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S U M M A R Y 

Recently, w e ha v e dev eloped a localized adaptiv e wav eform inv ersion (LAWI) method to 

tackle the cycle-skipping issue in velocity reconstruction through seismic waveform inversion. 
The LAWI method employs a local matching filter, computed using Gabor deconvolution, 
to measure the instantaneous time-shift between observed and calculated data. Unlike the 
adapti ve w aveform inversion (AWI) approach, the LAWI method can take the non-stationarity 

between observed and calculated data into account. In this w ork, we in vestigate tw o types of 
regularization based on prior information about the expected filter, which could be a minimum- 
norm filter or a delta-shape filter, with regard to their effects on the robustness and resolution 

of inversion. We demonstrate on synthetic data the advantages and disadvantages of these two 

types of prior information, where the delta-type LAWI may handle multiple observed phases 
not initially predicted by the starting velocity model. Therefore, we apply the delta-type LAWI 
to a high-quality 3-D field data set in the North Sea, eliminating the need for data-windowing 

tuning, which can be tedious and time-consuming for 3-D data. Under different w orkflo ws 
with varying reliable initial models and frequency bands of the pressure data considered, we 
show that the LAWI approach is robust, ef fecti ve and ef ficient for reconstructing the P -wave 
velocity, while other approaches such as AWI and graph-space optimal-transport method may 

require meticulous data-tuning strategies to converge to the correct model. Well logs and data 
fits, primarily from early arrivals, give us confidence that this LAWI approach could be applied 

to various acquisitions and subsurface targets, thanks to its phase-driven principle. 

Key words: Wav eform inv ersion; Inv erse thoery; Fourier analysis; Computational 
seismology. 
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1  I N T RO D U C T I O N  

Seismic imaging by one integrated step that merges velocity model 
building and migration has been a long-term goal for numerous ex- 
ploration geophysicists. Full-waveform inversion (FWI), proposed 
b y Laill y ( 1983 ) and Tarantola ( 1984 ), theoreticall y, is able to au- 
tomatically utilize the whole recorded data (e.g. transmitted waves, 
primary reflections, multiples, and ghosts) to produce high-quality 
images of broad wa venumber spectra. How ev er, the journe y of 
bringing FWI from theory to 3-D field data application is full of 
challenges. Thanks to full-azimuth and wide-offset data of high 
quality and the progress in high-performance computing, a spec- 
tacular FWI result on an industrial-scale 3-D seismic field data was 
obtained by Sirgue et al. ( 2010 ). Afterwards several successful ex- 
ploration applications were reported on marine data (Warner et al. 
2013 ; Operto et al. 2015 ; Shen et al. 2018 ; Huang et al. 2021 ) and 
land data (Plessix et al. 2012 ; Pan et al. 2018 ; Sedova et al. 2019 ). 
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These successful field data applications have greatly boosted the 
research interest for FWI. Let us mention that velocity reconstruc- 
tion by FWI is a highly nonlinear inverse problem (Tarantola 1984 , 
1986 ). When observed data and predicted data generated by starting 
models differ by more than half-wave cycle, FWI can be trapped 
into local minima, failing to produce geolo gicall y meaningful ve- 
locity models (Virieux & Operto 2009 ). Building phase-compatible 
initial velocity model is a remedy, and such a model is easier to de- 
sign for low-frequency seismic data (Sirgue et al. 2010 ). However, 
in seismic exploration, initial velocity models provided by tomo- 
graphic methods rely on kinematic information that ignores the 
limited finite-frequency seismic content. These provided velocities 
as initial models may not make FWI free of local minima issues. 
On the other hand, high-fidelity low-frequency data require low- 
frequency source injection and high-quality geophones, together 
with a long-offset and full-azimuth acquisition (Dellinger et al. 
2016 ; Vigh et al. 2021 ). Such an acquisition system is often costly, 
 by Oxford University Press on behalf of The Royal Astronomical Society. 

http://orcid.org/0000-0003-3988-1602
mailto:peng.yong@univ-grenoble-alpes.fr


Robust localized adaptive waveform inversion 449 

e  

b
 

n  

m  

d  

M  

d  

e  

t  

c  

s  

j  

c  

w  

I  

v  

v  

c  

t  

w  

i  

o  

m  

u  

p  

i  

b
 

t  

t  

m  

T  

i  

a  

d  

fi  

i  

T  

w  

(  

c  

t  

c  

w  

a  

o  

t  

1  

d  

d
 

c  

t  

c  

c  

p  

P  

s  

e  

s  

l  

f  

s  

p  

N  

a  

r  

&  

s
 

o  

c  

r  

t  

2  

s  

o  

w  

r  

5  

t

2

I  

a  

g  

t  

p  

p  

p  

t  

f

2

W  

m  

b  

m

w

w  

s  

a  

p

H  

(  

t  

t  

w

w

w  

T

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad225/7185820 by guest on 13 June 2023
specially for high-density acquisition. Alternativ e strate gies should
e investigated and we shall focus on this issue in this paper. 

Enhancing phase information in misfit design can mitigate the
onlinearity of waveform inversion and relax the accuracy require-
ent on initial models and the quality requirement on low-frequency

ata (Luo & Schuster 1991 ; Luo et al. 2016 ; Zhang et al. 2018 ).
easuring time-shift between observed and calculated data is a

ifficult and long-standing task in exploration seismology. In the
arly work of wa ve-equation tra veltime tomography (Luo & Schus-
er 1991 ), time-shift is taken as the lag that maximizes the cross-
orrelation function. In principle, its applicability is limited to
ingle-phase data, such as identifiable first-arri v als. Besides, its ad-
oint source deri v ation relies on the assumption that observed and
alculated data only differ by a time-shift (identical waveforms),
hile this assumption is not in agreement with realistic situations.

nspired by the differential semblance optimization for migration
elocity analysis (Symes & Carazzone 1991 ; Shen & Symes 2008 ),
an Leeuwen & Mulder ( 2010 ) propose a penalization-based cross-
orrelation objective function in the data domain, which enables
he deri v ation of adjoint source without the need for this identical
aveform assumption. Following, Luo & Sava ( 2011 ) suggest us-

ng deconvolution instead of cross-correlation in order to handle
scillatory seismic signals. Deconvolution operation can make the
atching filter more focused and confined at zero lag with model

pdate. Warner & Guasch ( 2016 ) design a normalized form of
enalization-based deconvolution misfit, named adaptive waveform
nversion (AWI), which shows a great superiority over penalization-
ased methods in dealing with cycle-skipping issues. 

In the previous work (Yong et al. 2023 ), we have highlighted that
he misfit in AWI can be considered as an estimation of the centroid
ime of the matching filter, with the assumption that the global
atching filter in AWI is invariant for all events in seismograms.
his suggests that AWI is ef fecti ve in mitigating cycle-skipping

ssue when processing data that is dominated by single events, such
s non-triplicated diving wa ves. How ever, seismic phases often have
ifferent time-shifts in exploration data, making the global matching
lter vulnerable to interference between dif ferent e vents, especiall y

n the presence of multiple events or phases with significant energy.
his can lead to the AWI misfit function becoming non-conv e x
ith respect to a local time-shift. See Figs. 6 and 7 in Yong et al.

 2023 ) for further details. In realistic scenarios, multiple phases
an arise in a data trace through various means, including multiple
ransmission ray paths, primary or multiple reflection, and elastic
onversion, all of which can cause AWI to fail. To address this issue,
 e ha ve proposed a non-stationary extension of AWI, referred to

s localized A WI (LA WI), that assesses phase mismatch between
bserved and predicted data locally. This is achieved through a
ime–frequency analysis of signals using a Gabor transform (Gabor
946 ), treating each e vent independentl y, so that the same phase
etection mechanism that makes AWI succeed with single-event
ata works locally, everywhere. 

Although a variety of methods related to misfit function modifi-
ation have been proposed to handle cycle-skipping issues during
he last decade, they enhance phase information or low-frequency
omponent in dif ferent w ays. Some of them are computationally
hallenging for 3-D applications. Some may lack robustness when
roceeding with complex or noisy field data (Guasch et al. 2019 ;
ladys et al. 2021 ). For applications to a wide range of 3-D field data
ets with confidence, the method requires to be suf ficientl y robust,
f ficient, and ef fecti ve. In this w ork, follo wing the non-stationary
trategy promoted by Yong et al. ( 2023 ), we in vestigate tw o regu-
arization strategies used for Gabor deconvolution in LAWI, with a
ocus on the effect of injected prior information on the inversion re-
ults. The robust regularization one illustrated with synthetic exam-
les is applied to a 3-D ocean-bottom-cable (OBC) data set from the
orth Sea. For challenging w orkflo ws where cycle-skipping issues

re expected, we compare the LAWI approach with the delta-type
egularization to other methods, such as the AWI strategy (Warner
 Guasch 2016 ) and the g raph-space optimal-transpor t (GSOT)

trategy (M étivier et al. 2018 , 2019 ) on this available real data. 
The structure of the paper is organized as follows: We begin by

utlining the mathematics of the LAWI method and discuss numeri-
al implementations of Gabor deconvolution from a point of view of
egularization. Then, we study the characteristics of two implemen-
ations of Gabor deconvolution through simple signal analysis and
-D synthetic inversion tests. In Section 4, we describe the field data
et and its preparation for inversion, and then present a sequence
f inversion results under increasingly challenging situations, as
ell as comparison with available well logs and data fitting. The

esults and possible further improvement are addressed in Section
, and finally we draw conclusions about the LAWI method from
his study. 

 T H E O RY  

n the LAWI approach, the connection between one-trace observed
nd predicted data is built by a Gabor convolutional model (Mar-
rave 1998 ), and the phase difference is implicitly estimated with
he corresponding local matching filter (Yong et al. 2023 ). We first
rovide a brief recapitulation of the LAWI method, then discuss the
rior information used for regularizing the Gabor deconvolution
roblem and propose a new type of regularization, which follows
he fact that the local matching filter converges towards a delta
unction when the model turns into the true one. 

.1 Localized ada pti v e w av eform inv ersion 

ith one-trace observed data d ( t ) and predicted data p ( t ), a local
atching filter ˆ w ( t, ω) used in the LAWI approach, can be defined

y a non-stationary convolutional model in the time–frequency do-
ain (Yong et al. 2023 ) as 

ˆ  ( t , ω) ̂  d ( t , ω) = ˆ p ( t, ω) , (1) 

here ˆ d ( t, ω) and ˆ p ( t, ω) are the time–frequency spectra of ob-
erved and predicted data. The Gabor transform (Gabor 1946 ) is
pplied to obtain the time–frequency spectra. The Gabor transform
air can be given by 

ˆ f ( t, ω) = G[ f ]( t, ω) = 

1 √ 

2 π

∫ 
R 

f ( ξ ) h 

† 
σ ( ξ − t) e −iωξ dξ, (2) 

f ( t) = G 

−1 [ ̂  f ]( t) = 

1 √ 

2 π

∫ 
R 2 

ˆ f ( ξ, ω ) h σ ( t − ξ ) e iωt d ξd ω. (3) 

ere, symbol † denotes the complex conjugate and h σ ( t) =
 πσ 2 ) −

1 
4 e 

−t 2 

2 σ2 denotes the window function, in which σ controls
he radius (Strang & Nguyen 1996 ; Fichtner et al. 2008 ). With the
ime-varying local matching filter ˆ w ( t, ω) in the frequency domain,
e can obtain its time domain form w ( t , τ ) through 

( t, τ ) = F 

−1 
τ [ ˆ w ( t, ω) ] , (4) 

here F 

−1 
τ denotes the inverse Fourier transform for the variable τ .

he instantaneous centroid time-shift is estimated by 

T ( t) = 

∫ 
R 

| τ | w 

2 ( t, τ )dτ∫ 
R 

w 

2 ( t, τ )dτ
. (5) 
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All instantaneous time-shifts can be integrated under the L 

n norm, 
with n typically chosen as 1 or 2. The misfit function of LAWI, with 
n = 2, can be expressed as 

J LAWI = 

1 

2 

∫ 
R 

T 2 ( t)dt. (6) 

Let us mention that the Gabor deconvolution itself is ill-posed for 
noisy data (Margrave et al. 2011 ). In practice, Tikhonov regulariza- 
tion (Tikhonov et al. 2013 ) is often used to stabilize the deconvolu- 
tion (Claerbout & Fomel 2014 ). We shall discuss the importance of 
prior information in the regularization in the following subsection. 

2.2 Two possible regularizations for Gabor deconvolution 

The local matching filter, defined by the Gabor deconvolution ( 1 ), 
is commonly computed by the equation 

ˆ w z ( t , ω) = 

ˆ d † ( t , ω) ̂  p ( t , ω) 
ˆ d † ( t , ω) ̂  d ( t , ω) + ε

, (7) 

where a small positive number ε prevents the division by zero 
(Margrave et al. 2011 ). From a point of view of regularization, the 
local matching filter, calculated by eq. ( 7 ), is the minimum-norm 

solution of the regularized least-squares problem defined by 

min 
ˆ w z ( t,ω) 

1 

2 

∫ 
�

∣∣∣ ˆ p ( t, ω) − ˆ d ( t, ω) ̂  w z ( t, ω) 
∣∣∣2 

+ ε | ˆ w z ( t, ω) | 2 dω, (8) 

where symbol � denotes the frequency band of observed and pre- 
dicted signals, and the local matching filter. Each time component 
( 7 ) of the local matching filter will be used when considering the 
misfit function ( 6 ). The value of the regularization parameter ε (as- 
sumed to be time-independent) limits the admissible solution space 
of the local matching filter ˆ w ( t, ω) . This commonly used regular- 
ization is designed for numerical stability. In practice, the regular- 
ization parameter ε selection depends on the SNR of observed data. 
When dealing with low SNR data, it is often necessary to choose a 
larger value for ε. Such a zero-type regularization has been used by 
Guasch et al. ( 2019 ) in the field-data application of AWI. Ho wever , 
the local matching filter is supposed to converge into a delta func- 
tion with iteration in LAWI, while this regularization attempts to 
restrict it to a zero norm, which constitutes a certain inconsistency 
between the expected convergence of the filter and the applied prior 
information (Yong et al. 2022 ). 

Following the same conceptual strategy as Warner & Guasch 
( 2016 ) (eq. 15 in their article), the local matching filter should 
tend toward a delta function with model update. Thus the expected 
behavior expressed by 

p( t) → d( t) , ˆ w ( t, ω) → 1 , (9) 

can be related to the following least-squares problem 

min 
ˆ w d ( t,ω) 

1 

2 

∫ 
�

∣∣∣ ˆ p ( t, ω) − ˆ d ( t, ω) ̂  w d ( t, ω) 
∣∣∣2 

+ ε | ˆ w d ( t, ω) − 1 | 2 dω, 

(10) 

leading to another local matching filter given by 

ˆ w d ( t , ω) = 

ˆ d † ( t , ω) ̂  p ( t , ω) + ε

ˆ d † ( t , ω) ̂  d ( t , ω) + ε
= ˆ w z ( t , ω) + 

ε

ˆ d † ( t , ω) ̂  d ( t , ω) + ε
. 

(11)

Such an expression ( 11 ) differs from the one ( 7 ) when applying the 
zero-type regularization. We name this new regularization delta- 
type regularization to make it distinct from the standard zero-type 
regularization. 
For these two implementations of Gabor deconvolution, the ad- 
joint sources in LAWI share the same following expression 

r LAWI = 2 G −1 

[ 
F τ

[
T ( t)( | τ | − T ( t) ) w( t, τ ) ∫ 

R 
w 

2 ( t, τ )dτ

] ˆ d ( t, ω) 
ˆ d ( t , ω) ̂ d † ( t , ω) + ε

] 
, 

(12) 

where the local matching filter could be either the zero-type filter 
w z or the delta-type filter w d , leading to different numerical adjoint 
fields. The detailed deri v ation of adjoint sources in LAWI can be 
found in Yong et al. ( 2023 ). In addition, the wave equation and the 
model-g radient constr uction used in the following numerical exper- 
iments can be found in Appendix A. Let us explore on synthetic 
examples the influence of these two different regularization taken 
as prior information. 

3  A NA LY S I S  O N  S Y N T H E T I C  DATA  

Before considering a realistic 2-D inversion example, let us illustrate 
on one trace the influence of single and multiple observed phases. 

3.1 Simple signal analysis 

We start with one-event signal experiment to sho w ho w resolution 
could be slightly downgraded with the delta-type regularization. 
Fig. 1 (a) presents two 5 Hz Ricker wavelets with a 0.5 s time-shift. 
The estimated instantaneous time-shifts by the two implementations 
of Gabor deconvolution are shown in Figs. 1 (b) and (c), and both 
estimations are close to the true value (0.5 s). The delta-type regu- 
larization generates a non-zero signal along the zero-lag axis (see 
eq. 11 ), coming from the injected prior information of a delta func- 
tion (F ig. 1 c), w hile the zero-type regularization does not (Fig. 1 b). 
Such non-zero signal decreases the estimated time-shift between 
the calculated and observed data (Fig. 1 d). Let us underline that 
adjoint sources are different (Fig. 1 e). 

For the delta-type regularization, these non-zero energies along 
the zero-lag axis induce a slight loss of resolution in the inversion. 
Let us estimate the objective function variation with respect to two 
parameters, the amplitude scaling and the time-shift through the 
relation 

d obs ( t) = Ad cal ( t + τ ) . (13) 

The objective function with the delta-type regularization becomes 
flat when approaching the global minimum, reducing the expected 
resolution of the final result (Fig. 2 ). As expected, both misfit func- 
tions are nearly agnostic to amplitude scaling and mainly sensitive 
to time-shifts (Yong et al. 2023 ). 

In addition, the zero-type regularization makes use of events in 
obser ved seismog ram that are locally coherent to the events occur- 
ring in predicted data: an expression of the minimum-norm solu- 
tion. The new regularization does not. Let us illustrate it with a 
case where observed data contains two events while only one event 
is present in the predicted data, as shown in Fig. 3 (a). The time- 
shifts and the adjoint sources presented in Figs. 3 (d) and (e) clearly 
show that the delta-type regularization accounts for the two events 
at 1.25 and 3.25 s using only one predicted event with a different 
behavior. For the zero-type regularization, the local matching is zero 
when the predicted data is zero, no matter whether observed data is 
zero or not. Consequently, the zero-type regularization cannot take 
the observed second event into account (Fig. 3 d). Conversely, for 
the delta-type regularization, the local matching filter has a non- 
zero energy pattern dif fusel y distributed at 1.5 and of 3.25 s along 
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(a)

(b) (c)

(d) (e)

Figure 1. Single event study: observed and calculated data (a), the local matching filters w ( t , τ ) with zero-type regularization (b) and delta-type regularization 
(c), the estimated time-shifts (d), and the associated adjoint sources (e). Please note the slight delay in the expected time-shift for delta-type regularization. 

(a) (b)

Figure 2. Objective functions with respect to two parameters of time-shift and amplitude scaling: zero-type regularization (a) and delta-type regularization 
(b). Please note the flatness of the delta-type objective function. 
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he time axis (Fig. 3 c). Such a dif fusi ve pattern underestimates
he time-shift estimation for the observ ed ev ent at the time 1.5 s
ut creates a time-shift for the second observed event at the time
.25 s from the single predicted event. The delta-type regulariza-
ion enables LAWI to take into account some information of the
econd observ ed ev ent, ev en though there is no locally associated
vent in the predicted data. The adjoint source has a corresponding
ignal which cannot be observed for the zero-type regularization
Fig. 3 e). 

In seismic exploration, the observed data usually contains direct
 ave, di ving w ave, reflected w av e, etc. When inv ersion starts from
 smooth velocity model, the calculated data may only contains
irect and diving waves. Thus the number of events in calculated
ata and observed data are not the same. LAWI with the zero-type
egularization focuses on the time-shifts between diving and direct
 aves onl y, which might not provide sufficient information to match

he observed reflections to the predicted data. When a significant
art of the energy in the observed data is related to reflections,
 non-convergence issue can arise for LAWI with the zero-type
egularization. This is because, with model update, reflections will
ppear in the predicted data, which leads to time-shifts of the new re-
ections (not existing at the beginning) and may make the objective
unction increase (Yong et al. 2023 ). As the delta-type regulariza-
ion can account for the whole information in observed data from
he starting iteration of inversion, it does not suffer from such a
on-convergence issue. 

art/ggad225_f1.eps
art/ggad225_f2.eps
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(a)

(b) (c)

(d) (e)

Figure 3. Multiple-event observed trace: the observed and calculated data (a), the local matching filter | w ( t , τ ) | with zero-type regularization (b) and delta-type 
regularization (c), the related time-shifts (d), and the adjoint sources (e). 

(a) (b)

Figure 4. 2-D Valhall models: true velocity (a) and initial velocity (b). 

(a) (b) (c)

Figure 5. The observed data (a) generated with the true velocity and density model and the calculated data using the initial velocity model with the true density 
(b) and with the smooth density model (c). 
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(a) (b) (c)

(d) (e) (f)

Figure 6. The adjoint sources: the true density model (a–c) and the smooth density model (d–f). AWI with the zero-type regularization (a and d), LAWI with 
the zero-type regularization (b and e) and LAWI with the delta-type regularization (c and f). 
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.2 2-D synthetics example 

et us now consider a 2-D realistic model in a shallow water environ-
ent similar to the 3-D field data we shall consider later, to further

llustrate the two identified features of LAWI. Fig. 4 presents the
rue and initial velocity models. The density model, used to gener-
te the observed data, is calculated following the Gardner’s relation
Gardner et al. 1974 ) 

= 309 . 6 V 

0 . 25 . (14) 

he source function is a 5 Hz Ricker wavelet with a low-cut filter to
emove energy below 2 Hz. A fixed-spread acquisition is used, with
2 equally spaced sources and 352 equally spaced receivers with
nterval of 25 m placed on the surface. The initial model is built by
sing the sfsmooth command in the open-source Madagascar soft-
are (Fomel et al. 2013 ): repeatedly (15 times) applying a triangle
lter with a radius of 250 m to the true model. Standard least-squares
WI suffers from cycle-skipping issues with this initial model. The
 -BFGS method ( 
 = 5) is applied for the model update (M étivier
 Brossier 2016 ). The maximum number of iteration is set to

0. 
The observed data contains both transmitted and reflected phases

Fig. 5 a). An initial model with the true density model gives syn-
hetic data which include reflected phases (Fig. 5 b). Another initial
odel is built with a smooth density model generated by applying
he Gardner’s law to the smooth initial velocity model. Seismic
races mainly contain transmitted diving and direct phases with one
eak reflection from localized fast velocity variation at a depth
round 2.5 km, arriving at a time around 4 s (F ig. 5 c). F rom the
djoint sources shown in Fig. 6 , LAWI with the zero-type regu-
arization only accounts for events occurring in the predicted data
Figs. 5 b and e), while LAWI with the delta-type regularization
an bring the whole information contained in observed data to the
odel gradient (Figs. 5 c and f). The conventional AWI displays
ore complex adjoint sources mainly driven by transmitted phases

Figs. 5 a and d). Moreover, strong non-causal artefacts occur in
he AWI adjoint sources, coming from the stationary assumption in
WI (Yong et al. 2023 ). 
Let us consider the inversion results starting with the smooth

elocity model and with the true density using the AWI approach
nd the two LA WI strategies. A WI has difficulties to reconstruct
he low-velocity layers (Fig. 7 a), whereas LAWI with zero-type
e gularization conv erges to the true v elocity model (Fig. 7 c). The
esult provided by LAWI with delta-type regularization has a slightly
ower resolution as expected (Fig. 7 e). When inversion begins with
he same smooth velocity model complemented by the smooth den-
ity model, AWI evolves to a wrong model (Fig. 7 b). LAWI with
he zero-type regularization, which suffers from the aforementioned
hortcomings, cannot update the given initial model (Fig. 7 d). In-
erestingly, the delta-type regularization can take all reflections into
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(g) (h)

(a) (b)

(c) (d)

(e) (f)

Figure 7. Inversion results with (left) and without (right) the true density model: AWI (a and b), LAWI with zero-type regularization (c and d), LAWI with 
delta-type regularization (e and f), standard FWI (g and h). Optimization failure is observed for the zero-type regularization (d): the displayed model is the 
input model. 
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account at the beginning of inversion, leading to a model very sim- 
ilar to the one obtained when considering true density model. One 
may notice that the result starting with the smooth density model 
(Fig. 7 f) has a little more high-wavenumber component than when 
starting with the true density model (Fig. 7 e). This is because the 
density model is not updated: related data differences are accounted 
in the velocity updating. Standard least-squares FWI results with the 
two starting models are shown in Figs. 7 (g) and (h): these velocity 
models are very similar with the small high-wavenumber velocity 
component when considering the smooth density model which is 
not updated in this illustration. 

It is necessary to mention that a weighting-window strategy, fol- 
lowing the data-domain layer stripping principle, can help LAWI 
with the zero-type regularization to avoid the non-convergence is- 
sue. Ho wever , it requires manually adjusting compared areas in 
seismograms during inversion, which could be difficult when con- 
sidering 3-D applications. The weighting-window strategy is also 
very helpful for AWI, as it can mitigate the nonlinearity between 
observed and calculated data (see more illustrations in Yong et al. 
2023 ). Let us mention that, to guide the matching filters towards a 
delta function, we use a monotonically increasing penalization func- 
tion with respect to the time lag in this work, while alternative forms 
of penalty function is possib le, w hich may make the AWI approach 
amenable to more robustly interpret complex signals (Warner & 

Guasch 2016 ; Sun & Alkhalifah 2020 ). 

4  3 - D  F I E L D  DATA  A P P L I C AT I O N S  

The LAWI approach with delta-type regularization is applied to a 
field data set for which the zero-type regularization may require 
more tuning efforts from the user. 

4.1 Data set 

We consider the pressure component recorded during activ e e xper- 
iments for a 3-D field target from the North Sea. The acquisition 
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Figure 8. The acquisition of 3-D OBC data overlaid on a depth slice ( z = 1 km) of the velocity reconstructed from LAWI: locations of sources (yellow dots) 
and receivers (blue diamonds), three well logs. The data corresponding to the green line of shots and the receiver (black star) is extracted for data processing 
illustration and quality check of the reconstructed models. 

(a)

(b) (c)

(d) (e)

Figure 9. Hydrophone shot record: (a) full bandwidth raw data, (b) 2.5–5.0 Hz data, (c) 2.5–7.0 Hz data. The data weighting strategy is used to select suitable 
data for source estimation (d) and velocity inversion (e) on 2.5–7.0 Hz data. 
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Figure 10. Initial velocity models: (a) tomographic model and (b) simple stratified model. Grey-scale horizontal slices are extracted from the depths of 0.2 km 

( z 1 ), 1.0 km ( z 2 ) and 1.25 km ( z 3 ), respecti vel y. Inline vertical slices are from x = 2.95 km ( x 1 ) and x = 3.95 km ( x 2 ). Crossline vertical slices are at y = 6 km 

( y 1 ) and y = 9 km ( y 2 ). 
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configuration consists of 2044 receivers, shown as blue diamonds in 
Fig. 8 , and 50 824 shots, fired every 50 m inline. The area covered by 
the surv e y is approximately 145 km 

2 . For saving computational cost 
of waveform inversion, we exchange the source and receiver posi- 
tions with the spatial reciprocity theorem for waveform prediction. 
In other words, we have now 2044 shot gathers. 

The source-subsampling strategy promoted by Warner et al. 
( 2013 ) is applied. The 2044 gathers are divided into 16 batches 
without data repetition to make sure that all shots are used dur- 
ing inversion. The first 15 batches contain 128 random gathers 
while the last batch contains only 124 gathers. For model gradi- 
ent estimation, we run three iterations of 
 -BFGS on each batch, 
meaning that all data are reached 48 times. For each data set, 
we run 96 iterations in total, meaning that each shot is used six 
times in the inversion. The source-subsampling strategy makes 
it possible to run large-scale 3-D waveform inversion problems 
with a relati vel y small HPC resource (Kamath et al. 2021 ; Pladys 
et al. 2022 ). 

Fig. 9 (a) displays the raw data along the green line ( x = 3 km) 
in Fig. 8 , recorded at the location of the black star in Fig. 8 ( x = 

3.12 km, y = 11.88 km). The bandpass filtered data in the frequency 
range of 2.5–5.0 Hz and 2.5–7.0 Hz are shown in Figs. 9 (b) and 
(c), respecti vel y. Considering narro wer lo wer-frequency range than 
the range 2.5–5.0 Hz during the inversion for overcoming possible 
cycle-skipping issues is not ef fecti ve because the SNR for these 
low frequencies is too low. A data weighting strategy is applied for 
data selection (Kamath et al. 2021 ; Pladys et al. 2022 ): the near- 
offset direct waves (Fig. 9 d) is extracted for wavelet estimation in the 
frequency domain (Pratt 1999 ), and a short-offset mute is applied on 
bandwidth data for removing lo w-velocity/lo w-frequency Scholte 
waves. The same mute is applied to synthetic data when doing 
the data comparison. No other processing such as deghosting and 
demultiple is applied to the data for inversion. 

4.2 Inversion tests 

Three starting configurations are considered for respective perfor- 
mance of LAWI (using delta-type regularization) and FWI with 
respect to cycle-skipping issues: 

(1) Starting frequency band (2.5–5.0 Hz) and a tomographic 
starting model (frequency band (2.5–7.0 Hz) data used subse- 
quently) 

(2) Starting frequency band (2.5–5.0 Hz) and a simple strati- 
fied starting model (frequency band (2.5–7.0 Hz) data used subse- 
quently) 

(3) Starting frequency band (2.5–7.0 Hz) and a simple stratified 
starting model. 

Local minima could be met more often from the first setting to 
the third one. Fig. 10 displays the two initial velocity models: a 
tomographic model and a simple stratified model. The simple strat- 
ified model is generated by extrapolating horizontally the vertical 
velocity profile of the tomographic model at y = 0. The stratified 
model contains major extended stratified structures from the tomo- 
graphic model. The significant difference comes from the focused 
low-velocity anomaly in the central part of the target. With the first 
inversion configuration, we expect that LAWI and FWI provide sim- 
ilar high-quality results. For the later two configurations, we shall 
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Figure 11. Inversion starting with the tomographic model: reconstructed velocity models with 2.5–5.0 Hz data using FWI (a) and LAWI (b), and subsequently 
reconstructed velocity models with 2.5–7.0 Hz data using FWI (c) and LAWI (d). Please note the increase in resolution when increasing the frequency range. 
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ocus on the low-velocity anomaly for assessing the reconstruction
uality as well as the local minima possibilities. 

Because we consider pressure data, P -wav e v elocity reconstruc-
ion is performed. It is enough to consider a 3-D viscoacoustic ver-
ical transversely isotropic (VTI) time-domain wave equation (Yang
t al. 2018 ), solved by a 4th-order staggered grid finite-difference
ethod (Le v ander 1988 ). The gradient computation and the related
orward and adjoint equations can be found in Appendix A. All
nversions use the same VTI anisotropy model described in recent
ublications (Kamath et al. 2021 ; Pladys et al. 2022 ), and such
nisotropy is not updated during the inversion. The importance of
ncluding anisotropy is well described in the work of Prieux et al.
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Figure 12. Inversion starting with the simple stratified model: reconstructed velocity models with 2.5–5.0 Hz data using FWI (a) and LAWI (b), and 
subsequently reconstructed velocity models with 2.5–7.0 Hz data using FWI (c) and LAWI (d). The low-velocity anomaly reconstructed by FWI at the depth 
of 1.25 km is not as good as the one obtained with the tomographic starting model. 
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Figure 13. Inversion starting with the simple stratified model after 96 iterations: reconstructed velocity models directly using 2.5–7.0 Hz data by FWI (a) and 
LAWI (b). 3-D view of the reconstructed velocity models with FWI (c) and LAWI (d). For the FWI approach, the spurious bend low-velocity layers between 
1.0-1.5 km depth are caused by the cycle-skipping issue (red arrows). 3-D view clearly shows that FWI is unable to recover the central low-velocity anomaly. 
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 2011 ). The attenuation effect is also taken into account with a fixed
ttenuation model of Q = 1000 in the water column and Q = 200 in
he sediments is generated according to the root-mean square am-
litudes of earl y arri v als (Operto et al. 2015 ; Kamath et al. 2021 ).
n addition, the density models are derived from selected starting
elocity models with the Gardner’s law (Gardner et al. 1974 ). 

.2.1 Workflow using the first frequency-band data with a 
omographic starting model 

his w orkflo w should serve as a reference because the initial model
rovides in-phase predictions with the low-frequency data content.
electing such an initial model with such a frequency band should
void cycle-skipping issue: FWI and LAWI approaches are sup-
osed to be equally successful. Following the multiscale strategy
Bunks et al. 1995 ), we first run inversion on 2.5–5.0 Hz data, then
n 2.5–7.0 Hz data using the pre viousl y updated velocity model. For
ach frequency band, 96 iterations in total are performed, namely six
terations per shot. This number of iterations represents a practical
ompromise between computational cost and accuracy of inversion
esults. 

Figs. 11 (a) and (b) show the inversion results of FWI and LAWI
n 2.5–5.0 Hz data, and the subsequent inversion results with 2.5–
.0 Hz data are displayed in Figs. 11 (c) and (d). The two meth-
ds produce similar high-quality inversion results. From the depth
lices, we can clearly observe the resolution improvement compared
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Figure 14. Inversion starting with the simple stratified model after 48 iterations: reconstructed velocity models with 2.5–7.0 Hz data using the GSOT objective 
function (a), the AWI method (b), the FWI method (c) and the LAWI method (d). 
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to the tomographic initial model: the channel-shaped high-velocity 
structure from the 0.2 km depth slice, and the top and middle of 
the low-velocity anomaly from the 1.0 and 1.25 km depth slices. 
Besides, we can see a vertical structure from the profile of x = 

3.95 km. The difference between the inversion results by two meth- 
ods is highlighted by red arrows. One can notice that the velocity of 
the corresponding part in the tomographic initial model is obtained 
by horizontal extrapolation from the low-velocity anomaly to the 
model edge. Therefore, this part in the initial tomography model 
could be inaccurate, and the inversion results indicates that this area 
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(a)

(b)

(c)

Figure 15. Well-log comparison: (a) starting with low frequency and the 
tomog raphy model, (b) star ting with low frequency and the stratified model 
and (c) starting with higher frequency and the stratified model. 
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hould have a higher velocity, which is confirmed in the latter two
ests. LAWI has a better capability to correct this intermediate-scale
elocity deviation than FWI does. 

In addition, one can observe some artefacts shows at the illu-
ination boundary. When the starting velocity, close to the the

llumination boundary, is inaccurate, strong artefacts occur in this
rea, clearly found in the depth slices at 1.25 km. Both FWI and
AWI are mainly driven by diving and direct waves, the maximum
epth that di ving w aves can reach is about 2 km. The reconstructed
odels below 2 km depth could be less reliable than the one above

t. 

.2.2 Workflow starting with the first frequency-band data and a 
imple stratified starting model 

he onl y dif ference with respect to the previous w orkflo w is the
tratified starting model. This starting model does not contain the
ow-velocity anomaly at the central location, while the background
ayer information is reasonably well described. The same 96 iter-
tions are run on both 2.5–5.0 Hz and subsequently 2.5–7.0 Hz
ata. We are especially interested to investigate whether the central
ow-velocity anomaly can be reconstructed or not. 

Fig. 12 presents the inversion results in this new workflow. The
ow-velocity anomaly can be roughly recovered from the first fre-
uency band data (2.5–5.0 Hz). Resolution improvement is observed
fter using the data with the frequency-band 2.5–7.0Hz (Figs. 12 c
nd d). The FWI approach generates a higher value for the middle
ortion of the low-velocity anomaly compared to the first workflow.
n contrast, the LAWI approach produces a superior reconstruc-
ion that is more similar to the outcome achieved with the previous
 orkflo w, as e videnced b y the depth slice at z = 1.25 km. The

rend of having low-velocity anomaly in the left-top area in the
rofile of y = 9.0 km is now missing: such a trend comes from
n intermediate-scale velocity feature of the tomographic model.
tarting from a stratified model highlights that this artificial trend is
ery difficult to remove, especially when it occurs at the illumination
oundary. 

Overall, the background information in the stratified simple
odel is less accurate than the one in the tomographic model.
ifferences of background velocity in the two starting models can
e more clearly observed in the well-log plots (Fig. 15 ). We suspect
his is the reason why stronger artefacts occur at the illumination
oundary in Fig. 12 . The velocity beyond the illumination boundary
an hardly be updated. This would generate reflections due to the
nconsistent velocity update inside and outside of the illuminated
rea. This poor illumination prevents the correction of this artefacts
hrough iterations. 

.2.3 Workflow starting with the full frequency-band data and a 
imple stratified starting model 

nversion are performed with the full 2.5–7.0 Hz data as initial data.
oreover, the starting model is the simple stratified velocity model,
aking this w orkflo w a rather challenging one. The final results af-

er 96 iterations are presented in Fig. 13 . From the depth slices, one
an observe that FWI fails to reconstruct the low-velocity anomaly
t the depth of 1.25 km. In fact, the velocity of the top and bot-
om of the low-velocity anomaly is much higher than that obtained
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Figure 16. Data comparison for inversion starting with low frequency and the tomography model. Synthetic data are displayed in a b lue-w hite-red colour 
scale, and field data (2.5–7.0 Hz) are overlapped in grey-scale with transparency. When synthetic data matches the observed data, blue pixels will be covered 
by black pixels. The compared data are generated with (a) the tomography model and the final reconstructed models by (b) standard FWI and (c) LAWI. 
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from the first w orkflo w. On the contrary, the low-velocity anomaly 
reconstructed by LAWI does not depart from those obtained with 
the two previous workflows: an illustration of the robustness of the 
delta-type regularization. Besides, from Fig. 13 (a), one can notice 
that low-velocity layers (red arrows) occurs in 1.0-1.5 km depth for 
the FWI approach. These bend shape low-velocity artefacts in the 
vertical slices are typical of c ycle-skipping, and the y do not appear 
with the LAWI approach. 

For a comparison, we give the results generated by the AWI ap- 
proach and the GSOT method (M étivier et al. 2018 , 2019 ), with the 
same w orkflo w, in this cycle-skipped circumstance. Fig. 14 displays 
inversion results after only 48 iterations that ensure inversion touch 
all data. Strong artefacts caused by cycle-skipping are observed in 
both velocity models built by AWI and GSOT methods (Figs. 14 a 
and b) with similar structures of the FWI approach (Fig. 14 c). The 
LAWI approach seems to provide superior result when considering 
this w orkflo w (Fig. 14 d): the main body of the central low-velocity 
anomal y is successfull y reconstructed after 48 iterations with a 
reasonable resolution. Of course, the velocity model is reasonably 
improved with more iterations as shown in Fig. 13 (b). No signifi- 
cant updates by FWI are observed between 48 iterations (Fig. 14 c) 
and 96 iterations (Fig. 13 a) because the model is stuck into a local 
minimum. 

The ef fecti veness of the GSOT method for alleviating the cycle- 
skipping issue has been verified by the same field data application 
(Pladys et al. 2022 ): together with a hierarchical time-windowing 
strategy, the GSOT method can reconstruct similar correct veloc- 
ity structures from a even cruder 1D initial velocity model (linear 
increase of velocity with depth). Nevertheless, in this challenging 
case, without the time-windowing strategy, the GSOT method does 
not make inversion get rid of the local minima issue, and the quality 
of the GSOT result is close from the FWI result. We believe that 
the GSOT method is more sensitive to amplitude than the LAWI 
approach dri ven strongl y b y phases, thanks to amplitude normaliza- 
tion (Yong et al. 2023 ). Although a lot of studies show that AWI can 
mitigate cycle-skipping issues, it also fails in this challenging case. 
Fur ther more, AWI could produce a very bad results when it fails 
to converge into a correct model, especially when predicted data 
lacks the reflections that occur in the observed data, because the 
non-stationary relationships between observed and predicted data 
is not taken into consideration in AWI. This observation is consis- 
tent with the findings of the 2-D synthetic study when starting with a 
smooth density model. It is worth noting that a similar issue related 
to multiple phases has been observed in the automatic cross-well 
tomography that relies on differential semblance optimization, as 
noted by Plessix et al. ( 2000 ). Various approaches, including the 
use of different data types, annihilators, and normalizations, have 
been attempted to mitigate this issue with field data (Plessix 2000 ). 

4.3 Well logs 

We further assess the inversion results above through well logs. 
There are three well logs in the surv e y available for quality assess- 
ment: The Log 1 is located at the centre of the acquisition surv e y 
and close to the low-velocity anomaly; the second one is at the 
eastern edge of the surv e y; the Log 3 is situated at the western of 
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Figure 17. Data comparison for the inversion starting with the stratified initial model. The compared data are generated with (a) the stratified model, the 
reconstructed models by (b) FWI and (c) LAWI with low starting frequency data, and the final reconstructed models by (d) FWI and (e) LAWI with higher 
starting frequency data. 
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he surv e y. The details of the location of three wells can be found
n Fig. 8 . 

Fig. 15 gives the well-log data comparison for the three w orkflo ws
bov e. Ov erall, the reconstructed v elocities in the first w orkflo w
mproves the matching with the log data. One may notice that the
nitial and reconstructed velocities at the Log 1 are lower than the
stimation by acoustic logging tools. The sonic log represents a
elocity at a much higher frequency (about 10 kHz). Ho wever , the
elocities obtained by waveform inversion is of seismic scale and
nfluenced by the attenuative medium, which can result in slower
alues, due to the strong dispersion effect in an attenuative medium
Carcione 2014 ; Yong et al. 2021 ). A more accurate Q estimation in
he low-velocity anomaly area may improve the velocity matching
t the Log 1 (Kamath et al. 2021 ). 

The simple stratified starting model, used in the second and third
 orkflo ws, is generated by horizontally extrapolating the velocity
f the y = 0 km profile, therefore the velocity of the stratified
odel at the Log 3 is close to that in the tomographic model, and

he differences can be noticed from the Log 1 and Log 2 data.
he low-velocity artefacts shown in Fig. 13 (a), caused by cycle-
ipping issues, is highlighted by the black arrows in Fig. 15 (c).
ompared with two velocities reconstructed by FWI at the Log 1,
ne can notice there is an opposite velocity update at the depth
f 1.75 km. In contrast, velocities reconstructed by LAWI have a
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(a) (b)

(c) (d)

Figure 18. Data comparison for the third inversion run: (a) the observed data in 2.5–7.0 Hz, (b) predicted data by the stratified starting model, and the predicted 
data with the reconstructed models in the third w orkflo w by (c) FWI and (d) LAWI, respectively. The data are that presented in Figs. 17 (d) and (e). 
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consistent update. Besides, in Fig. 15 (b), one may notice that there 
is a deviation at a 1.7-2.3 km depth, and the deviation is smaller 
in Fig. 15 (c). This is related to an illumination boundary issue: the 
location of Log 2 is close from the edge of the acquisition, and the 
ef fecti ve illumination area decreases with depth. As frequency and 
wavelength are inversely proportional to each other, waves in 2.5–
5.0 Hz have a larger wavelength, which results in a larger velocity 
update around the illumination boundary. When moving to 2.5–
7.0 Hz data, it is not able to correct velocity at the illumination 
boundary. 

Comparing the log data from the three w orkflo ws, one can no- 
tice that LAWI generates more consistent results, which somehow 

demonstrates LAWI is a more stable and robust algorithm to inter- 
pret the difference between modelled and recorded data. 

4.4 Data comparison 

One common way to assess the quality of inversion results is to 
compare the predicted data generated by the reconstructed model 
with the observed data. Fig. 16 displays the data comparison in 
the inversion starting with the tomographic model. In Fig. 16 (a), 
one can notice the phase mismatch (blue pixels) between the 2.5–
7.0 Hz field data and the synthetic data from the tomographic model. 
These phase mismatch of diving and direct waves get corrected in 
Figs. 16 (b) and (c): blue pixels are replaced by black pixels. Besides, 
more reflections are generated by the reconstructed model, while 
the data match of these reflections is not as good as the diving and 
direct wav es. Ov erall, the reflection data of FWI result has a slight 
better amplitude match than that of LA WI result, because LA WI is 
mainl y dri ven b y phase matching and a few iterations are used in 
this w orkflo w. 

Fig. 17 presents the data fittings of the second and third w orkflo w. 
The synthetic data generated by all of the reconstructed velocities 
appear similar, and all show a reasonable match to the observed 
data. From previous analysis, we already know that the FWI result 
in the third w orkflo w is trapped into local minima. Ho wever , the 
quality of the data fitting in Fig. 17 (d) is quite similar to others from 

the previous w orkflo w, because waveform inversion is designed to 
improve the data fit. The reconstructed models generally produce 
synthetics that resemble the observed data. Therefore, it must be 
careful when using data comparison to assess the quality of recon- 
structed models. Compared to reflections, early observed arri v als 
have less chance to be spuriously matched by predicted arri v al than 
reflection phases. Thereby, they are more suitable for a quality as- 
sessment. The yello w arro ws in Fig. 17 highlight the mismatch 
(blue parts) of early arrivals at far offsets. One can see that this 
mismatch occurs in the initial synthetic data, which does not exist 
in Fig. 16 (a). FWI, in two different starting settings, is unable to 
reduce this phase mismatch. Conversely, LAWI results successfully 
correct this mismatch. This mismatch indicates that the FWI re- 
sults in the second and third w orkflo ws are stuck at local minima. 
Although FWI in the second w orkflo w recovers the low-velocity 
anomal y, its v alues are not as low as expected. To better observe 
this mismatch, we plot all synthetic and observed data involved in 
the third w orkflo w in Fig. 18 . In addition, we also observe that the 
LAWI results provide a better data fit from the cross-correlations 
between synthetic and field data in all three w orkflo ws as described 
in Supporting Information Section S1. 

5  D I S C U S S I O N  

A new implementation of Gabor deconvolution is proposed in this 
work, w hich is ab le to bring all information of observed data in a 
more natural and elegant way, compared to data-weighting strategy 
used in our previous work (Yong et al. 2023 ). In addition, it can 
also stabilize LAWI for low-SNR data, as the proposed delta-type 
regularization follows the fact that the local matching filter should 
con verge to wards a delta function with model update in LAWI. For 
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ore detailed information, please refer to Supporting Information
ection S2. A slight drawback is the small resolution loss which
ay be overcome by taking the LAWI approach with the zero-type

egularization at a later stage of the inversion, when considering
igher frequencies. 

The first w orkflo w with 3-D field data demonstrates that LAWI
nd FWI can generate similar results when starting from an ini-
ial tomographic model and with a frequency content avoiding
 ycle-skipping issues. Nev ertheless, the second and third work-
o ws sho w that, when starting models are less accurate and/or
hen suf ficientl y low frequencies are not av ailable, the LAWI can

ecov er a v elocity model which is similar to the one obtained by
he first w orkflo w while the FWI method cannot. Other methods,
uch as AWI and GSOT methods may require fine tuning for being
uccessful, especiall y b y data-weighting strategies. These strate-
ies respecti vel y re veal the importance of taking non-stationarity
nto account on one side and of reducing amplitude effect on the
ther side when designing misfit function to tackle local minima
roblems. 

The overhead cost induced by time–frequency analysis in the
AWI approach is about 15 per cent of the computation com-
lexity of gradient construction in the field data tests. Moreover,
AWI could need less iterations to reconstruct velocity models (see
 ig. 14 ), w hich is also noticed in Yong et al. ( 2023 ; see Section 5.1).
his means that the LAWI approach can be more efficient than the
WI method in terms of total computational time for velocity re-
onstr uction. In shor t, the LAWI approach with the delta-type reg-
larization seems to be robust, efficient, and effective in practice,
herefore it should be applicable to 3-D field data over a wide range
f circumstances. 

High-quality v elocities abov e 2 km depth (for instance the low-
elocity anomaly) can be obtained from the field data. The deep part
f the model are not sampled by diving wav es: v elocity variations are
ess reconstructed as those in the shallow par t. Besides, obser ved
eflection data are less well predicted. With more iterations, the
uality of deep velocity reconstruction may be improved. Ho wever ,
rom the wavenumber coverage analysis (Wu & Toks öz 1987 ; Mora
989 ; Sirgue & Pratt 2004 ), this reconstruction will be quite difficult
hen considering broad-band spectra of seismic data: this challenge

s also reported b y se veral field applications (Sirgue et al. 2010 ;
essud et al. 2021 ; Pladys et al. 2022 ). Combining the LAWI

pproach with the so-called reflection FWI method (Xu et al. 2012 ;
hou et al. 2015 ; Yao et al. 2020 ; Provenzano et al. 2023 ) is expected

o bring a better recovery of the deep velocity model: an identified
ear -future investigation. Besides, w hen cycle-skipping issues are
 ell-resolved, full-wa vefield imaging can be realized with the FWI
ethod (Huang et al. 2021 ). One challenge for high-frequency
WI formulation comes from computational burden, as the expense
apidly increases above 7 Hz. Fur ther more, fur ther investigations are
eeded to explore the impacts of shaping the source spectra, as well
s the challenges posed by multiple parameters when considering
nisotropy, attenuation, and elasticity. 

 C O N C LU S I O N  

WI is a powerful tool to reconstruct high-quality subsurface im-
ges. Ho wever , due to the nonlinear nature between waveform and
 elocity, successful applications hav e a strict requirement on start-
ng velocity models and usable lowest frequency data, which may
e difficult to meet in practice. Based on the Gabor transform, the
roposed LAWI method with the delta-type and zero-type regular-
zations, which is mainl y phase-dri ven, can significantl y overcome
he nonlinearity of velocity reconstruction b y w av eform inv ersion.
onsequently, its applicability can be considered for a wider range
f seismic acquisition configurations for different subsurface tar-
ets. Both synthetic and real data illustrate such potentiality during
his study. 
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Optimal transport full-waveform inversion: from theory to industrial ap- 
plications with examples from the sultanate of oman, First Break, 39 (12), 
45–53. 

M étivier , L. & Brossier, R., 2016. The SEISCOPE optimization toolbox: a 
large-scale nonlinear optimization library based on reverse communica- 
tion, Geophysics, 81 (2), F11–F25. 

M étivier , L. , Allain, A., Brossier, R., M érigot, Q., Oudet, E. & Virieux, J., 
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upplementary data are available at GJI online. 
igure S1 . Zero-lag cross-correlation analysis between field data
nd synthetic data (2.5–7.0 Hz) in the inversion starting with the
omography model: the synthetic data are generated with (a) the to-
ography model and the final reconstructed models by (b) standard
WI and (c) LAWI. 
igure S2 . Zero-lag cross-correlation analysis between field data
nd synthetic data (2.5–7.0 Hz) in the inversion starting with the
tratified model: the synthetic data are generated with (a) the strat-
fied model and the reconstructed models by (b) FWI and (c)
AWI with low starting frequency data, and the final reconstructed
odels by (d) FWI and (e) LAWI with higher starting frequency

ata. 
igure S3 . Chevron benchmark test in 0–3 Hz frequency
and: observed data (a), predicted data (b), and the adjoint
ources of LAWI with zero-type regularization (c) and delta-type
egularization (d). 
igure S4 . LAWI using zero-type regularization: initial model (a),

econstructed models after the first iteration (b), second iteration (c)
nd third iteration (d). 
igure S5 . Reconstructed models by LAWI using delta-type regu-

arization (a) and AWI using zero-type regularization (b) after the
5th iteration. The resolution loss is not obvious due to the limited
ow-frequency band. 
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P P E N D I X  A :  G R A D I E N T  

O N S T RU C T I O N  B Y  T H E  

D J O I N T - S TAT E  M E T H O D  

e give the acoustic wave equation used in this work, in which
eismic attenuation is expressed by the generalized Zener body
heology (Moczo & Kristek 2005 ) and anisotropy effect is addressed
y the stable first-order wave equation in transverse isotropy (TI)
ith a vertical symmetry axis (VTI), proposed by Duveneck &
akker ( 2011 ). With the same symbols used in the previous study

Yang et al. 2018 ), the VTI viscoacoustic wave equation is writes
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σ

= 

[
c 11 c 13 

c 13 c 33 

]
︸ ︷︷ ︸ 

C 

[
∂ x ∂ y 0 
0 0 ∂ z 

]
︸ ︷︷ ︸ 

D 

⎡ 

⎣ 

v x 

v y 

v z 

⎤ 

⎦ 

︸ ︷︷ ︸ 
v 

−∑ L 

 = 1 Y 
 

[
c 11 c 13 

c 13 c 33 

]
︸ ︷︷ ︸ 

C 

[
ξ

g 

 

ξ
q 

 

]
︸ ︷︷ ︸ 

ξ 
 

+ 

[
f g 
f q 

]
︸ ︷︷ ︸ 

f σ

∂ t 

[
ξ

g 

 

ξ
q 

 

]
︸ ︷︷ ︸ 

ξ 
 

= −ω 
 

[
ξ

g 

 

ξ
q 

 

]
︸ ︷︷ ︸ 

ξ 
 

+ ω 
 

[
∂ x ∂ y 0 
0 0 ∂ z 

]
︸ ︷︷ ︸ 

D 

⎡ 

⎣ 

v x 

v y 

v z 

⎤ 

⎦ 

︸ ︷︷ ︸ 
v 

. 

(A1) 

ere, v = ( v x , v y , v z ) T are particle velocities. g and q are horizontal
nd vertical stresses. ξ 
 are known as memory variables, each one
ssociated with one reference frequency ω 
 . Y 
 ≈ y 
 Q inv ( Q inv = 1/ Q )
ith the separable approximation for the anelastic coefficients, and
 
 is computed before forward simulation by solving a least-squares
roblem 

min 
y 
 

1 

2 

∫ 
ω∈ ̄�

( 

n ∑ 


 = 1 
y 
 

ωω 
 

ω 

2 

 + ω 

2 
− 1 

) 2 

dω, (A2) 

here �̄ = [ ω min , ω max ] , and for three relaxation mechanisms, ω 
 

re often chosen as ω min , ω max and 
√ 

ω min ω max . The element of
atrix C is related to the elastic coefficients 

 11 = ρV 

2 
p (1 + 2 ε) = ρV 

2 
h c 33 = ρV 

2 
p = κ (A3) 

 13 = c 33 

√ 

1 + 2 δ = ρV 

2 
p 

√ 

1 + 2 δ, 

here V p and V h denote vertical and horizontal velocities of wave
ropagation. ε and δ are Thomsen’s anisotropy parameters (Thom-
en 1986 ). When considering isotropic media, they are simply set
s zero in this study. 

For the sake of simplicity, we rewrite the forward modelling
quation in a compact form as 

 : 

⎧ ⎨ 

⎩ 

ρ∂ t v = −D 

† σ + f v 
C 

−1 ∂ t σ = Dv − ∑ L 

 = 1 Y 
 ξ 
 + C 

−1 f σ
1 
ω 
 

∂ t ξ 
 = −ξ 
 + D v , 
 = 1 , · · · , L 

. (A4) 

ith the adjoint-state method (Plessix 2006 ), the adjoint equa-
ion can be given by 

: 

⎧ ⎨ 

⎩ 

ρ∂ t ̄v + D 

† σ̄ + 

∑ L 

 = 1 D 

† ξ̄ 
 = 0 
C 

−1 ∂ t ̄σ − D ̄v = r 
1 
ω 
 

∂ t ̄ξ 
 − ξ̄ 
 − Y 
 ̄σ = 0 , 
 = 1 , · · · , L . 

(A5) 

 = 

∂χ

∂ σ
denotes the adjoint source at the receiver locations. For

tandard FWI, it is the subtraction between calculated and observed
ata, whereas, in LAWI approach, it is gi ven b y the formula ( 12 ).
he gradient of the vertical velocity V p , of interest in this work, can
e written as 

∂χ

∂V p 
= 

∂κinv 

∂V p 

∂χ

∂κinv 
= 

−2 ρV p 

κ2 

∫ T 

0 
dt ̄σ † ∂C 

−1 

∂κinv 
∂ t σ , (A6) 

here the explicit formula of ∂χ

∂κinv 
can be expressed as (Yang et al.

018 ) 

∂χ

∂κinv 
= 

⎧ ⎨ 

⎩ 

∫ T 
0 dt ̄p ∂ t p, ( ε = δ = 0; p = −g = −q) , 

1 
2( ε−δ) 

∫ T 
0 dt( ̄g − √ 

1 + 2 δq̄ ) ∂ t g + ( −√ 

1 + 2 δḡ + (1 + 2 ε) ̄q ) ∂ t q( ε �= δ) . 
(A7) 
al Astronomical Society. 

http://dx.doi.org/10.1093/gji/ggac496
http://dx.doi.org/10.1093/gji/ggv228
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad225#supplementary-data

	1 INTRODUCTION
	2 THEORY
	3 ANALYSIS ON SYNTHETIC DATA
	4 3-D FIELD DATA APPLICATIONS
	5 DISCUSSION
	6 CONCLUSION
	DATA AND MATERIALS AVAILABILITY
	ACKNOWLEDGMENTS
	REFERENCES
	SUPPORTING INFORMATION
	APPENDIX A: GRADIENT CONSTRUCTION BY THE ADJOINT-STATE METHOD

