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S U M M A R Y
Correctly interpreting phase events thanks to data processing techniques based on correlation
or deconvolution has been the focus of numerous studies in the field of high-resolution seismic
imaging using full-waveform inversion. To mitigate the non-convexity of the misfit function
and the risk to converge towards non-informative local minima, correlation and deconvolution
techniques make it possible to focus on phase information instead of amplitude information
and to design more convex misfit function, alleviating the dependency of the full-waveform
inversion process on the accuracy of initial models. Such techniques however rely on the
assumption that phase events can be compared one by one, or that all the phase events are
shifted in time in a similar way. This assumption is not satisfied in practice, which limits the
effectiveness of these correlation/deconvolution-based methods. To overcome this issue, we
propose to account for the non-stationary relation between observed and predicted data through
a local in-time deconvolution technique, based on time–frequency analysis of the signal using
a Gabor transform. This makes it possible to estimate instantaneous time-shift between locally
coherent phase events. This strategy generalizes the conventional normalized deconvolution
technique, which has been popularized under the name of adaptive waveform inversion. To
support the introduction of our novel method, we compare it with four misfit functions based
respectively on classical cross-correlation, penalized cross-correlation, penalized deconvolu-
tion, and adaptive waveform inversion. We analyse the behaviour of these methods on specific
scenarios, and then propose a comparison on 2-D synthetic benchmarks. We show how our
‘localized’ adaptive waveform inversion applies in these realistic tests and overcomes some of
the limitations of the aforementioned techniques.

Key words: Fourier analysis; Waveform inversion; Inverse theory; Computational seismol-
ogy.

1 I N T RO D U C T I O N

Full-waveform inversion (FWI) has gradually been adopted in the
practical workflows of seismic data process due to its capability
to build high-resolution velocity models (Pratt 1999; Sirgue et al.
2010; Zhu et al. 2012; Operto et al. 2015; Lei et al. 2020; Huang
et al. 2021). Seismic waveform inversion is recast as an itera-
tive PDE-constrained optimization problem in FWI formulation,
and the optimal model is obtained by using gradient-based opti-
mization methods to minimize the misfit between observed and
predicted waveforms from an initial model (Lailly 1983; Taran-
tola 1984). From an optimization point of view, FWI is a non-
convex and non-linear problem, which means that it may be trapped
into local minima when the starting model is not accurate enough
using gradient-based methods. The non-convexity increases with
frequency and, in practice, low-frequency content, if available in

seismic data, together with the multiscale inversion strategy (Bunks
et al. 1995), may prevent the risk of classical FWI approach con-
verging to a spurious model (Virieux & Operto 2009; Virieux et al.
2017).

For field data applications, the initial models for FWI formulation
are usually built by first-arrival traveltime tomography (Zhu et al.
1992; Zhang & Toksöz 1998; Taillandier et al. 2009), migration-
based reflection traveltime inversion (Stork 1992; Chavent et al.
1994; Burdick et al. 2014), or stereotomography (Billette & Lam-
baré 1998; Prieux et al. 2013; Tavakoli F. et al. 2017; Sambolian
et al. 2019). The initial low-wavenumber velocity models provided
by these methods based on their kinematic information are agnostic
to the frequency content of seismic waves (Červený 2001; Virieux
et al. 2007): they cannot ensure that the classical FWI converges
to a global minimum (Virieux et al. 2017). Besides, these kine-
matic methods rely on attributes picking and association (e.g. first
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break, traveltime, slope), which already narrow the search of suit-
able models. Moreover, such careful extraction of observations can
be a heavy task for large-amount of exploration data and prevents
any correction on mistaken phase associations during the process
of inversion.

The non-convexity issue of the misfit function can be allevi-
ated by lowering the frequency generated by the source (Plessix
et al. 2010; Ten Kroode et al. 2013; Dellinger et al. 2016): how-
ever it relies on long-offset and full-azimuth acquisitions (Plessix
& Krupovnickas 2021; Vigh et al. 2021), as first-arrival phases are
essentially driving the optimization workflow. Late low-frequency
reflection phases, quite important for high-resolution contribution,
are likely to interfere, increasing the non-linearity of the inverse
problem if the current model is not precise enough (Ten Kroode
et al. 2013). However, sources injecting low-frequency content in-
side the subsurface are economically expensive. Therefore, there is
an interest for industry and academia in methodological develop-
ments of robust FWI for high-resolution subsurface imaging without
these low-frequency content.

Designing a convex misfit function is one of the key research
topics in methodology development of FWI (Pladys et al. 2021).
Jannane et al. (1989) pointed out that medium-scale to large-scale
velocity perturbation generates time-shifts in the data. Therefore,
designing a convex misfit function with respect to time-shifts is
a good proxy for making a convex data misfit function with re-
spect to medium-scale to large-scale velocity perturbation (Luo &
Schuster 1991; Woodward 1992). However, effectively and accu-
rately capturing time-shifts is challenging for complex and noisy
seismic data. Many techniques, such as the cross-correlation (Luo
& Schuster 1991; van Leeuwen & Mulder 2010), the deconvolu-
tion (Luo & Sava 2011; Warner & Guasch 2016; Sun & Alkhalifah
2018, 2019a, b, 2020), the dynamic-time warping (Ma & Hale
2013; Chen et al. 2021), and the optimal transport (Engquist et al.
2016; Métivier et al. 2016, 2018; Yang et al. 2018; Yong et al.
2019; Górszczyk et al. 2021) have been used to capture time-shifts.
Numerical and realistic studies have illustrated that these methods
can make seismic waveform inversion less prone to cycle skip-
ping issues and more tolerant to initial model design. In addition,
low-frequency enhancement methods, when possible, can play an
important role in mitigating cycle-skipping issues. Synthetic stud-
ies show that the signal envelope can produce ultra low-frequency
content below the lowest physical frequency in the source spectrum,
which can be exploited to improve the background velocity model
(Bozdağ et al. 2011; Wu et al. 2014; Hu et al. 2019; Chen et al.
2020). On the other hand, low-frequency extrapolation with mul-
tiple signal classification (Li & Demanet 2016) and deep learning
training (Sun & Demanet 2020; Hu et al. 2021) recently presents
some encouraging synthetic and field data results for initial velocity
design. Nevertheless, it is still an open question of how to main-
tain the effectiveness when applying a trained neural network to
other data sets, especially to field data (Hu et al. 2021; Yu & Ma
2021).

In this work, we consider the deconvolution technique used in
the adaptive waveform inversion (AWI). In this method, a sta-
tionary convolutional matching filter is designed to globally map
one observed data trace into one predicted data trace (Warner &
Guasch 2016; Guasch et al. 2019). For complex seismic data, a
non-stationary convolutional approach (Margrave et al. 2011) for
computing the matching filter seems to be more suitable. In a sta-

tionary convolutional operator, the filter is assumed invariant for
all phase events. However, time-shifts of the different events are
generally different, and therefore a local matching filter is expected
to be more physically meaningful, since it accounts for the non-
stationarity nature of seismic data. In fact, the interference on the
global matching filter between different events could make the AWI
misfit function non-convex with time-shift (Pladys et al. 2021),
thereby it is necessary and beneficial to restrict the comparison
of the data to selected arrivals by a local matching filter. In this
paper, we detail how to efficiently obtain the local matching filter
with a Gabor transform (Gabor 1946), and how to implicitly esti-
mate instantaneous time-shifts with the local matching filter. Let
us mention that the importance of taking non-stationarity into ac-
count when dealing with the cycle-skipping issue is also discussed
in many studies (e.g. Baek et al. 2014; Dı́az & Sava 2015; Zhu &
Fomel 2016; Zhu 2018). Most of these methods are usually used to
increase the accuracy of starting models, reducing the risk of the
standard FWI converging into local minima. However, these meth-
ods seem lacking the capability to generate high-resolution models
even with a broad-band data, meaning that they cannot fully use the
information in seismic data. That is, they cannot make most of the
precious low-frequency content in seismic data to make the starting
velocity model reach the possible highest accuracy. In contrast, our
approach can automatically generate high-resolution velocity mod-
els, thereby it can more robustly fill the wavenumber gap (Virieux
et al. 2017, Fig. 2) in the road to velocity models of broadband
spectra.

We shall review and explore relationships of AWI and the pro-
posed localized AWI (LAWI) approaches with three relevant meth-
ods, namely, classical cross-correlation (Luo & Schuster 1991),
penalization-based cross-correlation (van Leeuwen & Mulder 2010)
and deconvolution (Luo & Sava 2011). The physical interpreta-
tion of AWI can be highlighted by the concept of centroid fre-
quency used in quality-factor Q estimation (Quan & Harris 1997):
from our point of view, the key point of AWI is the estima-
tion of the centroid time of the matching filter, which implicitly
matches observed and predicted traces. This physical interpreta-
tion motivates us in the development of a local matching filter
for detecting instantaneous time-shifts to locally coherent phase
events. Besides, we also illustrate how and why the normalization
in AWI (and in LAWI) makes such approaches essentially differ-
ent from penalization-based cross-correlation and deconvolution
methods.

After this introduction, we shortly summarize the standard FWI
pointing out the adjoint-source definition in the second section.
Then, in the third section, we outline the key points of these five
mentioned inversion methods based on the same wave-equation for-
ward problem. Through simple numerical examples, we attempt to
clarify the relationships among these matching-filter-based misfit
functions by a sensitivity-kernel comparison and objective function
analysis, also illustrating the benefit of local analysis when the rela-
tion between compared time-signals is non-stationary. Next, we in-
vestigate the capability of AWI and LAWI to handle local-minimum
issues with a 2-D Valhall synthetic data through adjusting initial
models. For a further comparison between AWI and LAWI, we ap-
ply them to the Chevron 2014 benchmark data set. We analyse the
inversion results with well log, migrated images and corresponding
common-image gathers in the offset domain. Finally, discussions
and conclusions follow.
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2 B R I E F S U M M A RY O F F W I

Classical FWI can be written as a PDE-constrained optimization
problem over all available sources denoted by xs and related re-
ceivers xs

r . The misfit function can be written as

min
m

JL2(m) = 1

2

∑
xs

∑
xs

r

∫ T

0
(p[m](xs

r , xs, t) − d(xs
r , xs, t))2dt

subject to A(m)u(x, xs, t) = s(t, xs), (1)

where the physical model parameter set is denoted by m (we con-
sider only wave speed in this work), the observed and predicted
data at the receiver location xs

r are denoted by d(xs
r , xs, t) and

p[m](xs
r , xs, t).

In practice, gradient-based local optimization methods are ap-
plied to solve this large-scale inverse problem. The optimal solution
can be found through iterations. Knowing the model mk , the new
model mk+1 is updated by

mk+1 = mk + αk�mk, (2)

where the step-length αk at the kth iteration is determined, for
example, by a linesearch method with classical Wolfe conditions
(Métivier & Brossier 2016). The current model update direction
�mk is given by

�mk = −Pk∇JL2(mk), (3)

where a pre-conditioner Pk is expected to accelerate convergence
rate, after the computation of the gradient ∇JL2(mk). With the
adjoint-state method, the gradient can be efficiently computed with
an implicit summation over sources and receivers by

∇JL2(m) =
∫ T

0
λ(t)

∂ A(m)

∂m
u(t) dt. (4)

The analytical expression ∂ A(m)/∂m defines the diffraction-
radiation operator, which depends on the selected model parameter
set. The adjoint field λ is calculated by back-propagating the receiver
data residuals (Tarantola 1984; Plessix 2006) with the adjoint-state
equation

AT (m)λ = −rL2, (5)

where the adjoint operator AT (m) could have a similar structure
as the wave-modelling operator A(m). The adjoint source rL2 is
the data residual in the conventional FWI given for each (source,
receiver) pair by

rL2 = p(xs
r , xs, t) − d(xs

r , xs, t), (6)

corresponding to the derivative of the misfit function JL2 with re-
spect to the predicted data term.

In the next section, we introduce some misfit functions using
matching filters for a more robust behaviour with respect to the
initial model design.

3 M AT C H I N G - F I LT E R B A S E D
S T R AT E G I E S F O R M I T I G AT I N G
C YC L E - S K I P P I N G I S S U E S

Comparison of observed and predicted waveforms may emphasize
phase information in different ways. The wave-equation traveltime
inversion (Luo & Schuster 1991) exploits only the phase infor-
mation through a connective function, and its aim is the build-
ing of a more accurate low-resolution initial model for FWI. In

order to avoid the pure time-shift assumption in Luo & Schus-
ter (1991), a penalization-based cross-correlation misfit is devel-
oped (van Leeuwen & Mulder 2010), which increases the appli-
cability of the wave-equation traveltime inversion. The alternative
penalization-based deconvolution (Luo & Sava 2011) makes the
matching filter more confined when the velocity model moves to
the correct one. Although these two penalization-based methods are
both designed to be driven by time lags, while numerical experi-
ments show that they are sensitive to amplitude variations. Thanks
to the normalization, AWI (Warner & Guasch 2016) can reduce the
amplitude effect by emphasizing time-shift detection (Li 2018; Sun
& Alkhalifah 2019a). Let us underline that the proposed LAWI is
based on a local matching filter different from the global matching
filter used in the AWI approach: therefore, it is more suitable to
process complex seismic signals.

3.1 Wave-equation traveltime tomography

Wave-equation traveltime inversion attempts to determine a velocity
model by minimizing the misfit function

JW T I = 1

2
(δτ )2, (7)

where δτ denotes a time-shift between observed and predicted data.
Such a delay is obtained through a connective function expressed
by

δτ = arg max
τ

c(τ ), (8)

where the function c(τ ) is defined by a cross-correlation between
observed data d(t) and predicted data p(t). The time-shift is explicitly
evaluated from the peak value of the connective function. For the
sake of simplicity, we consider the data of one receiver here and
below. Thanks to Fast Fourier transform, cross-correlation can be
efficiently implemented in the frequency domain as the product

c̃(ω) = d̃(ω)† p̃(ω), (9)

where the complex conjugate is denoted by †, and complex-valued
quantities d̃(ω) and p̃(ω) are observed and predicted data in the
frequency domain. The time-domain and frequency-domain repre-
sentations of one trace can be connected through Fourier transform
pair:

f̃ (ω) = F[ f ](ω) = 1√
2π

∫
R

f (t)e−iωt dt, (10)

f (t) = F−1[ f̃ ](t) = 1√
2π

∫
R

f̃ (ω)eiωt dω. (11)

We shall introduce, in addition to the time, a time variable τ which
will have the same sampling as the one used for the time variable
t. Therefore, they are sharing the same frequency sampling. We
distinguish the Fourier transform and its inverse by subscripts Ft

for time variable and Fτ for τ variable.

3.2 Penalization-based cross-correlation

When the amplitude spectra of observed and predicted data are
not identical, the time-shift determined by the maximal value of
the connective function is no longer valid (van Leeuwen & Mulder
2010). In addition, the adjoint source computation in the classical
wave-equation traveltime inversion is under the assumption that ob-
served and predicted data are purely time-shifted. In order to make
wave-equation traveltime inversion more robust to field data, and
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also inspired by differential semblance optimization used in migra-
tion velocity analysis (Symes & Carazzone 1991; Mulder & ten
kroode 2002; Shen & Symes 2008), van Leeuwen & Mulder (2010)
propose a penalization-based cross-correlation objective function
in the data domain, defined as

JC = 1

2

∫
R

P(τ )c2(τ )dτ, (12)

where the expression P(τ ) penalizes the signal energy at non-zero
time lags: this makes the wave-equation traveltime inversion more
robust to spectral variations. One simple penalty function is the ab-
solute value function P(τ ) = |τ | which is adopted here: it will help
our introduction of the centroid frequency useful for the interpreta-
tion of AWI. In practice, other convex or concave functions named
annihilators can also been used (van Leeuwen & Mulder 2010; Pla-
dys et al. 2021): they do not modify the methodological aspect of
such an approach. The adjoint source of this cross-correlation-based
objective function can be expressed by

rC = F−1
t

[
Fτ [|τ |c(τ )] d̃(ω)

]
. (13)

3.3 Penalization-based deconvolution

For a bandlimited or non-impulsive source, Luo & Sava (2011)
underline that the cross-correlation peak is centred at the zero lag
for the correct velocity model, but could not be confined to zero lag.
They mention that a deconvolution-based matching filter, behaving
as an impulsive function for an unlimited frequency range, is more
confined for realistic oscillatory signals. Besides, the resolution of
the inversion result is expected to be improved (Luo & Sava 2011;
Warner & Guasch 2016). The deconvolution-based misfit function
can be defined as

JD = 1

2

∫
R

|τ |w2(τ )dτ, (14)

where a matching filter w(τ ) is based on a stationary convolutional
operator that maps the observed data d(t) onto the predicted data
p(t) through the convolution expression

d(t) ⊗ w(τ ) = p(t). (15)

The matching filter can be obtained in the frequency domain as

w̃(ω) = d̃(ω)† p̃(ω)

d̃(ω)†d̃(ω) + ε
, (16)

where the so-called water-level parameter ε is a small positive num-
ber to stabilize the division (Clayton & Wiggins 1976). It can be
empirically chosen as the average of the power spectrum of the ob-
served data scaled by a value in the interval [10−1, 10−3]. Such a
selection depends on signal-to-noise ratio (SNR) of the trace. Low
SNR data may require high ε values. Note that when ε is an enor-
mous value, the deconvolution will reduce to cross-correlation. ε

controls the transition between deconvolution and cross-correlation.
The corresponding adjoint source can be given by

rD = F−1
t

[
Fτ [|τ |w(τ )]

d̃(ω)

d̃(ω)d̃†(ω) + ε

]
. (17)

3.4 Adaptive waveform inversion

Using the same matching filter as in the deconvolution-based misfit,
Warner & Guasch (2016) define the following objective function

JAW I = 1

2

∫
R

|τ |w2(τ )dτ∫
R

w2(τ )dτ
. (18)

The essential difference between the AWI misfit and the
deconvolution-based misfit comes from a specific normalization:
AWI normalizes the misfit with the L2 norm of the matching fil-
ter. As detailed in the Appendix, the adjoint source of AWI can be
written as

rAW I = F−1
t

[
Fτ

[
(|τ | − 2JAW I )w(τ )∫

R
w2(τ )dτ

]
d̃(ω)

d̃(ω)d̃†(ω) + ε

]
. (19)

Such a normalization introduced by Warner & Guasch (2016) is
a key element in mitigating local-minimum issues as shown by
various publications (e.g. Li 2018; Sun & Alkhalifah 2019a, b). The
definition (18) is quite similar to the expression for computing the
centroid frequency of a signal, widely used for getting the quality
factor parameter Q in geophysical applications (Quan & Harris
1997; Wang 2009). Given a signal u(t), the centroid frequency fu of
the signal can be computed by the expression

fu =
∫
R

|ω|A2
udω∫

R
A2

udω
, Au = |ũ(ω)|. (20)

Thus, the misfit in AWI can be understood as an estimation of
the centroid time of the matching filter for the implicit estimation
of the time-shift between observed and predicted data. With such
an interpretation, the deconvolution-based misfit can be regarded
as the time-shift estimation through a filter-weighted operation.
Thanks to the normalization in eq. (18), the amplitude influence
of the matching filter is reduced and AWI enhances the time-shift
influence while still taking into account mildly the data amplitude
contribution.

To intuitively interpret AWI by connecting with the concept of
centroid frequency, we consider one specific form of AWI that the
penalty function is defined as the absolute value of the time-shift
(|τ |). Note that other penalty functions can be used, which could
lead to other interpretations of AWI and behaviours in applications
(Warner & Guasch 2016; Li 2018; Sun & Alkhalifah 2019b, 2020;
Pladys et al. 2021). For instance, Sun & Alkhalifah (2018) use
the time-shift τ as the penalty function and interpret AWI as an
instantaneous traveltime approach (Sun & Alkhalifah 2019b). Be-
sides, different penalty functions can affect the convergence rate of
AWI, and comprehensive numerical studies can be found in Sun &
Alkhalifah (2019b, 2020).

3.5 Localized adaptive waveform inversion

The global matching filter builds the connection between observed
and predicted data in AWI: the same filter is applied for all phase
events detected in a given seismogram. For complex traces, a local
matching filter based on a non-stationary convolutional expression
seems advisable. This makes it possible to capture local time-shifts
related to locally coherent events. Let us describe first the LAWI
method by using the Gabor transform. Then, we discuss the time
window width to be selected for the Gabor transform in connection
with the local aspect of phase events.

3.5.1 Methodology

The local matching filter used in LAWI relies on the Gabor trans-
form, which can be defined as

f̂ (t, ω) = G[ f ](t, ω) = 1√
2π

∫
R

f (ξ )h†
σ (ξ − t)e−iωξ dξ, (21)

f (t) = G−1[ f̂ ](t) = 1√
2π

∫
R2

f̂ (ξ, ω)hσ (t − ξ )eiωt dξdω. (22)
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hσ denotes the time window function, and it is chosen as the fol-
lowing Gaussian function (Strang & Nguyen 1996; Fichtner et al.
2008)

hσ (t) = (πσ 2)−
1
4 e

−t2

2σ2 , (23)

where the parameter σ controls the radius of the window func-
tion. Such a window definition ensures the energy conservation∫
R

h2
σ (t)dt = 1. A time-varying matching filter in the frequency do-

main can be efficiently computed by Gabor deconvolution with a
water-level parameter ε for stability:

ŵ(t, ω) = d̂†(t, ω) p̂(t, ω)

d̂†(t, ω)d̂(t, ω) + ε
. (24)

Here, d̂(t, ω) and p̂(t, ω) are the time–frequency spectra of pre-
dicted and observed data. The corresponding time-varying match-
ing filter in the time domain can be obtained through

w(t, τ ) = F−1
τ [ŵ(t, ω)] , (25)

where F−1
τ denotes applying inverse Fourier transform for the vari-

able τ (see the definition in subsection 3.1). The instantaneous
centroid time-shift at the local time t can now be estimated by

T (t) =
∫
R

|τ |w2(t, τ )dτ∫
R

w2(t, τ )dτ + η
, (26)

where the small positive water-level parameter η prevents instabil-
ities for local null data. From numerical experiences, we find that
the strategy used for the ε parameter selection also works for the
parameter η.

Integrating all instantaneous time-shifts under the L2 norm, we
can define the misfit function of LAWI as

JL AW I = 1

2

∫
R

W (t)T 2(t)dt, (27)

where a positive weighting function W(t) makes the misfit more
robust for noisy data. In this work, we assume a simple weight
W(t) = 1 for synthetic data, and, for low-SNR data applications, the
following weight

W (t) = log(1 +
∫
R

|d̂(t, ω)|dω). (28)

This weight function is a variation of the one (log(1 + |d̂(t, ω)|))
used in Fichtner et al. 2008 to stabilize time–frequency attributes
calculation in noisy data. As the estimated instantaneous shifts is
in the time domain, an integral of the time–frequency spectrum
over frequency is made in the weight function. Besides, to mitigate
large-amplitude dominance effect, the logarithmic function is used,
instead of absolute function (Fichtner et al. 2008). Other weighting
strategies are also possible (Fichtner et al. 2008, section 2.2.2).

As detailed in the Appendix the adjoint source of LAWI can be
written as

rL AW I = 2G−1

[
Fτ

[
W (t)T (t)(|τ | − T (t))w(t, τ )∫

R
w2(t, τ )dτ + η

]
(29)

× d̂(t, ω)

d̂(t, ω)d̂†(t, ω) + ε

]
.

3.5.2 Selection of Gaussian window parameter

When using time–frequency transformations for the analysis of
time signals, one always has to face the problem of the parameter

selection related to time-window width. In the Gabor transform and
its inverse, defined respectively by eqs (21) and (22), the width of the
sliding window hσ does not explicitly depend on time or frequency.
In general, the optimal choice of the width of the sliding window is
case-dependent. In some applications, a flexible sliding window h
may be preferable (Strang & Nguyen 1996; Mallat 2008).

In the LAWI approach, time–frequency analysis is applied to effi-
ciently capture the local time-shift between observed and predicted
data. Staying on the safe side when facing the cycle-skipping is-
sue, we focus on the detection of local time-shift of a single phase
event, instead of a precise time-shift of a specific seismic wiggle. In
other words, the effective length of the sliding window Tw should be
larger than the duration of the phase event Te related to the seismic
frequency content. Considering the time-shift Ts between observed
and predicted data, a reasonable choice would be

Tw = Te + Ts . (30)

If the window width Tw becomes too large, the Gabor transform
will lose time resolution. As a result, LAWI would behave like
AWI, losing capability to locally analyze events. For the Gaussian
function defined by eq. (23), the effective length Tw can be regarded
as 4σ , because the range of [ − 2σ , 2σ ] encapsulates about 95 %
of the surface of the normal distribution. Thus, the window-width
parameter σ , required to be defined in the LAWI method, can be
computed by

σ = Tw

4
= Te + Ts

4
. (31)

Now let us illustrate two key points in the strategy with the numerical
example displayed in Fig. 1: (1) The effective length of the Gaussian
window Tw can be considered as 4σ . (2) It is reasonable to make
the sliding window covers two compared events.

A zero-phase Ricker wavelet with a peak frequency of 5 Hz,
shown in Fig. 1 (a), is defined by

Rw(t) = (
1 − 2π 2 f 2

d t2
)

e−π2 f 2
d t2

. (32)

The time support of a Ricker wavelet can be roughly estimated as
Te = 2

√
6/(π fd ), which corresponds to the double length of the

time interval between two local minima. The Gaussian function
with σ = Te/4 is plotted using the blue line in Fig. 1 (a). We can
see that the Ricker wavelet can be appropriately covered by the
Gaussian function.

Then, we consider two phase events with time-shift Ts = 0.5 s.
With the analysis above, the effective length of Gaussian function
should be Te + 0.5 s, and the recommended width parameter in
this case is σ 0 = (Te + Ts)/4. From Fig. 1 (b), we can see that the
Gaussian function with σ = σ 0 can cover the combined surface of
the two Ricker wavelets. Three choices of window width are plotted
in Fig. 1 (c). When the window width is too small, the estimation
of the time-shift is below the expected value 0.5 s. Increasing the
window width will improve the estimation, but a too large increase
would affect the time resolution. Besides, a large window width will
increase the risk of combining multiple phase events, reducing the
resolution which is, however, less crucial at the beginning of the
inversion process. A proper selection of σ values could be driven
by numerical experiments.

For LAWI applications, the information (Te and Ts) used for
computing the window-width parameter σ can be easily obtained
ahead of the inversion: The duration of a single-phase event Te can be
of the order of the characteristic source wavelet duration, and better
preserved in a 3D geometry than in a 2D geometry. The time-shift Ts

between observed and predicted data can be empirically estimated,
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1060 P. Yong et al.

Figure 1. An illustration for the choice of Gaussian window: (a) a 5 Hz Ricker wavelet covered by the Gaussian function with a standard deviation σ = Te/4,
where Te denotes the double length of the time interval between two local minima of the Ricker wavelet, (b) two Ricker wavelets with time-shift Ts = 0.5 s still
covered by the Gaussian function with a recommended standard deviation σ 0 = (Te + Ts)/4, (c) estimated instantaneous time-shifts with a too large width in
blue, the one suggested in green which includes the time-shift of 0.5 s and a too small value in red.

normally less than 0.5 s in practical applications. Overall, the time-
window definition is a common problem in seismology (Maggi
et al. 2009) and our simple strategy does work well in the following
numerical tests.

4 N U M E R I C A L I L LU S T R AT I O N O F
T H E S E F I V E D I F F E R E N T A P P ROA C H E S

Through simple numerical examples in cycle-skipped circum-
stances, we notice that approaches AWI and LAWI are able to
distinguish whether the starting velocity is slower or faster than the
true one, whereas the L2 norm (Tarantola 1984), penalization-based
cross-correlation (van Leeuwen & Mulder 2010) and deconvolution
(Luo & Sava 2011) methods do not succeed. Through sensitivity
kernel analysis with related adjoint sources and matching filters,
parametric objective function evolution, we illustrate these two dras-
tically different behaviours. Finally, we demonstrate the benefit of a
local analysis when the relation between compared signals is non-
stationary and show how the LAWI strategy handles the situation
that the number of phase events is not the same in observed and
calculated signals.

4.1 Analysis of sensitivity kernel and one-event time signal

Let us consider two 2-D models of 4 km by 4 km with constant
velocities of 3.0 and 2.0 km s–1 to be reconstructed from an initial
model of velocity of 2.5 km s–1. A transmission configuration is
given by a source and a receiver respectively at (z = 2.0 km, x =
0.5 km) and (z = 2.0 km, x = 3.5 km). The three seismograms for
the corresponding models are shown in Fig. 2(a) for a 5 Hz Ricker
source wavelet with a significant time-shift between blue (fast) or
red (slow) single observed signals and the black synthetic signal
inducing the cycle-skipping issue. For the L2 norm, penalization-
based cross-correlation and penalization-based deconvolution, the
two in-phase blue and red adjoint sources shown in Figs 2 (b)–
(d) have similar contribution nearby the initial trace, while the two
opposite-phase blue and red adjoint sources of AWI and LAWI
formulations, shown in Figs 2(e) and (f) will provide a different
direction for updating the velocity. The amplitude variations of
these adjoint sources induce patterns of the initial sensitivity kernels
shown in Fig. 3. Let us underline that only the sensitivity kernels
generated by AWI and LAWI strategies have opposite signs in the
first Fresnel zone: leading to the correct direction for updating the
velocity for fast (blue) and slow (red) target ones. Other methods

fail to distinguish whether the starting velocity is faster or slower
than the true one.

Fig. 4 displays the matching filters involved in this example. The
time-shift between calculated and observed data can be inferred
from the locations of the matching filters. The annihilator P(τ ),
shown in Fig. 4(e), penalizes the energy located at non-zero lag and
the penalization increases with time-shifts, expecting to reduce the
objective function by moving c(t) or w(t) towards zero lag. How-
ever, the objective function of penalization-based cross-correlation
method can be minimized by either pushing c(t) towards zero lag or
reducing the amplitude of c(t). The objective function reduction of
the penalization-based deconvolution method can also be achieved
through these two ways, which is also described in Sun & Alkhali-
fah (2019a). Differently, with the normalization in eq. (18), the AWI
formulation mainly relies on time-shift reduction to minimize the
objective function. With the analogy provided by the physical con-
cept of centroid frequency, the objective function of AWI workflow
can be interpreted as computing the centroid time of the matching
filter to implicitly measure the time-shift between observed and cal-
culated data. In addition, the time–frequency analysis used in LAWI
strategy makes it possible to capture instantaneous time-shift.

For an illustration of the reduction mechanisms followed by the
five objective functions, let us plot the variations of these objective
functions with respect to time-shift τ and amplitude scaling A on
the calculated signal:

dobs(t) = A × dcal(t + τ ). (33)

All objective functions are centred at τ = 0 (Fig. 5) and symmet-
ric about the face of τ = 0. The L2-norm based objective function
is non-convex with respect to time-shift. Although the objective
functions of cross-correlation and deconvolution are convex, they
are sensitive to amplitude changes, while AWI and LAWI objective
functions are almost flat with amplitude variation, indicating that
they are nearly insensitive to amplitude scaling and mainly sen-
sitive to time-shifts. Namely, the model update of AWI or LAWI
approaches is mainly driven by minimizing time-shift between ob-
served and calculated data. Similar analysis about the AWI method
can also be found in Li (2018, section 2.3) and Sun & Alkhalifah
(2018, 2019a, b, 2020).

4.2 Analysis of multi-event time signals

Let us now consider various configurations of seismic events with
different time-shifts and/or with a different number of events.
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Localized adaptive waveform inversion 1061

Figure 2. Three seismograms in three homogeneous models with velocity of 2.0, 2.5 and 3.0 km s–1. The red and blue traces are two independent observed
traces while the black one is the predicted trace in the initial model (a) to be moved onto the blue one in one experiment or onto the red in another experiment.
Related blue and red adjoint sources of L2 norm (b), cross-correlation (c), deconvolution (d) show, respectively, in-phase shape, while the blue and red adjoint
sources of AWI (e), and LAWI (f) have, respectively, an opposite-phase pattern. Strong oscillations in the last two cases destroy somehow contributions of
interference fringes.

Figure 3. Initial sensitivity kernels (normalized) in a transmission configuration with single source/receiver pair with an initial velocity of 2.5 km s–1. The top
row is for a target slower velocity of 2.0 km s–1 while the bottom row is for a target faster velocity of 3.0 km s–1. Amplitude variations of the adjoint sources
induce the Fresnel interference pattern on different panels: respectively L2 norm (a), cross-correlation (b), deconvolution (c), AWI (d) and LAWI (e). Only
AWI and LAWI show the correct sign in the first-Fresnel zone which should be positive for the slow target (negative gradient) and negative for the fast target,
which is an illustration of its strong capability to capture time-shifts.
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1062 P. Yong et al.

Figure 4. The connective function c(τ ) (a), the global matching filter w(τ ) (b), the local matching filters w(t, τ ) relating to observed data with velocity of
2.0 km s–1 (c) and 3.0 km s–1 (d), the annihilator (e) and the estimated instantaneous time-shift (f). Except for the time-shift information, the local matching
filter also can provide the time location information of the compared events. This makes it possible to estimate the instantaneous time-shift.

4.2.1 Different time-shifts of events

From the analysis, we know that the success of AWI and LAWI
formulations rely on the time-shift estimation. However, the global
matching filter, involved in the AWI workflow, is a time-invariant
operator for all phase events occurring in the time signal. Let us
consider two phase events, with different time-shifts, in observed
and calculated signals. As shown in Fig. 6 (a), we assume that the
first event has no time-shift, leading to a correct prediction while
the second one has a 0.4 s time-shift. Amplitudes are normalized
to one for all events. Although we can also observe two signals
located at 0.0 and 0.4 s in the global matching filter (Fig. 6b),
there are several other non-zero contributions mapping the first
observed phase event onto the second predicted phase event: these
contributions might be removed through iterations during the AWI
procedure if successful. To make the matching filter more robustly
evolve to zero-time lag, Sun & Alkhalifah (2020) design a misfit
by minimizing the mean and information entropy of the matching
filter distribution from a statistics point of view. Differently, we
use a non-stationary matching filter to build the relation between
observed and calculated data. Apparently, the interpretation of the
local maching filter (Fig. 6c) is much simpler with a zero time-shift
for the first event and a 0.4 s time-shift for the second event. Finally,
Fig. 6(d) shows both AWI and LAWI objective functions: the AWI
objective function becomes non-convex with respect to local time-
shifts, while LAWI objective function remains convex. One can see
the advantage of a local analysis in processing complex seismic
data.

4.2.2 Unequal numbers of events

In synthetics tests of waveform inversion for exploration applica-
tions, the observed data usually contains direct, diving and reflected
waves. When inversion starts from a smooth velocity model, the
calculated data may only contain direct and diving waves. Thus the
number of events in calculated data and observed data can not be
matched. This case can be mimicked with the signals presented in
Fig. 7(a). In the AWI procedure, the global matching filter can take
all events in observed data into account (Fig. 7b), whereas LAWI
approach only accounts for the event in observed data locally coher-
ent to the event occurring in calculated data. One can observe that
some non-physical events occur in the AWI adjoint source, which
indicates that the AWI formulation does not properly make use of
the information of second event. From the test in the Section 4.2.1,
we know that it is useful to estimate instantaneous time-shift in
waveform inversion. While directly applying the LAWI procedure
in this case, a non-convergence issue is met, because the estimated
time-shifts are initially related mainly to diving and direct waves.
However, with model update, reflections will arise in the predicted
data, which leads to time-shifts of the new reflections (not existing
at the beginning) and may make the objective function increase.

To avoid such a non-convergence issue in LAWI applications,
one can use a mask function to fix the compared events for several
iterations. Specifically, diving and direct waves are first taken into
account. With model updates, the mask is then gradually enlarged
to gently include more reflected waves. This strategy is known as
the data-domain layer stripping (Wang & Rao 2009; Pladys et al.
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Localized adaptive waveform inversion 1063

Figure 5. Misfit functions with respect to time-shift τ and amplitude scaling A on the predicted data. The objective function of the conventional L2 norm is
non-convex (a). The objective functions of cross-correlation (b), and deconvolution (c) are convex but sensitive to amplitude change, whereas the objective
functions of AWI (d) and LAWI (e) capture essentially time-shifts. Red double arrows highlight amplitude influence of penalization-based cross-correlation
and deconvolution.

2022). Let us point out that, for field-data applications, the multi-
scale strategy (Bunks et al. 1995) is generally adopted to deal with
the cycle-skipping issue: inversion starts with low-frequency data
and gradually includes more high-frequency content. In realistic
low-frequency data, the usable signals are mainly diving and direct
waves, and reflections gradually come into the scene with frequency

increases, as shown later in the Chevron benchmark data (Fig. 21).
Namely, the multiscale strategy can automatically generate a suit-
able mask for the LAWI application. Therefore, for realistic data
applications, manual mask design becomes not mandatory when the
multi-scale strategy is used in LAWI approach. More practical de-
tails will be given by the Chevron benchmark data later. In addition,
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Figure 6. Comparison of AWI and LAWI using two phase events in the time signal: observed in red and predicted in blue data with 0 and 0.4 s time-shifts
of the 5 Hz Ricker wavelet (a), the corresponding global matching filter (b) and the local matching filter w(t, τ ) (c), normalized misfit function with different
time-shifts (d), in which the first phase event is kept fixed while the second event is shifted with time delays from 3 to 4 s.

Figure 7. The predicted data in blue has less phase events than observed data in red, and the first event suffers from a 0.5 s time-shift (a), the corresponding
global matching filter (b) and the local matching filter w(t, τ ) (c), adjoint sources (d). AWI tries to map also the second observed event with the single predicted
event, while LAWI only maps the first observed event into the single predicted event, leading to a rather different adjoint source.

Figure 8. 2-D Valhall models: (a) P-wave velocity model, (b) density model.

we can combine LAWI procedure with reflection FWI formulation
(Xu et al. 2012; Brossier et al. 2015; Zhou et al. 2015) for updating
the deep zone of the model, in which special care needed to treat
this issue becomes unnecessary, as (more or less) the same number
of main reflections can be produced by migration results.

5 F U L L - WAV E F O R M I N V E R S I O N
A P P L I C AT I O N S

In this section, we consider more complex situations for highlighting
similarities and differences between AWI and LAWI workflows with
two different synthetic models: the 2-D Valhall model for a standard
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Figure 9. The source wavelet (a) used to generate the synthetic data set on the Valhall model: a 5 Hz Ricker wavelet with the application of a zero-phase
Butterworth filter below 2.0 Hz. (b) its related amplitude spectrum.

Figure 10. Case 1: relatively accurate initial model (a), and inversion results after 50 iterations using standard FWI (b), AWI (c) and LAWI (d).

marine environment and the Chevron benchmark data with strong
localized near-surface variations, often met for on-shore data.

5.1 2-D Valhall model

The velocity and density models are presented in the Fig. 8, which
represent the shallow water environment of the real Valhall oil field
(Sirgue et al. 2010). They are defined on a Cartesian grid of 281 ×
704 with a spatial interval of 12.5 m in both directions. Since the
ratio between the maximum offset and depth is only 2.5, direct and
diving waves could not illuminate depth below 1.5–2.0 km. We use
a fixed spread surface acquisition with 32 sources and 352 receivers
at a depth of 25 m. The synthetic observed data are generated with
a 5 Hz Ricker wavelet and the energy below 2 Hz is removed. The
low-cut wavelet and its spectrum are displayed in Figs 9(a) and (b).
The effective time duration of the source wavelet can be regarded as
1.2 s, the time-shift between observed and predicted data should be
less than 0.2 s in such a case. The recommended width parameter in
the Gabor transform is σ = 0.35 s. Besides, the two scaling values
for water-level parameters ε and η are chosen as 10−3 and 10−2 for
this example. Optimization is carried out with the preconditioned

�-BFGS algorithm (� = 5), and the pre-conditioner is based on
energy compensation (Yong et al. 2022). For synthetic tests, there
is an interest to track the model error evolution with iterations.
A relative L1-norm model error is used here. For a given discrete
velocity model of M degrees of freedom, such a model error is
computed as

EV = 100

M

M∑
i=1

|Vi − V true
i |

|V true
i | . (34)

For testing the robustness of these three methods (standard FWI,
AWI and LAWI approaches) with respect to the local minima is-
sue, we implement different inversions starting from three velocity
models. Fig. 10(a) displays the first starting model that are obtained
by applying a triangle smoother (Claerbout & Fomel 2014) with a
radius of 250 m to the true model. The other two starting models
are generated by repeating the same Gaussian smoother 10 times
(Fig. 11a) and 15 times (Fig. 12a). For an illustration of how LAWI
works during inversion, we keep the true density model that allows
the same number of events in predicted and observed data. We will
use a smooth density model as the starting model at the last part
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Figure 11. Case 2: less accurate initial model (a), and inversion results after 50 iterations using standard FWI (b), AWI (c), and LAWI (d).

Figure 12. Case 3: poor initial model (a), and inversion results after 50 iterations using standard FWI (b), AWI (c) and LAWI (d).

Figure 13. Comparison of normalized data misfits decrease with iterations: case 1 (a), case 2 (b) and case 3 (c).
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Figure 14. Comparison of model error decrease with iterations: case 1 (a), case 2 (b) and case 3 (c).

Figure 15. Data quality check in the case of the poor initial model: the observed data is plotted in blue-white-red colour as background, and compared data
are overlapped in greyscale with transparency. The compared data are generated with initial model (a), true mode (b), and reconstructed models by FWI (c),
AWI (d), LAWI (e). When the compared data match the observed data, colourful pixels will be covered by grey pixels.

of this subsection, and introduce a weight-windowing strategy to
handle the fore-mentioned non-convergence issue.

Fig. 13 shows that all objective functions decrease with itera-
tions in the three cases. However, such a decrease does not mean
that reconstructed velocity models converge to the true one. When

the starting model is close to the true model, the main geological
structures have been reconstructed by three methods after 50 it-
erations (Fig. 10). Besides, from Fig. 14(a), we can observe that,
compared to AWI and LAWI approaches, the conventional FWI
workflow seems to have a slow convergence rate in reconstructing
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Figure 16. Adjoint sources for the first iteration in the case of the poor initial model: (a) standard FWI, (b) AWI and (c) LAWI.

Figure 17. The evolution of the centroid time of the local matching filter in the case of the poor initial model: the 1st iteration (a), the 15th iteration (b) and
the 50th iteration (c).

Figure 18. The evolution of the local matching filter w(t, τ ) (x = 3 km): the 1st iteration (a), the 15th iteration (b) and the 50th iteration (c).

the low-velocity gas layer shown in the middle of Fig. 10(b) due
to the lack of low frequency content in the data. When the start-
ing model becomes less accurate (Fig. 11a), conventional FWI is
trapped into local minima and fails to recover the low-velocity gas
layer. An incorrect low-wavenumber anomaly occurs in the shallow
part (Fig. 11b). The results (Figs 11c and d) obtained by AWI and
LAWI approaches are similar with those obtained by the first test.

Figs 12(b) and (c) displays the inversion results from the most in-
accurate starting model of FWI and AWI procedures. Due to the
high-velocity contrast between the gas layer and sediment, the rela-
tion between the waveform and the velocity perturbation is strongly
non-linear. Although AWI can reduce the risk of getting stuck in lo-
cal minima, it cannot fully recover the gas layer. From Fig. 14(c), we
know that increasing iterations can hardly improve the final result
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(a) (b) (c)

(d) (e) (f)

Figure 19. The weighting-window strategy: (a) the observed data, (b) the predicted data generated by using smooth velocity and density models, (c) the
weights for data windowing, (d) the weighted observed data, (e) the weighted predicted data and (f) the predicted data generated by the reconstructed velocity
presented in Fig. 20(e) and smooth density models.

presented in Fig. 12(c). This indicates that the AWI approach gets
trapped into local minima. The P-wave velocity model obtained
by the LAWI formulation (Fig. 12d) is the closest to the exact
model, thanks to the non-stationary nature between the compared
predicted and observed data taken into account. In addition, Fig. 15
displays the data quality check in the third case: one can see that
the calculated data in the final model match quite well the observed
data.

For the last case with the most inaccurate initial model, the ad-
joint sources are displayed in Fig. 16 for the first iteration. Non-zero
acausal contributions can be observed in the adjoint source time
function of AWI due to the global matching filter (Fig. 16b). Local
matching filter attempts to estimate the time-shifts using locally
coherent events, which reduce the effects of delayed events, pre-
venting acausal non-zero contributions (Fig. 16c). Fig. 17 displays
the decrease of the instantaneous centroid times with iterations. At
the same time, the local matching filter converges towards zero lag
during iterations as does the global matching filter when successful

(Fig. 18). It is necessary to point out that the instantaneous cen-
troid times cannot reflect exact time-shifts between calculated and
observed data (Fig. 17). The reason is, for this complex data the
multi-phase events interactively present in the Gaussian window,
and the Gabor convolutional model is not able to map these with a
simple and focused filter. In fact, the local matching filter becomes
complex and its energy is diffusely distributed along the time-shift
axis (vertical axis in Fig. 18). The time-shifts, implicitly estimated
by the instantaneous centroid times of the local matching filter al-
low convergence of the inversion. One may consider shortening the
window width for a more local comparison of signals. However, it
would move to the wiggle matching, which is the basic feature of
FWI procedure.

Now let us consider a more realistic situation where the starting
velocity and density models are both very smooth. Here, we apply
the same smoothing filter, used for generating the third smooth ve-
locity model (Fig. 12a), to the true density model. The generated
smooth density and the third smooth velocity are used as starting
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(a) (b)

(c) (d)

(e) (f)

Figure 20. Inversion results starting with the third velocity model and a smooth density model. Pictures on the left-hand side show the recovered velocity
models computed with weighted data after 20 iterations: (a) FWI, (c) AWI and (e) LAWI. Pictures on the right-hand side show the recovered velocity models
subsequently computed with full data after 50 iterations: (b) FWI, (d) AWI and (f) LAWI.

models. During the inversion, we only update velocity model. The
predicted data is shown in Fig. 19(b). One can notice that there is
a lot of reflections in the observed data, while they are absent in
the predicted data as we start from the smooth density and velocity
models. From the Section 4.2.2, we know that LAWI procedure is
driven by matching the predicted data, therefore it can not take all
reflections in the observed data into consideration at the beginning
of inversion. If we directly apply LAWI formulation, with model up-
date, reflections will occur in the predicted data. The newly arising
reflections could lead to an increase of misfit function and cause a
non-convergence issue, because more events are taken into account.
In order to avoid this issue, we can use a simple weighting-window
strategy to determine signals to be compared. Specifically, we de-
sign weights to extract direct waves and diving waves from predicted
and observed data, as shown in Fig. 19(c). At the first stage, we fo-
cus on inverting the data in the windowed area. With model update,
reflections would gradually be presented in the predicted data, then
we can use full data for LAWI procedure. This strategy is known as
data-domain layer stripping, and it has been widely used to mitigate
the cycle-skipping issue (Wang & Rao 2009; Pladys et al. 2022).

Although the weights are designed to interpret the direct and
diving waves of predicted data (Fig. 19e), some reflections in the
observed data also appears in the weighting window (Fig. 19d). As a
result, we can see layered structures appearing in the reconstructed
velocity model after 20 iterations by LAWI, shown in Fig. 20(e). The

corresponding predicted data to this velocity model are depicted
in Fig. 19(f). We can find that the reflections and multiples are
fully distributed in the predicted seismograms, thus it is ready to
move to the second stage: using full data in the LAWI approach.
Fig. 20(f) presents the reconstructed velocity model with subsequent
50 iterations. For comparison, we also show the inversion results
by FWI and AWI formulations with the same workflow. Due to
the inaccuracy of the density model, the quality of reconstructed
velocity models has a slight downgrade. Overall, the velocity model
generated by the LAWI workflow is still the closest to the true one.
From the weighted data test (the first stage), we can see that the
LAWI formulation can account for all events in the given weighting-
window. Although the number of events at the beginning is not the
same in the predicted and observed data, the LAWI approach has
the capacity to deal with this circumstance. To make better use of
LAWI, we can combine it with the reflection FWI (Xu et al. 2012;
Brossier et al. 2015; Zhou et al. 2015) for velocity update of deep
areas that diving waves can hardly reach.

5.2 Chevron 2014 benchmark data

In order to further investigate the performance of the LAWI ap-
proach in dealing with the cycle-skipping issue, we will apply it
to Chevron 2014 blind test data, which has a strong noise in the
low-frequency band, especially in 0–3 Hz. Such a synthetic data set
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Figure 21. The observed data: 2–4 Hz (a), 2–6 Hz (d) and 2–15 Hz (g). The calculated data (b, e, h) with the reconstructed models using data on the left-hand
side. The pictures (c, f, i) on the 3rd column display the corresponding adjoint sources of LAWI for the first iteration, which indicates that LAWI can gradually
take reflections into account with multi-scale strategy.
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Figure 22. Velocity models: initial model (a), the reconstructed velocity with AWI method using the data of the frequency band 2–4 Hz (b), 2–6 Hz (c),
2–10 Hz (d) and 2–15 Hz (e).

Figure 23. Reconstructed velocity models with LAWI method using the data of the frequency band 2–4 Hz (a), 2–6 Hz (b), 2–10 Hz (c) and 2–15 Hz (d).

mimics an exploration field data set with missing low-frequency
content. Besides, the ‘observed’ data are generated with an elastic
modelling engine. The first column in Fig. 21 displays the data in
different frequency bands. The original data set contains 1600 shots
with a single-side acquisition, and the maximum offset is 8 km.
This makes it difficult to reconstruct velocity below 2 km, which
is hardly probed by diving waves (Vigh et al. 2016). In our experi-
ment, 160 shots, equally extracted from the original data, are used
for inversion. The given initial model is presented in Fig. 22(a),
which only provides layer information below sea water. To mitigate
the cycle-skipping issue, the widely used frequency continuation

strategy, proposed by Bunks et al. (1995), is adopted in this case
study. The wavelets are estimated by solving a linear problem in the
frequency domain (Pratt 1999). We compute one wavelet for one
frequency-band data and update it after finishing iterations of each
frequency band with the latest velocity model. All wavelets used
in LAWI are shown in Fig. 24. In total, seven frequency bands are
used in inversion, and they are 2–4 Hz, 2–5 Hz, 2–6 Hz, 2–8 Hz,
2–10 Hz, 2–12 Hz and 2–15 Hz. The same processing of frequency
continuation and wavelet estimation are used in AWI. The window
width parameter σ in Gabor transform is chosen as 0.5 s in this
study. The two scaling numbers in water-level values ε and η are,
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Figure 24. The estimated wavelets in different frequency bands: 2–4 Hz,
2–5 Hz, 2–6 Hz, 2–8 Hz, 2–10 Hz, 2–12 Hz and 2–15 Hz (from left to right).

respectively, 10−2 and 10−1 for the first two frequency-band tests,
and they are modified to 10−3 and 10−2 for other frequency-band
tests. Besides, �-BFGS method is used for updating the velocity
model, and for the first three stages, the iterations are 20 and are
changed to 30 in the subsequent frequency bands. Note that L2-norm
based FWI fails to generate geologically meaningful velocity with
this workflow (Métivier et al. 2016; Yong et al. 2019). Therefore,
we only show the results generated by AWI and LAWI formula-
tions in this paper. It is necessary to point out that we do not use
the weighting-window strategy in this case test, because the usable
signals in the low-frequency observed data are mainly direct and
diving waves. Restricting the compared areas in seismic profiles
becomes not mandatory, and the reflections are gradually taken into
account with the increase of the frequency band.

Figs 22(b)–(e) displays the reconstructed velocity models by the
AWI workflow at four stages. The inversion results obtained by
LAWI at the same stage are shown in Figs 23(a)–(d). Both methods
generate informative velocity models, and the geological structures
above 2.5 km are similar. However, it seems that there is a low-
velocity zone located in 2.5–3 km depth, which has been reported
in previous studies (Warner & Guasch 2015; Wu & Alkhalifah
2015; Vigh et al. 2016; Sun & Alkhalifah 2019a). Compared with
the AWI procedure, the LAWI formulation can better reconstruct
this low-velocity layer, which can also be observed in the well log
(Fig. 25). From Fig. 25, we can see that the reconstructed models
match the true velocity well above 2.5 km. One may notice that the
low-velocity layer at the right place has better update, because the
update is related to the thickness of the high-velocity overburden,
which decreases from left to right. Since AWI and LAWI approaches
are less sensitive to amplitude than the FWI formulation and that
only low-frequency data are used, the reconstructed models do not
have a high resolution as that of the well-log data. In addition, the
given data is generated in elastic media, our inversion uses an acous-
tic wave equation to simulate wave propagation, which can not take
S waves and converted waves into account. When comparing the
observed data with the calculated data displayed in Fig. 21, one can
notice that the events in the calculated data match well with that in
the observed data in phase, while the calculated data has less reflec-
tions and elastic amplitude-versus-offset phenomenon can not be
matched due to the acoustic modelling. In the reconstructed veloc-
ity models, one may notice some vertical-strip artefacts (especially
in the results of AWI), which may be caused by time inconsistency
of different offset data (Valensi & Baina 2021). These artefacts
could be mitigated by either structure-oriented smoother (Yao et al.
2019; Provenzano et al. 2021) or edge-preserving regularization
(Yong et al. 2018; Aghamiry et al. 2019).

Figure 25. Comparison of the well logs taken at x = 39,375 m of the
reconstructed models by LAWI (red line) and AWI (green line), the initial
model (blue line) and given true one (black line). Due to the velocity update
between 2.5 and 3 km, the well log generated by LAWI has an up shift below
3 km depth, compared with that extracted from the velocity estimated by
AWI.

The true models have not been released so far. For a better as-
sessment of the quality of reconstructed models, three reverse time
migration using respectively initial model and two final AWI and
LAWI reconstructed models are considered. The migrated images
with the inverse scattering imaging condition (Op’t Root et al. 2012;
Whitmore & Crawley 2012), namely the impedance gradients of
FWI with the parametrization of impedance and velocity (Zhou
et al. 2015), are displayed in Fig. 26. Overall, the velocity obtained
by the AWI approach can greatly improve the quality of the image:
reflectors become more continuous due to the kinematic correction
in the velocity. One may notice that LAWI formulation can further
make the energy of the migrated event more focusing. Because of
the low-velocity zone, the reflectors in the images also have an up-
lift below 3 km depth, which can be better observed in the common
image gathers (CIG) shown in Fig. 27. Note that the arrows plotted
in the migrated images (also in CIG gathers) have the same relative
coordinates, which highlight not only the improvements but also
can be regarded as references to observe the uplift of reflectors.
One may notice that the migrated images seem to contain more re-
flectors compared to the structures presented in the velocity model,
which could be possible artefacts, because no deghosting and de-
multiple have been applied to the data before migration. This could
be one reason for pushing the non-linear process of FWI towards
high frequencies (Huang et al. 2021). At last, from the overlay of ve-
locity and migration results in Fig. 28, we can observe the increase
of consistency between the velocity model and imaging structures
with the velocity update.
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(a)

(b)

(c)

Figure 26. The migrated images using the initial model (a), the reconstructed velocities by AWI (b) and LAWI (c) with 2–20 Hz data. Arrows (red and blue)
suggest the improvements with velocity update, and the blue arrows highlight the difference between results from AWI and LAWI.
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Figure 27. Common image gathers: (a) the initial model, estimated models by AWI (b) and LAWI (c). With auxiliary dash lines, one can observe that the
gathers below the depth of 3 km have an uplift due to the update of the low-velocity layer in the 2.5–3 km deep zone. The improvements of the flatness of
the gathers are indicated by the arrows. The gathers are extracted with 2.5 km interval, and the surface locations in the images are denoted by the value of
horizontal coordinates. The maximum offset of each gather is 5 km.
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Figure 28. Overlay of velocity models and their corresponding migration images: (a) the initial velocity model, (b) the reconstructed velocity model by AWI
and (c) the reconstructed velocity model by LAWI.
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6 D I S C U S S I O N A N D C O N C LU S I O N

For waveform fitting, different strategies have been proposed for
a better interpretation of traveltime information. Time analysis are
essential for boosting time delays compared to amplitude varia-
tions between observed and calculated waveforms. Understanding
how standard time operations, such as the cross-correlation, the de-
convolution and the matching filter with or without normalization,
operate on simple time signals or on realistic synthetic examples is
crucial before tackling field data sets.

We highlight that the normalization is a key element of the AWI
workflow, which enables the positive or negative updating direction
of the velocity model while direct cross-correlation or deconvolu-
tion methods fails to identify the polarity of the velocity pertur-
bation. These methods can be understood as a way to estimate a
filter-weighted time-shift, and such an estimation highly depends
on the amplitude of the filter. By a normalization, the AWI ap-
proach moves the matching filter for each trace towards zero-time
lag for the minimization of the objective function. The total dura-
tion of the trace is considered, leading to a global matching filter
involving various more or less significant associations of different
phase events.

We propose in this work to consider a local matching filter in or-
der to capture instantaneous time-shifts based on a non-stationary
convolutional model. It can be regarded as a generalization form
of the AWI formulation, which can further release the accuracy
requirement of initial models. In addition, thanks to Fast Fourier
transform, the overhead cost induced by time–frequency analysis in
the LAWI approach is affordable, and it is about 5 per cent of the
computation complexity of gradient construction in the inversion
tests. Let us mention that, for the sake of heuristic interpretation
for AWI, by showing the similarity between the AWI misfit and the
centroid frequency, the absolute-value function is used in this paper
as the penalty function. Since both Warner & Guasch (2016) and
Sun & Alkhalifah (2020) suggest that alternative forms of penalty
function may provide a more rapid and more stable convergence
for the AWI approach, it could be an interesting work to investi-
gate the effect of the penalty function on the LAWI method in the
future.

In the AWI approach, a least-squares convolutional filter is used to
transform one-trace observed data onto one-trace calculated data.
The LAWI formulation uses the Gaussian window to locally ac-
complish such mapping, which can take the non-stationary nature
between predicted and observed data into account. Numerical anal-
ysis and inversion tests illustrate that time-localized manipulations
can improve the capability to handle cycle-skipping issues. It is
necessary to point out that, when several events interactively appear
in a local time window, the centroid time of the local matching
filter can only quantitatively reflects the instantaneous time-shift of
these combined phase events, as the energy of the local matching
filter, the optimal solution of the Gabor convolutional model under
least-squares sense, is diffusely distributed. Identifying each event
may resolve this problem, while facing difficulties encountered in
dynamic time warping (Ma & Hale 2013; Chen et al. 2021). Nev-
ertheless, it could be quite difficult to achieve this for complex
exploration data. One possible way to make the centroid time closer
to the true time-shift is through wavelet transform, which may gen-
erate a more focusing matching filter with a hierarchy of scales and
with different mother-wavelet shapes.

In the numerical experiments, the regularization parameter ε in
Gabor deconvolution is a constant for each time point. Such a pa-
rameter plays an important role especially for noisy data. One may

consider using a time-varying ε to account for the amplitude vari-
ation of phase events. After different numerical experiments, we
observe that the inversion could be unstable when such a param-
eter ε varies too much with the local energy estimation. One can
recognize that, with a constant ε, the local matching filter will be
still affected by amplitude to some extent. Certainly, time-varying
ε can make the LAWI workflow more traveltime-driven. However,
for noisy data applications, using a constant ε is recommended.
This observation has been found for other applications of Gabor
deconvolution (Margrave 1998; Margrave et al. 2011). In future
work, we shall apply the LAWI approach to an anisotropic 3-D field
data, and we shall discuss in more details how to stabilize Gabor
deconvolution when considering low SNR data from a point view
of regularization.

Apart from exploration applications, the LAWI method is also
applicable to global-scale and regional-scale passive applications,
because the LAWI approach is dedicated to enhance traveltime in-
formation for model update and to be nearly agnostic to amplitude
errors. In global seismology, the earthquake source time function
is difficult to estimate and the amplitude could vary for each sta-
tion and for each phase, depending on the corresponding location
point of the focal sphere (Tromp 2019). Thus, the developed LAWI
method can be an alternative to the existing phase and envelope
misfits (Fichtner et al. 2008; Bozdağ et al. 2011) for these global
and regional FWI applications.
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A P P E N D I X : D E R I VAT I O N O F A D J O I N T S O U RC E S F O R AW I A N D L AW I
F O R M U L AT I O N S

We give the details about the derivation of adjoint sources in the hybrid time and frequency domains. Combining the objective function
definition of the AWI approach (eq. 18) and the Fourier transform pair (eqs 10 and 11), also using the chain rule, we have

∂JAW I

∂p(t)
= ∂JAW I

∂w(τ )
× ∂w(τ )

∂w̃(ω)
× ∂w̃(ω)

∂ p̃(ω)
× ∂ p̃(ω)

∂p(t)

=
∫
R

(|τ | − 2JAW I )w(τ )∫
R

w2(τ )dτ
dτ × 1√

2π

∫
R

eiωτ dω × d̃†(ω)

d̃(ω)d̃†(ω) + ε
× 1√

2π

∫
R

e−iωt dt

=
{
Fτ

[
(|τ | − 2JAW I )w(τ )∫

R
w2(τ )dτ

]
× d̃(ω)

d̃†(ω)d̃(ω) + ε
× 1√

2π

∫
R

∫
R

eiωt dtdω

}†

=
{∫

R

F−1
t

[
Fτ

[
(|τ | − 2JAW I )w(τ )∫

R
w2(τ )dτ

]
× d̃(ω)

d̃†(ω)d̃(ω) + ε

]
dt

}†
. (A1)

Since the AWI adjoint source is a real-valued signal, we can write it as

rAW I = F−1
t

[
Fτ

[
(|τ | − 2JAW I )w(τ )∫

R
w2(τ )dτ

]
d̃(ω)

d̃(ω)d̃†(ω) + ε

]
. (A2)

Following a similar step, using the LAWI objective function (eq. 27) and the Gabor transform (eqs 21 and 22), the derivative of the misfit of
the LAWI approach with respect to predicted data can be obtained as

∂JL AW I

∂p(ξ )
= ∂JL AW I

∂T (t)
× ∂T (t)

∂w(t, τ )
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Consequently, the LAWI adjoint source can be given by

rL AW I = 2G−1

[
Fτ

[
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