(xr +∆rs) is the restriction operator, which is a linear operator that
extracts the calculated data from the wavefield at the receiver position (xr+∆rs) as shown in equation (3).
xr is the true receiver position, while ∆rs is the receiver position correction. The term R(xr +∆rs)us[m] is
therefore the corrected calculated data. The second term in equation (1) is the least squares annihilator,
it penalizes large values of receiver position correction. L is the maximum allowed receiver position
correction and α is a tuning parameter. The larger the α value is, the closer is the solution to the original
receiver position. If α tends to ∞ the misfit function shown in equation (1) becomes the conventional L2
misfit function.

The receiver extension FWI is solved by using nested loops optimization approach. The outer loop solves
for the model parameters using a quasi-Newton strategy (Nocedal and Wright, 2006), while the inner
loop solves for the optimal receiver position to correct the kinematic mismatch of the velocity model,
using a global optimization strategy. Métivier and Brossier (2022) use grid-search for this purpose.

For the outer loop, the gradient of the misfit function with respect to the model parameters is computed
thanks to the ajdoint-state strategy (Plessix, 2006). An adjoint field (λ in equation 4) is computed
backward in time using the forward modeling operator, and taking the residuals (µs in equation 4) as the
source term, which are injected at the corrected receiver position as follows{

A(m)T λ = RT (xr +∆rs)µs

µs = dobs,s−R(xr +∆rs)us
. (4)

The gradient is obtained by computing the inner-product of the scaled incident and adjoint wavefields:
∂ f
∂m

=
〈

∂A
∂m

us,λs

〉
. (5)
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In order to account for multiple arrivals, we introduce in this work a time-dependency to the receiver
position. The receiver moves as a function of the simulation time in order to fit the multiple arrivals. We
generate receiver position correction time profiles by decomposing the time vector into segments, each
of which is represented by a polynomial (we use Lagrange polynomials). We write the receiver position
correction time profile for a segment k

∆rk(t) =
N+1

∑
i=1

ai`
N
i (t), where `N(t) are Lagrange basis f unctions o f order N. (6)

The inner loop is solved as determining the values at the control points (ai in equation 6). To this
purpose, we use Very Fast Simulating Annealing –VFSA– (Ingber, 1993). The new extended problem
writes

min
m,∆rs

f (m,∆rs) =
1
2

Ns

∑
s=1
||R(xr +∆rs(t))A(m)−1bs−dobs,s||2D+

α

2

Ns

∑
s=1

||dobs,s||2∞
L2 ||∆rs(t)||2+

β

2

Ns

∑
s=1

||dobs,s||2∞
V 2

max
||d∆rs(t)

dt
||2.

(7)

The receiver position correction is now time-dependent (equation 7). The adjoint source for the gradient
computation in the outer loop is moving as a function of time. If the receiver moves too fast, Doppler
effects can be observed. Therefore, we add in equation (7) a second penalization term to mitigate the
velocity of receiver shift (first time derivative of the receiver position correction). Vmax and β in equation
(7) are the maximum allowed receiver speed and an other tuning parameter, respectively. The norms
||∆rs(t)|| and |||d∆rs(t)

dt || in equation (7) are computed using Gauss-Legendre quadrature rule. We note
that if β tends to ∞, the problem reduces to the time-independent receiver extension strategy introduced
by Métivier and Brossier (2022).
Ray theory analysis of a simple example
We conduct a simple ray theory analysis using a half-space model with one layer (Fig. 1a). We consider
two arrivals, transmitted and reflected. Writing the travel time expression of the reflected arrival for a
wrong velocity model v1, at the corrected receiver position, and equating it to the travel time obtained at
the true velocity v0 using the original receiver position, gives a second order algebraic equation:

(∆rx + x)2 +(∆rz +2h)2 = (4h2 + x2)
v2

1

v2
0
. (8)

Similarly for the transmitted arrival:
(∆rx + x)2 +∆r2

z = x2 v2
1

v2
0
. (9)

In equations (8) and (9), h is the depth to the reflector and x is the offset. Equation (8) is a circle showing
the possible receiver position corrections for which a fit for the reflected arrival can be obtained. It is
centered at the image of the source with respect to the reflector, the radius of which is the square root of
the right hand side of equation (8). Equation (9) is also a circle showing the possible receiver position
corrections that give a fit for the transmitted arrival. It is centered at the source position, with a radius
equal to the square root of the right hand side of equation (9). We plot the possible corrected receiver
positions for the reflection and transmission cases (Figures 1b and 1c). In this example, the true velocity
in the first layer is v0 = 2000 m.s−1, and we look at three different starting velocities (v1 in Figures 1b
and 1c). It is clear that a solution for the inner loop problem exists for this simple case. Two different
receiver position corrections are necessary in order to obtain a fit for both arrivals. In the present study,
we do not use horizontal receiver position correction only, even though it is sufficient to obtain a fit for
the transmitted arrival (Fig. 1c), it is not the case for the reflected arrival when the velocity is lower than
the true value (Fig. 1b). Therefore, we add a vertical component to the receiver position correction, in
a manner that if the receiver moves toward the source, we have ∆rz(t) = |∆rx(t)|, otherwise it moves
horizontally. Imposing this relationship between vertical and horizontal corrections reduces the number
of degrees of freedom of the inner loop significantly.
Numerical experiment
To illustrate our strategy, we consider a surface acquisition set-up, with a homogeneous first layer and
a higher velocity half-space. The true velocity in the background is set to 2000 m.s−1, while in the
half-space it is set to 3500 m.s−1. We keep the half-space at the correct velocity for the starting model,
while the velocity in the first layer is set to 2200 m.s−1. In Figure 2c the source and receiver used for
this example are shown as a star and a triangle, respectively. The time shift between the observed and
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the calculated data obtained at the original receiver position (dcal is shown in a dashed line in Figure 2a)
causes cycle-skipping.We show that the kernel for the conventional FWI is negative in the first Fresnel
zone (black arrow in Figure 3a) suggesting a positive velocity perturbation to an already higher velocity.
Using a time-independent receiver-extension mitigates this issue, the fit of the first arrival is obtained
(dcal is shown in blue in Figure 2a) yielding a kernel with the correct sign in the first Fresnel zone
(black arrow in Figure 3b). However, the second arrival is not fitted, one can clearly see two migration
isochrones (red arrow in Figure 3b), as well as the wrong velocity update in the rabbit-ears (blue arrow
in Figure 3b). Using the time-dependent relocalization gives a fit for both arrivals (Fig. 2a), only one
migration isochrone can be seen (red arrow in Figure 3c), and the rabbit ears are clearly visible in the
time-dependent case and with the correct sign (blue arrow in Figure 3c) thanks to the fit of the reflected
arrival.

Δrx

Δrzx

h

θ
S R

R'

V1

V2

(a)

Figure 1 Simple reflection case analysis with receiver extension. The geometry is shown in (a), R and
R’ are the original and extended receiver positions, respectively. ∆rx and ∆rz are the horizontal and
vertical receiver position corrections. The possible receiver corrections at different velocities for the
reflection and transmission cases are shown in (b) and (c), respectively.

Figure 2 Receiver extension for one source/receiver couple. (a) shows the observed data in brown,
the calculated data at the original receiver position in a dashed line, and at the extended receiver, the
time-independent and time-dependent cases are shown in red squares and in blue line, respectively. (b)
Shows the time dependent relocalization profiles. (c) Set-up for the numerical experiment.

Figure 3 FWI kernels, (a) at the original receiver position, (b) at the extended receiver using time-
independent relocalization and (c) using time-dependent relocalization. The source is shown as a yellow
star, the original and extended receivers are shown as a black and cyan triangles, respectively. The cyan
line in (c) shows the range in which the receiver moves for the time-dependent case.
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Figure 4 Misfit function values computed at the different first layer velocities, the conventional least-
squares misfit is shown in a dashed line. The misfit obtained using the time-independent and time
dependent receiver extension strategies are shown in purple and yellow, respectively.

It is interesting to look at the misfit function shape. For this example, we vary the velocity in the
first layer (Fig. 2c) and compute the misfit for each velocity. The misfit function computed using the
time-independent receiver extension is not convex in this two arrivals case (plotted in purple in Figure
4). Using the time-dependent receiver-extension strategy, described in this study, widens the valley of
attraction and the misfit function shows improved convexity (shown in yellow in Figure 4). The effect
of the second arrival fit is important.
Conclusion and perspectives
We devise a time-dependent receiver extension strategy for time-domain FWI, in order to account for
multiple arrivals in the data. The first tests are promising and encourage further investigation and testing
in realistic synthetic models. We consider currently extending our formulation to 3D, as well application
for joint diving and reflected waveform inversion. Trans-dimensional optimization would be of interest
for a more flexible parametrization of the inner problem.
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