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Robust and efficient waveform-based velocity-model-building by optimal-transport in the pseudotime domain: methodology

Full waveform inversion (FWI) aims at a broadband reconstruction of the subsurface physical properties by fitting the entire recorded wavefield. In realistic exploration seismic surveys, however, conventional FWI often fails to retrieve the deep velocity model due to the limited penetration depth of diving waves. Joint FWI (JFWI) unifies reflection-waveform inversion (RWI) and early-arrival waveform inversion (EWI) to reconstruct simutaneously the shallow and deep subsurface kinematics. However, a number of factors limit the appeal of JFWI velocity-model-building: 1) conflict between fixed reflectivity and evolving kinematics, creating phase ambiguity at short offsets; 2) susceptibility to cycle skipping at mid-to-long offsets, thus reliance on the quality of the starting model; 3) cost of building and updating the reflective model. We present a fully operational JFWI-based methodology that systematically addresses the aforementioned issues. JFWI is re-formulated in the pseudotime domain, in order to enforce consistency between velocity and reflectivity in a cost-effective fashion, without repeated least-square migrations. A JFWI graph space optimal transport (GSOT) objective function is designed to avert cycle skipping, while non-uniqueness is mitigated at no extra cost by smoothing the velocity gradient along the structures extracted from the reflective model. A dedicated asymptotic-based preconditioner is developed for impedance waveform inversion, making it possible to obtain sharp and balanced reflective images in a fraction of the time. We demonstrate that Pseudotime GSOT-JFWI retrieves complex velocity macromodels from limited-offset datasets with minimal pre-processing, starting from non-informative initial solutions. Compared to depth-domain JFWI, the computing cost is reduced significantly, along with a simpler and less subjective design of data weighting and inversion strategy. Pseudotime GSOT-JFWI provides FWI with the necessary low-wavenumbers to converge to the broadband model, reducing the need for accurate starting models, on the road to a fully waveform-based imaging workflow.

INTRODUCTION

Full waveform inversion (FWI, Lailly, 1983;[START_REF] Tarantola | Inversion of seismic reflection data in the acoustic approximation[END_REF]Tarantola, , 1986) ) aims at a broadband reconstruction of the subsurface physical properties by iteratively fitting the full recorded wavefield. It has higher resolution compared to ray-based methods and, unlike the latter, does not require phase identification and selection [START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF]. In its original intent, FWI combines of tomography and migration in a purely data-driven procedure [START_REF] Claerbout | Imaging the Earth's interior[END_REF][START_REF] Mora | Inversion = migration + tomography[END_REF] whereby both kinematic and reflective components of the subsurface can be obtained. So far, FWI has been applied successfully on a range of scales and targets, from regional seismology (e.g., [START_REF] Fichtner | Crust and upper mantle of the western mediterranean -constraints from full-waveform inversion[END_REF][START_REF] Davy | Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion[END_REF][START_REF] Górszczyk | Graph-space optimal transport concept for time-domain full-waveform inversion of ocean-bottom seismometer data: Nankai trough velocity structure reconstructed from a 1d model[END_REF] to exploration for subsurface fluids reservoirs (e.g., [START_REF] Hicks | Time-Pseudotime OT velocity inversion lapse full-waveform inversion as a reservoir-monitoring tool -A North Sea case study[END_REF][START_REF] Operto | On the role of density and attenuation in 3D multiparameter visco-acoustic VTI frequency-domain FWI: an OBC case study from the North Sea[END_REF], down to engineering-scale site-characterization, on marine (e.g., [START_REF] Provenzano | Decimetric-resolution stochastic inversion of shallow marine seismic reflection data: dedicated strategy and application to a geohazard case study[END_REF] as well as land settings (e.g., [START_REF] Irnaka | 3D Multi-component Full Waveform Inversion for Shallow-Seismic Target: Ettlingen Line Case Study[END_REF]. However, the resolving power of FWI depends on specific data characteristics, namely source-receiver aperture and source-bandwidth [START_REF] Jannane | Wavelengths of Earth structures that can be resolved from seismic reflection data[END_REF] (Figure 1). Low wavenumbers (long spatial wavelengths) are key for FWI to converge to a broadband Pwave velocity (V p ) model [START_REF] Jannane | Wavelengths of Earth structures that can be resolved from seismic reflection data[END_REF], and its ability to retrieve them relies on the availability of low frequencies and transmission-regime, wide illumination angle wavepaths [START_REF] Sirgue | Efficient waveform inversion and imaging : a strategy for selecting temporal frequencies[END_REF]. Such ideal illumination conditions, hence full wavenumber coverage, are achieved only in transmission regime settings, e.g. in medical imaging, where the target is surrounded by sources and receivers (e.g. [START_REF] Guasch | Full-waveform inversion imaging of the human brain[END_REF][START_REF] Marty | Acoustoelastic full-waveform inversion for transcranial ultrasound computed tomography: Medical Imaging[END_REF]. In seismic datasets, acquired with sources and receivers deployed at the surface, limited source-receiver offsets and limited-bandwidth, FWI retrieves low-wavenumber information only at the shallow depths sampled by diving waves [START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF]. At deep targets reached only by reflections, FWI has instead little sensitivity to model kinematics, and behaves similarly to a least-squares migration, reconstructing only the reflective component part of the subsurface mechanical properties [START_REF] Woodward | [END_REF][START_REF] Jannane | Wavelengths of Earth structures that can be resolved from seismic reflection data[END_REF]. Under these conditions, FWI succeeds only if the starting model accurately represents the subsurface velocity trends, covering the intermediate-wavenumber resolution gap [START_REF] Mora | Inversion = migration + tomography[END_REF].

Acoustic sources containing ultra-low frequencies (< 2 Hz) can be used to circumvent Pseudotime OT velocity inversion this limitation (e.g., [START_REF] Brenders | The Wolfspar-field trial: Results from a low-frequency seismic survey designed for FWI: SEG[END_REF], along with ocean-bottom-cable wide-angle and ultra-long offset streamer acquisitions to increase the penetration depth of diving waves (e.g., [START_REF] Vigh | Ultralong-offset data acquisition can complement full-waveform inversion and lead to improved subsalt imaging[END_REF]. However, these are expensive and generally non-affordable in limited-budget surveys and site-monitoring, for which repeated acquisitions are required over time (e.g., [START_REF] Eiken | Twenty years of monitoring CO2 injection at Sleipner[END_REF]. Furthermore, though advances in the acquisition technology are of invaluable importance, they are limited to new surveys ideally designed for FWI, while data-driven methodologies remain of interest for the application of waveform-imaging to legacy data (e.g., [START_REF] Raknes | Three-dimensional elastic full waveform inversion using seismic data from the sleipner area[END_REF].

Reflection waveform inversion (RWI) uses an initial reflective model to update the tomographic component of V p beyond the depths sampled by diving waves (e.g. [START_REF] Xu | Inversion on reflected seismic wave[END_REF][START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF][START_REF] Vigh | Keys to robust reflection-based full-waveform inversion[END_REF][START_REF] Yao | A review on reflection waveform inversion[END_REF]. In a reflective subsurface, interaction between second-order scattering and first order wavefields takes place at wide angles, producing low-wavenumber contributions to the sensitivity kernel. RWI isolates those from the migration isochrones to form a tomographic V p gradient [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF][START_REF] Yao | A review on reflection waveform inversion[END_REF] ideally exploiting the reflections as virtual deep sources generating a transmission-regime wavefield [START_REF] Mora | Inversion = migration + tomography[END_REF]. Joint FWI (JFWI, [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF] enriches the RWI sensitivity kernel with the shallow contribution from diving waves, through an objective function enforcing the fit to both early-wave arrivals and reflections. This improves the robustness and stability of the reflection-based updates and, by improving the shallow kinematic characterization, significantly enhances the imaging quality at all depths [START_REF] Zhou | Velocity model building by waveform inversion of early arrivals and reflections: a 2d ocean-bottom-cable study[END_REF].

In reflection seismology, ensuring consistency between scatterers position and wavefield kinematics is key for efficient V p -model building (e.g., [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. Reflectionbased waveform inversion makes no exception, and conflict between updating V p and fixed reflectors position in depth leads the inversion to non-physical solutions [START_REF] Yao | A review on reflection waveform inversion[END_REF]. Cycles of short-offset reflectivity updates by least-squares migration and mid-to-long offset V p inversion are thus required by the conventional V p -building JFWI workflow [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF]. This, however, comes at the price of a significant computational burden and high subjectivity of the offset windowing strategy.

Several methodologies have thus been proposed to enforce V p -reflectivity consistency in reflection waveform tomographic methods. Data-domain approaches, such as migrationbased traveltime-tomography (MBTT, Doherty and Claerbout, 1976;[START_REF] Snieder | Retrieving both the impedance contrast and background velocity: a global strategy for the seismic reflection problem[END_REF][START_REF] Chavent | Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example[END_REF][START_REF] Alkhalifah | The space-time domain: theory and modelling for anisotropic media[END_REF] have been applied to RWI [START_REF] Chavent | Data space reflectivity and the migration based travel time approach to fwi[END_REF][START_REF] Kryvohuz | Reflection full-waveform inversion with data-space lsrtm[END_REF] to honor the zero-offset traveltime seismic invariant. In order to do so, they require building and updating an intermediate reflectivity, between the data and the model space, with the same dimensions as the input data. An alternative pseudotime (or vertical traveltime, τ ) domain has been proposed by Plessix (2013) for FWI. The approach is based on chain-rule derivation of the FWI gradient from the spatial (z, x, y) to the (τ , x, y) domain, thus enforcing short-spread phase consistency with minimal cost and limited memory-requirements. More recently, [START_REF] Yang | Simultaneous velocity and reflectivity inversion: Fwi+ lsrtm[END_REF] decouple the highand low-wavenumbers of FWI by reformulating the wave-equation to update simultaneously V p , and a vector-reflectivity related to the spatial derivative of P-wave impedance (I p ). Alternatively, [START_REF] Valensi | A time consistent waveform inversion (twin) method[END_REF] account for the velocity-reflectivity coupling by introducing an additional migration/demigration term to the RWI gradient that enforces consistency in time. Pseudotime OT velocity inversion While the V p -reflectivity conflict produces phase-ambiguity at short-offsets, inaccurate starting model kinematics may lead to cycle-skipping in JFWI when using a conventional least-squares (L 2 ) objective function. In this case, if the predicted traveltime is larger than half a dominant period, velocity updates are driven away from the global optimum [START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF]. Objective functions robust to cycle skipping are therefore highly recommended in RWI/JFWI, as both methods aim at the reconstruction of V p long-wavelengths by fitting limited-bandwidth waveforms. In the literature so far, objective functions based on cross-correlation time-shifts (e.g., [START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF][START_REF] Wang | Preconditioned reflection full waveform inversion for subsalt imaging[END_REF][START_REF] Yao | A review on reflection waveform inversion[END_REF] have been shown to mitigate cycle skipping in RWI, though limited by cross-talk in multi-arrival data, where they may require appropriate windowing [START_REF] Hale | A method for estimating apparent displacement vectors from time-lapse seismic images[END_REF][START_REF] Pladys | On cycle-skipping and misfit function modification for full-wave inversion: Comparison of five recent approaches[END_REF]. This paper presents a JFWI-based methodology that overcomes the above-mentioned issues within a robust and efficent workflow, applicable with minimal pre-processing and starting from highly inaccurate initial models.

A graph-space optimal transport (GSOT, [START_REF] Métivier | A graph space optimal transport distance as a generalization of L p distances: application to a seismic imaging inverse problem[END_REF]) JFWI objective function is designed in order to tackle the cycle skipping issue at intermediate-to-long offsets. The latter transforms the predicted and observed seismic reflection and refraction waveforms in 2D positive distributions, to which optimal transport (OT, [START_REF] Kantorovich | On the transfer of masses[END_REF] is applied. This approach has been shown to efficiently mitigate the risk of cycle skipping, reducing the sensitivity of FWI to the presence of low frequency components in the data and accurate initial model design [START_REF] Métivier | A graph space optimal transport distance as a generalization of L p distances: application to a seismic imaging inverse problem[END_REF][START_REF] Górszczyk | Graph-space optimal transport concept for time-domain full-waveform inversion of ocean-bottom seismometer data: Nankai trough velocity structure reconstructed from a 1d model[END_REF][START_REF] Pladys | On cycle-skipping and misfit function modification for full-wave inversion: Comparison of five recent approaches[END_REF]. As opposed to traveltime-based objective functions [START_REF] Chi | Correlation-based reflection full-waveform inversion[END_REF], GSOT can retain the amplitude information contained in the waveforms, effectively behaving as a generalization of the L 2 -norm distance in which amplitude and time-shift information both contribute to defining the distance between predicted and observed data. This makes it capable of capturing time-shifts, while being more robust than cross-correlation and deconvolution-based objective functions to the presence of multiple/mixed seismic phases and missing events in the predicted data [START_REF] Pladys | On cycle-skipping and misfit function modification for full-wave inversion: Comparison of five recent approaches[END_REF]. GSOT is thus an ideal candidate for complex datasets inversion starting from inaccurate initial models (e.g., [START_REF] Górszczyk | Graph-space optimal transport concept for time-domain full-waveform inversion of ocean-bottom seismometer data: Nankai trough velocity structure reconstructed from a 1d model[END_REF]. Preliminary results presented in [START_REF] Li | Joint FWI for imaging deep structures: A graphspace OT approach[END_REF]; [START_REF] Provenzano | Joint FWI of diving and reflected waves using a graph space optimal transport distance: synthetic tests on limited-offset surface seismic data: Presented at the SEG Technical Program Expanded Abstracts[END_REF] have shown how GSOT may work well in combination with JFWI in realistic synthetic examples.

The JFWI-problem is reformulated in the pseudotime domain (Plessix, 2013;[START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF] to enforce velocity-reflectivity consistency, thus attenuating phase ambiguities at short offsets, in a computationally and memory cheap fashion. As hinted in [START_REF] Chavent | Data space reflectivity and the migration based travel time approach to fwi[END_REF], despite the assumption of near-vertical propagation, the combination of pseudotime with a robust objective function (in our case, GSOT), has the potential to alleviate cycle skipping at all offsets. The choice of pseudotime over alternative methods is driven by three main reasons. Firstly, it has minimal computing cost compared to both augmented objective-function (e.g., [START_REF] Valensi | A time consistent waveform inversion (twin) method[END_REF] and MBTT-based approaches [START_REF] Chavent | Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example[END_REF], which require additional migration/demigration steps at each iteration. In the case of MBTT, the optimization for the large-dimensionality data-space reflectivity results in an additional computational burden, in the order of 3 times FWI, and a worseposed problem [START_REF] Chavent | Data space reflectivity and the migration based travel time approach to fwi[END_REF]. Futhermore, the lower memory requirement compared to Pseudotime OT velocity inversion MBTT-based FWI makes pseudotime more convenient to handle large 3D dataset in timedomain. Finally, as opposed to the approach of [START_REF] Yang | Simultaneous velocity and reflectivity inversion: Fwi+ lsrtm[END_REF], it makes it possible to use physically-interpretable parameters to represent reflectivity (e.g. density (ρ) or Pwave impedance (I p ) ), and allows for a straigthforward and flexible implementation in conventional full waveform modeling engines.

In order to address the non-uniqueness of the problem using data-driven information, the proposed approach takes advantage of a structure-oriented regularization strategy, whereby the V p -updates are constrained by the geometries extracted from the reflective impedance (I p ) at a negligible extra-cost. This is performed via a Bessel smoothing [START_REF] Trinh | Bessel smoothing filter for spectral element mesh[END_REF] of the JFWI gradient, in a rotated coordinate-system defined by the I p structural tensor at each iteration. Compared with convolution-based smoothing (e.g. Gaussian window smoothing), the Bessel smoothing approach is faster and scales better with increasing coherent lengths, thus being more suitable for 3D applications.

The reconstruction of a reflective model, necessary to feed JFWI with deep-reaching reflections, is a significantly time-consuming task, whose cost is equivalent to a least-squares migration. This work addresses it as non-linear waveform inversion problem for P-wave impedance (I p ), in a [V p , I p ] parametrization. The latter is an ideal candidate for reflectionbased inversion, since it minimizes the cross-talk between kinematic and reflective parameters [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF][START_REF] Operto | A guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice: The Leading Edge[END_REF] by virtue of weakly overlapping radiation patterns. In order to reduce the cost of the I p image building, we implement and adapt to time-domain FWI an efficient asymptotic-based preconditioner [START_REF] Qin | Full waveform inversion using preserved amplitude reverse time migration[END_REF] with true deconvolution imaging condition in the discrete-Fourier domain. Thereby, a rapid and balanced image of the subsurface I p can be obtained by waveform inversion of short-spread reflections (I p WI) prior to JFWI, without requiring data de-multiple and de-ghosting. Despite having its roots in an asymptotic approximation of the wave propagation, such a preconditioner can be computed using full wavefield quantities, without the need of using an eikonal solver to compute ray quantities [START_REF] Li | Coupling direct inversion to common-shot image-domain velocity analysis[END_REF].

In the following sections, we illustrate how the advances introduced in this work jointly contribute to signficantly improving the robustness and reliability of JFWI [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF], and to increasing the efficiency of I p WI, towards a mature and widely-applicable waveform-based V p model building strategy.

After presenting our methodology in the theoretical section, we apply it to two realistic synthetic case studies, starting from very simple and inaccurate starting models. We demonstrate that: 1) GSOT-based objective function and pseudotime transformation jointly contribute to annihilating cycle skipping at both long and short offset; 2) velocity inversion in pseudotime does not require dedicated reflection offset selection unlike in depth-domain, and dramatically reduces the need to iteratively re-migrate the reflectivity, hence the computational cost of V p inversion; 3) the asymptotic preconditioner ensures a significant speed-up in the reflectivity inversion step; 4) structure-oriented smoothing introduces useful constraints in velocity reconstruction, mitigating the problem non-uniqueness at a negligible extra-cost.

In a follow-up paper, we will present in details the application of this methodology to a 3D industrial field data from the North Sea, starting the inversion from a crude 1D model. This will illustrate how a high resolution 3D P-wave velocity model can be inferred from Pseudotime OT velocity inversion 3D field data using only full wavefield quantities, without the help of traveltime picking or computation through asymptotic approximations of the wave equation, relaxing the requirements of conventional imaging and moving towards a fully stand-alone FWI workflow.

THEORY

In this section, we first recall the JFWI formalism, followed by a description of the core of the velocity-model-building methodology, namely the GSOT-JFWI objective function and the pseudotime transformation. Then, the proposed structure-oriented regularization strategy for JFWI is introduced. Finally, we present the asymptotic preconditioner for efficient Impedance reconstruction (Impedance Waveform Inversion, I p WI). The workflow is summarized in algorithm 1.

Joint FWI of diving and reflected waves JFWI theory JFWI [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF], jointly inverts early arrivals and reflected waves in a subsurface containing discontinuities, to obtain tomographic V p updates both in the shallow subsurface sampled by diving waves and the deeper parts covered by reflection wavepaths. This is combined with a velocity-impedance (V p -I p ) parameterization enhancing the scale separation between low and high wavenumbers of the model, by virtue of non-overlapping virtual source radiation patterns [START_REF] Operto | A guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice: The Leading Edge[END_REF].

In this parametrization, the scattered field is generated at discontinuities entirely accounted for in the impedance model, while velocity is smooth. We define I 0 p as the smooth impedance model, obtained as the product of starting velocity and density (V p ρ), and I r p as the reflective impedance model (I 0 p + dI p ), obtained by impedance waveform inversion (I p WI) in the starting V p model. Accordingly, we compute a reflection dataset d r cal in a reflective subsurface (V p , I r p ) and a diving dataset d e cal in a smooth model (V p , I 0 p ), therefore containing only early wave arrivals:

A(V p , I r p )u r = s; u r = u 0 + δu d r cal (V p , I r p ) = Ru r (V p , I r p ) A(V p , I 0 p )u 0 = s d e cal (V p , I 0 p ) = Ru 0 (V p , I 0 p ) (1)
where A is the generic partial differential equation (PDE) modeling operator, s is the source wavelet, and R extracts the computed diving and reflection wavefields at the receivers location. While the latter contains both an incident (u 0 ) and a scattered (δu) contribution, the former contains only refractions, appearing as early arrival waveforms in the seismograms.

In this full waveform formulation, unlike in Born modeling, the scattered field δu in d r cal contains scattering of every order, making it amenable to predict data containing ghosts and multiples.

The JFWI objective function for V p is a weighted sum of two terms measuring the misfit where: G indicates a general positive function measuring the distance between two datasets; W e and W r are weighting matrices applied respectively to early arrivals and reflections, ideally isolating and scaling the background field in d e and the scattered field in d r .

The sensitivity kernel of the objective function χ[V p ] reads [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF]:

∇χ[V p ] = u 0 λ e + u 0 δλ r + δu λ r 0 + δu δλ r (3) 
where the symbol denotes the time-convolution operator; for simplicity, it also contains the partial derivative of the forward modeling operators with respect to the unknown, in this case V p (∂ Vp A) [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. While the forward wavefields (u) have been defined in equation1, the adjoint wavefields (λ) used in equation3 are solutions of the following equations: where † indicates the adjoint operator and the superscripts e, r respectively identify the adjoint wavefields computed using the diving and reflection adjoint sources; while λ r contains an incident (λ r 0 ) scattered (δλ r ) field, since it is computed in the reflective model (V p , I r p ), λ e only contains a background component, because it is a function of the smooth model (V p , I 0 p ). Thus, the computation of the JFWI gradient requires the solution of two adjoint equations, whose adjoint source terms (right-hand-sides) are the derivative of the objective function with respect to the state variables, d e cal and d r cal [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. In the L 2 case, those amount to the reflection and diving data residuals at the receivers location, weighted and reversed in time.

A † (V p , I r p )(λ r ) = ∂G(W r d r obs , W r d r cal ) ∂d r cal ; λ r = λ r 0 + δλ r A † (V p , I 0 
Using the quantities defined in equation4, the four-term gradient in equation3 can therefore be interpreted as follows [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF]:

1. the first term u 0 λ e is the diving wave first Fresnel zone obtained by cross-correlation of the incident field u 0 and the background adjoint λ e generated by the diving wave adjoint source (EWI component), both computed in the smooth model.

2. the second term u 0 δλ r 0 and third term δu λ r 0 , are the reflection rabbit ears resulting from the cross-correlation of the incident wavefields (u 0 , λ r 0 ) and second order scattered wavefields (δλ r ,δu) at the model discontinuities (RWI component).

3. the last term represents higher-order scattering effects, among them undesired migration isochrones, which in the V p , I p parametrisation are attenuated. Pseudotime OT velocity inversion

JFWI gradient implementation

The FWI gradient in a reflective model, however, along with the desired tomographic contributions in equation3, contains migration isochrones that contribute to building the highwavenumbers of the V p -model. Those high-frequency contributions result from the direct interaction between the incident source wavefield (u 0 ) and the downgoing reflection adjoint wavefield (λ r 0 ), and are one order of magnitude larger than the reflection rabbit ears [START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF]. Following [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF], in this work the JFWI gradient in equation3 is obtained via a full-waveform based approach which eliminates the first-order migration isochrones in two steps:

1. The first step computes a gradient in the reflective subsurface using the reflection adjoint source, and therefore contains both the rabbit ears and the migration isochrone.

η 1 = u 0 δλ r + δu λ r 0 + u 0 λ r 0 2.
The second step computes a gradient in a non-reflective subsurface (smooth I 0 p ) using the diving wave adjoint source minus the reflection adjoint source, resulting in a banana kernel and an opposite polarity migration isochrone. η 2 = u 0 λ e -u 0 λ r 0 3. The sum η 1 + η 2 eliminates the migration isochrone u 0 λ r 0 and combines the diving and reflection tomographic kernels, obtaining the JFWI gradient in equation3.

This procedure exactly obtains the tomographic JFWI gradient in equation 3 at the cost of two FWI gradient computations, similarly to Born modeling approaches. Higher-order scattering effects, δu δλ r (last term of equation3) may contain higher-order migration isochrones, whose contribution is made smaller by employing the chosen V p , I p parametrisation [START_REF] Operto | A guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice: The Leading Edge[END_REF][START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF].

Graph-space optimal transport

Cycle skipping is likely to occur at intermediate-to-long offsets in least-squares V p waveform inversion when the traveltime prediction error is larger than half a dominant period. Among different misfit function alternatives to L 2 , the graph-space optimal transport (GSOT) distance has shown interesting properties to mitigate cycle skipping for conventional FWI applications [START_REF] Górszczyk | Graph-space optimal transport concept for time-domain full-waveform inversion of ocean-bottom seismometer data: Nankai trough velocity structure reconstructed from a 1d model[END_REF][START_REF] Pladys | Robust FWI with graph space optimal transport: application to 3D OBC Valhall data[END_REF]. The conceptual core of GSOT is the re-mapping of each seismic trace as a two-dimensional discrete distribution of K unit-weight points (point cloud) in a time-amplitude space (graph space). Using this representation, an optimal transport distance is applied to measure the misfit between predicted and observed traces. Such distances have the specificity to be convex with respect to dilation and translation when applied to positive measures. Applying them to the graph of predicted and observed traces therefore guarantees convexity with respect to time-shifts between traces, reducing the risk of cycle skipping [START_REF] Pladys | On cycle-skipping and misfit function modification for full-wave inversion: Comparison of five recent approaches[END_REF].

Each individual predicted d cal (t) and observed trace d obs (t) is associated to its discrete graph (t i , d cal (t i )), (t i , d obs (t i )), i = 1, . . . K assuming the same time discretization is employed. As described in [START_REF] Métivier | A graph space optimal transport distance as a generalization of L p distances: application to a seismic imaging inverse problem[END_REF] and Métivier and Brossier (2021), the Pseudotime OT velocity inversion 2-Wasserstein (optimal transport) distance between d cal (t) and d obs (t) thus amounts to the solution of the optimal assignment problem

G gsot (d cal , d obs ) = min σ∈S(K) K i=1 c i,σ(i) (d cal , d obs ) (5)
where S(K) is the ensemble of permutations of {1, . . . , K}, and

c ij (d cal , d obs ) = A 2 ∆t 2 |t i -t j | 2 + |d cal (t i ) -d obs (t j )| 2 . ( 6 
)
In 6, ∆t represents the maximum expected time shift and A is the maximum amplitude (peak-to-peak) discrepancy between the observed and predicted trace. Among all possible permutations, the optimal permutation σ * solution of the problem 5 minimizes the work needed to transport the initial distribution to the target one, in the analogy with optimal transport for engineering problems [START_REF] Kantorovich | On the transfer of masses[END_REF]. Considering predicted and observed traces containing shifted phases, the transport work will depend monotonically on the time shifts between phases thanks to the terms |t i -t j | 2 in the transport cost c ij , hence the convexity of the distance with respect to time shifts.

One important property of the GSOT strategy is the relative simplicity of the gradient building step once the misfit function is defined. For a misfit function

G gsot (d cal , d obs ) = K i=1 A 2 ∆t 2 |t i -t σ * | 2 + |d cal (t i ) -d obs (t σ * )| 2 . ( 7 
)
the gradient can be obtained, thanks to the adjoint state strategy, as the time-convolution between an incident field and an adjoint field (as in equation3), whose source term is defined by

∂G gsot (d cal , d obs ) ∂d cal = d cal (t i ) -d obs (t σ * (i) ). (8) 
The latter equation illustrates how the GSOT misfit function can be seen as a generalization of the least-squares misfit function: as soon as the optimal assignment σ * is the identity, the GSOT misfit function becomes equivalent to the least-squares distance and the adjoint source becomes the conventional residual between observe and predicted data.

The GSOT-JFWI objective function

This is adapted to JFWI by replacing each term of the objective function (equation2) by the respecive 2-Wasserstein (optimal transport) distance:

χ gsot [V p ] = G gsot (A e , ∆ e t , W e , d e obs , d e cal ) + G gsot (A r , ∆ r t , W r , d r obs , d r cal ) (9) 
The two GSOT misfit terms, for reflections and diving waves, are scaled independently through the respective maximum amplitude discrepancies, A r and A e . This is necessary in order not to bias the estimation of either 2-Wasserstein distance when the amplitude Pseudotime OT velocity inversion range of diving waves significantly differs from the one of the reflections. Potentially, two different maximum expected time shifts (∆t r , ∆t e ) can also be used. For each of the two propagation regimes, a different optimal assigment map σ * is therefore computed. Thus, the JFWI adjoint wavefields in equation4 with the GSOT adjoint sources read:

A † (V p , I r p )λ r = W rT W r (d r cal (t i ) -d r obs (t σ r, * (i) )) A † (V p , I 0 p )λ e = W eT W e (d e cal (t i ) -d e obs (t σ e, * (i) )) (10) 
where a specific optimal assignment plan σ * is used for the reflection and refraction terms of the objective function. The expressions for the JFWI gradient are otherwise equivalent to the general case presented in the JFWI theoretical section.

The intrinsic flexibility of GSOT can be exploited during inversion, starting with large ∆t to ensure robustness against cycle skipping, and reducing it as model kinematics improves and it becomes desirable to approximate the resolution of L 2 -norm.

Pseudotime domain

While GSOT minimizes the risk of cycle-skipping at intermediate-to-long offsets, phase ambiguity at near-zero offsets may occur in reflection-based velocity-model-building as a consequence of kinematics-reflectivity conflict. The impedance model I r p in equation1 depends on V p , namely the position and geometry of the reconstructed reflective discontinuities are a function of the current wavefield kinematics. However, such a dependency is not accounted for in depth-domain reflection-based FWI, nor is in JFWI, which uses I r p as a passive parameter. Hereafter, in the text we will refer to the reflective impedance model simply as I p .

In a depth-domain implementation, since V p updates are driven by moveout residuals, but the depth of the reflectors is fixed, convergence can be attained only by weighting out the short-spread reflection, which would be out of phase and lead the inversion to a local minimum (Plessix, 2013;[START_REF] Yao | A review on reflection waveform inversion[END_REF]. Repeated I p W I reflectivity reconstructions are therefore interleaved within successive steps of depth-domain JFWI. This significantly increases the computational burden and is dependent on the offset weighting strategy.

To overcome this difficulty and address the velocity-depth ambiguity in reflection-based velocity model building, we propose an alternative approach that enforces V p -I p consistency by reformulating JFWI in the pseudotime domain (Plessix, 2013;[START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF]. The relationships between pseudotime (τ ) and depth (z) at each horizontal position are functions of V p :

τ (z) = z 0 dz /V z p (z ); z(τ ) = τ 0 V t p (τ )dτ (11)
where the superscripts t and z denote respectively the pseudotime and depth quantities. The depth domain V z p , I z p model is mapped to the pseudotime domain τ , discretized using Pseudotime OT velocity inversion ∆τ = ∆z/V p max and reaching τ max = z max /V p min .

The gradient (equation3) is computed in the depth domain, and reformulated in pseudotime using the derivation chain rule (Plessix, 2013, their equation B6):

∇ τ (i) χ = ∇ z(i) χ - zmax z i dV z p dz 1 V z p (z) ∇ z χdz (12)
The latter step is analogous to a re-parametrization of the inverse problem, from a depthdomain variable to its pseudotime equivalent. After each V t p update in the τ domain, the V t p , I t p model is re-mapped to the modeling (z) domain consistently with the new V t p , using equation11 and interpolating the value at z(τ ) into the modeling grid. Reflectors are thus repositioned, and I p remains fixed in pseudotime while passively being updated in depth at no extra modellig cost. Thereby, the near-zero offset waveforms are kept in phase, honoring the zero-offset seismic invariant and reducing the need of cycling through successive V p -JFWI and I p WI inversion. In defining the pseudotime grid for marine datasets in which seabed position and sea-column velocities are known, it is beneficial to tune ∆τ so that the seabed reflection one-way time corresponds to a grid point in the τ (z) axis.

Note that the depth to pseudotime transformation implies 1D wave propagation, and is therefore suitable for models showing smooth lateral variations, which is usually the case for JFWI velocity-macromodels, and moderate structural dips. On the other hand, merely repositioning the reflectors in depth does not account for changes in amplitude due to changes in model kinematics and thus illumination. Therefore, the need for re-runs of I p WI after significant velocity updates is not removed altogether, especially when starting from particularly inaccurate initial velocity models.

Structure-oriented regularization

Besides its non-linearity, waveform-based V p inversion is inherently an ill-conditioned inverse problem, i.e. potentially an infinite number of models in the chosen parameterization may fit the data within an acceptable data-fit threshold. It is therefore a common practice to introduce prior information to reduce the size of the solution space, most commonly by constraining the regularity of the solution i.e. the smoothness of the V p variation in space. This is implemented through the application of specific smoothing filters to the model update at each inversion iteration. Among this category, the most widespread is the Gaussian filter, which can be made non-stationary to adapt to it the expected local resolution, as done for instance in [START_REF] Operto | Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full-waveform tomography: application to the eastern Nankai trough[END_REF]. The local resolution can be indeed estimated from diffraction tomography analysis (Devaney, 1984;[START_REF] Wu | Diffraction tomography and multisource holography applied to seismic imaging[END_REF][START_REF] Sirgue | Inversion de la forme d'onde dans le domaine fréquentiel de données sismiques grand offset[END_REF]. A potential difficulty with this technique is the absence of information regarding the underlying geological structure of the model, which can lead to remove from the V p model spatial variations associated with features one would like to preserve.

Overcoming this difficulty requires not only to adapt the smoothing strategy but also to obtain relevant information on the geological structure of the investigated zone. In the proposed methodology, we implement a technique to extract structural information from the reconstructed I p model, already available at all times during JFWI-based V p inversion. In order to extract the local dip of the reflectors in the I p model, we first compute its perturbation image dI p = I r p -I 0 p . The local derivatives of dI p are computed and a covariance Pseudotime OT velocity inversion matrix of the latter is built at each point within the model, to obtain a measure of the local coherence of the structures, or structural tensor. In two-dimensions, it reads:

C x,z = g xx g xz g zx g zz (13) 
where

g ij | x,z = ∂dI p ∂i • ∂dI p ∂j x,z (14) 
Thus, we have obtained a local structure matrix from which we wish to extract the direction of strongest coherent structural variation. In order to do so, the principal components of C are extracted by eigenvalue analysis:

C x,y = V SV T V x,z = v 1x v 2x v 1z v 2z S x,z = s 1 0 0 s 2 (15)
where v 1 in the eigenvector matrix V is the direction corresponding to the largest eigenvalue (s 1 ) in S, thus normal to the local structural dip, and v 2 is instead parallel to the layer orientation, corresponding to the lowest eigenvalue (s 2 ). For each point of dIp(x, z), it is therefore possible to extract the dip angle matrix with respect to the horizontal (x) direction as:

φ x,z = tan -1 v 2z v 2x (16) 
Smoothing is applied to structure tensor before eigenvalue decomposition, and the resulting dip angle matrix is again smoothed with user-defined lengths, in the order of the propagated wavelength. Note that in three dimensions, this formulation would require both dip and azimuth matrices to be extracted from the 3x3 structure tensor.

Once this information is extracted from the impedance, it can be injected in a specific directional Bessel smoothing filter, introduced in [START_REF] Trinh | Bessel smoothing filter for spectral element mesh[END_REF]. For each point in a two-dimensional subsurface, a directional Bessel filter is obtained as the solution of an elliptical partial differential equation [START_REF] Trinh | Bessel smoothing filter for spectral element mesh[END_REF] in the φ-rotated coordinate system [v 1 , v 2 ]. In two-dimensions, we have:

B f (v 1 , v 2 ) -(L 2 2 ∂ 2 ∂v 2 2 + L 2 1 ∂ 2 ∂v 2 1 )B f (v 1 , v 2 ) = δ(v 1 , v 2 ) ( 17 
)
where L 1 and L 2 are the user-defined local filter lengths in the v 1 , v 2 directions, respectively perpendicular and parallel to the reflector dip, and δ(v 1 , v 2 ) is a delta Dirac function with the same dimensions as the gradient. The lengths vary as a function of the propagated wavelength, thus adapting to the local resolution determined by the modelled frequency and the V p values at each point; though, ideally, equation17 requires them to be homogeneous, Pseudotime OT velocity inversion the smoothly varying V p resulting from JFWI only weakly undermine the validity of the approach.

By virtue of the linearity of the latter equation, the solution of F [B f * γ] = δ * γ, where γ is the un-smoothed gradient, is the smoothed gradient γ s = B f * γ. This can be interpreted as the steady-state diffusion equation using the un-smoothed gradient as source term. Therefore, γ s can be obtained as the solution of a linear system, not only incorporating structural information, but also with higher efficiency than convolution-based smoothings. The smoothed gradient can be obtained by discretising equation17 and solving the linear system in a matrix-free fashion, with a conjugate-gradient solver, thanks to its simmetry [START_REF] Trinh | Bessel smoothing filter for spectral element mesh[END_REF]. The regularization is applied to the depth-domain gradient, before re-parametrizatization to the pseudotime domain (equation12).

Compared to convolution-based approaches, whose computational complexity scales almost cubically with the filter lengths, the PDE-based smoothing scales sublinearly [START_REF] Trinh | Bessel smoothing filter for spectral element mesh[END_REF], which makes it amenable to 3D applications. However, the inaccurate V p model at early iterations produces deformed reflectors' geometries, thus inaccurate structure tensors. In depth-domain inversion, it is therefore necessary to apply structure-oriented smoothing only after some loops of JFWI and I p WI, in order to avoid error propagation from the I p WI image to the JFWI-V p update [START_REF] Yao | Reflection-waveform inversion regularized with structure-oriented smoothing shaping[END_REF]. In pseudotime, instead, the impact of inaccurate initial reflective images in depth is limited to the very first iterations, since the reflectors in I p are simultaneously repositioned as V p is updated.

Asymptotic preconditioning for I p reconstruction

While the pseudotime approach alleviates the need of iteratively recomputing I p within the velocity model building workflow, the reconstruction of the initial I p (I p WI) remains a significantly time-consuming task, whose cost is equivalent to a least-squares migration. To speed up this process, we propose to use a specific preconditioned gradient based on asymptotic direct inverse operators.

Direct inverse operators retrieve the true-amplitude subsurface image using inverse scattering operators based on the asymptotic high-frequency approximation of the linearized wavefield [START_REF] Beylkin | Imaging of discontinuities in the inverse scaterring problem by inversion of a causal generalized Radon transform[END_REF]. In this work, instead, the asymptotic formulation is used as a preconditioner to scale and weight the gradient of the I p WI objective function, defined as the least-squares distance between short-spread reflected wavefields:

χ[I p ] = 1 2 (W r Ip (d r cal [V p , I p ] -d r obs ) 2 2 (18)
where W r Ip is a weighting operator applied to select the near-offset reflections , while the projection operator is included in d r cal . The use of L 2 misfit function is here justified by the limited risk of cycle skipping in short-spread waveform inversion; in this L 2 case, the adjoint source is simply the data residuals at the receivers, and the adjoint wavefield (λ) is the solution of the following equation:

A † (V p , I p )λ = W r Ip T W r Ip (d r cal -d r obs ) ( 19 
)
where T indicates the transpose operator. Since both forward and adjoint operators are function also of the reflective part of the model, the predicted data will contain scattering of any order, unlike Born modeling approaches. Accordingly, multiple and ghost reflections are not eliminated from the field data in pre-processing. Under these conditions, the choice of a non-linear minimization process over direct methods is a necessity [START_REF] Virieux | Direct and indirect inversions[END_REF][START_REF] Li | Coupling direct inversion to common-shot image-domain velocity analysis[END_REF].

In [START_REF] Qin | Full waveform inversion using preserved amplitude reverse time migration[END_REF] and [START_REF] Li | Coupling direct inversion to common-shot image-domain velocity analysis[END_REF], the direct inverse of δu to obtain the model perturbation δm is defined in frequency-domain using only pressure wavefields, thus not requiring the computation of rays and associated incidence and take-off angles:

δm(x) = shot k 4δω k ∇ x u * (x, ω k )∇ x Λ(x, ω ) + (iω k /V p ) 2 u * (x, ω k )Λ(x, ω k ) -iω 3 k u * (x, ω k )u(x, ω k ) Λ(x, ω k ) = rec ∂ζ x (rec, ω k ) ∂ z λ(rec, ω k ) (20)
where a summation is performed over shots and positive angular frequencies ω k and * indicates complex conjugation. The source wavefield and the modified adjoint wavefield are indicated respectively by u and Λ. The latter is the convolution of the vertical derivative of the adjoint Green function (ζ) at the receivers positions and the perturbation wavefield δu. This enhances narrow take-off angle at the receiver positions, while the horizontal derivatives at the scattering points (x) enhance the narrow illumination angles [START_REF] Qin | Full waveform inversion using preserved amplitude reverse time migration[END_REF], mapping into high-wavenumbers of the retrieved perturbation model. Finally, a deconvolution imaging condition is applied (denominator), which compensates for the wavefield illumination and attenuates imprint of the limited-bandwidth of the source wavelet [START_REF] Li | Coupling direct inversion to common-shot image-domain velocity analysis[END_REF].

We reformulate equation20 to adapt and optimize it for our full-waveform engine based on a first-order formulation of the wave equation. Since in the latter we have access to particle velocity and pressure wavefields, it is convenient expressing the horizontal derivative of the pressure wavefields in equation 20 as a function of local particle velocity, using

ρ∂ t v x = ∂ x P. ( 21 
)
This makes it possible to use time-differentiation in the frequency domain (multiplication by iω), instead of discretizing the spatial derivatives at the scattering point within the modeling grid. Finally, using a small take-off angle approximation to simplify the expression for Λ, and reformulating for I p [START_REF] Li | Joint FWI for imaging deep structures: A graphspace OT approach[END_REF], we can write:

Γ χ[Ip] = shot k R iω k ρ 2 Vp u v * (ω k , x)λ v (ω k , x) -iω k V 3 p u * p (ω k , x)λ p (ω k , x) u * p (ω k , x)u p (ω k , x) + (shot) (22) 
where the subscripts v and p indicate respectively the particle velocity and pressure wavefields or the primary u and adjoint λ fields. To stabilize the spectral division, a damping (water-level) parameter is defined for each shot as 1e -4 of the maximum amplitude of the absolute-valued incident wavefield [START_REF] Schleicher | A comparison of imaging conditions for waveequation shot-profile migration[END_REF]. Pseudotime OT velocity inversion

The latter expression is used as preconditioned gradient in our non-linear optimization problem for the objective function defined in equation 18 [START_REF] Virieux | Direct and indirect inversions[END_REF][START_REF] Farshad | Accelerating the multi-parameter least-squares reverse time migration using an appropriate preconditioner[END_REF]. Both the conventional adjoint-based gradient and the preconditioned gradient Γ are therefore required at each iteration for the optimization (Métivier and Brossier, 2016,, their Eqs. 6 and 7). As observed by [START_REF] Métivier | Combining asymptotic linearized inversion and full waveform inversion[END_REF], who alternatively approached the problem by modifying the objective function through migration/demigration of residuals, this amounts to having an inverse operator with a near diagonal Hessian.

In order to adapt it to our time-domain FWI approach, we implement the proposed preconditioned gradient using discrete-fourier-transform (DFT). Source and receiver DFT wavefields are built on-the-fly during the incident field computation and stored at a set of discrete frequencies to compute Γ, as done by [START_REF] Yong | Parsimonious truncated newton method for time-domain full-waveform inversion based on the fourier-domain full-scattered-field approximation[END_REF] for the computation of Hessian-vector products in the Truncated-Newton algorithm. Unlike in previous time-domain implementations [START_REF] Li | Joint FWI for imaging deep structures: A graphspace OT approach[END_REF], this effectively implements the deconvolution imaging condition in equation 20, without relying on the assumption of frequencyindependence of the incident wavefield [START_REF] Schleicher | A comparison of imaging conditions for waveequation shot-profile migration[END_REF]. A significant frequency decimation is applied on the positive frequencies, to make the approach memory-affordable also in 3D. As shown in [START_REF] Yong | Parsimonious truncated newton method for time-domain full-waveform inversion based on the fourier-domain full-scattered-field approximation[END_REF], a number of frequencies lower than Nyquist might be used, as long as it is sufficient to avoid wrap-around effects.

Summary velocity-model-building workflow

In summary (Alg.1), once the reflection and diving propagation regimes have been identified and the weighting matrices built, the workflow starts with the reconstruction of I p in the initial model, employing the asymptotic preconditioning strategy. At this stage, either a steepest-descent or conjugate gradient algorithm can be used to update I p using jointly preconditioned and conventional gradient.

Starting from the reconstructed reflective model, GSOT-JFWI is performed in the pseudotime domain, updating V p and, simultaneously and at no-extra cost, I p . JFWI requires the solution of six wave equations, if the incident source wavefield are not stored, three for each step (η 1 and η 2 ) of the JFWI gradient computation, and thus twice as many as for conventional FWI. The structure-oriented smoothing can be adopted to constrain the V p solution. The GSOT-JFWI stage requires the definition of the maximum expected timeshifts, while the structure oriented smoothing requires the user to choose the coherence lengths as a function of the propagated wavelengths. Steepest-descent, conjugate gradient, or quasi-newton methods can be used for the optimization [START_REF] Métivier | The seiscope optimization toolbox: A large-scale nonlinear optimization library based on reverse communication[END_REF]. Pseudotime OT velocity inversion Algorithm 1 Velocity model building workflow. Note that, during JFWI, I r p is updated consistently with V p in depth, while the inversion is performed for V t p at fixed I t p in pseudotime. In the following synthetic case studies, the optimization follows either a non-linear conjugate gradient or steepest-descent algorithm [START_REF] Métivier | The seiscope optimization toolbox: A large-scale nonlinear optimization library based on reverse communication[END_REF] . -Optimization for dI p (k) → I p (k + 1) = I p (k) + dI p (k)
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SYNTHETIC CASE STUDIES Valhall 2D synthetic reflection dataset

Data and initial model

The first synthetic application presented is on the Valhall 2D acoustic model (V p and ρ), comprising a multi-layered low-velocity zone and a deeper high velocity anticline, inspired by the Valhall oil field in the North Sea (e.g., [START_REF] Gholami | Which parametrization is suitable for acoustic VTI full waveform inversion? -Part 2: application to Valhall[END_REF][START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF]. However, instead of an ocean-botton cable survey, we simulate a surface streamer acquisition, making velocity reconstruction at deep targets more challenging. 128 shots are fired at 110 m spacing and the wavefield is recorded by a 229 channels surface streamer with group interval equal to 25 m, and absolute offset ranging between 80 and 5700 m. Since maximum target depth is about 3 Km, such an acquisition is expected to be unsuitable for conventional FWI to yield a broadband velocity reconstruction [START_REF] Woodward | [END_REF].

The source signature is a zero-phase Ricker with central frequency equal to 6.25 Hz. Modeling is performed in the time domain with a 4th order finite-difference scheme (dx = 25 m, dt = 4 ms), perfectly-matching-layer (PML) absorbing boundaries and free-surface [START_REF] Yang | A Time-Domain Preconditioned Truncated Newton Approach to Multiparameter Visco-acoustic Full Waveform Inversion[END_REF]; therefore, the observed data contain surface-related multiples and Pseudotime OT velocity inversion In the example commonshot gather (d), real data in black overlaid to synthetic in red and blue; data perfectly in phase would appear as blue and black, as red is covered by black ghosts, which are kept in pre-processing. The starting model is 1D (Figure 2), and it is made up by a shallow water layer (70 m depth, V p = 1500 m/s, ρ = 1000 kg/m 3 ) and a subsurface in which V p increases linearly with depth. Note in Figure 2 how the data predicted by this model, with the reconstructed reflectivity, is prone to cycle skipping both in the diving waves and long-offset (> 3 km) reflections. While true ρ is derived from true V p via a Gardner's relationship, starting ρ below seafloor is constant and equal to 2000 kg/m 3 , therefore the initial I p is simply a scaled version of V p .

I p -reconstruction

The V p -model building workflow begins with the inversion of the short-spread (offset < 500 m) reflections (I p WI) in the starting V p . Figure 3 shows the convergence history of nonlinear conjugate gradient [START_REF] Nocedal | Numerical optimization[END_REF]) I p WI with the proposed asymptotic preconditioner against linear depth preconditioning and a pseudo-Hessian preconditioner compensating for wavefield illumination [START_REF] Kamath | Multiparameter fullwaveform inversion of 3D ocean-bottom cable data from the Valhall field[END_REF]. The convergence speed-up is remarkable, despite the presence of shallow water multiples and ghosts. The number of frequencies stored in the DFT scheme is 38, with a sampling rate ∆f = 0.35 suitable to avoiding wrap-around effects, despite a compression of a factor 1.8 compared to a Nyquist sampling for a maximum frequency of 15 Hz. The reconstructed I p (Figure 2c) is then used as the reflective contributor of the starting JFWI model (data predicted for this initial Pseudotime OT velocity inversion reflective model are shown in Figure 2d).

V p -macromodel building

This section compares the performance of: 1) GSOT-JFWI; 2) Pseudotime GSOT-JFWI; 3) Pseudotime L 2 -JFWI; 4) Pseudotime GSOT-RWI, where the diving component of JFWI is set to zero and only reflections are used. Finally, the impact of structure-oriented smoothing is also assessed.

Data windows are designed to separate early arrivals and reflected waves, in order to build the two components of the JFWI objective function in equation2; the limit between the two propagation regimes is simply given by the direct-wave arrival time, plus the wavelet duration (Figure 2d). In JFWIs, a scaling factor equal to 0.66 is applied to the diving wave component of the adjoint source, in order to balance the diving and reflected contributions to the two-term objective function (equation 3). 25 iterations of steepest descent with linear depth preconditioning are performed. The choice of a steepest-descent optimization over quasi-newton methods [START_REF] Nocedal | Numerical optimization[END_REF] is justified by the need of a robust V p update in the presence of multiples and multi-scattering, in order to avoid overfitting, at the expense of convergence speed (e.g., [START_REF] Zhou | Velocity model building by waveform inversion of early arrivals and reflections: a 2d ocean-bottom-cable study[END_REF]. In the GSOT case, ∆t (equation 6) is set to 0.4 s to privilege convexity with respect to traveltime differences; this is larger than the maximum expected time-shift between predicted and observed data, but is helpful to attribute higher weights to small amplitude events in the graph space (Métivier and Brossier, 2021).

In Figure 4 the advantages of pseudotime over a conventional depth formulation are apparent, GSOT JFWI failing to retrieve the correct velocity trends. Pseudotime L 2 -JFWI identifies the low velocity zone, but is cycle skipped in the shallow part, where velocity is erroneously decreased instead of increased, especially in portions of the model sampled preferentially by refracted arrivals. Pseudotime GSOT-JFWI, on the other hand, combines Pseudotime OT velocity inversion a convex misfit function with an enforced kinematic-reflectivity consistency, and retrieves an accurate V p model starting from the 1D initial guess. The benefit of jointly inverting reflections and diving waves in JFWI is a better reconstruction of the shallow part of the model with respect to RWI.

Structure-oriented smoothing is used in conjunction with pseudotime GSOT-JFWI. In Figure 5 the local dip angle matrix extracted from the I p structure tensor is shown, after appropriate attenuation of the high-wavenumber oscillations. Smoothing the JFWI gradient along the corresponding v 1 , v 2 directions injects structural information in the V p update, cleaning it up from anomalies inconsistent with the true subsurface. This is apparent in the smoother transitions between high and low velocity anomalies (Figure 5). Though more sensible, this model does not correspond to a lower final misfit function, in a clear example of ill-posedness in waveform-inversion: among an ensemble of models with acceptable datafit, here we constrain the inversion to move towards a geologically meaningful one, where velocity varies slower within strata than across them.

To assess the benefit of structure-oriented smoothing at this stage, we plot the final I p reflectivity, as it results from the passive pseudotime updates (Figure 6). JFWI constrained by structures almost perfectly reconstructs the reflective interfaces geometries, outperforming unconstrained JFWI, which yields a I p reflectivity with unphysical oscillation symptomatic of data overfitting in V p model building. It is also worth pointing out that JFWI produces less-deformed structures than RWI: the diving-wave constraint in the shallow part allows for better imaging at all depths, as shown in [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF]. Note that, unlike in the latter paper and [START_REF] Provenzano | Joint FWI of diving and reflected waves using a graph space optimal transport distance: synthetic tests on limited-offset surface seismic data: Presented at the SEG Technical Program Expanded Abstracts[END_REF], the pseudotime formulation allows to get rid of the inner loop of I p WI, since I p is passively repositioned consistently with each V p update. This produces a significant saving in computing time, while reducing the need of subjective and time consuming offset weightings (e.g., [START_REF] Yao | A review on reflection waveform inversion[END_REF][START_REF] Valensi | A time consistent waveform inversion (twin) method[END_REF].

Data comparison: why does depth-domain fail?

In order to understand why depth-domain JFWI fails in this case, it is instructive to look at the predicted data in the reflective initial and final V p -I p models. A common-shot gather is extracted around the central part of the acquisition, where the performances of the pseudotime methodologies are comparable, while depth-domain JFWI fails to update the velocity model. In Figure 7, we compare initial (a), GSOT-JFWI (b), Pseudotime GSOT-RWI (c), Pseudotime GSOT-JFWI (d), Pseudotime L 2 -JFWI (e), Pseudotime with structure-oriented smoothing (f). In a) the near-offsets are in phase, while the mid-to-long ones are not, as a consequence of the wrong model kinematics. In b) V p inversion is driven by long-offsets mismatches and reduces them, but, as soon as the V p update is no longer compatible with the fixed-depth reflectivity, the misfit at short offset increases (more red wiggles than initial model) and the inversion is stuck in a local minimum. In c-to-f, the pseudotime formulation mitigates this issue and data-fit is improved in a broad offset range (blue-dominated plots). Data prediction is almost invariant with respect to the structureconstraints (d and f): as pointed out in the previous subsection, this is an example of non-uniqueness of the JFWI problem; RWI (c) has worse data prediction in the refracted waves, since they do not contribute to the objective function. L 2 -JFWI (e), though not cycle-skipped in this instance, has higher misfit at offsets larger than 5 km in refractions and at offset larger than 4 km in reflections, as a results of an objective function non convex Pseudotime OT velocity inversion In order to assess the efficacy of the pseudotime-GSOT scheme in the presence of structural dips that might challenge the vertical traveltime assumption, the same comparison is presented for a shot gather acquired above the left flank of the deep anticline (Figure 8). In this instance, with a local structural dip reaching 15 degrees, pseudotime GSOT-JFWI shows no deterioration of performance compared to the nearly-flat case (Figure 7)

V p -FWI
After pseudotime JFWI, parametrisation is switched to V p -ρ and one-parameter V p -FWI is run in depth domain, in order to invert for the broadband V p model [START_REF] Operto | A guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice: The Leading Edge[END_REF]. Density is set back to the initial uniform model, because in the V p -I p parametrisation ρ moves to non-meaningful values when inverting for V p only. Under these conditions, FWI yields a broadband reconstruction of the true V p model (Figure 9), thanks to the accurate low-wavenumbers contained in the starting model, which avoid cycle skipping and ensure convergence. This appears to be true even using a L 2 -norm at this stage, while the benefits of using GSOT (∆t=0.25 s) at this stage are marginal, thanks to a starting model that predicts traveltimes within less than half a period (see data fit in Figure 6). On the contrary, starting from the 1D model, and using the same GSOT parameters as in JFWI, V p -FWI fails to provide meaningful velocity updates at depths larger than 1 km, yielding a migration-like image in the inaccurate kinematic model. This shows that not only does broadband FWI require convex misfit function, but it also relies on dedicated strategies such as JFWI to obtain tomographic updates in areas of the subsurface sampled by reflections only. Finally, the rate of data misfit reduction with iterations is much faster when starting from the JFWI-based models, and particularly from the structure-constrained pseudotime GSOT-JFWI (Figure 10), showing that structures in the I p WI image at the V p -building stage are precious information at no extra cost that ought to be exploited (Figure 5).

The Chevron 2014 blind reflection dataset

Data and initial model

The Chevron-2014 benchmark dataset simulates a realistic two-dimensional reflection survey in a shallow water environment and an isotropic elastic subsurface. A surface streamer records the wavefield at source-receiver offsets ranging between 0 and 8 km and group interval of 25 m. The wide source band is contaminated by frequency-dependent noise, resulting in a lack of usable frequencies < 3 Hz. Although the true model has not yet been disclosed, the available 1D starting Vp-model (Figure 11) suggests the presence of a low velocity layer (LVL) at about 2 km depth, with a maximum target depth of 6 km. A virtual V p log is available for quality-check in the right part of the model at depths ranging between 1 and 2 km. Low offset/depth ratio, lack of low frequencies and the presence of a LVL jointly contribute to limiting the broadband Vp-reconstruction to the shallow (< 2 km depth) portion of the subsurface [START_REF] Vigh | Earth-model building from shallow to deep with full-waveform inversion[END_REF]. In addition, the 1D starting model exposes the L 2 -based inversion to cycle-skipping (e.g., [START_REF] Pseudotime | Mitigate cycle skipping in fwi: a generalized instanatenous travel-time approach[END_REF]. In this test, the inversion is run in the isotropic acoustic approximation discretized with a 25 m spatial step up to 15 Hz to avoid numerical dispersion, the temporal sampling interval chosen Pseudotime OT velocity inversion reproduce both the up-and downgoing wavefield components of the field dataset.

V p -macromodel building

In order to minimize the risk of cycle skipping in this more realistic test, we employ a multi-scale approach (Bunks et al., 1995) in three frequency bands (3)(4)(5)(6)(3)(4)(5)(6)(7)(8)(3)(4)(5)(6)(7)(8)(9)(10). For each band, the V p -model building workflow is similar to the one designed for the Valhall synthetic case, with an initial asymptotic I p WI performed in 6 non-linear conjugate gradient iterations, followed by 30 steepest-descent JFWI iterations. A frequency-domain wavelet estimation [START_REF] Pratt | Seismic waveform inversion in the frequency domain, part I: theory and verification in a physical scale model[END_REF] is performed for each band using a subset of the short-offset direct arrivals to minimize the impact of the model inaccuracy on the source signature estimation. Diving/reflection separation is designed for each frequency band, to account for the bandwidth-dependent wavelet duration after the direct arrival onset. I p WI is run on short spread reflection data, with offset shorter than 1 km, while offsets lower than 500 m are weighted out for JFWI, to avoid the inversion to be biased by the near-field high amplitudes.

In the GSOT case, the maximum expected time-shift ∆t (equation 6) is initially set to 0.35 s to enhance convexity with respect to traveltime differences, and later reduced to 0.15 s in the latest band, to approximate the resolution of the L 2 norm, as model kinematics is expected to have been improved in the previous bands.

In Figure 12 the results of V p -model building are presented. Depth-domain JFWI (Figure 12a), provides sensible updates at depths lower than 2 km, where three localized low-V p pockets are identified, but yields a non-realistic reconstruction of the LVL extent and geometry. In the pseudotime-JFWI cases (Figure 12b-d) LVL velocity and slope is updated as well as the shallow part of the subsurface. Starting from the one-dimensional model, a deep anticline-like higher-V p structure is retrieved. While L 2 norm pseudotime inversion (Figure 12b) reconstructs a similar LVL as GSOT-JFWI (Figure 12c-d dotime GSOT-JFWI attenuates non-physical near-vertical anomalies at depths larger than 2.5 km, (Figure 12c-d), thereby introducing more realistic structures in the reconstructed macromodel (Figure 13).

In Figure 14 the stabilizing contribution of the diving wave component of JFWI is demonstrated by halving the diving wave weight and comparing the results with the lowpass filtered virtual well-log. Note how the updated V p in this case (J-RWI, in Figure 14b as the reflection component dominates) shows obvious signs of velocity under-and overestimation in pull-ups and -downs and, in particular, anomalously low velocities at the well-log location (Figure 14d). This might result from reflection overfitting, driven by the presence of converted waves and multiples in the elastic field dataset in the acoustic inversion. On the other hand, if only diving waves are used by making the contribution of reflections negligible (J-EWI in Figure 14a), the deep model update is, as a consequence, neglected and well-log poorly reconstructed at 2 km (Figure 14d); the velocity decrease at this depth is not captured by J-EWI, which remains grounded to the starting model due to lack of illumination. Jointly inverting for reflection and refraction in this dataset is thus key to obtain a stable macromodel update at all depths. In the following kinematic QCs, we demonstrate that the lower velocities detected by JFWI are key for correct imaging and that accounting for both diving and reflected waves is necessary to obtain a sensible macromodel update at all depths.

Data-fit and kinematics QC In Figure 15 an example common-shot gather (CSG) extracted in the central part of the model is used to showcase the data-fit after JFWI at 6 Hz. Note how the pseudotime approaches (Figure15b-c) improve the waveform fit at all offsets compared to the prediction of the initial model (Figure15a), whereas the depth-domain inversion (Figure15d), while improving the average fit between predicted and observed gathers, deteriorates the phase alignment at near-offsets due to the fixed-depth reflectivity. In more detail, cycle-skipping in the L 2 gather is not apparent in this CSG, although waveform prediction is marginally The V p -models obtained in the pseudotime domain are compared in the image domain to assess their kinematic accuracy (Figure16), in particular to assess wether or not the LVL reconstructed by the reflection component is necessary to appropriately image the susbsurface structures. Common image gather (CIGs) are computed by extended RTM on offset subsets from 0.2 to 5 km for: a) Initial model; b) pseudotime diving wave only GSOT WI; c) pseudotime GSOT JFWI. The solution of pseudotime JFWI best represents the model kinematics, both compared to the initial model and the one obtained by early-arrivals only JFWI (J-EWI), the latter showing clear signs of velocity overestimation (downward bending arrivals).

V p -FWI FWI starting from the JFWI models is performed with a multi-scale approach in 6 frequency bands from 6 to 15 Hz. In V p -FWI, we re-set density to its initial value and keep it fixed. In Figure 17 the contribution of JFWI as starting point for V p -FWI (Figure 17a-c) is apparent in its richer low wavenumber content and better imaging of the deep structures, compared to FWI starting from the initial model (Figure 17d). At this stage, GSOT-FWI (Figure 17a andc) is essentially undistinguishable from L 2 FWI (Figure 17b), because the risk of cycle skipping is already minimised by the accurate kinematics of the pseudotime GSOT JFWI V p starting model. Similarly, the structure-oriented JFWI starting model does not significantly outperform the isotropic-smoothing one (Figure 17 a vs c), although a marginally higher convergence rate (Figure 18b) is obtained at the first FWI frequency band when starting from the constrained JFWI model. The final quality-check on the available V p -log is comforting, and further confirms the importance of JFWI in fitting the log at 2.0 to 2.5 km depth (Figure 18a).

The stationarity of shot-by-shot wavelet estimation is then compared as final QC of the broadband FWI V p models. In the correct model, the latter should be independent of the shot [START_REF] Pratt | Seismic waveform inversion in the frequency domain, part I: theory and verification in a physical scale model[END_REF][START_REF] Operto | Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse Pseudotime OT velocity inversion isotropic approximation[END_REF], while in an incorrect one, source estimation would collect the space-dependent model inaccuracies in the results. For each of the FWI cases, we compute the L 2 -norm misfit between the average estimated wavelet and the wavelet estimated for each shot. The results, shown in Figure 19, support the claim that FWI starting from the structure-constrained JFWI model ensures better performance than FWIonly, and reveal a better accuracy of the GSOT-FWI model over L 2 -FWI, even when starting from the accurate JFWI model.

DISCUSSION

The results obtained in both synthetic tests point towards confirming the suitability of the proposed methodology with coherent results. It is however interesting to note how the diving wave component of the JFWI objective function, while it is only marginally important in the first example application, is paramount in stabilizing the inversion in the Chevron dataset. In this case, the acoustic approximation adopted to invert an elastic dataset introduces systematic errors in modeling the reflection amplitude-versus offset, as well as the impossibility to predict P-S-P converted waves. Our interpretation is that such an epistemic The acoustic approximation remains however a limitation of JFWI in an elastic world, despite the stabilizing effect of the diving-wave component in the objective function. A dedicated pre-processing might be necessary on datasets with important elastic imprints on the reflected waveform shape and polarity [START_REF] Ostrander | Plane-wave reflection coefficients for gas sands at non-normal angles of incidences[END_REF], while an amplitude-offset normalization may be easily applied to GSOT to compensate for amplitude-only variations (AVO). Other approaches may be envisaged that reproduce elastic effects by adding artificial source terms [START_REF] Hobro | A method for correcting acoustic finite-difference amplitudes for elastic effects[END_REF] to the predicted acoustic data. Similarly, the impact of attenuation may be important on the amplitude and phase of reflections, and including a Quality-factor model will be key for JFWI in attenuating media.

As shown in [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF], the computational cost of JFWI is twice as large as the one FWI, due to the two adjoint-state steps adopted to eliminate the migration isochrones from the FWI gradient and thus obtain the desired gradient in equation3. The two-step gradient computation uses full-waveform modeling to obtain the desired tomographic waveform-based V p updates [START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF][START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF]. In order to isolate the macromodel updates from the migration isochrones, reflection-based FWI methods in the literature adopt several alternative approaches, based on either scattering-angle filtering of the gradient or Born modeling of reflections [START_REF] Yao | A review on reflection waveform inversion[END_REF]. While the former would require in time-domain computing asymptotic quantities to extract and isolate specific illumination angles, the latter employs a linearized one-way wave propagation that, unlike the full-waveform approach of JFWI, does not account for possible multi-scattering, inter-bed multiples and free-surface effects.

Graph-space optimal transport has proven effective in averting cycle-skipping when starting from a simple initial guess of V p . Though no offset windowing has been necessary in those datasets, a multi-scale approach was adopted to further minimize the risk of cycle-skipping. This is consistent with the real data application of GSOT-FWI shown in [START_REF] Górszczyk | Graph-space optimal transport concept for time-domain full-waveform inversion of ocean-bottom seismometer data: Nankai trough velocity structure reconstructed from a 1d model[END_REF] and [START_REF] Pladys | Robust FWI with graph space optimal transport: application to 3D OBC Valhall data[END_REF], who also show that GSOT does not altogether eliminate the need for data selection and weighting. The extra cost of GSOT with respect to L 2 norm in these 2D examples has been in the order of 20%. As shown in [START_REF] Métivier | A graph space optimal transport distance as a generalization of L p distances: application to a seismic imaging inverse problem[END_REF] and [START_REF] Pladys | Robust FWI with graph space optimal transport: application to 3D OBC Valhall data[END_REF], such a computational burden is expected to become relatively less important with increasing frequency, thanks to a quadratically complexity, as opposed to the cubic one of the modeling (in two dimensions).

In the pseudotime formulation, reflectivity is passively repositioned in depth during V p reconstruction, assuming near-vertical wave propagation (vertical traveltime). This approach has the merit of a negligible computing cost, while being limited to smoothly varying models, as is normally the case for macromodel reconstruction. Its applicability is reduced in complex subsurfaces with significantly dipping reflectors, while in strongly anisotropic media the depth adjustment based on vertical velocity may not capture the true model kinematics at non-normal incidence. Therefore, especially when starting from particularly non-informative initial models, interleaving stages of I p WI between JFWI steps might still be necessary to ensure accuracy. Alternatively, [START_REF] Valensi | A time consistent waveform inversion (twin) method[END_REF] propose to add a zero-offset invariance term to the RWI misfit function. This requires one Born modeling based migration of the zero-offset observed data and a demigration per V p -gradient calculation, therefore providing a more general framework than pseudotime, though at an Pseudotime OT velocity inversion important extra computing cost.

Thanks to our asymptotic approach, the cost of each I p WI is significantly lower than gradient-based or quasi-newton inversions, at the expense of an extra memory requirement due to the storage of the decimated DFT wavefields. The asymptotic formulation of I p WI is adopted as preconditioner of an indirect (iterative) inversion scheme, in other words acting as a set of weights for the adjoint-based FWI gradient that speeds up convergence to the true-amplitude reflectivity. Note that, unlike direct inversion approach, this is applicable to data containing multiples and ghosts and, generally, beyond the one-way Born approximation [START_REF] Li | Coupling direct inversion to common-shot image-domain velocity analysis[END_REF]. It is worth pointing out that, however, the asymptotic approximation is valid on narrow reflection angle, narrow illumination angle and therefore appropriate short offset data weighting is necessary.

As for the structure-oriented smoothing, the availability of a reflective model makes it possible to extract structural information at almost no-extra cost, and constrain the intermediate wavenumbers of the model, partially compensating for the ill-posed nature of the velocity reconstruction inverse problem. Also in this case, however, it might be wise to start injecting structural information into V p inversion only after some JFWI iterations, i.e. after the structural dips in the I p image begin to approach the true ones.

In both the synthetic datasets presented, a depth-domain inner-loop approach had been recently adopted with reasonable results in previous publications, (e.g., [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF][START_REF] Provenzano | Joint FWI of diving and reflected waves using a graph space optimal transport distance: synthetic tests on limited-offset surface seismic data: Presented at the SEG Technical Program Expanded Abstracts[END_REF]. In this case, JFWI converges to models containing sensible features at the expense of carefully designing a mid-to-long offset window for V p update and of recomputing I p WI twice per frequency band to attempt to mantain reflectivity-kinematic consistency [START_REF] Provenzano | Joint reflection and diving fwi using graph-space optimal transport and structure-guided smoothing on benchmark data[END_REF]. The process is highly subjective and time consuming, and generally yields sub-optimal results, as pointed out in, e.g., [START_REF] Valensi | A time consistent waveform inversion (twin) method[END_REF].

CONCLUSIONS

In this paper, a robust and efficient velocity-model-building methodology for limited-offset marine seismic reflection data is presented. It requires minimal data pre-processing and little initial knowledge of the subsurface. It is based on a joint graph-space optimal transport objective function comprising a refraction and a reflection term (GSOT-JFWI), and relies on a domain transformation from depth to pseudotime. While the joint full waveform inversion permits to extend velocity inversion beyond the depth sampled by diving waves, the combination of GSOT and pseudotime is uniquely suited to ensure phase-consistency (avoid cycle-skipping) at both short and long offsets in a cheap and robust fashion. Structurederived constraints are injected in V p reconstruction at no extra cost through anisotropic Bessel smoothing. The cost of building the initial reflective model is greatly reduced by a dedicated asymptotic preconditioner for impedance waveform inversion (I p WI). Two complex synthetic examples demonstrate the efficacy of the methodology and the impact of the proposed advances compared to conventional depth-domain least-squares methods. While the pseudotime transformation might be sub-optimal for complex subsurfaces and strongly dipping interfaces it still has wide applicability in a wide range of geological context, and its benefits in terms of computing cost are large compared to migration/demigration approaches. On the other hand, important elastic effects affecting reflection phase and polarity might hamper the efficacy of JFWI due to its acoustic approximation. Notwithstanding these limitations, the proposed methodology paves the way towards a mature and widely ap-Pseudotime OT velocity inversion plicable velocity-model-building strategy from reflection data and little a-priori knowledge. A follow-up paper will be aimed at demonstrating its effectiveness on a 3D ocean-bottomcable dataset.
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 1 Figure 1: Wavenumbers resolved in FWI. The wavenumber vectors associated with the propagation direction of monochromatic source and receiver wavefields at the image point are denoted by k S and k R , respectively. The local (geological) dip angle is denoted by φ and the aperture (or illumination) angle by θ. The vector k = k S +k R is the spectral component mapped into the subsurface model by FWI. The wider θ, the longer the wavelength imaged. [From Zhou et al. (2018)].
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 2 Figure 2: Models (a-b), reconstructed reflectivity (c) and data (d). In the example commonshot gather (d), real data in black overlaid to synthetic in red and blue; data perfectly in phase would appear as blue and black, as red is covered by black
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 3 Figure 3: Convergence of I p WI in initial V p model using different preconditioners.
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 45 Figure 4: Comparison of V p -model building methodologies. In the vertical profiles: pseudotime L 2 in magenta, pseudotime GSOT in red, pseudotime GSOT RWI in blue, depth-GSOT in yellow, starting model in grey and true one in black.
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 7 Figure 7: Example common-shot gather fit. Real data in black overlaid to synthetic in red and blue; data perfectly in phase would appear as blue and black, as red is covered by black

  Figure 9: V p FWI

  Figure 12: V p -model building via JFWI.

  Figure 16: Offset-domain RTM Common Image Gathers for the initial (a), Pseudotime GSOT JFWI with early wave only (J-EWI, b), and Pseudotme GSOT JFWI (c)
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 17 Figure 17: V p -FWI results in the [2-3-12-14]Hz band

  Pseudotime OT velocity inversion between respectively early arrivals and reflections of observed d obs and calculated data d cal .

	It writes as	
	χ[V p ] = G(W e d e obs , W e d e cal ) + G(W r d r obs , W r d r cal )	(2)
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