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Abstract 

Camera traps have revolutionized how ecologists monitor wildlife, but their full potential is realized only 

when the hundreds of thousands of collected images can be readily classified with minimal human 

intervention. Deep-learning classification models have allowed extraordinary progress towards this end, but 

trained models remain rare and are only now emerging for European fauna. We report on the first milestone 

of the DeepFaune initiative (https://www.deepfaune.cnrs.fr), a large-scale collaboration between more than 

50 partners involved in wildlife research, conservation and management in France. We developed a 

classification model trained to recognize 26 species or higher-level taxa that are common in Europe, with an 

emphasis on mammals. The classification model achieved 0.97 validation accuracy and often >0.95 precision 

and recall for many classes. These performances were generally higher than 0.90 when tested on independent 

out-of-sample datasets for which we used image redundancy contained in sequences of images. We 

implemented our model in a software to classify images stored locally on a personal computer, so as to 

provide a free, user-friendly and high-performance tool for wildlife practitioners to automatically classify 

camera trap images. The DeepFaune initiative is an ongoing project, with new partners joining regularly, 

which allows us to continuously add new species to the classification model.   

Keywords: camera trap; classification; deep-learning; Europe; France; software  



1. Introduction 

Camera traps have revolutionized the way ecologists monitor biodiversity and population abundances 

(O’Connell et al. 2011; Howe et al. 2017). Camera traps enable to scale-up monitoring efforts dramatically, 

both in space and time, as they are relatively cheap, easy to deploy and autonomous tools (Steenweg et al. 

2017). The continuous monitoring capacity they provide also facilitates the detection of rare species. 

Therefore, and unsurprisingly, it has become common practice to deploy tens to hundreds of camera traps in 

monitoring programs. 

 The full potential of camera traps is however only realized when the hundreds of thousands of 

images, many being empty from spurious detections, can be rapidly classified with minimal human 

intervention (Chen et al. 2014; Schneider et al. 2018; Wearn et al. 2019; Tuia et al. 2022). Since the 

beginning, machine learning approaches, and in particular deep learning models, have held the promise to 

solve this issue. Recent works have confirmed their power: for instance, deep-learning models developed by 

different research teams (Willi et al. 2019; Tabak et al. 2019; Whytock et al. 2021) have obtained > 0.90 

recall and precision for a number of mammal species in North American ecosystems, African savannas and 

tropical forests. The recurring leading approach, as assessed in recent iWildcam competitions (Beery et al. 

2021), consists in two steps: (step 1) detecting animals, humans and vehicles and filtering out empty images 

using a robust detection model such as MegaDetector (https://github.com/microsoft/CameraTraps/; Beery et 

al. 2019) and (step 2) using a CNN classification model to identify the species in the images when an animal 

was detected. While MegaDetector is efficient in detecting animals in various environments and 

geographical regions, there is still a need for tailored CNN classification models dedicated to the species and 

regions of interest. 

 The number of image classification models available to ecologists currently remains low and their 

taxonomic coverage is still limited. So far, most of the image classification models developed on camera trap 

data have been trained, even when based on millions of pictures, using images collected by a few partners in 

one or two sites. For example, Norouzzadeh et al. (2018) trained their model on 3.2 million images taken 

from the Serengeti Snapshot project (Swanson et al. 2015) to identify 48 African mammals, yet all the data 

was collected from one large study area in the Serengeti National Park as part of the same monitoring 

project. Although this can lead to highly accurate models when tested on data collected in the same sites or 

applied to similar systems, such models may fall short from generalizing to other fauna or contexts (Beery et 

al. 2018). For the European fauna, we believe there is potential in aggregating multiple small datasets from a 

large number of partners to build sufficiently large training, validation and test datasets to develop efficient 

classification models. The pros and cons of a cross-partner image aggregation strategy, and its ability to lead 

to successful models, have yet to be investigated. Recent initiatives such as Wildlife Insights 

(www.wildlifeinsights.org) or Agouti (www.agouti.eu), online platforms to manage and classify camera trap 

images, have embraced this strategy. Naturally, each initiative will have its own terms of participation, which 

may not be acceptable for certain institutional partners. For example, online platforms require the users to 

upload their images, and sometimes have non-optional data-sharing policies. This approach may not be 

suitable for certain institutional partners which have legally-bounding contracts on data collection or privacy 



concerns. Some other initiatives offer users solutions to run models on their own servers or computers 

(Trapper: https://trapper-project.readthedocs.io; Project Zamba: https://zamba.drivendata.org; our work). 

 Developing a classification model is however not only a question of collecting a large amount of 

data. Many issues appear when going beyond proof-of-concept and proposing a model that should be of 

high-enough quality in practice (e.g. data leakage, lack of transferability, shortcut learning, sensitivity to 

background, out-of-domain predictions, calibration, unbalanced data and biases for rare species; Desprez et 

al. 2023). Therefore, we advocate that releases of species-classification models for the ecological community 

must be accompanied by a reliable performance analysis to help ecologists understand how well the 

proposed classification model is expected to perform in practical situations (e.g. on new camera trap images).  

 We report here on the DeepFaune initiative (https://www.deepfaune.cnrs.fr). This initiative aims at 

(1) aggregating camera trap images from many French institutions or research groups to create a collective 

and large-scale dataset, (2) developing a deep-learning-based species classification model, using a clearly 

explained methodology to circumvent the issues mentioned previously, (3) performing a rigorous 

performance analysis on out-of-sample datasets to assess how well our model performs on novel images 

from sites that are not included in the training set, (4) releasing the model to the community as a software 

component that can be integrated in other tools and (5) providing a free, open-source, user-friendly and 

efficient software for practitioners to run the identification pipeline on self-hosted images with standard 

personal computers. 

 

2. Methods 

2.1 Partners and data collection 

At the time of writing, the initiative brings together over 50 partners (see the complete list at 

https://www.deepfaune.cnrs.fr) representing institutions managing protected areas, hunting federations or 

academic research groups across France. A few partners also joined from other European countries. Partners 

provided camera trap images or videos, originating from various monitoring projects (e.g. general 

monitoring of Alpine fauna, monitoring of the burrows of badgers) or opportunistic surveillance (e.g. to 

assess the presence of wolves). Among these partners, five partners joined the project after initial data 

collection, providing annotated pictures to use as out-of-sample data for a stringent test of the classification 

model accuracy (see below). 

 

2.2 Original dataset 

We gathered and sorted more than 2 million annotated pictures and 20 thousand annotated videos, after 

removal of corrupted or other problematic files. These pictures and videos included either one of the animal 

species originally identified by the partners, a human, a vehicle, or were empty (less than 1%), i.e. had no 

animal, human or vehicle visible. In some instances, annotations had been made at a higher taxonomic level 

than the species level (e.g. bird, rodent). The amount of data provided by each partner varied a lot, ranging 

from 20 videos to hundreds of thousands of images. Many partners shared data from camera traps set to take 

a series of images for a single detection event. We thereafter defined these consecutive images as 



‘sequences’, considering that two images taken within 10s, at the same site, belonged to the same sequence. 

Finally, as we wanted to train our model to classify camera trap images, we converted videos into images by 

retaining one frame per second out of the first 4 seconds of each video. 

 

2.3 Targeting 26 animal species or higher-order taxonomical groups 

We restricted our dataset and model to 26 animal species or higher-order taxonomical groups that were 

common enough and well sampled in our original dataset. Our model was trained on the following 19 

species: European badger (Meles meles), bear (Ursus arctos), cow (Bos Taurus), dog (Canis familiaris), red 

fox (Vulpes vulpes), common genet (Genetta genetta), goat (Capra sp.), hedgehog (Erinaceus europaeus), 

ibex (Capra ibex, alpine only), lynx (Lynx lynx), marmot (Marmota marmota), mouflon (Ovis gmelini), 

nutria (Myocastor coypus), red deer (Cervus elaphus), roe deer (Capreolus capreolus), sheep (Ovis aries), 

squirrel (Sciurus vulgaris),  wild boar (Sus scrofa) and wolf (Canis lupus lupus), and 7 higher-order taxa: 

bird, chamois (Alpine, Rupicapra rupicapra, and Pyrenean, Rupicapra pyrenaica), cat (domestic and wild 

Felis catus), equidae, lagomorph, micromammal, mustelidae. 

 

2.4 Non-technical outline of the deep-learning methodology 

Our approach relied on the following steps (described in more detail in sections 2.5-2.8): we first used a 

high-performance detection model to detect the presence of any animal, human or vehicle in the full-size and 

annotated images that we collected through our partner network. This model allowed us to crop the annotated 

images so that they mostly contained the animals that were detected, with only little background remaining. 

We then used these cropped images to train a Convolutional Neural Network (CNN) classification model. 

CNN models are complex models that automatically learn the most relevant features within images that 

optimize a classification task (here the recognition of species or higher-order taxa). To do so, the model first 

learns the classification task on a training set composed of annotated images and its performance is then 

optimized using a new set of images called the validation set. Finally, we tested whether the trained CNN 

model’s performance was maintained when it was used to classify images that were quite different from 

those used for training and validation. These novel images are commonly called ‘out-of-sample’ and allow 

for the robust assessment of model performance on new datasets. Along the modelling process, we paid 

attention to common biases and pitfalls that are common when dealing with ecological datasets and followed 

technical tips to deal with such issues (Desprez et al. 2023). 

 

2.5 Training and validation datasets 

Avoiding shortcut learning. We prepared the training and validation datasets using MegaDetectorV5, 

developed by Beery et al. (2019) (model v5a), on our original dataset to filter out empty images and images 

containing humans and/or vehicles. MegaDetector v5a is based on the image detection model YOLOv5 

(Redmon et al. 2016) and allowed us to produce one cropped image per animal that was detected (there were 

potentially multiple individuals in a given image). We retained cropped images that had a confidence score 



higher than 0.8 to decrease the risk of false detection. Since the images in the original dataset were 

annotated, it was possible to annotate any cropped image in the training and validation datasets using the 

annotation of its parent image. For instance, if MegaDetectorV5 detected two animals in an image originally 

annotated as ‘wild boar’, we considered that the two resulting cropped images contained a wild boar to train 

the model. After this step, we remained with a dataset of 787 575 cropped animal images. 

 In addition to often having images taken in dozens of different settings thanks to the numerous 

contributors, for most species, the ‘cropping’ step described above also enabled us to avoid shortcut learning 

(Geirhos et al. 2020) as we trained and validated our CNN classification model on annotated images for 

which the background had been mostly removed. 

 

Avoiding data leakage. CNN models require independent training and validation datasets to learn 

successfully (Kapoor and Narayanan 2022), and as commonly done, we split the whole image dataset into a 

training dataset containing 90 % of the images, and a validation dataset containing the remaining 10%. One 

issue that could arise during this split is that pictures collected within the same sequence are used in both the 

training and validation datasets, which would threaten their independence (Desprez et al. 2023). As our 

original dataset contained pictures and videos collected with many different camera trap models, there was 

no consistency in how the date and time stamps were stored. We thus chose to identify sequences through 

image filenames instead. We used a heuristic based on text mining in the R package stringdist (van der Loo 

2014) to compare filenames to each other. We considered that two files were not independent if their 

filenames were too similar, i.e. if their similarity was above 0.9. This conservative threshold ensured that no 

image, from the same sequence or video, was present both in the training and the validation datasets. 

 

Dealing with class imbalance. Class imbalance may occur when the number of images differs between 

classes and it is known to affect both training and validation (Johnson and Khoshgoftaar 2019). Here, we 

propose a novel approach that combines downsampling and upsampling during the training and validation 

phases. At each epoch of the training phase, we downsampled the class which was overrepresented down to a 

multiple of the rarest class. We chose to have a ratio of 5 between the number of images of the most common 

class and the number of images of the rarest class. This was estimated for every epoch, such that every image 

is seen by the model if we fit the model for enough epochs. As a consequence, images of the rarest classes 

were used in many epochs and can thus be considered upsampled whereas those of the most common classes 

are downsampled. This way, the optimization problem was different at every epoch, but more balanced. We 

considered that the stochasticity induced by the sampling process at each epoch had a positive impact on the 

model fit procedure and we observed a continuous reduction in model loss through epochs. We used the 

same idea to handle imbalance during validation. This enabled us to compute what we called a balanced 

validation accuracy. 

 

2.6 Training and validation phases 



We used transfer learning starting from a ConvNext-Base model (Zhuang et al. 2022) that was pre-trained on 

Imagenet 22K, with a resolution of 224 × 224, using PyTorch. We performed image augmentation using the 

imgaug Python library (https://github.com/aleju/imgaug) during the training phase. Each image in each batch 

was modified with a random set of transformations such as horizontal flip, affine transformations, gray scale 

transformation, blurring, brightness or contrast changes. We used the softmax output as a prediction score. 

We used the SGD optimizer with a learning rate of 4e-4. We then estimated the model for a maximum of 100 

epochs, monitored the overall balanced validation accuracy and stopped the estimation when it did not 

increase with a patience of 10 epochs.   

 For each processed image, the model computed a prediction score for each class (these scores sum to 

1.). The prediction score expresses the certainty on the attribution of the image to a given class. In the 

following, we considered as a prediction the class that maximized these scores. To estimate the quality of the 

model, we computed global accuracy (i.e. the probability that a prediction is correct), precision (i.e. the 

probability that an image classified as showing species i actually has species i present) and recall (the true 

positive rate, i.e. the probability that an image having species i present is actually classified as showing 

species i). 

 

2.7 Estimating classification performance on out-of-sample data using sequences 

Building an out-of-sample dataset. We investigated the ability of the pipeline (i.e. the detection model 

followed by the classification model) to perform an accurate identification of species in an out-of-sample 

dataset, i.e. on images taken in contexts that have never been seen during the training stage (Schneider et al. 

2020). Our out-of-sample dataset originated from five partners plus a public dataset from the Peneda-Gerês 

National Park in Portugal (Zuleger et al. 2023). We explored the classification accuracy of the CNN-based 

classification step after using MegaDetector V5 (model v5a) to retrieve cropped images around animals 

using a threshold of 0.8. The final out-of-sample contained 213 059 cropped animal images of 23 of the 26 

species or higher taxonomic groups on which the Deepfaune pipeline focuses (lynx, hedgehog and nutria 

were lacking). 

 

Using sequence information to enhance prediction. We predicted the species present at the level of the 

sequence and not at the level of the individual image. We remained with an out-of-sample dataset of 36 033 

sequences. We chose to predict on the sequence level for two reasons: camera traps are now often set to take 

images in bursts, and animals commonly stay several seconds near the camera, triggering it multiple times in 

a row. To do so, we extracted the date and time of each image of the out-of-sample dataset using the EXIF 

information. We obtained the prediction score at the sequence level by first computing the prediction score 

for each image of the sequence that was not predicted as empty. We then summed these scores and 

considered that the class with the highest total prediction score was the predicted class for the sequence. 

Images that were not in a sequence were classified using their own prediction score. Sequences with a score 

lower than 0.5 were considered as ‘undefined’. 

 



2.8 The DeepFaune software 

We found that MegaDetectorV5 created a bottleneck in terms of speed when used on a CPU (about 2 to 3 

seconds per image in our experiments on various personal computers) due to its high image resolution (1280) 

and large model size based on YOLOv5x (https://github.com/ultralytics/ultralytics). We therefore developed 

a much faster alternative using YOLOv8s (https://github.com/ultralytics/ultralytics), which is a high-

performance medium-sized detection model with a resolution of 640. We trained the YOLOv8s-based 

detector using the cropping information given by MegaDetectorV5 in images previously used in this study 

(to limit the computing needs, we took a subset of our full dataset). We obtained a detection performance 

that is generally similar to the one of MegaDetectorV5, but at a much higher speed (see Online Resource 1 

Table S.1). We then implemented this alternative detector (which needs only about 0.3 second per image) 

and our CNN classifier inside a free, user-friendly and independent software. The detector automatically 

crops the image around the animal if one is detected, so users can upload their full-size images, stored 

locally, directly in the software, and classify these images either as empty, human, vehicle or one of the 26 

animal classes on which the CNN classifier was trained. Users can decide on a threshold on the prediction 

score below which the images will not be classified and will be set aside in a ‘undefined’ class for visual 

inspection. The software only requires the installation of Python v3 and its PyTorch module. To overcome 

the common difficulties associated with the installation of Python libraries on Windows operating systems, 

we created a standalone and ready-to-use .exe program for these systems. The software processing time 

depends on the machine's CPU, and is linear with the number of images to be processed. In our experiments, 

it processed 1000 images in 2 minutes with an Intel Octa-Core i7-10700 CPU. Its memory footprint is also 

small (around 2 GB) as images are loaded on the fly in small batches. Consequently, there is no memory 

limit with respect to the number of images to treat in one run. The software is available on the project’s 

website: https://www.deepfaune.cnrs.fr.  

 

3. Results 

3.1 Performance of the classification model on the validation dataset 

We obtained an overall balanced validation accuracy of 97.3%. Recall and precision were >0.9 for most 

classes (Table 1), and notably above 0.95 for many classes for which the number of training images was high 

(e.g. cow or wild boar). Interestingly, we obtained high performance scores for lynx regardless of the small 

training sample size (806 images) for this species. This may be due to its characteristic coat color and spotted 

pattern which facilitates recognition and classification. 

 

Table 1. Performance metrics of the classification model computed on the validation dataset. N 

Training and N Validation refer to the number of images of a given class within the training and validation 

datasets, respectively. 

 

Class N Training N Validation Precision Recall 

badger (Meles meles) 9263 1227 0.96 0.98 

https://www.deepfaune.cnrs.fr/


bear (Ursus arctos) 6672 1362 0.91 0.98 

bird 26575 4069 0.99 0.99 

cat (wild and domestic Felis 

catus) 5013 926 0.90 0.94 

chamois (Rupicapra 

rupicapra/pyrenaica) 113527 14465 0.99 0.96 

common genet (Genetta genetta) 340 52 0.89 0.92 

cow (Bos Taurus) 44773 7241 0.99 1.00 

dog (Canis familiaris) 9413 1202 0.94 0.93 

equidae 1211 80 0.91 0.99 

goat (Capra sp.) 3459 235 0.83 0.93 

hedgehog (Erinaceus europaeus) 231 2 0.50 1.00 

ibex (Capra ibex) 6168 756 0.83 0.97 

lagomorph 4655 764 0.94 0.96 

lynx (Lynx lynx) 806 89 0.95 1.00 

marmot (Marmota marmota) 1934 228 0.95 0.98 

micromammal 3265 444 0.99 1.00 

mouflon (Ovis gmelini) 967 72 0.60 0.96 

mustelidae 4515 619 0.87 0.95 

nutria (Myocastor coypus) 382 63 0.94 0.97 

red deer (Cervus elaphus) 130753 11468 0.96 0.96 

red fox (Vulpes vulpes) 47064 4558 0.98 0.95 

roe deer (Capreolus capreolus) 81923 8167 0.95 0.95 

sheep (Ovis aries) 113691 15566 1.00 0.99 

squirrel (Sciurus vulgaris) 4771 576 0.94 0.98 

wild boar (Sus scrofa) 70616 13300 0.98 0.99 

wolf (Canis lupus lupus) 7096 959 0.87 0.96 

 

 

We did not observe many identification mismatches between the different ungulate species (Online Resource 

1, Fig. S.1). For instance, performance for red deer and roe deer was excellent, despite some objective visual 

similarities. Precision for mouflon was not great (0.72), but this was because of the imbalance in the 

validation set: since there was at least twice as many chamois or sheep as mouflon images, having only a few 

of the chamois and sheep misclassified as mouflon was enough to lead to a low precision for mouflon. The 

same reason explained the low precision for goat (0.83). Surprisingly, we obtained a moderate performance 

for ibex: indeed, mismatches appeared on images where ibex's distinctive horns were not visible on the 

images. Finally, we observed a lower-than-desired precision for wolf. This was due to some confusion 

between wolf and fox and dog, mostly on night images in which species identification was intrinsically 

challenging. Again, this precision is also driven by the aforementioned imbalance in the validation set. 

  



 

3.2 Performance of the classification model on the out-of-sample dataset 

The classification model achieved an overall accuracy of 93.6% on individual images and 96.7% on the out-

of-sample dataset when predicting at the level of image sequences. Class-specific results were also generally 

significantly better when identification was done at the sequence level (Table 2). For instance, the recall for 

roe deer increased from 0.92 to 0.96 using sequences. This suggested that fine-grained species identification 

was facilitated by having different views of the same moving animal (see an example in Fig. 1). The 

performance using sequences is overall close to those obtained on the validation dataset (without sequences). 

High performance was achieved for large ungulates, with precision and recall being about 0.95 for red 

deer, roe deer, chamois, and wild boar (Table 2), with the exception of ibex and mouflon for which the 

model made some confusion with other species (e.g. goat). There remained some mismatches between 

classes (Online Resource 1 Fig. S.2), for instance 155 sequences of roe deer that were classified as red deer. 

Performance remained excellent for smaller animals, including marmots, lagomorphs, micromammals and 

birds. As in the validation dataset, inspection of the confusions revealed that they mostly occurred in night-

time images or when the animal was partially visible (see examples in Fig. 2).  

 

Table 2. Performance metrics of the classification model computed on out-of-sample data, when 

predicting at the level of individual images or image sequences. Model performance at the image level is 

expected to be lower than at the sequence level as people who annotated the images had the complete 3-

images sequences available and could use previous or subsequent images to clarify uncertainties. Images and 

sequences that had a prediction score lower than 0.5 were not considered and classified as ‘undefined’ 

(4.07% and 5.59% of the images and sequences, respectively). 

 

Class 

Recall at the sequence 

(image) level 

Precision at the sequence 

(image) level 

badger (Meles meles) 0.99 (0.97) 0.98 (0.92) 

bear (Ursus arctos) 0.98 (0.96) 0.70 (0.46) 

bird 0.99 (0.98) 0.99 (0.99) 

cat (domestic and wild Felis 

catus) 0.96 (0.93) 0.88 (0.83) 

chamois (Rupicapra 

rupicapra/pyrenaica) 0.94 (0.93) 0.95 (0.85) 

common genet (Genetta 

genetta) 0.91 (0.92) 1.00 (0.99) 

cow (Bos Taurus) 0.95 (0.88) 0.99 (0.98) 

dog (Canis familiaris) 0.93 (0.86) 0.89 (0.68) 

equidae 0.95 (0.90) 0.98 (0.96) 

goat (Capra sp.) 0.73 (0.64) 0.83 (0.39) 

ibex (Capra ibex) 0.83 (0.77) 0.45 (0.22) 

lagomorph 0.98 (0.96) 0.99 (0.97) 

marmot (Marmota marmota) 0.99 (0.98) 1.00 (0.98) 

micromammal 0.96 (0.92) 1.00 (0.98) 



mouflon (Ovis gmelini) 0.91 (0.89) 0.92 (0.66) 

mustelidae 0.97 (0.96) 0.94 (0.88) 

red deer (Cervus elaphus) 0.98 (0.96) 0.95 (0.94) 

red fox (Vulpes vulpes) 0.97 (0.94) 0.99 (0.99) 

roe deer (Capreolus capreolus) 0.96 (0.92) 0.97 (0.95) 

sheep (Ovis aries) 0.99 (0.98) 0.94 (0.80) 

squirrel (Sciurus vulgaris) 0.67 (0.43) 0.75 (0.34) 

wild boar (Sus scrofa) 0.99 (0.97) 0.98 (0.96) 

wolf (Canis lupus lupus) 0.95 (0.96) 0.69 (0.58) 

 

 

Fig. 1 Using sequences decreases the false positive rate in classification predictions. A sequence of three 

images of a chamois, taken over a 3-second interval (and cropped by MegaDetectorV5). The two first images 

(a, b) are predicted as chamois (with scores 0.91 and 0.96). The third image c) is misclassified as a mouflon 

with a lower score (0.81), but the score at the sequence-level is highest for chamois. The three images are 

therefore predicted to show a chamois by the DeepFaune pipeline. 

 

 

 

Fig. 2 Examples of images in which a wolf is not correctly identified, possibly due to poor image 

quality. A wolf was classified as a roe deer, with a low prediction score of 0.51 in a sequence with only one 

a) b) c) a) 

a) b) 



non-empty image a), and as a fox with a moderate score of 0.82 in a sequence of 1 image b).  Both images 

were cropped by MegaDetectorV5. 

 

3. 3 Thresholding prediction scores to balance error rate vs. increased manual labeling effort   

Most of the prediction errors are associated with a moderate to low or very low score (see Fig. 2c for 

example). To improve the likelihood that species are correctly predicted by the classification model, one can 

therefore consider as correct only predictions that have a score above a certain threshold, and change the 

predictions that have a lower score to an ‘undefined’ class. Images with predictions being ‘undefined’ would 

have to be inspected manually to be correctly labelled. As the score for threshold predictions is increased, the 

number of errors is reduced, but the number of images to be annotated manually increases. Fig. 3 shows how 

these numbers vary with the score threshold for the classification model presented in this work. In the 

DeepFaune software, we use a score threshold of 0.8 by default, leading to an error rate of less than 1% on 

the out-of-sample dataset, at the cost of having to manually annotate approximately 30 % of the images. This 

score threshold can be modified by the user. 

 

 

 

Fig. 3 Effect of increasing the prediction score threshold value on the percentage of image sequences that are 

wrongly classified (‘errors’; in blue squares) or classified as ‘undefined’ (red triangles). The analysis is 

conducted on the out-of-sample dataset. The vertical dotted line is at 0.8, the default score threshold value 

used in the DeepFaune software. The horizontal dotted line indicates 1% of the sequences.  

  



4. Discussion 

The DeepFaune initiative represents a successful multi-partner collaboration to build a large-scale camera 

trap image dataset and develop a machine learning model, fully tested and evaluated, readily available to 

automatically classify camera trap images collected in Europe. Our current model allows for predicting the 

presence of 26 different species or higher order taxa in camera trap images, with an emphasis on mammals. 

Although we did use the standard approach of transfer learning, we implemented a combination of heuristics 

to deal with class imbalance and the independence of training and validation datasets that could be useful to 

others. Ultimately, our species classification model performed extremely well on the validation dataset and 

provided robust results on out-of-sample data. Additionally, we built a graphical user interface (GUI) that is 

freely available online (https://www.deepfaune.cnrs.fr) so that practitioners can easily run the model locally 

on a personal computer and automatically sort their images or videos based on the model predictions. The 

model is also available as a software component to be integrated in other tools, in particular management of 

camera trap images online platforms, such as Agouti (www.agouti.eu) for instance, in which the Deepfaune 

classification model can already be used. 

 

4.1 Model performance and relevance for ecological studies 

There are currently few species-recognition models available for the European fauna and our results could 

therefore be used to benchmark future studies. The quality of our model appears very good, even by deep-

learning classification standards, and compares favorably with results from similar exercises conducted on 

fauna from other continents. For instance, overall accuracy of 0.97, 0.78 and 0.94 on validation datasets were 

respectively reported in studies on North American fauna (Tabak et al. 2019), Central African fauna 

(Whytock et al. 2021) and East African fauna (Norouzzadeh et al. 2018). Our model also performs better 

than those reported by Carl et al. (2020) and Simões et al. (2023) (0.71 accuracy and 0.74 mAP respectively), 

which are the rare published models focused on European fauna and for which performance metrics are 

available. We note however that these performance metrics were computed on different datasets than ours, so 

that direct comparison between performance values across studies should be interpreted with caution. 

 We managed to obtain good results with a moderately sized dataset (by deep-learning standards), by 

overcoming a number of obstacles. Firstly, the large imbalance (e.g. two orders of magnitude more images of 

chamois than ibex) would have biased the classification towards the most common species. We therefore 

implemented an original approach combining downsampling and upsampling techniques that successfully 

prevented the emergence of a relationship between identification performance and the number of images per 

class. Secondly, deep learning models are known to be able to learn ‘shortcuts’ (Geirhos et al. 2020) and can 

misclassify images due to spurious similarities (e.g. similar image backgrounds). In our context, this would 

correspond to learning contextual elements (e.g. snow, vegetation structure) that would be associated with 

the species, rather than learning to recognize the species itself. To avoid this potential issue, we chose to 

classify cropped images, and not full-size images (as opposed to Whytock et al. 2021), with an additional 

procedure of image augmentation. 



 Overall, class-specific recall and precision are high enough for the model to be useful for many 

specific studies, some of which we highlight now: (1) automated monitoring of large ungulates, a guild of 

important management interest in Europe. Ungulates are indeed generally very well classified by the model, 

with recall and precision values above 0.9 for most species (as explained in the Results section, performance 

for ibex and mouflon are low, but will likely improve as new pictures are continuously added in the 

database). These results suggest that our model could be a useful tool to facilitate studies investigating the 

effects of management practices on locally abundant ungulates (e.g. can wild boar population dynamics be 

controlled by hunting?) or the dynamics of prey under predation (e.g. do roe deer populations decrease as 

wolves return?); (2) monitoring large mammalian communities. Although model accuracy levels were 

generally lower for classes other than ungulates, the model’s performance and taxonomic coverage suggest 

that it could be useful to automatically sort out hundreds of thousands of pictures for a range of taxonomic 

groups. This could prove especially useful in studies looking at the impact of anthropization on large 

mammal communities for example. A human intervention would still be required to manually verify the 

pictures for which prediction scores are low or to identify the species present in images where the model 

classifies at a higher taxonomic level (e.g. mustelidae), but this effort should be dramatically reduced when 

using our model; (3) quantifying human disturbance levels, as our pipeline is able to distinguish images 

containing humans, vehicles and/or domestic animals such as cattle (sheep, cow) and dogs. The current 

model performances should therefore enable us to build reliable metrics estimating human activities along 

wide gradients. 

 Importantly, the general high quality of the model results was conserved when applied to out-of-

sample datasets. It is a common error to take model results on validation datasets at face value and assume 

similar accuracies will be observed in new applications. Previous studies (Whytock et al. 2021) have shown 

that this is not the case and observed dramatic declines in accuracy when tested on out-of-sample datasets, to 

the point where the usefulness of the model could sometimes be called into question. Our out-of-sample 

tests, based on heterogeneous images from new and unseen locations, suggests that our model performances 

are robust to new applications. Additionally, these out-of-sample tests were designed to test the applicability 

of our model to real-world scenarios. It revealed that using the average prediction score over temporally-

close pictures (i.e. sequence) can improve classification results if classification at the sequence-level is 

sufficient. Our results also show that the common approach of field practitioners to set up camera traps to 

take several images at each trigger can be leveraged when using classification models. Our work also 

highlights that the reported performance of a classification model trained without sequence information is 

likely an under-estimation of the performance it could achieve at the sequence-level. Whether there are better 

ways to aggregate image-level scores into sequence-level scores remains to be studied. We also note that 

sequence or temporal information could be directly integrated into the training step, as done in context CNN 

models (Beery et al. 2020; Tuia et al. 2022), but we could not use this approach here as many partners who 

provided images for training the models provided batches of images that did not come from the same 

sequences. 

 



4.2 Lessons learned from a successful multi-partner initiative 

One of the main strengths of the DeepFaune initiative lies in the creation of a nation-wide network among 

key actors in French and European biodiversity research, conservation and management. Under the lead of 

an academic research group originating from two distinct laboratories, over 50 partners have shared camera 

trap pictures and videos allowing to build what is likely to be one of the largest databases of camera trap 

medias in France, in both, number of files (more than 2 million annotated pictures and 20 thousand annotated 

videos) and location heterogeneity (e.g. mountains, wetlands). 

 This success should not hide the technical challenges of working with such a large number of actors. 

Building the original database clearly revealed the intricacies of dealing with multiple, high-volume data 

transfers as well as with the strong heterogeneity in data acquisition and organization among the partners. 

The devil is in the details, and harmonizing directory, file and species names were all very time-consuming 

tasks that had to be dealt with by combining automatic and manual interventions. Partner-specific data 

management appears as one of the strongest barriers to creating efficient large-scale datasets that do not 

depend on a single monitoring program (as opposed to the Serengeti Snapshot (Swanson et al. 2015) dataset 

for instance). Interestingly however, some of our individual partners were members of the same institution 

but worked in different sites. For example, we received data from several national parks that all belonged to 

the same institution (Parc Nationaux de France). Similarly, several teams from the Office Français de la 

Biodiversité shared data, all having different formats. In such cases, it would seem beneficial for the master 

institution to provide detailed data management guidelines that would allow standardized data management 

internally. In this context, centralized data management platforms that enforce data standardization, 

developed either within institutions or at national or international levels, might facilitate future studies. 

 Having numerous and diverse partners is key however to ground our work in the reality of end-users, 

as the DeepFaune initiative was originally conceived to develop a free and easy-to-access tool of sufficient 

quality for field practitioners. Beyond the data collection stage, regular communication between the leading 

academic team and the partners was critical to identify key expectations and potential difficulties in 

appropriation. Expectations shared by all partners were that the machine learning approach should be easy to 

implement and run on a standard personal computer. This is a long-standing issue regarding deep-learning 

models, as even when training is not required and only predictions are expected, the installation of libraries 

necessary for computation (e.g. Tensorflow, PyTorch) can be difficult. Uploading pictures on an online 

platform running its own servers naturally solves this issue. We however found that many partners were 

reluctant to follow this approach either because of the need to upload gigabytes of images online or because 

the data-sharing policies were too stringent. We thus decided to implement our approach in a freely 

available, cross-platform (Windows, macOS, Linux), Python-based software whose developments can be 

followed at https://www.deepfaune.cnrs.fr. These developments also include regularly adding new taxa to 

the list of species that can be identified (e.g., training to add fallow deer is underway). In general, we feel 

that the diversity of users and their needs will prevent finding a one-size-fits-all solution and will allow for 

numerous initiatives, cloud- or desktop-based, to co-exist. 

https://www.deepfaune.cnrs.fr/


 Expectations of our partners differed regarding the classification model and how to use its prediction 

to sort out images. What makes an ’optimal’ sorting strategy might in fact vary between partners. Some 

partners are interested in minimizing false negatives over false positives. This can be the case when studying 

sensitive species, such as wolves, as positive classifications will be verified manually in any case. For other 

studies, the balance between false positives and false negatives matters less. This is generally the case in 

occupancy modelling studies of common species (Gimenez et al. 2022). We also foresee that, in a near 

future, prediction scores will be directly used in the inference process allowing the uncertainty of the 

classification to be propagated into the estimation of any metric of interest. Irrespective of whether this will 

be successful or not, in response to this diversity of needs, we decided to let the users decide on a threshold 

on the prediction score below which the images will not be classified and requires manual inspection. We 

believe that this approach gives an important level of flexibility and that users will be able to learn what 

threshold works best for them by trial-and-error. 

 

4.3 Conclusion 

In conclusion, our work provides a rather successful classification model of the European fauna in camera 

trap images, which can be easily used by practitioners through the DeepFaune software on self-hosted 

images using a standard personal computer. Such an approach contrasts with some recent developments that 

favor cloud-computing. Our work however remains a work-in-progress and feedback on the use of the model 

and the associated software, as well as annotations of images for which the model failed, should allow us to 

improve the model’s performances and increase the number of taxa that are recognized in the near future. 
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Supplementary Information 

 

Table S.1 Performance of the DeepFaune detector model. The DeepFaune detector model, based on 

YOLOv8s with a threshold of 0.6 was compared to the MegaDetectorV5a (MDV5a) model with a threshold 

of 0.5. The thresholds were chosen to optimize the trade-off between accuracy in detecting animals and 

accuracy in classifying empty images. Animals were classified as small when they are broadly smaller than a 

fox (e.g. bird, squirrel, lagomorph, mustelidae, micromammal). The two models gave similar results, 

MDV5a being slightly better for images containing larger animals. MDV5 was however much slower (2 to 3 

seconds per image) than the DeepFaune detector (0.3 seconds per image).  

 

Image type % of images with 
an animal 
detected, using 
MDV5a 

% of images with an 
animal detected, 
using the 
DeepFaune model 

Average % 
Intersection-over-
Union between 
MDV5a and the  
DeepFaune 
predictions 

Number 
of out-of-
sample 
images 

Large animals 85.1 79.6 0.9 119831 

Small animals 
(without video 
frames) 

63.8 (0.77) 66.2 (0.73) 0.9 (0.84) 7036 
(1697) 

Empty images 2.98 2.97 NA 8583 
 

  



Figure S.1 Confusion matrix of the predictions of the CNN-based classifier on the validation dataset. 

Ground truth is in row, prediction in column. 
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Figure S.2 Confusion matrices (raw, normalized by row, or normalized by column, respectively) of the 

predictions of the CNN-based classifier on the out-of-sample dataset. Ground truth in row, prediction 

in column. 

 


