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Robust and efficient waveform-based velocity-model-building
by optimal-transport in the pseudotime domain:

methodology

Giuseppe Provenzano∗, Romain Brossier ∗, Ludovic Métivier †

ABSTRACT

Full waveform inversion (FWI) aims at a broadband reconstruction of the subsurface
physical properties by fitting the entire recorded wavefield. In realistic exploration
seismic surveys, however, conventional FWI often fails to retrieve the deep velocity
model due to the limited penetration depth of diving waves. Joint FWI (JFWI) uni-
fies reflection-waveform inversion (RWI) and early-arrival waveform inversion (EWI)
to reconstruct simutaneously the shallow and deep subsurface kinematics. However,
a number of factors limit the appeal of JFWI velocity-model-building: 1) conflict be-
tween fixed reflectivity and evolving kinematics, creating phase ambiguity at short
offsets; 2) susceptibility to cycle skipping at mid-to-long offsets, thus reliance on the
quality of the starting model; 3) cost of building and updating the reflective model.
We present a fully operational JFWI-based methodology that systematically addresses
the aforementioned issues. JFWI is re-formulated in the pseudotime domain, in or-
der to enforce consistency between velocity and reflectivity in a cost-effective fashion,
without repeated least-square migrations. A JFWI graph space optimal transport
(GSOT) objective function is designed to avert cycle skipping, while non-uniqueness
is mitigated at no extra cost by smoothing the velocity gradient along the structures
extracted from the reflective model. A dedicated asymptotic-based preconditioner is
developed for impedance waveform inversion, making it possible to obtain sharp and
balanced reflective images in a fraction of the time. We demonstrate that Pseudotime
GSOT-JFWI retrieves complex velocity macromodels from limited-offset datasets with
minimal pre-processing, starting from non-informative initial solutions. Compared to
depth-domain JFWI, the computing cost is reduced significantly, along with a sim-
pler and less subjective design of data weighting and inversion strategy. Pseudotime
GSOT-JFWI provides FWI with the necessary low-wavenumbers to converge to the
broadband model, reducing the need for accurate starting models, on the road to a
fully waveform-based imaging workflow.

INTRODUCTION

Full waveform inversion (FWI, Lailly, 1983; Tarantola, 1984, 1986) aims at a broadband
reconstruction of the subsurface physical properties by iteratively fitting the full recorded
wavefield. It has higher resolution compared to ray-based methods and, unlike the latter,
does not require phase identification and selection (Virieux and Operto, 2009). In its original
intent, FWI combines of tomography and migration in a purely data-driven procedure
(Claerbout, 1985; Mora, 1989) whereby both kinematic and reflective components of the
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Figure 1: Wavenumbers resolved in FWI. The wavenumber vectors associated with the
propagation direction of monochromatic source and receiver wavefields at the image point
are denoted by kS and kR, respectively. The local (geological) dip angle is denoted by φ and
the aperture (or illumination) angle by θ. The vector k = kS+kR is the spectral component
mapped into the subsurface model by FWI. The wider θ, the longer the wavelength imaged.
[From Zhou et al. (2018)].

subsurface can be obtained. So far, FWI has been applied successfully on a range of scales
and targets, from regional seismology (e.g., Fichtner and Villaseñor, 2015; Davy et al., 2017;
Górszczyk et al., 2021) to exploration for subsurface fluids reservoirs (e.g., Hicks et al., 2016;
Operto and Miniussi, 2018), down to engineering-scale site-characterization, on marine (e.g.,
Provenzano et al., 2018) as well as land settings (e.g., Irnaka et al., 2022).

However, the resolving power of FWI depends on specific data characteristics, namely
source-receiver aperture and source-bandwidth (Jannane et al., 1989) (Figure 1). Low
wavenumbers (long spatial wavelengths) are key for FWI to converge to a broadband P-
wave velocity (Vp) model (Jannane et al., 1989), and its ability to retrieve them relies on the
availability of low frequencies and transmission-regime, wide illumination angle wavepaths
(Sirgue and Pratt, 2004). Such ideal illumination conditions, hence full wavenumber cover-
age, are achieved only in transmission regime settings, e.g. in medical imaging, where the
target is surrounded by sources and receivers (e.g. Guasch et al., 2020; Marty et al., 2021).
In seismic datasets, acquired with sources and receivers deployed at the surface, limited
source-receiver offsets and limited-bandwidth, FWI retrieves low-wavenumber information
only at the shallow depths sampled by diving waves (Virieux and Operto, 2009). At deep
targets reached only by reflections, FWI has instead little sensitivity to model kinemat-
ics, and behaves similarly to a least-squares migration, reconstructing only the reflective
component part of the subsurface mechanical properties (Woodward, 1992; Jannane et al.,
1989). Under these conditions, FWI succeeds only if the starting model accurately repre-
sents the subsurface velocity trends, covering the intermediate-wavenumber resolution gap
(Mora, 1989).

Acoustic sources containing ultra-low frequencies (< 2 Hz) can be used to circumvent
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this limitation (e.g., Brenders et al., 2018), along with ocean-bottom-cable wide-angle and
ultra-long offset streamer acquisitions to increase the penetration depth of diving waves
(e.g., Vigh et al., 2013). However, these are expensive and generally non-affordable in
limited-budget surveys and site-monitoring, for which repeated acquisitions are required
over time (e.g., Eiken, 2019). Furthermore, though advances in the acquisition technology
are of invaluable importance, they are limited to new surveys ideally designed for FWI,
while data-driven methodologies remain of interest for the application of waveform-imaging
to legacy data (e.g., Raknes et al., 2015).

Reflection waveform inversion (RWI) uses an initial reflective model to update the to-
mographic component of Vp beyond the depths sampled by diving waves (e.g. Xu et al.,
2012; Brossier et al., 2015; Vigh et al., 2019; Yao et al., 2020). In a reflective subsur-
face, interaction between second-order scattering and first order wavefields takes place at
wide angles, producing low-wavenumber contributions to the sensitivity kernel. RWI iso-
lates those from the migration isochrones to form a tomographic Vp gradient (Zhou et al.,
2015; Yao et al., 2020) ideally exploiting the reflections as virtual deep sources generating a
transmission-regime wavefield (Mora, 1989). Joint FWI (JFWI, Zhou et al., 2015) enriches
the RWI sensitivity kernel with the shallow contribution from diving waves, through an ob-
jective function enforcing the fit to both early-wave arrivals and reflections. This improves
the robustness and stability of the reflection-based updates and, by improving the shallow
kinematic characterization, significantly enhances the imaging quality at all depths (Zhou
et al., 2018).

In reflection seismology, ensuring consistency between scatterers position and wavefield
kinematics is key for efficient Vp-model building (e.g., Sambolian et al., 2019). Reflection-
based waveform inversion makes no exception, and conflict between updating Vp and fixed
reflectors position in depth leads the inversion to non-physical solutions (Yao et al., 2020).
Cycles of short-offset reflectivity updates by least-squares migration and mid-to-long offset
Vp inversion are thus required by the conventional Vp-building JFWI workflow (Zhou et al.,
2015). This, however, comes at the price of a significant computational burden and high
subjectivity of the offset windowing strategy.

Several methodologies have thus been proposed to enforce Vp-reflectivity consistency in
reflection waveform tomographic methods. Data-domain approaches, such as migration-
based traveltime-tomography (MBTT, Doherty and Claerbout, 1976; Snieder et al., 1989;
Chavent et al., 1994; Alkhalifah et al., 2001) have been applied to RWI (Chavent, 2017;
Kryvohuz et al., 2019) to honor the zero-offset traveltime seismic invariant. In order to
do so, they require building and updating an intermediate reflectivity, between the data
and the model space, with the same dimensions as the input data. An alternative pseudo-
time (or vertical traveltime, τ) domain has been proposed by Plessix (2013) for FWI. The
approach is based on chain-rule derivation of the FWI gradient from the spatial (z, x, y)
to the (τ , x, y) domain, thus enforcing short-spread phase consistency with minimal cost
and limited memory-requirements. More recently, Yang et al. (2021) decouple the high-
and low- wavenumbers of FWI by reformulating the wave-equation to update simultane-
ously Vp, and a vector-reflectivity related to the spatial derivative of P-wave impedance
(Ip). Alternatively, Valensi and Baina (2021) account for the velocity-reflectivity coupling
by introducing an additional migration/demigration term to the RWI gradient that enforces
consistency in time.
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While the Vp-reflectivity conflict produces phase-ambiguity at short-offsets, inaccurate
starting model kinematics may lead to cycle-skipping in JFWI when using a conventional
least-squares (L2) objective function. In this case, if the predicted traveltime is larger than
half a dominant period, velocity updates are driven away from the global optimum (Virieux
and Operto, 2009). Objective functions robust to cycle skipping are therefore highly recom-
mended in RWI/JFWI, as both methods aim at the reconstruction of Vp long-wavelengths
by fitting limited-bandwidth waveforms. In the literature so far, objective functions based
on cross-correlation time-shifts (e.g., Brossier et al., 2015; Wang et al., 2019; Yao et al.,
2020) have been shown to mitigate cycle skipping in RWI, though limited by cross-talk
in multi-arrival data, where they may require appropriate windowing (Hale, 2009; Pladys
et al., 2021).

This paper presents a JFWI-based methodology that overcomes the above-mentioned
issues within a robust and efficent workflow, applicable with minimal pre-processing and
starting from highly inaccurate initial models.

A graph-space optimal transport (GSOT, Métivier et al., 2019) JFWI objective function
is designed in order to tackle the cycle skipping issue at intermediate-to-long offsets. The
latter transforms the predicted and observed seismic reflection and refraction waveforms in
2D positive distributions, to which optimal transport (OT, Kantorovich, 1942) is applied.
This approach has been shown to efficiently mitigate the risk of cycle skipping, reducing the
sensitivity of FWI to the presence of low frequency components in the data and accurate
initial model design (Métivier et al., 2019; Górszczyk et al., 2021; Pladys et al., 2021). As
opposed to traveltime-based objective functions (Chi et al., 2015), GSOT can retain the
amplitude information contained in the waveforms, effectively behaving as a generalization
of the L2-norm distance in which amplitude and time-shift information both contribute to
defining the distance between predicted and observed data. This makes it capable of cap-
turing time-shifts, while being more robust than cross-correlation and deconvolution-based
objective functions to the presence of multiple/mixed seismic phases and missing events
in the predicted data (Pladys et al., 2021). GSOT is thus an ideal candidate for complex
datasets inversion starting from inaccurate initial models (e.g., Górszczyk et al., 2021).
Preliminary results presented in Li et al. (2019); Provenzano et al. (2020) have shown how
GSOT may work well in combination with JFWI in realistic synthetic examples.

The JFWI-problem is reformulated in the pseudotime domain (Plessix, 2013; Brossier
et al., 2015) to enforce velocity-reflectivity consistency, thus attenuating phase ambiguities
at short offsets, in a computationally and memory cheap fashion. As hinted in Chavent
(2017), despite the assumption of near-vertical propagation, the combination of pseudotime
with a robust objective function (in our case, GSOT), has the potential to alleviate cycle
skipping at all offsets. The choice of pseudotime over alternative methods is driven by
three main reasons. Firstly, it has minimal computing cost compared to both augmented
objective-function (e.g., Valensi and Baina, 2021) and MBTT-based approaches (Chavent
et al., 1994), which require additional migration/demigration steps at each iteration. In
the case of MBTT, the optimization for the large-dimensionality data-space reflectivity
results in an additional computational burden, in the order of 3 times FWI, and a worse-
posed problem (Chavent, 2017). Futhermore, the lower memory requirement compared to
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MBTT-based FWI makes pseudotime more convenient to handle large 3D dataset in time-
domain. Finally, as opposed to the approach of Yang et al. (2021), it makes it possible
to use physically-interpretable parameters to represent reflectivity (e.g. density (ρ) or P-
wave impedance (Ip) ), and allows for a straigthforward and flexible implementation in
conventional full waveform modeling engines.

In order to address the non-uniqueness of the problem using data-driven information, the
proposed approach takes advantage of a structure-oriented regularization strategy, whereby
the Vp-updates are constrained by the geometries extracted from the reflective impedance
(Ip) at a negligible extra-cost. This is performed via a Bessel smoothing (Trinh et al.,
2017) of the JFWI gradient, in a rotated coordinate-system defined by the Ip structural
tensor at each iteration. Compared with convolution-based smoothing (e.g. Gaussian win-
dow smoothing), the Bessel smoothing approach is faster and scales better with increasing
coherent lengths, thus being more suitable for 3D applications.

The reconstruction of a reflective model, necessary to feed JFWI with deep-reaching re-
flections, is a significantly time-consuming task, whose cost is equivalent to a least-squares
migration. This work addresses it as non-linear waveform inversion problem for P-wave
impedance (Ip), in a [Vp, Ip] parametrization. The latter is an ideal candidate for reflection-
based inversion, since it minimizes the cross-talk between kinematic and reflective param-
eters (Zhou et al., 2015; Operto et al., 2013) by virtue of weakly overlapping radiation
patterns. In order to reduce the cost of the Ip image building, we implement and adapt
to time-domain FWI an efficient asymptotic-based preconditioner (Qin et al., 2015) with
true deconvolution imaging condition in the discrete-Fourier domain. Thereby, a rapid and
balanced image of the subsurface Ip can be obtained by waveform inversion of short-spread
reflections (IpWI) prior to JFWI, without requiring data de-multiple and de-ghosting. De-
spite having its roots in an asymptotic approximation of the wave propagation, such a
preconditioner can be computed using full wavefield quantities, without the need of using
an eikonal solver to compute ray quantities (Li and Chauris, 2018).

In the following sections, we illustrate how the advances introduced in this work jointly
contribute to signficantly improving the robustness and reliability of JFWI (Zhou et al.,
2015), and to increasing the efficiency of IpWI, towards a mature and widely-applicable
waveform-based Vp model building strategy.

After presenting our methodology in the theoretical section, we apply it to two re-
alistic synthetic case studies, starting from very simple and inaccurate starting models.
We demonstrate that: 1) GSOT-based objective function and pseudotime transformation
jointly contribute to annihilating cycle skipping at both long and short offset; 2) veloc-
ity inversion in pseudotime does not require dedicated reflection offset selection unlike in
depth-domain, and dramatically reduces the need to iteratively re-migrate the reflectivity,
hence the computational cost of Vp inversion; 3) the asymptotic preconditioner ensures a
significant speed-up in the reflectivity inversion step; 4) structure-oriented smoothing intro-
duces useful constraints in velocity reconstruction, mitigating the problem non-uniqueness
at a negligible extra-cost.

In a follow-up paper, we will present in details the application of this methodology to a
3D industrial field data from the North Sea, starting the inversion from a crude 1D model.
This will illustrate how a high resolution 3D P-wave velocity model can be inferred from
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3D field data using only full wavefield quantities, without the help of traveltime picking
or computation through asymptotic approximations of the wave equation, relaxing the
requirements of conventional imaging and moving towards a fully stand-alone FWI workflow.

THEORY

In this section, we first recall the JFWI formalism, followed by a description of the core
of the velocity-model-building methodology, namely the GSOT-JFWI objective function
and the pseudotime transformation. Then, the proposed structure-oriented regularization
strategy for JFWI is introduced. Finally, we present the asymptotic preconditioner for
efficient Impedance reconstruction (Impedance Waveform Inversion, IpWI). The workflow
is summarized in algorithm 1.

Joint FWI of diving and reflected waves

JFWI theory

JFWI (Zhou et al., 2015), jointly inverts early arrivals and reflected waves in a subsurface
containing discontinuities, to obtain tomographic Vp updates both in the shallow subsur-
face sampled by diving waves and the deeper parts covered by reflection wavepaths. This is
combined with a velocity-impedance (Vp-Ip) parameterization enhancing the scale separa-
tion between low and high wavenumbers of the model, by virtue of non-overlapping virtual
source radiation patterns (Operto et al., 2013).

In this parametrization, the scattered field is generated at discontinuities entirely ac-
counted for in the impedance model, while velocity is smooth. We define I0p as the smooth
impedance model, obtained as the product of starting velocity and density (Vpρ), and Irp
as the reflective impedance model (I0p + dIp), obtained by impedance waveform inversion
(IpWI) in the starting Vp model. Accordingly, we compute a reflection dataset drcal in a
reflective subsurface (Vp, I

r
p) and a diving dataset decal in a smooth model (Vp, I

0
p ), therefore

containing only early wave arrivals:

A(Vp, I
r
p)ur = s; ur = u0 + δu

drcal(Vp, I
r
p) = Rur(Vp, I

r
p)

A(Vp, I
0
p )u0 = s

decal(Vp, I
0
p ) = Ru0(Vp, I

0
p )

(1)

where A is the generic partial differential equation (PDE) modeling operator, s is the source
wavelet, and R extracts the computed diving and reflection wavefields at the receivers loca-
tion. While the latter contains both an incident (u0) and a scattered (δu) contribution, the
former contains only refractions, appearing as early arrival waveforms in the seismograms.
In this full waveform formulation, unlike in Born modeling, the scattered field δu in drcal
contains scattering of every order, making it amenable to predict data containing ghosts
and multiples.

The JFWI objective function for Vp is a weighted sum of two terms measuring the misfit
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between respectively early arrivals and reflections of observed dobs and calculated data dcal.
It writes as

χ[Vp] = G(W edeobs,W
edecal) +G(W rdrobs,W

rdrcal) (2)

where: G indicates a general positive function measuring the distance between two datasets;
W e and W r are weighting matrices applied respectively to early arrivals and reflections,
ideally isolating and scaling the background field in de and the scattered field in dr.

The sensitivity kernel of the objective function χ[Vp] reads (Zhou et al., 2015):

∇χ[Vp] = u0 ? λ
e + u0 ? δλ

r + δu ? λr0 + δu ? δλr (3)

where the symbol ? denotes the time-convolution operator; for simplicity, it also contains
the partial derivative of the forward modeling operators with respect to the unknown, in
this case Vp (∂VpA) (Zhou et al., 2015; Plessix, 2006). While the forward wavefields (u) have
been defined in equation1, the adjoint wavefields (λ) used in equation3 are solutions of the
following equations:

A†(Vp, I
r
p)(λr) =

∂G(W rdrobs,W
rdrcal)

∂drcal
; λr = λr0 + δλr

A†(Vp, I
0
p )λe =

∂G(W edeobs,W
edecal)

∂decal

(4)

where † indicates the adjoint operator and the superscripts e, r respectively identify the ad-
joint wavefields computed using the diving and reflection adjoint sources; while λr contains
an incident (λr0) scattered (δλr) field, since it is computed in the reflective model (Vp, I

r
p),

λe only contains a background component, because it is a function of the smooth model
(Vp, I

0
p ). Thus, the computation of the JFWI gradient requires the solution of two adjoint

equations, whose adjoint source terms (right-hand-sides) are the derivative of the objective
function with respect to the state variables, decal and drcal (Plessix, 2006). In the L2 case,
those amount to the reflection and diving data residuals at the receivers location, weighted
and reversed in time.

Using the quantities defined in equation4, the four-term gradient in equation3 can therefore
be interpreted as follows (Zhou et al., 2015):

1. the first term u0 ?λ
e is the diving wave first Fresnel zone obtained by cross-correlation

of the incident field u0 and the background adjoint λe generated by the diving wave
adjoint source (EWI component), both computed in the smooth model.

2. the second term u0 ?δλ
r
0 and third term δu?λr0, are the reflection rabbit ears resulting

from the cross-correlation of the incident wavefields (u0, λ
r
0) and second order scattered

wavefields (δλr,δu) at the model discontinuities (RWI component).

3. the last term represents higher-order scattering effects, among them undesired migra-
tion isochrones, which in the Vp, Ip parametrisation are attenuated.
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JFWI gradient implementation

The FWI gradient in a reflective model, however, along with the desired tomographic con-
tributions in equation3, contains migration isochrones that contribute to building the high-
wavenumbers of the Vp-model. Those high-frequency contributions result from the direct
interaction between the incident source wavefield (u0) and the downgoing reflection ad-
joint wavefield (λr0), and are one order of magnitude larger than the reflection rabbit ears
(Virieux and Operto, 2009). Following Zhou et al. (2015), in this work the JFWI gradient
in equation3 is obtained via a full-waveform based approach which eliminates the first-order
migration isochrones in two steps:

1. The first step computes a gradient in the reflective subsurface using the reflection ad-
joint source, and therefore contains both the rabbit ears and the migration isochrone.
η1 = u0 ? δλ

r + δu ? λr0 + u0 ? λ
r
0

2. The second step computes a gradient in a non-reflective subsurface (smooth I0p ) using
the diving wave adjoint source minus the reflection adjoint source, resulting in a
banana kernel and an opposite polarity migration isochrone. η2 = u0 ? λ

e − u0 ? λr0

3. The sum η1 + η2 eliminates the migration isochrone u0 ? λ
r
0 and combines the diving

and reflection tomographic kernels, obtaining the JFWI gradient in equation3.

This procedure exactly obtains the tomographic JFWI gradient in equation 3 at the cost
of two FWI gradient computations, similarly to Born modeling approaches. Higher-order
scattering effects, δu ? δλr (last term of equation3) may contain higher-order migration
isochrones, whose contribution is made smaller by employing the chosen Vp, Ip parametri-
sation (Operto et al., 2013; Zhou et al., 2015).

Graph-space optimal transport

Cycle skipping is likely to occur at intermediate-to-long offsets in least-squares Vp waveform
inversion when the traveltime prediction error is larger than half a dominant period. Among
different misfit function alternatives to L2, the graph-space optimal transport (GSOT) dis-
tance has shown interesting properties to mitigate cycle skipping for conventional FWI
applications (Górszczyk et al., 2021; Pladys et al., 2022). The conceptual core of GSOT
is the re-mapping of each seismic trace as a two-dimensional discrete distribution of K
unit-weight points (point cloud) in a time-amplitude space (graph space). Using this repre-
sentation, an optimal transport distance is applied to measure the misfit between predicted
and observed traces. Such distances have the specificity to be convex with respect to di-
lation and translation when applied to positive measures. Applying them to the graph of
predicted and observed traces therefore guarantees convexity with respect to time-shifts
between traces, reducing the risk of cycle skipping (Pladys et al., 2021).

Each individual predicted dcal(t) and observed trace dobs(t) is associated to its dis-
crete graph (ti, dcal(ti)), (ti, dobs(ti)), i = 1, . . .K assuming the same time discretization
is employed. As described in Métivier et al. (2019) and Métivier and Brossier (2021), the
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2−Wasserstein (optimal transport) distance between dcal(t) and dobs(t) thus amounts to the
solution of the optimal assignment problem

Ggsot(dcal, dobs) = min
σ∈S(K)

K∑
i=1

ci,σ(i)(dcal, dobs) (5)

where S(K) is the ensemble of permutations of {1, . . . ,K}, and

cij(dcal, dobs) =
A2

∆t2
|ti − tj |2 + |dcal(ti)− dobs(tj)|2. (6)

In 6, ∆t represents the maximum expected time shift and A is the maximum amplitude
(peak-to-peak) discrepancy between the observed and predicted trace. Among all possible
permutations, the optimal permutation σ∗ solution of the problem 5 minimizes the work
needed to transport the initial distribution to the target one, in the analogy with optimal
transport for engineering problems (Kantorovich, 1942). Considering predicted and ob-
served traces containing shifted phases, the transport work will depend monotonically on
the time shifts between phases thanks to the terms |ti− tj |2 in the transport cost cij , hence
the convexity of the distance with respect to time shifts.

One important property of the GSOT strategy is the relative simplicity of the gradient
building step once the misfit function is defined. For a misfit function

Ggsot(dcal, dobs) =

K∑
i=1

A2

∆t2
|ti − tσ∗|2 + |dcal(ti)− dobs(tσ∗)|2. (7)

the gradient can be obtained, thanks to the adjoint state strategy, as the time-convolution
between an incident field and an adjoint field (as in equation3), whose source term is defined
by

∂Ggsot(dcal, dobs)

∂dcal
= dcal(ti)− dobs(tσ∗(i)). (8)

The latter equation illustrates how the GSOT misfit function can be seen as a generalization
of the least-squares misfit function: as soon as the optimal assignment σ∗ is the identity,
the GSOT misfit function becomes equivalent to the least-squares distance and the adjoint
source becomes the conventional residual between observe and predicted data.

The GSOT-JFWI objective function

This is adapted to JFWI by replacing each term of the objective function (equation2) by
the respecive 2−Wasserstein (optimal transport) distance:

χgsot[Vp] = Ggsot(Ae,∆
e
t ,W

e, deobs, d
e
cal) +Ggsot(Ar,∆

r
t ,W

r, drobs, d
r
cal) (9)

The two GSOT misfit terms, for reflections and diving waves, are scaled independently
through the respective maximum amplitude discrepancies, Ar and Ae. This is necessary
in order not to bias the estimation of either 2-Wasserstein distance when the amplitude
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range of diving waves significantly differs from the one of the reflections. Potentially, two
different maximum expected time shifts (∆tr,∆te) can also be used. For each of the two
propagation regimes, a different optimal assigment map σ∗ is therefore computed. Thus,
the JFWI adjoint wavefields in equation4 with the GSOT adjoint sources read:

A†(Vp, I
r
p)λr = W rTW r(drcal(ti)− drobs(tσr,∗(i)))

A†(Vp, I
0
p )λe = W eTW e(decal(ti)− deobs(tσe,∗(i)))

(10)

where a specific optimal assignment plan σ∗ is used for the reflection and refraction terms
of the objective function. The expressions for the JFWI gradient are otherwise equivalent
to the general case presented in the JFWI theoretical section.

The intrinsic flexibility of GSOT can be exploited during inversion, starting with large
∆t to ensure robustness against cycle skipping, and reducing it as model kinematics improves
and it becomes desirable to approximate the resolution of L2-norm.

Pseudotime domain

While GSOT minimizes the risk of cycle-skipping at intermediate-to-long offsets, phase am-
biguity at near-zero offsets may occur in reflection-based velocity-model-building as a con-
sequence of kinematics-reflectivity conflict. The impedance model Irp in equation1 depends
on Vp, namely the position and geometry of the reconstructed reflective discontinuities are a
function of the current wavefield kinematics. However, such a dependency is not accounted
for in depth-domain reflection-based FWI, nor is in JFWI, which uses Irp as a passive pa-
rameter. Hereafter, in the text we will refer to the reflective impedance model simply as
Ip.

In a depth-domain implementation, since Vp updates are driven by moveout residuals,
but the depth of the reflectors is fixed, convergence can be attained only by weighting
out the short-spread reflection, which would be out of phase and lead the inversion to a
local minimum (Plessix, 2013; Yao et al., 2020). Repeated IpWI reflectivity reconstructions
are therefore interleaved within successive steps of depth-domain JFWI. This significantly
increases the computational burden and is dependent on the offset weighting strategy.

To overcome this difficulty and address the velocity-depth ambiguity in reflection-based
velocity model building, we propose an alternative approach that enforces Vp−Ip consistency
by reformulating JFWI in the pseudotime domain (Plessix, 2013; Brossier et al., 2015). The
relationships between pseudotime (τ) and depth (z) at each horizontal position are functions
of Vp:

τ(z) =

∫ z

0
dz′/V z

p (z′); z(τ) =

∫ τ

0
V t
p (τ ′)dτ ′ (11)

where the superscripts t and z denote respectively the pseudotime and depth quantities.
The depth domain V z

p , I
z
p model is mapped to the pseudotime domain τ , discretized using
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∆τ = ∆z/V pmax and reaching τmax = zmax/V pmin.

The gradient (equation3) is computed in the depth domain, and reformulated in pseu-
dotime using the derivation chain rule (Plessix, 2013, their equation B6):

∇τ(i)χ = ∇z(i)χ−
∫ zmax

zi

dV z
p

dz

1

V z
p (z)

∇zχdz (12)

The latter step is analogous to a re-parametrization of the inverse problem, from a depth-
domain variable to its pseudotime equivalent. After each V t

p update in the τ domain, the
V t
p , I

t
p model is re-mapped to the modeling (z) domain consistently with the new V t

p , using
equation11 and interpolating the value at z(τ) into the modeling grid. Reflectors are thus
repositioned, and Ip remains fixed in pseudotime while passively being updated in depth at
no extra modellig cost. Thereby, the near-zero offset waveforms are kept in phase, honoring
the zero-offset seismic invariant and reducing the need of cycling through successive Vp-
JFWI and IpWI inversion. In defining the pseudotime grid for marine datasets in which
seabed position and sea-column velocities are known, it is beneficial to tune ∆τ so that the
seabed reflection one-way time corresponds to a grid point in the τ(z) axis.

Note that the depth to pseudotime transformation implies 1D wave propagation, and
is therefore suitable for models showing smooth lateral variations, which is usually the
case for JFWI velocity-macromodels, and moderate structural dips. On the other hand,
merely repositioning the reflectors in depth does not account for changes in amplitude due
to changes in model kinematics and thus illumination. Therefore, the need for re-runs of
IpWI after significant velocity updates is not removed altogether, especially when starting
from particularly inaccurate initial velocity models.

Structure-oriented regularization

Besides its non-linearity, waveform-based Vp inversion is inherently an ill-conditioned inverse
problem, i.e. potentially an infinite number of models in the chosen parameterization may
fit the data within an acceptable data-fit threshold. It is therefore a common practice
to introduce prior information to reduce the size of the solution space, most commonly
by constraining the regularity of the solution i.e. the smoothness of the Vp variation in
space. This is implemented through the application of specific smoothing filters to the
model update at each inversion iteration. Among this category, the most widespread is
the Gaussian filter, which can be made non-stationary to adapt to it the expected local
resolution, as done for instance in Operto et al. (2006). The local resolution can be indeed
estimated from diffraction tomography analysis (Devaney, 1984; Wu and Toksöz, 1987;
Sirgue, 2003). A potential difficulty with this technique is the absence of information
regarding the underlying geological structure of the model, which can lead to remove from
the Vp model spatial variations associated with features one would like to preserve.

Overcoming this difficulty requires not only to adapt the smoothing strategy but also
to obtain relevant information on the geological structure of the investigated zone. In the
proposed methodology, we implement a technique to extract structural information from
the reconstructed Ip model, already available at all times during JFWI-based Vp inversion.
In order to extract the local dip of the reflectors in the Ip model, we first compute its
perturbation image dIp = Irp−I0p . The local derivatives of dIp are computed and a covariance
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matrix of the latter is built at each point within the model, to obtain a measure of the local
coherence of the structures, or structural tensor. In two-dimensions, it reads:

Cx,z =

(
gxx gxz
gzx gzz

)
(13)

where

gij |x,z =
∂dIp
∂i
· ∂dIp
∂j

∣∣∣∣
x,z

(14)

Thus, we have obtained a local structure matrix from which we wish to extract the direction
of strongest coherent structural variation. In order to do so, the principal components of C
are extracted by eigenvalue analysis:

Cx,y = V SV T

Vx,z =

(
v1x v2x
v1z v2z

)

Sx,z =

(
s1 0
0 s2

) (15)

where v1 in the eigenvector matrix V is the direction corresponding to the largest eigenvalue
(s1) in S, thus normal to the local structural dip, and v2 is instead parallel to the layer
orientation, corresponding to the lowest eigenvalue (s2). For each point of dIp(x, z), it is
therefore possible to extract the dip angle matrix with respect to the horizontal (x) direction
as:

φx,z = tan−1
v2z
v2x

(16)

Smoothing is applied to structure tensor before eigenvalue decomposition, and the resulting
dip angle matrix is again smoothed with user-defined lengths, in the order of the propagated
wavelength. Note that in three dimensions, this formulation would require both dip and
azimuth matrices to be extracted from the 3x3 structure tensor.

Once this information is extracted from the impedance, it can be injected in a specific
directional Bessel smoothing filter, introduced in (Trinh et al., 2017). For each point in
a two-dimensional subsurface, a directional Bessel filter is obtained as the solution of an
elliptical partial differential equation (Trinh et al., 2017) in the φ-rotated coordinate system
[v1, v2]. In two-dimensions, we have:

Bf (v1, v2)− (L2
2

∂2

∂v22
+ L2

1

∂2

∂v21
)Bf (v1, v2) = δ(v1, v2) (17)

where L1 and L2 are the user-defined local filter lengths in the v1, v2 directions, respectively
perpendicular and parallel to the reflector dip, and δ(v1, v2) is a delta Dirac function with
the same dimensions as the gradient. The lengths vary as a function of the propagated
wavelength, thus adapting to the local resolution determined by the modelled frequency and
the Vp values at each point; though, ideally, equation17 requires them to be homogeneous,
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the smoothly varying Vp resulting from JFWI only weakly undermine the validity of the
approach.

By virtue of the linearity of the latter equation, the solution of F [Bf ∗ γ] = δ ∗ γ,
where γ is the un-smoothed gradient, is the smoothed gradient γs = Bf ∗ γ. This can be
interpreted as the steady-state diffusion equation using the un-smoothed gradient as source
term. Therefore, γs can be obtained as the solution of a linear system, not only incorporating
structural information, but also with higher efficiency than convolution-based smoothings.
The smoothed gradient can be obtained by discretising equation17 and solving the linear
system in a matrix-free fashion, with a conjugate-gradient solver, thanks to its simmetry
(Trinh et al., 2017). The regularization is applied to the depth-domain gradient, before
re-parametrizatization to the pseudotime domain (equation12).

Compared to convolution-based approaches, whose computational complexity scales al-
most cubically with the filter lengths, the PDE-based smoothing scales sublinearly (Trinh
et al., 2017), which makes it amenable to 3D applications. However, the inaccurate Vp
model at early iterations produces deformed reflectors’ geometries, thus inaccurate struc-
ture tensors. In depth-domain inversion, it is therefore necessary to apply structure-oriented
smoothing only after some loops of JFWI and IpWI, in order to avoid error propagation
from the IpWI image to the JFWI-Vp update (Yao et al., 2019). In pseudotime, instead, the
impact of inaccurate initial reflective images in depth is limited to the very first iterations,
since the reflectors in Ip are simultaneously repositioned as Vp is updated.

Asymptotic preconditioning for Ip reconstruction

While the pseudotime approach alleviates the need of iteratively recomputing Ip within
the velocity model building workflow, the reconstruction of the initial Ip (IpWI) remains
a significantly time-consuming task, whose cost is equivalent to a least-squares migration.
To speed up this process, we propose to use a specific preconditioned gradient based on
asymptotic direct inverse operators.

Direct inverse operators retrieve the true-amplitude subsurface image using inverse scat-
tering operators based on the asymptotic high-frequency approximation of the linearized
wavefield (Beylkin, 1985). In this work, instead, the asymptotic formulation is used as a
preconditioner to scale and weight the gradient of the IpWI objective function, defined as
the least-squares distance between short-spread reflected wavefields:

χ[Ip] =
1

2

∣∣∣∣((W r
Ip (drcal [Vp, Ip]− drobs)

)∣∣∣∣2
2

(18)

where W r
Ip is a weighting operator applied to select the near-offset reflections , while the

projection operator is included in drcal. The use of L2 misfit function is here justified by
the limited risk of cycle skipping in short-spread waveform inversion; in this L2 case, the
adjoint source is simply the data residuals at the receivers, and the adjoint wavefield (λ) is
the solution of the following equation:

A†(Vp, Ip)λ = W r
Ip
TW r

Ip(d
r
cal − drobs) (19)
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where T indicates the transpose operator. Since both forward and adjoint operators are
function also of the reflective part of the model, the predicted data will contain scattering
of any order, unlike Born modeling approaches. Accordingly, multiple and ghost reflections
are not eliminated from the field data in pre-processing. Under these conditions, the choice
of a non-linear minimization process over direct methods is a necessity (Virieux et al., 2016;
Li and Chauris, 2018).

In Qin et al. (2015) and Li and Chauris (2018), the direct inverse of δu to obtain the
model perturbation δm is defined in frequency-domain using only pressure wavefields, thus
not requiring the computation of rays and associated incidence and take-off angles:

δm(x) =
∑
shot

∑
k

4δωk
∇xu∗(x, ωk)∇xΛ(x, ω) + (iωk/Vp)

2u∗(x, ωk)Λ(x, ωk)

−iω3
ku
∗(x, ωk)u(x, ωk)

Λ(x, ωk) =
∑
rec

∂ζx(rec, ωk)

∂z
λ(rec, ωk)

(20)

where a summation is performed over shots and positive angular frequencies ωk and ∗ in-
dicates complex conjugation. The source wavefield and the modified adjoint wavefield are
indicated respectively by u and Λ. The latter is the convolution of the vertical derivative of
the adjoint Green function (ζ) at the receivers positions and the perturbation wavefield δu.
This enhances narrow take-off angle at the receiver positions, while the horizontal deriva-
tives at the scattering points (x) enhance the narrow illumination angles (Qin et al., 2015),
mapping into high-wavenumbers of the retrieved perturbation model. Finally, a deconvo-
lution imaging condition is applied (denominator), which compensates for the wavefield
illumination and attenuates imprint of the limited-bandwidth of the source wavelet (Li and
Chauris, 2018).

We reformulate equation20 to adapt and optimize it for our full-waveform engine based
on a first-order formulation of the wave equation. Since in the latter we have access to
particle velocity and pressure wavefields, it is convenient expressing the horizontal derivative
of the pressure wavefields in equation 20 as a function of local particle velocity, using

ρ∂tvx = ∂xP. (21)

This makes it possible to use time-differentiation in the frequency domain (multiplication by
iω), instead of discretizing the spatial derivatives at the scattering point within the modeling
grid. Finally, using a small take-off angle approximation to simplify the expression for Λ,
and reformulating for Ip (Li et al., 2019), we can write:

Γχ[Ip] =
∑
shot

∑
k

R
iωkρ

2

Vp
uv
∗(ωk, x)λv(ωk, x)− iωk

V 3
p
u∗p(ωk, x)λp(ωk, x)

u∗p(ωk, x)up(ωk, x) + ε(shot)
(22)

where the subscripts v and p indicate respectively the particle velocity and pressure wave-
fields or the primary u and adjoint λ fields. To stabilize the spectral division, a damping
(water-level) parameter ε is defined for each shot as 1e−4 of the maximum amplitude of the
absolute-valued incident wavefield (Schleicher et al., 2008).
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The latter expression is used as preconditioned gradient in our non-linear optimization
problem for the objective function defined in equation 18 (Virieux et al., 2016; Farshad and
Chauris, 2021). Both the conventional adjoint-based gradient and the preconditioned gra-
dient Γ are therefore required at each iteration for the optimization (Métivier and Brossier,
2016,, their Eqs. 6 and 7). As observed by Métivier et al. (2015), who alternatively ap-
proached the problem by modifying the objective function through migration/demigration
of residuals, this amounts to having an inverse operator with a near diagonal Hessian.

In order to adapt it to our time-domain FWI approach, we implement the proposed
preconditioned gradient using discrete-fourier-transform (DFT). Source and receiver DFT
wavefields are built on-the-fly during the incident field computation and stored at a set
of discrete frequencies to compute Γ, as done by Yong et al. (2022) for the computa-
tion of Hessian-vector products in the Truncated-Newton algorithm. Unlike in previous
time-domain implementations (Li et al., 2019), this effectively implements the deconvolu-
tion imaging condition in equation 20, without relying on the assumption of frequency-
independence of the incident wavefield (Schleicher et al., 2008). A significant frequency
decimation is applied on the positive frequencies, to make the approach memory-affordable
also in 3D. As shown in Yong et al. (2022), a number of frequencies lower than Nyquist
might be used, as long as it is sufficient to avoid wrap-around effects.

Summary velocity-model-building workflow

In summary (Alg.1), once the reflection and diving propagation regimes have been identified
and the weighting matrices built, the workflow starts with the reconstruction of Ip in the
initial model, employing the asymptotic preconditioning strategy. At this stage, either a
steepest-descent or conjugate gradient algorithm can be used to update Ip using jointly
preconditioned and conventional gradient.

Starting from the reconstructed reflective model, GSOT-JFWI is performed in the pseu-
dotime domain, updating Vp and, simultaneously and at no-extra cost, Ip. JFWI requires
the solution of six wave equations, if the incident source wavefield are not stored, three for
each step (η1 and η2) of the JFWI gradient computation, and thus twice as many as for
conventional FWI. The structure-oriented smoothing can be adopted to constrain the Vp
solution. The GSOT-JFWI stage requires the definition of the maximum expected time-
shifts, while the structure oriented smoothing requires the user to choose the coherence
lengths as a function of the propagated wavelengths. Steepest-descent, conjugate gradient,
or quasi-newton methods can be used for the optimization (Métivier and Brossier, 2016).
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Algorithm 1 Velocity model building workflow. Note that, during JFWI, Irp is updated
consistently with Vp in depth, while the inversion is performed for V t

p at fixed Itp in pseu-
dotime. In the following synthetic case studies, the optimization follows either a non-linear
conjugate gradient or steepest-descent algorithm (Métivier and Brossier, 2016)
.

1: - k = 0, BEGIN IpWI
2: - Model data and compute χ[Ip](0) . Eq. 18
3: while [χ[Ip(k)] ≤ threshold] .OR. [k = Itermax] do
4: - Compute ∇χ[Ip(k)] and Γ[Ip(k)] . Eq. 22
5: - Optimization for dIp(k)→ Ip(k + 1) = Ip(k) + dIp(k)
6: - Model data and compute χ[Ip(k + 1)] . Eq. 18
7: - k = k + 1
8: end while . I0p → Irp

===================================================

1: - k = 0, BEGIN JFWI
2: - Compute structure tensor of dIrp . Eq. 15
3: - Convert to pseudotime Vp → V t

p and Irp → Itp . Eq. 11
4: - Model data and compute χ[Vp(0), Irp ] . Eq. 2
5: while [χ[Vp(k), Irp(k)] ≤ threshold] .OR. [k = Itermax] do
6: - Compute ∇χ[Vp(k)] . Eq. 3
7: - Convert to pseudotime ∇χ[Vp(k)]→ ∇χ[V t

p (k)] . Eq. 12
8: - Optimization for dV t

p (k)→ V t
p (k + 1) = V t

p (k) + dV t
p (k)

9: - Convert to depth V t
p (k + 1)→ Vp(k + 1) and Itp → Irp(k + 1) . Eq. 11

10: - Model data and compute χ[Vp(k + 1), Irp(k + 1)] . Eq. 2
11: - k = k + 1
12: end while . V 0

p → Vp

SYNTHETIC CASE STUDIES

Valhall 2D synthetic reflection dataset

Data and initial model

The first synthetic application presented is on the Valhall 2D acoustic model (Vp and ρ),
comprising a multi-layered low-velocity zone and a deeper high velocity anticline, inspired by
the Valhall oil field in the North Sea (e.g., Gholami et al., 2013; Zhou et al., 2015). However,
instead of an ocean-botton cable survey, we simulate a surface streamer acquisition, making
velocity reconstruction at deep targets more challenging. 128 shots are fired at 110 m spacing
and the wavefield is recorded by a 229 channels surface streamer with group interval equal
to 25 m, and absolute offset ranging between 80 and 5700 m. Since maximum target depth
is about 3 Km, such an acquisition is expected to be unsuitable for conventional FWI to
yield a broadband velocity reconstruction (Woodward, 1992).

The source signature is a zero-phase Ricker with central frequency equal to 6.25 Hz.
Modeling is performed in the time domain with a 4th order finite-difference scheme (dx =
25 m, dt = 4 ms), perfectly-matching-layer (PML) absorbing boundaries and free-surface
(Yang et al., 2018); therefore, the observed data contain surface-related multiples and
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(a) True (b) Start

c) Initial reflectivity Ip − Ip(smooth) d) Predicted data

Figure 2: Models (a-b), reconstructed reflectivity (c) and data (d). In the example common-
shot gather (d), real data in black overlaid to synthetic in red and blue; data perfectly in
phase would appear as blue and black, as red is covered by black

ghosts, which are kept in pre-processing. The starting model is 1D (Figure 2), and it
is made up by a shallow water layer (70 m depth, Vp = 1500 m/s, ρ = 1000 kg/m3) and a
subsurface in which Vp increases linearly with depth. Note in Figure 2 how the data pre-
dicted by this model, with the reconstructed reflectivity, is prone to cycle skipping both in
the diving waves and long-offset (> 3 km) reflections. While true ρ is derived from true Vp
via a Gardner’s relationship, starting ρ below seafloor is constant and equal to 2000 kg/m3,
therefore the initial Ip is simply a scaled version of Vp.

Ip-reconstruction

The Vp-model building workflow begins with the inversion of the short-spread (offset < 500
m) reflections (IpWI) in the starting Vp. Figure 3 shows the convergence history of non-
linear conjugate gradient (Nocedal and Wright, 2006) IpWI with the proposed asymptotic
preconditioner against linear depth preconditioning and a pseudo-Hessian preconditioner
compensating for wavefield illumination (Kamath et al., 2021). The convergence speed-up
is remarkable, despite the presence of shallow water multiples and ghosts. The number of
frequencies stored in the DFT scheme is 38, with a sampling rate ∆f = 0.35 suitable to
avoiding wrap-around effects, despite a compression of a factor 1.8 compared to a Nyquist
sampling for a maximum frequency of 15 Hz. The reconstructed Ip (Figure 2c) is then
used as the reflective contributor of the starting JFWI model (data predicted for this initial
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Figure 3: Convergence of IpWI in initial Vp model using different preconditioners.

reflective model are shown in Figure 2d).

Vp-macromodel building

This section compares the performance of: 1) GSOT-JFWI; 2) Pseudotime GSOT-JFWI; 3)
Pseudotime L2-JFWI; 4) Pseudotime GSOT-RWI, where the diving component of JFWI is
set to zero and only reflections are used. Finally, the impact of structure-oriented smoothing
is also assessed.

Data windows are designed to separate early arrivals and reflected waves, in order to
build the two components of the JFWI objective function in equation2; the limit between
the two propagation regimes is simply given by the direct-wave arrival time, plus the wavelet
duration (Figure 2d). In JFWIs, a scaling factor equal to 0.66 is applied to the diving wave
component of the adjoint source, in order to balance the diving and reflected contributions
to the two-term objective function (equation 3). 25 iterations of steepest descent with linear
depth preconditioning are performed. The choice of a steepest-descent optimization over
quasi-newton methods (Nocedal and Wright, 2006) is justified by the need of a robust Vp
update in the presence of multiples and multi-scattering, in order to avoid overfitting, at
the expense of convergence speed (e.g., Zhou et al., 2018). In the GSOT case, ∆t (equation
6) is set to 0.4 s to privilege convexity with respect to traveltime differences; this is larger
than the maximum expected time-shift between predicted and observed data, but is helpful
to attribute higher weights to small amplitude events in the graph space (Métivier and
Brossier, 2021).

In Figure 4 the advantages of pseudotime over a conventional depth formulation are
apparent, GSOT JFWI failing to retrieve the correct velocity trends. Pseudotime L2-JFWI
identifies the low velocity zone, but is cycle skipped in the shallow part, where velocity
is erroneously decreased instead of increased, especially in portions of the model sampled
preferentially by refracted arrivals. Pseudotime GSOT-JFWI, on the other hand, combines
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a convex misfit function with an enforced kinematic-reflectivity consistency, and retrieves
an accurate Vp model starting from the 1D initial guess. The benefit of jointly inverting
reflections and diving waves in JFWI is a better reconstruction of the shallow part of the
model with respect to RWI.

Structure-oriented smoothing is used in conjunction with pseudotime GSOT-JFWI. In
Figure 5 the local dip angle matrix extracted from the Ip structure tensor is shown, after
appropriate attenuation of the high-wavenumber oscillations. Smoothing the JFWI gradient
along the corresponding v1, v2 directions injects structural information in the Vp update,
cleaning it up from anomalies inconsistent with the true subsurface. This is apparent in the
smoother transitions between high and low velocity anomalies (Figure 5). Though more
sensible, this model does not correspond to a lower final misfit function, in a clear example
of ill-posedness in waveform-inversion: among an ensemble of models with acceptable data-
fit, here we constrain the inversion to move towards a geologically meaningful one, where
velocity varies slower within strata than across them.

To assess the benefit of structure-oriented smoothing at this stage, we plot the final Ip re-
flectivity, as it results from the passive pseudotime updates (Figure 6). JFWI constrained by
structures almost perfectly reconstructs the reflective interfaces geometries, outperforming
unconstrained JFWI, which yields a Ip reflectivity with unphysical oscillation symptomatic
of data overfitting in Vp model building. It is also worth pointing out that JFWI produces
less-deformed structures than RWI: the diving-wave constraint in the shallow part allows
for better imaging at all depths, as shown in Zhou et al. (2015). Note that, unlike in the
latter paper and Provenzano et al. (2020), the pseudotime formulation allows to get rid of
the inner loop of IpWI, since Ip is passively repositioned consistently with each Vp update.
This produces a significant saving in computing time, while reducing the need of subjective
and time consuming offset weightings (e.g., Yao et al., 2020; Valensi and Baina, 2021).

Data comparison: why does depth-domain fail?

In order to understand why depth-domain JFWI fails in this case, it is instructive to look
at the predicted data in the reflective initial and final Vp − Ip models. A common-shot
gather is extracted around the central part of the acquisition, where the performances of
the pseudotime methodologies are comparable, while depth-domain JFWI fails to update
the velocity model. In Figure 7, we compare initial (a), GSOT-JFWI (b), Pseudotime
GSOT-RWI (c), Pseudotime GSOT-JFWI (d), Pseudotime L2-JFWI (e), Pseudotime with
structure-oriented smoothing (f). In a) the near-offsets are in phase, while the mid-to-long
ones are not, as a consequence of the wrong model kinematics. In b) Vp inversion is driven
by long-offsets mismatches and reduces them, but, as soon as the Vp update is no longer
compatible with the fixed-depth reflectivity, the misfit at short offset increases (more red
wiggles than initial model) and the inversion is stuck in a local minimum. In c-to-f, the
pseudotime formulation mitigates this issue and data-fit is improved in a broad offset range
(blue-dominated plots). Data prediction is almost invariant with respect to the structure-
constraints (d and f): as pointed out in the previous subsection, this is an example of
non-uniqueness of the JFWI problem; RWI (c) has worse data prediction in the refracted
waves, since they do not contribute to the objective function. L2-JFWI (e), though not
cycle-skipped in this instance, has higher misfit at offsets larger than 5 km in refractions
and at offset larger than 4 km in reflections, as a results of an objective function non convex
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a) Depth-GSOT JFWI b) Time-L2 JFWI

c) Time-GSOT JFWI d) Time-GSOT RWI

e) 4 km f) 7 km g) 8 km h) 11 km

Figure 4: Comparison of Vp-model building methodologies. In the vertical profiles: pseudo-
time L2 in magenta, pseudotime GSOT in red, pseudotime GSOT RWI in blue, depth-GSOT
in yellow, starting model in grey and true one in black.
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a) Time GSOT-JFWI constrained b) Time GSOT-JFWI unconstrained

e) Dip angle from reflectivity f) 4 km g) 8 km h) 11 km

Figure 5: Dip angle extracted from the Ip image and constrained Vp compared with uncon-
strained JFWI results. In the vertical profiles: constrained in blue, unconstrained in red,
true in black and starting in grey.

a) dIp in initial Vp b) dIp pseudotime JFWI constrained

c) dIp pseudotime JFWI d) dIp pseudotime RWI

Figure 6: Ip reflectivity updated consistently with Vp-model building in the pseudotime
domain
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against time-shifts.

In order to assess the efficacy of the pseudotime-GSOT scheme in the presence of struc-
tural dips that might challenge the vertical traveltime assumption, the same comparison is
presented for a shot gather acquired above the left flank of the deep anticline (Figure 8).
In this instance, with a local structural dip reaching 15 degrees, pseudotime GSOT-JFWI
shows no deterioration of performance compared to the nearly-flat case (Figure 7)

Vp-FWI

After pseudotime JFWI, parametrisation is switched to Vp − ρ and one-parameter Vp-FWI
is run in depth domain, in order to invert for the broadband Vp model (Operto et al., 2013).
Density is set back to the initial uniform model, because in the Vp − Ip parametrisation
ρ moves to non-meaningful values when inverting for Vp only. Under these conditions,
FWI yields a broadband reconstruction of the true Vp model (Figure 9), thanks to the
accurate low-wavenumbers contained in the starting model, which avoid cycle skipping and
ensure convergence. This appears to be true even using a L2-norm at this stage, while the
benefits of using GSOT (∆t=0.25 s) at this stage are marginal, thanks to a starting model
that predicts traveltimes within less than half a period (see data fit in Figure 6). On the
contrary, starting from the 1D model, and using the same GSOT parameters as in JFWI,
Vp-FWI fails to provide meaningful velocity updates at depths larger than 1 km, yielding
a migration-like image in the inaccurate kinematic model. This shows that not only does
broadband FWI require convex misfit function, but it also relies on dedicated strategies such
as JFWI to obtain tomographic updates in areas of the subsurface sampled by reflections
only. Finally, the rate of data misfit reduction with iterations is much faster when starting
from the JFWI-based models, and particularly from the structure-constrained pseudotime
GSOT-JFWI (Figure 10), showing that structures in the IpWI image at the Vp-building
stage are precious information at no extra cost that ought to be exploited (Figure 5).

The Chevron 2014 blind reflection dataset

Data and initial model

The Chevron-2014 benchmark dataset simulates a realistic two-dimensional reflection survey
in a shallow water environment and an isotropic elastic subsurface. A surface streamer
records the wavefield at source-receiver offsets ranging between 0 and 8 km and group
interval of 25 m. The wide source band is contaminated by frequency-dependent noise,
resulting in a lack of usable frequencies < 3 Hz. Although the true model has not yet
been disclosed, the available 1D starting Vp-model (Figure 11) suggests the presence of a
low velocity layer (LVL) at about 2 km depth, with a maximum target depth of 6 km. A
virtual Vp log is available for quality-check in the right part of the model at depths ranging
between 1 and 2 km. Low offset/depth ratio, lack of low frequencies and the presence of
a LVL jointly contribute to limiting the broadband Vp-reconstruction to the shallow (< 2
km depth) portion of the subsurface (Vigh et al., 2016). In addition, the 1D starting model
exposes the L2-based inversion to cycle-skipping (e.g., Sun and Alkhalifah, 2018). In this
test, the inversion is run in the isotropic acoustic approximation discretized with a 25 m
spatial step up to 15 Hz to avoid numerical dispersion, the temporal sampling interval chosen
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a) Initial b) GSOT-JFWI

c) Pseudotime GSOT-RWI d) Pseudotime GSOT-JFWI

e) Pseudotime L2-JFWI f) Pseudotime GSOT-JFWI constrained

Figure 7: Example common-shot gather fit. Real data in black overlaid to synthetic in red
and blue; data perfectly in phase would appear as blue and black, as red is covered by black

to honor CFL (Courant-Friedrichs-Lewy) stability conditions. PML boundary conditions
are applied, except at the top of the model, in order to simulate free-surface condition and
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a) Initial b) Pseudotime GSOT-JFWI

Figure 8: Example common-shot gather fit. As in Figure 7, but for a shot acquired above
the left flank of the deep anticline.

reproduce both the up- and downgoing wavefield components of the field dataset.

Vp-macromodel building

In order to minimize the risk of cycle skipping in this more realistic test, we employ a
multi-scale approach (Bunks et al., 1995) in three frequency bands (3-6,3-8,3-10 Hz). For
each band, the Vp-model building workflow is similar to the one designed for the Valhall
synthetic case, with an initial asymptotic IpWI performed in 6 non-linear conjugate gradient
iterations, followed by 30 steepest-descent JFWI iterations. A frequency-domain wavelet
estimation (Pratt, 1999) is performed for each band using a subset of the short-offset direct
arrivals to minimize the impact of the model inaccuracy on the source signature estima-
tion. Diving/reflection separation is designed for each frequency band, to account for the
bandwidth-dependent wavelet duration after the direct arrival onset. IpWI is run on short
spread reflection data, with offset shorter than 1 km, while offsets lower than 500 m are
weighted out for JFWI, to avoid the inversion to be biased by the near-field high amplitudes.
In the GSOT case, the maximum expected time-shift ∆t (equation 6) is initially set to 0.35
s to enhance convexity with respect to traveltime differences, and later reduced to 0.15 s
in the latest band, to approximate the resolution of the L2 norm, as model kinematics is
expected to have been improved in the previous bands.

In Figure 12 the results of Vp-model building are presented. Depth-domain JFWI (Fig-
ure 12a), provides sensible updates at depths lower than 2 km, where three localized low-Vp
pockets are identified, but yields a non-realistic reconstruction of the LVL extent and ge-
ometry. In the pseudotime-JFWI cases (Figure 12b-d) LVL velocity and slope is updated
as well as the shallow part of the subsurface. Starting from the one-dimensional model, a
deep anticline-like higher-Vp structure is retrieved. While L2 norm pseudotime inversion
(Figure 12b) reconstructs a similar LVL as GSOT-JFWI (Figure 12c-d), the left part of the
model, dominated by long offsets diving waves, shows signs of cycle skipping by leakage of
the LVL upwards and downwards. Finally, the structure oriented smoothing applied to pseu-
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a) GSOT-FWI from 1D b) L2-FWI from 1D

c) GSOT-FWI from GSOT-JFWI d) L2-FWI from GSOT-JFWI

Figure 9: Vp FWI

Figure 10: Convergence of Vp-FWI starting from 1D, JFWI, and structure-constrained
JFWI models.
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a) Initial Vp model b) Example common shot gather fit

Figure 11: Initial Vp for the Chevron ’14 blind test and example observed vs predicted
common shot gather, showing phase mismatch (red wiggles appearing) at offsets larger
than 3.5 km

.

dotime GSOT-JFWI attenuates non-physical near-vertical anomalies at depths larger than
2.5 km, (Figure 12c-d), thereby introducing more realistic structures in the reconstructed
macromodel (Figure 13).

In Figure 14 the stabilizing contribution of the diving wave component of JFWI is
demonstrated by halving the diving wave weight and comparing the results with the low-
pass filtered virtual well-log. Note how the updated Vp in this case (J-RWI, in Figure 14b
as the reflection component dominates) shows obvious signs of velocity under- and over-
estimation in pull-ups and -downs and, in particular, anomalously low velocities at the
well-log location (Figure 14d). This might result from reflection overfitting, driven by
the presence of converted waves and multiples in the elastic field dataset in the acoustic
inversion. On the other hand, if only diving waves are used by making the contribution of
reflections negligible (J-EWI in Figure 14a), the deep model update is, as a consequence,
neglected and well-log poorly reconstructed at 2 km (Figure 14d); the velocity decrease at
this depth is not captured by J-EWI, which remains grounded to the starting model due
to lack of illumination. Jointly inverting for reflection and refraction in this dataset is thus
key to obtain a stable macromodel update at all depths. In the following kinematic QCs,
we demonstrate that the lower velocities detected by JFWI are key for correct imaging
and that accounting for both diving and reflected waves is necessary to obtain a sensible
macromodel update at all depths.

Data-fit and kinematics QC

In Figure 15 an example common-shot gather (CSG) extracted in the central part of the
model is used to showcase the data-fit after JFWI at 6 Hz. Note how the pseudotime
approaches (Figure15b-c) improve the waveform fit at all offsets compared to the prediction
of the initial model (Figure15a), whereas the depth-domain inversion (Figure15d), while
improving the average fit between predicted and observed gathers, deteriorates the phase
alignment at near-offsets due to the fixed-depth reflectivity. In more detail, cycle-skipping
in the L2 gather is not apparent in this CSG, although waveform prediction is marginally
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a) Depth-GSOT JFWI b) Time-L2 JFWI

c) Time-GSOT JFWI d) Time-GSOT JFWI structure-smoothing

Figure 12: Vp-model building via JFWI.

a) dVp JFWI b) dVp JFWI structure-smoothing

Figure 13: Pseudotime GSOT JFWI model update without (a) and with (b) structure-
oriented smoothing
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a) Time-GSOT J-EWI we = 1000.0 b) Time-GSOT J-RWI we = 0.5

c) Time-GSOT JFWI we = 1.0 d) well log comparison

Figure 14: Stabilizing effect of diving wave component in JFWI. The best well-log prediction
is obtained when using the true weight of the diving wave component (We = 1 in the JFWI
objective function). While reflections are necessary to reconstruct the true LVL values,
their contribution alone might be unstable due to acoustic inversion vs elastic modeling.
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a) Initial b) Pseudotime GSOT-JFWI

c) Pseudotime L2-JFWI d) Depth GSOT-JFWI

Figure 15: Example 6 Hz common-shot gather band fit. Real data in black overlaid to
synthetic in red and blue; data perfectly in phase would appear as blue and black, as red
is covered by black. The long offset refractions in the pseudotime L2 and GSOT cases are
zoomed in, highlighting a better data fit in the GSOT case (red covered by black)
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worse than the GSOT case.

The Vp-models obtained in the pseudotime domain are compared in the image domain
to assess their kinematic accuracy (Figure16), in particular to assess wether or not the
LVL reconstructed by the reflection component is necessary to appropriately image the
susbsurface structures. Common image gather (CIGs) are computed by extended RTM on
offset subsets from 0.2 to 5 km for: a) Initial model; b) pseudotime diving wave only GSOT
WI; c) pseudotime GSOT JFWI. The solution of pseudotime JFWI best represents the
model kinematics, both compared to the initial model and the one obtained by early-arrivals
only JFWI (J-EWI), the latter showing clear signs of velocity overestimation (downward
bending arrivals).

Vp-FWI

FWI starting from the JFWI models is performed with a multi-scale approach in 6 frequency
bands from 6 to 15 Hz. In Vp-FWI, we re-set density to its initial value and keep it
fixed. In Figure 17 the contribution of JFWI as starting point for Vp-FWI (Figure 17a-c) is
apparent in its richer low wavenumber content and better imaging of the deep structures,
compared to FWI starting from the initial model (Figure 17d). At this stage, GSOT-FWI
(Figure 17a and c) is essentially undistinguishable from L2 FWI (Figure 17b), because the
risk of cycle skipping is already minimised by the accurate kinematics of the pseudotime
GSOT JFWI Vp starting model. Similarly, the structure-oriented JFWI starting model
does not significantly outperform the isotropic-smoothing one (Figure 17 a vs c), although
a marginally higher convergence rate (Figure 18b) is obtained at the first FWI frequency
band when starting from the constrained JFWI model. The final quality-check on the
available Vp-log is comforting, and further confirms the importance of JFWI in fitting the
log at 2.0 to 2.5 km depth (Figure 18a).

The stationarity of shot-by-shot wavelet estimation is then compared as final QC of the
broadband FWI Vp models. In the correct model, the latter should be independent of the
shot (Pratt, 1999; Operto et al., 2015), while in an incorrect one, source estimation would
collect the space-dependent model inaccuracies in the results. For each of the FWI cases,
we compute the L2-norm misfit between the average estimated wavelet and the wavelet
estimated for each shot. The results, shown in Figure 19, support the claim that FWI
starting from the structure-constrained JFWI model ensures better performance than FWI-
only, and reveal a better accuracy of the GSOT-FWI model over L2-FWI, even when starting
from the accurate JFWI model.

DISCUSSION

The results obtained in both synthetic tests point towards confirming the suitability of
the proposed methodology with coherent results. It is however interesting to note how the
diving wave component of the JFWI objective function, while it is only marginally important
in the first example application, is paramount in stabilizing the inversion in the Chevron
dataset. In this case, the acoustic approximation adopted to invert an elastic dataset
introduces systematic errors in modeling the reflection amplitude-versus offset, as well as the
impossibility to predict P-S-P converted waves. Our interpretation is that such an epistemic
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a) RTM CIG gathers in initial model

b) RTM CIG gathers in J-EWI model

c) RTM CIG gathers in JFWI model

Figure 16: Offset-domain RTM Common Image Gathers for the initial (a), Pseudotime
GSOT JFWI with early wave only (J-EWI, b), and Pseudotme GSOT JFWI (c)
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a) GSOT JFWI with struct. constraint + GSOT FWI b) GSOT JFWI + L2 FWI

c) GSOT JFWI + GSOT FWI d) GSOT FWI from Init.

Figure 17: Vp-FWI results in the [2-3-12-14]Hz band

Figure 18: Vp-FWI results in the [2-3-12-14]Hz band. On the left, fit with Vp log at 39.5
km horizontal position; on the right convergence history for the first FWI frequency band.
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a) Initial b) GSOT-FWI

c) GSOT-FWI from GSOT-JFWI d) L2-FWI from GSOT-JFWI

e) GSOT-FWI from GSOT-JFWI no-struct

Figure 19: Shot-by-shot source wavelet estimation quality-check after FWIs. The mean L2

value is calculated between the average wavelet and each shot’s estimated source.
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modeling error makes a reflection-only FWI unstable, regardless the objective function used.
Introducing the early-wave component of JFWI, stabilizes the velocity estimation at 2 km
depth and makes it possible to obtain sensible model reconstruction at all depths.

The acoustic approximation remains however a limitation of JFWI in an elastic world,
despite the stabilizing effect of the diving-wave component in the objective function. A
dedicated pre-processing might be necessary on datasets with important elastic imprints
on the reflected waveform shape and polarity (Ostrander, 1984), while an amplitude-offset
normalization may be easily applied to GSOT to compensate for amplitude-only variations
(AVO). Other approaches may be envisaged that reproduce elastic effects by adding artificial
source terms (Hobro et al., 2014) to the predicted acoustic data. Similarly, the impact of
attenuation may be important on the amplitude and phase of reflections, and including a
Quality-factor model will be key for JFWI in attenuating media.

As shown in Zhou et al. (2015), the computational cost of JFWI is twice as large
as the one FWI, due to the two adjoint-state steps adopted to eliminate the migration
isochrones from the FWI gradient and thus obtain the desired gradient in equation3. The
two-step gradient computation uses full-waveform modeling to obtain the desired tomo-
graphic waveform-based Vp updates (Brossier et al., 2015; Zhou et al., 2015). In order to
isolate the macromodel updates from the migration isochrones, reflection-based FWI meth-
ods in the literature adopt several alternative approaches, based on either scattering-angle
filtering of the gradient or Born modeling of reflections (Yao et al., 2020). While the for-
mer would require in time-domain computing asymptotic quantities to extract and isolate
specific illumination angles, the latter employs a linearized one-way wave propagation that,
unlike the full-waveform approach of JFWI, does not account for possible multi-scattering,
inter-bed multiples and free-surface effects.

Graph-space optimal transport has proven effective in averting cycle-skipping when
starting from a simple initial guess of Vp. Though no offset windowing has been neces-
sary in those datasets, a multi-scale approach was adopted to further minimize the risk
of cycle-skipping. This is consistent with the real data application of GSOT-FWI shown
in Górszczyk et al. (2021) and Pladys et al. (2022), who also show that GSOT does not
altogether eliminate the need for data selection and weighting. The extra cost of GSOT
with respect to L2 norm in these 2D examples has been in the order of 20%. As shown in
Métivier et al. (2019) and Pladys et al. (2022), such a computational burden is expected
to become relatively less important with increasing frequency, thanks to a quadratically
complexity, as opposed to the cubic one of the modeling (in two dimensions).

In the pseudotime formulation, reflectivity is passively repositioned in depth during
Vp reconstruction, assuming near-vertical wave propagation (vertical traveltime). This ap-
proach has the merit of a negligible computing cost, while being limited to smoothly varying
models, as is normally the case for macromodel reconstruction. Its applicability is reduced
in complex subsurfaces with significantly dipping reflectors, while in strongly anisotropic
media the depth adjustment based on vertical velocity may not capture the true model
kinematics at non-normal incidence. Therefore, especially when starting from particularly
non-informative initial models, interleaving stages of IpWI between JFWI steps might still
be necessary to ensure accuracy. Alternatively, Valensi and Baina (2021) propose to add
a zero-offset invariance term to the RWI misfit function. This requires one Born mod-
eling based migration of the zero-offset observed data and a demigration per Vp-gradient
calculation, therefore providing a more general framework than pseudotime, though at an
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important extra computing cost.

Thanks to our asymptotic approach, the cost of each IpWI is significantly lower than
gradient-based or quasi-newton inversions, at the expense of an extra memory requirement
due to the storage of the decimated DFT wavefields. The asymptotic formulation of IpWI
is adopted as preconditioner of an indirect (iterative) inversion scheme, in other words act-
ing as a set of weights for the adjoint-based FWI gradient that speeds up convergence to
the true-amplitude reflectivity. Note that, unlike direct inversion approach, this is appli-
cable to data containing multiples and ghosts and, generally, beyond the one-way Born
approximation (Li and Chauris, 2018). It is worth pointing out that, however, the asymp-
totic approximation is valid on narrow reflection angle, narrow illumination angle data, and
therefore appropriate short offset data weighting is necessary.

As for the structure-oriented smoothing, the availability of a reflective model makes
it possible to extract structural information at almost no-extra cost, and constrain the
intermediate wavenumbers of the model, partially compensating for the ill-posed nature of
the velocity reconstruction inverse problem. Also in this case, however, it might be wise to
start injecting structural information into Vp inversion only after some JFWI iterations, i.e.
after the structural dips in the Ip image begin to approach the true ones.

In both the synthetic datasets presented, a depth-domain inner-loop approach had been
recently adopted with reasonable results in previous publications, (e.g., Zhou et al., 2015;
Provenzano et al., 2020). In this case, JFWI converges to models containing sensible features
at the expense of carefully designing a mid-to-long offset window for Vp update and of
recomputing IpWI twice per frequency band to attempt to mantain reflectivity-kinematic
consistency (Provenzano et al., 2021). The process is highly subjective and time consuming,
and generally yields sub-optimal results, as pointed out in, e.g., Valensi and Baina (2021).

CONCLUSIONS

In this paper, a robust and efficient velocity-model-building methodology for limited-offset
marine seismic reflection data is presented. It requires minimal data pre-processing and lit-
tle initial knowledge of the subsurface. It is based on a joint graph-space optimal transport
objective function comprising a refraction and a reflection term (GSOT-JFWI), and relies on
a domain transformation from depth to pseudotime. While the joint full waveform inversion
permits to extend velocity inversion beyond the depth sampled by diving waves, the com-
bination of GSOT and pseudotime is uniquely suited to ensure phase-consistency (avoid
cycle-skipping) at both short and long offsets in a cheap and robust fashion. Structure-
derived constraints are injected in Vp reconstruction at no extra cost through anisotropic
Bessel smoothing. The cost of building the initial reflective model is greatly reduced by a
dedicated asymptotic preconditioner for impedance waveform inversion (IpWI). Two com-
plex synthetic examples demonstrate the efficacy of the methodology and the impact of the
proposed advances compared to conventional depth-domain least-squares methods. While
the pseudotime transformation might be sub-optimal for complex subsurfaces and strongly
dipping interfaces it still has wide applicability in a wide range of geological context, and
its benefits in terms of computing cost are large compared to migration/demigration ap-
proaches. On the other hand, important elastic effects affecting reflection phase and polar-
ity might hamper the efficacy of JFWI due to its acoustic approximation. Notwithstanding
these limitations, the proposed methodology paves the way towards a mature and widely ap-
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plicable velocity-model-building strategy from reflection data and little a-priori knowledge.
A follow-up paper will be aimed at demonstrating its effectiveness on a 3D ocean-bottom-
cable dataset.
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Górszczyk, A., R. Brossier, and L. Métivier, 2021, Graph-space optimal transport con-
cept for time-domain full-waveform inversion of ocean-bottom seismometer data: Nankai
trough velocity structure reconstructed from a 1d model: Journal of Geophysical Re-
search: Solid Earth, 126, e2020JB021504.

Guasch, L., O. C. Agudo, M.-X. Tang, P. Nachev, and M. Warner, 2020, Full-waveform
inversion imaging of the human brain: NPJ digital medicine, 3, 1–12.

Hale, D., 2009, A method for estimating apparent displacement vectors from time-lapse
seismic images: Geophysics, 74, P99–P107.

Hicks, E., H. Hoeber, M. Houbiers, S. P. Lescoffit, A. Ratcliffe, and V. Vinje, 2016, Time-



Provenzano et al. 38 Pseudotime OT velocity inversion

lapse full-waveform inversion as a reservoir-monitoring tool − A North Sea case study:
The Leading Edge, 35, 850–858.

Hobro, J. W., C. H. Chapman, and J. O. Robertsson, 2014, A method for correcting acoustic
finite-difference amplitudes for elastic effects: Geophysics, 79, T243–T255.

Irnaka, T. M., R. Brossier, L. Metivier, T. Bohlen, and Y. Pan, 2022, 3D Multi-component
Full Waveform Inversion for Shallow-Seismic Target: Ettlingen Line Case Study: Geo-
physical Journal International, 229, 1017–1040.

Jannane, M., W. Beydoun, E. Crase, D. Cao, Z. Koren, E. Landa, M. Mendes, A. Pica, M.
Noble, G. Roeth, S. Singh, R. Snieder, A. Tarantola, and D. Trezeguet, 1989, Wavelengths
of Earth structures that can be resolved from seismic reflection data: Geophysics, 54,
906–910.

Kamath, N., R. Brossier, L. Métivier, A. Pladys, and P. Yang, 2021, Multiparameter full-
waveform inversion of 3D ocean-bottom cable data from the Valhall field: Geophysics,
86, B15–B35.

Kantorovich, L., 1942, On the transfer of masses: Dokl. Acad. Nauk. USSR, 37, 7–8.
Kryvohuz, M., H. Kuel, R. Plessix, and Y. Yang, 2019, Reflection full-waveform inversion

with data-space lsrtm: Presented at the SEG International Exposition and 89th Annual
Meeting.

Lailly, P., 1983, The seismic problem as a sequence of before-stack migrations: Presented
at the Conference on Inverse Scattering: Theory and Applications, SIAM, Philadelphia.

Li, Y., R. Brossier, and L. Métivier, 2019, Joint FWI for imaging deep structures: A graph-
space OT approach: SEG Technical Program Expanded Abstracts 2019, 1290–1294.

Li, Y., and H. Chauris, 2018, Coupling direct inversion to common-shot image-domain
velocity analysis: Geophysics, 83, R497–R514.

Marty, P., C. Boehm, and A. Fichtner, 2021, Acoustoelastic full-waveform inversion for tran-
scranial ultrasound computed tomography: Medical Imaging 2021: Ultrasonic Imaging
and Tomography, International Society for Optics and Photonics, 1160211.

Métivier, L., and R. Brossier, 2016, The seiscope optimization toolbox: A large-scale non-
linear optimization library based on reverse communication: Geophysics, 81, F11–F25.

——–, 2021, New insights on the graph space optimal transport distance for full waveform
inversion: Presented at the SEG Technical Program Expanded Abstracts 2021.
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