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Introduction

Multifractal analysis deals with the following questions: Let f is a function, a measure, or, more generally a distribution, and let h f (x) be a pointwise exponent which expresses how the regularity of f changes from point to point; the corresponding multifractal spectrum associated with f is the Hausdorff dimension D f (H) of the isoregularity sets

E H = {x : h f (x) = H} (1) 
(and, by convention, dim(∅) = -∞). On the mathematical side, the purpose of multifractal analysis is to determine D f (H). Applications require robust methods in order to estimate multifractal spectra;

this is done through the use of multifractal formalisms, which yield estimates of D f (H) derived from empirical moments of quantities recovered in a numerically stable way, either directly on the data, or are derived from their wavelet coefficients. These estimates are also used in signal and image processing as classification and model selections tools. The most widely pointwise regularity exponent considered is the Hölder exponent.

Definition 1 Let f : R d → R be a locally bounded function, x 0 ∈ R d and let α ≥ 0; f belongs to C α (x 0 )

if there exist C > 0, R > 0 and a polynomial P of degree less than α such that

if |x -x 0 | ≤ R, then |f (x) -P (x -x 0 )| ≤ C|x -x 0 | α .
The Hölder exponent of f at x 0 is

h f (x 0 ) = sup {α : f ∈ C α (x 0 )} .
The condition that f is locally bounded is mandatory for this definition; it is a severe limitation in several applications; indeed large classes of signals cannot be modelled by locally bounded functions, see [START_REF] Abry | Irregularities and scaling in signal and image processing: Multifractal analysis[END_REF], and Sec. 3.3 for a discussion of the practical criterium used in order to check this requirement.

Up to now, two techniques have been used when this problem is met. One way consists in regularizing the data, i.e. performing a fractional integration on f of sufficiently large order s, so that the output f (-s) is locally bounded; this is always possible but presents one major drawback: Without hypotheses on the data, it is by no means clear to determine how the pointwise regularity exponents of f and f (-s) are related, so that, in general, this analysis yields little information on the pointwise singularities of the initial function f ; one of the well documented problems that can be met is the presence of oscillating singularities of different orders in the data, such as the chirps [START_REF] Aubry | Random wavelet series[END_REF], whose regularity exponents will be shifted by different quantities under a fractional integration. Therefore, when possible, it is preferred to work directly on the data, hence the second possibility which has been explored, and consists in weakening the definition of pointwise regularity by replacing Hölder regularity by T p α regularity. This notion was introduced by Calderón and Zygmund in 1961, see [START_REF] Calderón | Local properties of solutions of elliptic partial differential equations[END_REF].

Definition 2 Let p ∈ [1, +∞), and let α ≥ -d/p; a function f : R d -→ R in L p loc belongs to T p α (x 0 ) if ∃R, C > 0 and a polynomial P of degree less than α such that

∀r ≤ R, 1 r d |f (x) -P (x -x 0 )| p dx 1/p ≤ Cr α . (2) 
The p-exponent of f at x 0 is

h p f (x 0 ) = sup {α : f ∈ T p α (x 0 )} .
The Hölder exponent is a particular case of the p-exponent: h ∞ f (x 0 ) = h f (x 0 ). The notion of pointwise regularity can be extended further; indeed (2) can be rewritten

∀r ≤ R ∥ (f -P ) ∥ L p (B(x 0 ,r)) ≤ Cr α+d/p , (3) 
so that it is natural to replace in (3) the local L p norm by a local norm in a larger function space; in particular, using the real Hardy spaces H p for a p < 1 allows to extend the definition of p-exponents for p ∈ (0, 1], see [START_REF] Jaffard | Pointwise regularity associated with function spaces and multifractal analysis[END_REF]18,[START_REF] Jaffard | Function spaces vs. scaling functions: tools for image classification[END_REF][START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF] (recall that the elements of Hardy spaces are not in general functions, but can be Schwartz distributions of arbitrary large order). In practice, the introduction of p-exponents has allowed to extend the range of applications of multifractal analysis to large classes of signals for which the Hölder exponent couldn't be directly used, see e.g. [START_REF] Jaffard | p-exponent and p-leaders, Part I: Negative pointwise regularity[END_REF]28]; however, for some types of data, no p-exponent can be used: we will see, in particular, the example of the cadence of marathon runners in Sec. [START_REF] Aubry | Random wavelet series[END_REF]. This problem is also met by several kinds of stochastic processes used to model noises, such as the white Gaussian noise, or more generally fractional Gaussian noise, see Sec. 5. Prop. 3.1 and Sec.

3.3 give simple criteria which allow to decide in practice if a p-exponent can be used.

The main purpose of this article is to propose the use of an alternative pointwise regularity exponent for multifractal analysis, the weak scaling exponent, which was introduced by Yves Meyer in [START_REF] Meyer | Wavelets, vibrations and scalings[END_REF] with the following motivations: It is defined in the very general setting of tempered distributions (in applications, this means that no a priori assumption needs to be verified by the data in order to use it), and it has simpler mathematical properties than the previously mentioned exponents when applying integration or some standard classes of pseudodifferential or singular integral operators. We will illustrate this investigation on physiological data collected on marathon runners. On the mathematical side, this paper is partly review, and partly research: we will collect the relevant results concerning the weak scaling exponent which have been obtained up to now, and we will complement them. Additionally, we will explore the additional information that a multifractal analysis based on the weak scaling exponent yields on our understanding of the physiological mechanisms involved during a marathon race. In Section 2, we give several equivalent definitions of the weak-scaling exponent and recall or derive its main properties. In Section 3, we show that the increasing hull of the weak scaling spectrum, denoted by D ws f (H) (which is the multifractal spectrum associated with the weak scaling exponent) can be estimated, using the wavelet scaling function (a global quantity derived from empirical moments of wavelets coefficients), and more sharply using the wavelet profile, which is derived from the statistics of wavelet coefficients at each scale. It is well known that such quantities do not yield sharp estimates for the decreasing part of the spectrum, because moments of negative order of wavelet coefficients are intrinsically unstable quantities; in Section 4 we address this problem and show that wavelet coefficients have to be replaced by local suprema of wavelet coefficients: the (θ, ω)-leaders; this procedure will be shown to yield analogues of the results of Section 3 for the decreasing part of the weak-scaling spectrum.

In Sec. 5 we test the accuracy of these techniques on several mathematical models. Finally, in Sec. 6 we illustrate each notion by its use for physiological data derived from marathon runners. This is relevant because, for the cadence of runners, we will see that previously used exponents cannot be used.

The need for a deeper understanding of the physiological data of marathon runners has become increasingly important recently. Indeed marathons are more and more popular, with a growing participation of non-professional runners in quest of improvement; therefore, an important challenge is to interpret the physiological data recorded in order to help them improve their performance. Several articles put in evidence the fractal nature of these data, see e.g. [11]. In [START_REF] Wesfreid | Multifractal analysis of heartbeat time series in human races[END_REF] a multifractal analysis of heart rate time series in human races was presented; to improve the training of athletes, the authors compared heart rate multifractal behavior in free and constant speed 10,000 m runs. They also analyzed marathon races (which consist in free pace 42.195 km running) comparing heartrate signals during the first and the second half of the race in order to measure the consequences of fatigue. They used the wavelet transform modulus maxima (WTMM) algorithm proposed by A. Arneodo, E. Bacry, and J.-F. Muzy [START_REF] Muzy | The multifractal formalism revisited with wavelets[END_REF], which estimates the Legendre multifractal spectrum. In [START_REF] Wesfreid | Multifractal analysis of heartbeat time series in human races[END_REF], it was shown that the fatigue did not significantly change the scaling behavior put in evidence in the estimated spectrum of singularities. This suggests that the fatigue appearing during the marathon races does not induce anomalies of the cardiac fluctuations. A conclusion was that freedom for choosing the own pace variation could be the racing condition for keeping good health conditions in an exhausting exercise. Another study performed on the marathon race, [START_REF] Billat | Detection of changes in the fractal scaling of heart rate and speed in a marathon race[END_REF] allowed to detect changes in the fractal scaling behavior of heart rate and speed fluctuations when the average runner's speed decreased with fatigue. Scaling analysis in heart rate (HR) and speed (S) dynamics of marathon runners was performed using the detrended fluctuation analysis (DFA) and the wavelet-based structure function. The scaling exponents (i.e. the value of the scaling function for p = 2) of HR and S increased during the race (p < 0.01) as did the HR wavelet scaling exponent. This provided evidence of the significant effect of fatigue induced by long exercise on the heart rate and speed variability. Recently, methods based on p-exponents yielded additional informations on physiological performances during marathon, in particular concerning the auto-regulation of heart frequency [25,[START_REF] Saës | Analyse multifractale des données physiologiques de marathoniens[END_REF]. By comparing the output yielded by multifractality parameters and the perceptual scales of these runners, conclusions could be derived concerning the physiological perturbations during the race; this led to a better understanding of the runners limitations and the way they can improve their training. These techniques however were technically limited by the possibility of using p-exponents, which is not satisfied by the cadence of marathon runners, see Fig. 3. This drawback is critical since, after focusing on the control of their heart frequency in order to spare glycogen (and thus preventing from hitting the famous "marathon wall"), marathon runners are now focusing on the regulation of their cadence, and an important conclusion of the previous studies was that, contrary to intuition, the unevenness of the race allows to improve performances. One of our purposes is to perform a direct multifractal analysis of cadence, without going through a smoothing preprocessing which would allow the use of previous methods, and, through this additional information, reach a deeper understanding of the physiological phenomena that occur during marathon races. Such an analysis requires the use of the weak scaling exponent since the previouslsy used exponents cannot be used. In particular, the conservation of variability (i.e. the ratio of the standard deviation by the expectation) of heart frequency was shown to be related with the level of performance [START_REF] Saës | Analyse multifractale des données physiologiques de marathoniens[END_REF], and a natural question is to wonder if such is the case for cadence, which is the most important adjustment variable which the runner has in order to regulate his speed (which is the product of cadence by the amplitude of the step) by using the amplitude of his step. Therefore, this analysis will allow us to discuss and sharpen the conclusions already derived in [START_REF] Saës | Analyse multifractale des données physiologiques de marathoniens[END_REF] and based on heart frequency only.

The weak scaling exponent

The weak scaling exponent is required for multifractal analysis when no p-exponent can be used and when one, nonetheless, wishes to perform a direct study of the data (as opposed to a regularized version obtained by a fractional integral). Prop. 3.1 and Sec. 3.3 give simple criteria which allow to settle numerically when such is the case.

Before giving a precise definition, let us motivate the introduction of the weak-scaling exponent.

It was defined by Yves Meyer as a substitute for the Hölder exponent, with a better behaviour under integration: Let f : R -→ R be a locally bounded function, and denote by f (-1) a primitive of f . The Hölder exponent always satisfies ∀x,

h f (-1) (x) ≥ f (x) + 1,
and one typically expects that

h f (-1) (x 0 ) = f (x 0 ) + 1, (4) 
since it is the case for "simple" pointwise singularities, such as cusp type singularities |x -x 0 | α , for α > 0 and α / ∈ N.

However, it is not always the case: A typical example where h f (-1) (x 0 ) is larger than h f (x 0 ) + 1 is supplied by the chirps

C α,β (x) = |x -x 0 | α sin 1 |x -x 0 | β , (6) 
where α > 0 and β > 0. Indeed the Hölder exponent of C α,β at x 0 is α and its Hölder exponent is increased by 1 + β after one integration (as shown immediately by an integration by parts). This phenomenon is the source of many difficulties in the study of pointwise regularity and, in particular, it has been identified as one of the causes of failure of the multifractal formalism based on wavelet coefficients, see [START_REF] Arneodo | Singularity spectrum of multifractal functions involving oscillating singularities[END_REF][START_REF] Jaffard | Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot[END_REF]. The previous observations motivated the use of an alternative exponent which coincides with the Hölder exponent for cusps such as [START_REF] Aubry | Topological properties of the sequence spaces S ν[END_REF], and satisfies (4).

Definition and mathematical properties

The previous requirements motivated the introduction of the weak-scaling exponent by Yves Meyer [START_REF] Meyer | Wavelets, vibrations and scalings[END_REF].

Definition 3 Let f be a tempered distribution. Its weak-scaling exponent h ws f (x 0 ) is the unique pointwise exponent which satisfies the following properties:

• If f is a locally bounded function, then h ws f (x 0 ) ≥ h f (x 0 ), (7) 
• for any tempered distribution f ,

h ws f (-1) (x 0 ) = h ws f (x 0 ) + 1, (8) 
• h ws f (x 0 ) is the smallest exponent satisfying the two previous conditions.

This definition is not easy to use directly; for theoretical purposes, one uses instead a characterization in terms of two-microlocal spaces obtained by Y. Meyer. In order to state it, we start by recalling the notion of wavelet basis.

Let r ∈ N; an r-smooth wavelet basis of R d is composed of 2 d -1 wavelets ψ (i) and one function φ(x) which belong to C r and satisfy the following properties:

• ∀i, ∀α such that |α| ≤ r, ∂ α ψ (i) and ∂ α φ (i) have fast decay,

• The set of functions

φ(x -k) (for k ∈ Z d ) and 2 dj/2 ψ (i) (2 j x -k) ( for k ∈ Z d , and j ≥ 0) (9) 
forms an orthonormal basis of L 2 (R d ).

In practice, we will use either Meyer wavelets, which are ∞-smooth [START_REF] Lemarié | Ondelettes et bases hilbertiennes[END_REF] or Daubechies compactly supported wavelets [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF], which can be chosen arbitrarily smooth. Since these functions form an orthonormal basis of L 2 , it follows that

∀f ∈ L 2 , f (x) = k∈Z d c k φ(x -k) + ∞ j=0 k∈Z d i c i j,k ψ (i) (2 j x -k); (10) 
where the c i j,k are the wavelet coefficients of f , and are given by

c i j,k = 2 dj R d f (x)ψ (i) (2 j x -k)dx, (11) 
and

c k = R d f (x)φ(x -k)dx. (12) 
Note that (11) and ( 12) make sense even if f is not a function; indeed, if one uses smooth enough wavelets, these formulas can be interpreted as a duality product between smooth functions (the wavelets) and tempered distributions. We will not track the exact regularity of the wavelets needed for a particular result, which will always be assumed to be "smooth enough"; one has to make sure that the wavelets used are smoother than the largest regularity and irregularity exponents met in the data, which we will assume form now on (this can be formalized with the help of the exponents H min f , see (18), H max f see Definition 11).

wavelet coefficients satisfy

∃C, ∀j, k, |c i j,k | ≤ C2 -sj (1 + |2 j x 0 -k|) -s ′ . ( 13 
)
Yves Meyer introduced the following notion of pointwise regularity for distributions.

Definition 5 A tempered distribution f : R d → R belongs to Γ s (x 0 ) if and only if there exists s ′ > 0

such that f ∈ C s,-s ′ (x 0 ).
Theorem 1.2 of [START_REF] Meyer | Wavelets, vibrations and scalings[END_REF] states that

h ws f (x 0 ) = sup{s : f ∈ Γ s (x 0 )}.
Note that (7) extends to the p-exponent:

∀p > 0, h ws f (x 0 ) ≥ h p f (x 0 ),
which directly follows from Def. 3 and from the following embeddings, see [START_REF] Calderón | Local properties of solutions of elliptic partial differential equations[END_REF][START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF]: Let p > 0 and

α ≥ -d/p; if s > d/p, then f (-s) ∈ C α+s (x 0 ).
The weak scaling exponent has several "robustness" properties which make it a convenient tool in mathematics and in signal and image properties; let us mention some of them (most of these properties are a direct consequence of the two-microlocal characterization, see [START_REF] Meyer | Wavelets, vibrations and scalings[END_REF]). The weak scaling exponent is invariant under :

• the addition of a smoother function: Let f and g be tempered distributions such that f ∈ Γ s (x 0 ) and g ∈ T p s ′ (x 0 ) for s ′ > s; then ∀p ∈ (0, +∞], f + g ∈ Γ s (x 0 ), • smooth changes of variables,

• the action of large classes of singular integral operators of order 0 (such as the Lemarié algebras) see [29].

Recall that the fractional integration operators I s (s ∈ R) is defined in the Fourier domain by

I s (f )(ξ) = (1 + |ξ| 2 ) -s/2 f (ξ)
(we will sometimes use the notation f (-s) = I s (f )). Property (8) extends to fractional integrals: Indeed, it follows from the two-microlocal characterization of the weak-scaling exponent that ∀x,

h ws I s (f ) (x) = h ws f (x) + s. ( 14 
)
This implies that, in contradistinction with the Hölder or the p-exponent, the weak-scaling exponent can take any real value. Additionally, one can easily check that, if f is a Schwartz distribution of order a, then ∀x, h ws f (x) ≥ -d -a.
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In this section, we obtain sharp estimates for the weak scaling spectrum derived from numerically computable quantities. We will focus on profiles, which are deduced from the distributions of multiresolution quantities, and are of particular relevance for the detection of non-concave spectra, and on scaling functions, which are easier to estimate numerically but, by construction, only allow to estimate the concave hulls of spectra.

The wavelet scaling function

An upper bound for the weak scaling spectrum was derived in [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF], in terms of the wavelet scaling function which is defined as empirical moments of a first multiscale quantity: wavelet coefficients. In Section 4 we will consider other scaling functions obtained by the same procedure, but derived from different multiscale quantities.

Definition 6 Let f be a tempered distribution defined on R d , its wavelet structure functions S f (p, j) are

∀p > 0, S f (p, j) = 2 -dj k |c i j,k | p . (15) 
The wavelet scaling function of f is

∀p > 0, η f (p) = lim inf j→+∞ log (S f (p, j)) log(2 -j ) , (16) 
This definition extends to p ∈ (0, 1) the Kolmogorov scaling function which was defined (for p ≥ 1) in terms of L p norms of increments of the function, see [START_REF] Jaffard | Multifractal formalism for functions[END_REF][START_REF] Kolmogorov | a) dissipation of energy in the locally isotropic turbulence. b) the local structure of turbulence in incompressible viscous fluid for very large Reynolds number. c) on degeneration of isotropic turbulence in an incompressible viscous liquid[END_REF][START_REF] Muzy | Wavelets and multifractal formalism for singular signals: application to turbulence data[END_REF]33]. By construction, η f (p) is a concave function, of derivative at most d, see [21]. One motivation for computing the wavelet scaling function is that it supplies a simple and numerically tractable criterium in order to determine when the use of p-exponents is legitimate; indeed, the embeddings between Besov and Sobolev spaces yield the following result, see [START_REF] Jaffard | Multifractal formalism for functions[END_REF].

Proposition 3.1 Let f be a tempered distribution.

• Let p ≥ 1; if η f (p) > 0, then f ∈ L p and if η f (p) < 0, then f / ∈ L p . • Let p < 1; if η f (p) > 0, then f ∈ H p and if η f (p) < 0, then f / ∈ H p .
If p = +∞, then one checks whether data can be modelled by a bounded function with the help of another exponent H min f defined as follows. Any tempered distribution f has finite order; therefore it f has a minimal (perhaps negative) uniform Hölder regularity. The Hölder characterization of the uniform Hölder spaces

C A (R d ) states that ∃C > 0 such that ∀j, k |c i j,k | ≤ C2 -Aj . ( 17 
)
Figure 1: Three different estimations of p = 2 structure functions using a binomial cascade with parameter r = 0.8 and its fractional derivatives of order 0.5 and 2. The regression slope is positive in the first case and negative for derivatives of order 0.5 and 2. These regressions, computed across a substantial range of values of p, enable to compute wavelet scaling functions, as illustrated in Fig. 2. This allows to define the uniform regularity exponent H min f as follows. Let

ω j = sup i,k |c i j,k |; then H min f = lim inf j→+∞ log(ω j ) log(2 -j ) . (18) 
Therefore, if p = +∞, Prop. 3.1 becomes:

If H min f > 0, then f ∈ L ∞ and, if H min f < 0, then f / ∈ L ∞ .
It follows that this parameter allows to determine if a multifractal analysis based on the Hölder exponent can be worked out. It is also used for classification purposes in signal and image processing, see e.g. [START_REF] Abry | Irregularities and scaling in signal and image processing: Multifractal analysis[END_REF].

In Fig. 1, 2 and 4, we consider a first example: a wavelet binomial cascade, η(p) > 0, ∀p > 0 and since H min f > 0, it follows that a multifractal analysis based on the Hölder exponent is licit. Moreover, . Therefore, a multifractal analysis based on the Hölder exponent is not applicable to these data.

The following result yields an upper bound for the weak scaling spectrum (see Theorem 1 of Part 2 in [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF]). Proposition 3.2 Let f be a tempered distribution. Then its weak scaling spectrum satisfies

D ws f (H) ≤ inf p>0 (Hp -η f (p) + d) . (19) 
This result shows that the weak-scaling exponent indeed is the exponent corresponding to the initial multifractal formalism introduced by G. Parisi and U. Frisch [33]; however, it meets several limitations:

• It yields a concave upper bound, so that it cannot be sharp for non-concave multifractal spectra.

• Since the infimum is taken on positive ps only, the Legendre transform is increasing, and this bound only allows to estimate the increasing part of the concave hull of the multifractal spectrum.

We now propose a way to address the first problem.

The increasing wavelet profile

In this section, we show that the weak scaling spectrum can be estimated in a sharper way from the distributions of wavelets coefficients. This is done using the wavelet profile ν f (H), a notion introduced in [START_REF] Jaffard | Beyond Besov spaces -part 1: Distributions of wavelet coefficients[END_REF] (see also [4][START_REF] Aubry | Topological properties of the sequence spaces S ν[END_REF][START_REF] Aubry | Random wavelet series[END_REF] for the mathematical results that we will mention), and which formalizes the following heuristic: The distribution f considered has about 2 ν f (H)j coefficients larger than 2 -Hj .

Definition 7 Let f be a tempered distribution, and let

∀H ∈ R, E j (H) = Card{i, k : |c i j,k | ≥ 2 -Hj }. The (increasing) wavelet profile ν f (H) is ν f (H) = lim ε→0 lim sup j→∞ log(E j (H + ε)) log(2 j ) . ( 20 
)
Remark: This definition using a double limit guarantees that the wavelet profile is independent of the (smooth enough) wavelet basis; however, in practice, it can be computed using a single limit, as

νf (H) = lim sup j→∞ log(E j (H)) log(2 j ) ; (21) 
indeed, νf and ν f are increasing functions which "almost" coincide: They may differ only at points of discontinuity, and, at such points, their right limits coincide and so do their left limits.

Clearly, ν f is nondecreasing, right-continuous, and takes values in {-∞} ∪ [0, d] (it takes the value -∞ as long as E j (H) = 0 for j large enough, i.e. when there are no wavelet coefficients larger than 2 -Hj ). The comparison of ν f and η f puts into light the additional information contained in ν f . For

any distribution f , ∀p > 0, η f (p) = inf H∈R {Hp -ν f (H) + d} , (22) 
see [START_REF] Aubry | Random wavelet series[END_REF]. It follows that the information supplied by η f only yields the concave hull of ν f . Thus, whenever ν f is not concave, it supplies more information on the distribution of wavelet coefficients than η f (and (24) will imply that it yields a sharper bound for the multifractal weak scaling spectrum). We now prove the following result, which relates the wavelet profile and the weak scaling spectrum.

Theorem 1 Let f be a tempered distribution, and let

E - H = {x : h ws f (x) ≤ H}; then Dim(E - H ) ≤ ν f (H). (23) 
And, in particular,

∀H ∈ R, D ws f (H) ≤ ν f (H). ( 24 
)
Remarks:

• Prop. 3.2 follows from this result because the Legendre transform of a scaling function is the concave hull of the profile, see [START_REF] Jaffard | Beyond Besov spaces -part 1: Distributions of wavelet coefficients[END_REF].

• We will show in Section 5 that this result is sharp, by comparing the wavelet profile and the weak scaling spectrum for several models. lacunary wavelet series, see Sec. 5. A sharp upper bound for the Hölder spectrum is supplied by the wavelet leader profile (obtained using the same definition as the wavelet profile, by starting with wavelet leaders instead of wavelet coefficients, see [START_REF] Jaffard | Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot[END_REF]), which is always larger than ν f .

In order to prove Theorem 1, we will need the following result of [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF].

Proposition 3.3 Let f be a tempered distribution. The weak scaling exponent of f at x 0 is the supremum of the values of H satisfying ∀ε > 0, for j large enough,

|2 j x 0 -k| ≤ 2 εj =⇒ |c i j,k | ≤ C.2 -(H-ε)j . ( 25 
)
The indices (j, k) verifying |2 j x 0 -k| ≤ 2 εj will be referred to as being ε-close to x 0 .

Proof of Theorem 1: Let δ > 0 be fixed; by Def. 7, we can pick ε small enough so that, for j large enough,

E j (H + ε) ≤ 2 (ν f (H)+δ)j (26) 
Let

F ε j = {k ∈ Z d , ∃i : |c i j,k | ≥ 2 -(H+ε)j },
and denote by G ε j the set of dyadic cubes λ of scale j such that

∃k ∈ F ε j : dist(λ, k2 -j ) ≤ 2 εj • 2 -j .
Using [START_REF] Kolmogorov | a) dissipation of energy in the locally isotropic turbulence. b) the local structure of turbulence in incompressible viscous fluid for very large Reynolds number. c) on degeneration of isotropic turbulence in an incompressible viscous liquid[END_REF], we obtain

Card(G ε j ) ≤ 3 d 2 dεj 2 (ν f (H)+δ)j ; ( 27 
)
it follows that the Hausdorff dimension of the set lim sup G ε j is bounded by 2 (ν f (H)+dε+δ)j ; and, if x 0 / ∈ lim sup G ε j,λ , then it follows from Prop. 3.3 that

h ws f (x 0 ) ≥ H -ε.
We have thus obtained that

Dim H ({x : h ws f (x) < H -ε}) ≤ ν f (H) + dε + δ.
Since δ and ε can arbitrarily small, and since ν f is right-continuous, [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF] follows.

Note that the wavelet multiplier T s , which consists in multiplying the wavelet coefficients c i j,k by 2 -sj , shifts the increasing wavelet profile by s. Since a fractional integration of order s can be written as the composition of T s by an element of a Lemarié algebra which keeps the increasing wavelet profile unchanged (see [29]), it follows that it is shifted by s under a fractional integration, i.e.

ν I s (f ) (H) = ν f (H -s). ( 28 
)
This formula is in accordance with (14) which implies that the mapping I s shifts the weak scaling spectrum of any tempered distribution by s.

The following result relates the uniform Hölder exponent with the increasing wavelet profile.

Lemma 3.4 Let f be a tempered distribution. Then

H min f = sup{H : ν f (H) = -∞} = inf{H : ν f (H) ≥ 0}.
Proof: Let H < H min f ; for ε small enough and j large enough, all coefficients c i j,k satisfy

|c i j,k | ≤ 2 -(H+ε)j , so that ν f (H) = -∞. It follows that H min f ≥ sup{H : ν f (H) = -∞}. Conversely, let H > H min f ; for ε small enough ∃j n → ∞, ∃k n , i n such that |c in jn,kn | ≥ 2 -(H+ε)jn ,
and it follows that ν f (H -ε) > 0.

Criteria for the use of the p-exponent

We mentioned that, for some signals, no p-exponent can be used, and the only local regularity exponent available without any preprocessing (such as a fractional integration) is the weak scaling exponent. On the mathematical side, examples are supplied by fractional Gaussian noise, and, in particular, Gaussian white noise which plays a central role in probability and signal processing, see Sec. 5.1. Its sample paths are Schwartz distribution, which are not functions: they do not locally belong to any L p or H p space.

Let p > 0; it follows from Prop. 3.1 that a multifractal analysis based on the p-exponent can be performed if the wavelet scaling function satisfies η f (p) > 0. On the opposite, it is not possible if η f (p) < 0. however, some models yield a direct access to the wavelet profile; in that case, the following criterium can be easier to check.

Proposition 3.5 Let f be e tempered distribution. If ν f (0) < d then ∃p, ε > 0 : f ∈ B ε,∞
p and the values of p for which this condition is satisfied can be determined as follows: Let I be the segment between the points (0, d) and (-a, 0). These conditions imply that there exists values of a such that the graph of ν f lies below this line L. Let A be the infimum of these value; then one can pick any p < d/A. Furthermore, this result is optimal.

Proof: The equation of L is

g(H) = d + dH a .
If the graph of ν f lies below L, so does its concave hull L(H). Recall that

η(p) = inf H (d -L(H) + Hp). (29) 
The assumption therefore means that this infimum is strictly positive for p = d/a, i.e. η(d/a) > 0.

Conversely, if p is a value for which the graph of ν f intersects a line

g(H) = d + pH,
then this means that, for this value of p, the infimum in (29) is negative, so that η(p) < 0, and f / ∈ L p .

The following corollary is a straightforward consequence of Prop. 3.5. It gives a simple criterium on the wavelet profile which allows to settle if p-exponents can be used.

Corollary 3.6 Let f be a tempered distribution. Let

D 0 = sup H ν f (H),
and let

C 1 = min{H : ν f (H) = D 0 }; then • if D 0 < d, then there exists p > 0 such that η f (p) > 0;
• if D 0 = d, and C 1 > 0, then there exists p > 0 such that η f (p) > 0;

• if D 0 = d, and C 1 < 0, then there does not exist p > 0 such that η f (p) > 0.
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We will now show how the decreasing hull of the weak scaling spectrum can be estimated from the wavelets coefficients. We will not use directly the distribution of wavelet coefficients; indeed, some wavelet coefficients can be small "by accident" whereas the neighbouring coefficients are large, and these small coefficients won't have any incidence on the values taken by the weak scaling exponent; therefore, it would lead to a poor estimate of the weak scaling spectrum, see e.g. [START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF] where the case of the Brownian motion is considered, and where the upper bound thus obtained is the function

∀H ∈ [1/2, 3/2], L(H) = 3/2 -H,
whereas the correct spectrum is supported by the a unique point: H = 1/2, see Sec. 5.1. This is illustrated by Fig. 6 which shows the Legendre spectrum of a sample path of Brownian motion when the multiresolution quantities used in the computation of the scaling function are the wavelet coefficients.

In order to solve this problem, a simple idea consists in using for multiscale quantities local suprema of wavelet coefficients. This idea was successfully worked out in the case of the Hölder exponent, with the notion of wavelet leaders where the supremum is taken on all wavelet coefficients

c i j ′ ,k ′ satisfying j ′ ≥ j and |k • 2 -j -k ′ • 2 -j ′ | ≤ 2 • 2 -j .
It is natural to keep the same idea, but restricting the set of coefficients to a finite number located in a box around k•2 -j . This has two advantage : it will ensure that the corresponding multiresolution quantities always are well defined and not infinite, even for general tempered distributions, and it will allow to estimate the weak-scaling spectrum, see Sec. 4.2. A first solution was proposed in Sec. 6 of [START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF]. It is based on structure functions which are not derived directly from wavelet coefficients, but rather from multiresolution quantities, referred to as ε-leaders, already defined in [START_REF] Jaffard | Wavelet analysis of fractal boundaries[END_REF] and which are local suprema of wavelet coefficients taken on small boxes of width 2 εj , and by then taking a limit of the resulting scaling functions when ε → 0 (see Prop. 3.3 below for a precise statement). This formulation however is not fitted to applications, because of numerical difficulties due to the double limit intrinsically involved in this approach (because of the use of the extra parameter ε). We will introduce new multiresolution quantities which do not present this drawback, and show that the resulting multifractal formalism yields sharp upper bounds of the weak scaling multifractal spectrum, which turn out to be equalities for several classes of models such as fBm, fractional Gaussian noises, binomial wavelet cascades, lacunary wavelet series, ... see Sec. 5. Additionally, this formalism can either be formulated as a (concave) Legendre spectrum, or, if one expects to be confronted with non-concave spectra, as profile spectra.

Multiscale quantities: the (θ, ω)-leaders

We now define the local suprema of wavelet coefficients which will be the new multiscale quantities on which we will base multifractal analysis; it uses the following notions. 

       ω(k) → +∞ when k → +∞ log(ω(k)) k → 0 when k → +∞; (30) 
typical examples are supplied by power-laws k → k a for an a > 0.

A function ω : N → R + has sub-polynomial growth if it is non-decreasing and such that

         ω(j) → +∞ when j → +∞ log(ω(j)) log(j) → 0 when j → +∞; (31) 
typical examples are supplied by functions of logarithmic growth j → (log j) a for an a > 0.

We now introduce the (θ, ω)-leaders which will be the multiscale quantities on which the multifractal analysis of the weak-scaling exponent will be based, see Fig. 7.

Definition 8 Let f be a tempered distribution of wavelet coefficients (c i j,k ), and let θ and ω be two functions with respectively sub-polynomial and sub-exponential growth. The (θ, ω)-neighbourhood of

(j, k), denoted by V (θ,ω) (j, k) is the set of indices (j ′ , k ′ ) satisfying j ≤ j ′ ≤ j + θ(j) and k 2 j - k ′ 2 j ′ ≤ ω(j) 2 j .
The (θ, ω)-leaders of f are defined by In practice, the particular choice of the functions θ and ω may affect the numerical results when they are used as multiscale quantities for the estimation of spectra; in practice, they should be chosen according to the statistical properties of the data analyzed, and to their size. The practical motivation behind the choice of the couple (θ, ω) is that the "boxes" on which the suprema are taken should include an increasing number of coefficients as j → +∞; and the sub-polynomial and subexponential requirements are sufficient to guarantee that the profiles and scaling functions constructed from these multiscale quantities effectively yield an upper bound of the weak-scaling spectrum. Nonetheless, these requirements leave much room for optimizing the choice of the the couple (θ, ω), which should be directed by statistical considerations that go beyond the scope of this article. However, in Fig. 8 and 9, we present the results of a preliminary numerical investigation involving various choices for (θ, ω) and their corresponding scaling functions, along with estimations of the associated Legendre spectrum. This analysis was conducted on Gaussian white noise due to its well-established properties, as detailed in Section 5.1. The parameter θ(j) governs the number of scales used to calculate the multiresolution quantities of (θ, ω)-leaders, while ω(j) determines the width of the box over which we compute the supremum of the wavelet coefficients. First, we held ω(j) constant at ω(j) = j and explored the influence of varying θ(j) = j k with different values of k within the set {0.25, 0.3, 0.4, 0.5} on the estimation of the scaling function and its Legendre transform. We observe that for values of k = 0.25 and k = 0.3, the scaling functions and Legendre spectra coincide, offering reliable estimates closely aligned with the theoretical values. Whereas, as k increases, signifying an expansion in the number of scales considered, the results started to approach the leaders case. Notably, as depicted in Fig. 8, the estimations diverges from the theoretical outcomes, approaching the results obtained from a multifractal analysis based on wavelet leaders. This deviation is erroneous since Gaussian white noise data do not satisfy a positive Hölder regularity assumption. Moving on, we maintained θ(j) = j 0.25 and investigated the impact of varying ω(j) = j k with k values in the range of {0.6, 0.8, 1, 1.2, 1.4}. By examining Fig. 9, we notice that as k is increased, the estimations become more accurate and progressively converge toward the theoretical results. This phenomenon can be attributed to the widening of the 'boxes' with increasing k, allowing for the inclusion of more wavelet coefficients in the computation of the supremum. Consequently, this enhancement in wavelet coefficients incorporation led to increased estimation accuracy.

d j,k = sup i ′ ,(j ′ ,k ′ )∈V (θ,ω) (j,k) |c i ′ j ′ ,k ′ |. (32) 
A first result is that the analysis we developed in Sec. 3.2 for the increasing wavelet profile would have led to the same quantities, if (θ, ω)-leaders had been used instead; this is the purpose of Prop.

4.1 below. The heuristic reason is that statistics of wavelet coefficients and of local suprema of wavelet coefficients may significantly differ for small coefficients but not for large ones, and we will see that the results strongly differ for the decreasing wavelet profile.

Proposition 4.1 Let f be a tempered distribution, and let

Ẽj (H) = Card{i, k : |d j,k | ≥ 2 -Hj }.
Then, the increasing wavelet profile can be recovered by

∀H, ν f (H) = lim ε→0 lim sup j→∞ log( Ẽj (H + ε)) log(2 j
) .

Proof: It follows directly from the following estimates: On one hand ∀i, j, k,

|c i j,k | ≤ d j,k , so that Card{i, k : |c i j,k | ≥ 2 -Hj } ≤ 2 d Card{k : |d j,k | ≥ 2 -Hj },
from which it follows that ν f (H) ≤ νf (H). On other hand, from [START_REF] Muzy | The multifractal formalism revisited with wavelets[END_REF], it follows that, ∀ε > 0, for j large enough,

Card{k : |d j,k | ≥ 2 -Hj } ≤ Card(V ω (j, k)) max( Ẽj (H + ε), • • • Ẽj+θ(j) (H + ε)) ≤ C3 d (ω(j + θ(j))) d max( Ẽj (H + ε), • • • Ẽj+θ(j) (H + ε)).
Because of the slow growth conditions on θ and ω, it follows that νf (H) ≤ ν f (H + ε); since this holds for any ε > 0, we obtain that νf (H) ≤ ν f (H).

Decreasing profiles and scaling functions

It follows from Prop. 4.1 that the advantage of using (θ, ω)-leaders only appears when one is interested in the estimation of the decreasing part of the multifractal spectrum, which we now address. To that end, we define the decreasing wavelet profile which formalizes the following heuristic: At the generation j, the distribution f considered has about 2 µ f (H)j of its (θ, ω)-leaders which are smaller than 2 -Hj .

Definition 9 Let f be a tempered distribution, and let 

F j (H) = Card{k : d j,k ≤ 2 -Hj }.
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The decreasing wavelet profile µ f (H) is

µ f (H) = inf ε→0 lim inf j→∞ log(F j (H -ε)) log(2 j ) , (33) 
Clearly, µ f is nonincreasing, left-continuous, and takes values in {-∞} ∪ [0, d]. As in the case of the increasing wavelet profile, the mathematical definition using a double limit is taken in order to insure that Theo. 2 below holds for all values of H. However, in practice the decreasing wavelet profile is estimated directly, taking ε = 0 in this definition, which yields the same result, except perhaps at the discontinuity points of µ f (where the differences are the same as those mentioned for the increasing profile).

We now prove an analogue of Theo. 1 for the decreasing part of the weak scaling spectrum.

Theorem 2 Let f be a tempered distribution. Let

E + H = {x : h ws f (x) ≥ H}; then ∀H ∈ R, Dim(E + H ) ≤ µ f (H); (34) 
it follows that

∀H ∈ R, D ws f (H) ≤ µ f (H). (35) 
Remarks:

• The examples supplied by fBm or fGn in Sec. 5.1 will show that this result is sharp, n contradistinction with profiles based on wavelet coefficients.

• This theorem shows that the natural extension of the wavelet scaling function to p < 0 is supplied by the one which uses (θ, ω)-leaders as multiresolution quantities. This is particularly important in the setting of practical multifractal analysis, where the relevant classification parameters C 1 , C 2 , C 3 are obtained as the first terms of the Taylor expansion of the Legendre multifractal spectrum at its maximum; thus, these parameters will be well defined only if the spectrum is estimated in the neighbourhood of this maximum, which implies that the scaling function has to be well defined for p < 0.

Proof of Theorem 2: Let δ > 0 be fixed; by Def. 9, we can pick ε small enough so that, for a subsequence

j n → +∞, Ẽjn (H -ε) ≤ 2 (µ f (H)+δ)jn . ( 36 
)
If j is one of the j n , let

F ε j = {k ∈ Z d : |d j,k | ≥ 2 -(H-ε)j },
and denote by Gε j the corresponding dyadic cubes. Using [START_REF] Wendt | Impact of data quantization on empirical multifractal analysis[END_REF], we obtain

Card(G ε j ) ≤ 3 d 2 dεj 2 (µ f (H)+δ)j ; ( 37 
)
it follows that the Hausdorff dimension of the set lim inf G ε j is bounded by 2 (µ f (H)+dε+δ)j (use these dyadic cubes when j is one of the j n ); and, if x 0 / ∈ lim sup G ε j,λ , then it follows from Prop. 3.3 that

h ws f (x 0 ) ≥ H -ε.
We have thus obtained that

Dim H ({x : h ws f (x) < H -ε}) ≤ µ f (H) + dε + δ.
Since δ and ε can arbitrarily small, and since µ f is left-continuous, [START_REF] Saës | Analyse multifractale des données physiologiques de marathoniens[END_REF] follows.

We will now show that the definition of (θ, ω)-leaders allows to extend the wavelet scaling function [START_REF] Jaffard | Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot[END_REF] to negative ps. We first define the wavelet structure functions

∀p ∈ R, T f (p, j) = 2 -dj k |d j,k | p . ( 38 
)
Definition 10 Let f be a tempered distribution. The wavelet scaling function of f is

∀p, η f (p) = lim inf j→+∞ log (T f (p, j)) log(2 -j ) . ( 39 
)
Note that (39) coincides with [START_REF] Jaffard | Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot[END_REF] for p > 0 (this is a consequence of the fact that the increasing profiles constructed with wavelets and with (θ, ω)-leaders coincide), and this explains why we keep the denomination of wavelet scaling function and the notation η f (p).

By construction, η f is a concave function and, as a consequence of the general results concerning the relationships between profiles and scaling functions, the Legendre transform of η f is larger that min(η f (H), µ f (H)), so that it also yields a (poorer) upper bound for the weak-scaling multifractal spectrum. In particular, whenever µ f is not concave, it yields a sharper information on the multifractal spectrum than η f does.

The wavelet scaling function for p < 0 yields an upper bound of the weak scaling spectrum, which is similar to Prop. 4.2, and directly follows from the fact that the weak scaling function is the Legendre transform of the wavelet profile. Putting these two results together yields the following result, which was already derived in [START_REF] Jaffard | Wavelet leaders in multifractal analysis[END_REF] in the case of ε-leaders.

Corollary 4.2 Let f be a tempered distribution. Then its weak scaling spectrum satisfies

D ws f (H) ≤ inf p∈R (Hp -η f (p) + d) . ( 40 
)
In particular, if the wavelet scaling function of a distribution f is a linear function over R, then its weak scaling exponent is constant.

The second assertion follows from the fact that the Legendre transform of a linear function is supported by a point H = C 1 . Therefore, in this case, the upper bound yields that, for H ̸ = C 1 , the dimension of the isoregularity sets (1) of f is -∞ so that all the corresponding sets E H are empty except for H = C 1 ; it follows that ∀x,

h ws f (x) = C 1 .
We emphasize this particular case because it supplies a numerically simple and robust way to check the isoregularity of data, which can be used in practice to characterize stationary fractional noises such as fGn; this is in contradistinction with the statistical methods based on pointwise regularity estimation which yield poor results because the estimators necessarily are based on a much smaller number of quantities.

In the case of non-concave spectra, the bound supplied by ( 19) is not sharp, so that it is preferable to use the bound supplied by the decreasing wavelet profile whenever it is easily available.

We end this section by introducing a new parameter which yields an upper bound for the range of weak scaling exponents.

Definition 11 Let f be a tempered distribution. Let

τ j = inf k d j,k .
The uniform upper regularity exponent

H max f is H max f = lim inf j→+∞ log(τ j ) log(2 -j ) .
Note that H max f can take the value +∞: In Sec. 5 we will see that it is the case for lacunary wavelet series (in contradistinction with their Hölder and p-exponents which are bounded). The following results explicit the relevance of this parameter; its proof is similar to the proof of similar properties satisfied by H min f , see e.g; [START_REF] Abry | Irregularities and scaling in signal and image processing: Multifractal analysis[END_REF].

Proposition 4.3 Let f be a tempered distribution. Then

H max f = inf{H : µ f (H) = -∞} = sup{H : µ f (H) ≥ 0};
and ∀x :

h ws f (x) ≤ H max f .
Furthermore, H max f is the largest value taken by the support of the Legendre spectrum

L wse f (H) = inf p (Hp -η f (p) + d) ; ( 41 
)
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In this section, we will determine the weak scaling spectrum of several mathematical models used in signal processing. Our motivation is to check the numerical accuracy of the method proposed in the previous sections, in cases where the output can be determined exactly. In this section and in the following, we stick to one variable functions and signals.

fBm and fGn

We start by considering the examples of fractional Brownian motion and fractional Gaussian noise. The Gaussian white noise plays a central role both in probability and in signal processing; one of its possible definitions is the following one: Its sample paths are the derivatives (in the sense of distributions) of the sample paths of the Brownian motion. It fulfills the remarkable property of having Gaussian IID coefficients on any (smooth enough) orthonormal basis. It follows that its wavelet expansion is

W (x) = k∈Z d χ k φ(x -k) + ∞ j=0 k∈Z d i χ j,k 2 j/2 ψ(2 j x -k); (42) 
where the χ k and χ j,k are IID centered reduced Gaussian random variables. Note that (42) shouldn't be understood as a point by point equality, but as a convergence in the sense of distributions. The following result is a direct consequence of this property.

Proposition 5.1 The wavelet profiles of the sample paths Gaussian white noise (wGn) are a.s.

ν W (H) = -∞ if H < -1/2 1 else,
and

µ W (H) = 1 if H < -1/2 -∞ else.
It follows that their wavelet scaling function is

∀p ∈ R, η W (p) = - p 2 ,
so that the weak scaling exponent of the Gaussian white noise satisfies a. s. ∀x ∈ R,

h ws W (x) = - 1 2 . 
We now consider the case of the fractional Gaussian noise (fGn). Its wavelet expansion is similar but one has to use biorthogonal wavelet bases. If s ∈ IR, let ψs (ξ) = |ξ| -s ψ(ξ), where ψ is generating an orthonormal wavelet basis (ψ s is the fractional integral of ψ of order s if s > 0 and the the fractional derivative of ψ of order -s if s < 0 ). If ψ ∈ S(IR), then ψ s is a wavelet and the 2 j/2 ψ s (2 j x -k) and the 2 j/2 ψ -s (2 j x -k) form biorthogonal bases, see e.g. [29].

If t ∈ [0, 1] then the fGn of order γ ∈ (0, 1) satisfies

W γ (t) = ∞ j=0 k∈Z 2 (1-γ)j ξ j,k ψ γ-1/2 (2 j t -k) + R(t) (43) 
where R(t) is a C ∞ random process, and the ξ j,k are I.I.D. standard centered Gaussians; this is a direct consequence of the fBm representation on biorthogonal wavelet bases which decorrelate its components, see [START_REF] Abry | The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation[END_REF][START_REF] Meyer | Wavelets, generalized white noise and fractional integration: The synthesis of fractional brownian motion[END_REF], and the fact that an fGn of order β ∈ (-1, 0) can be obtained as the sample path derivative (in the sense of distributions) of an fBm of order β + 1. The case γ = 1/2 corresponds to the white Gaussian noise.

Corollary 5.2 The weak scaling exponent of the sample paths of fGn satisfy a. s. ∀x ∈ R,

h ws f (x) = γ -1.
Proof: It is just a consequence of the fact that the sample paths of fGn are obtained from those of the white Gaussian noise by a fractional integration of order γ -1/2 (it actually is a fractional derivation if γ < 1/2).

We now consider the case of the fractional Brownian motion (fBm) of Hurst exponent γ ∈ (0, 1). Its wavelet expansion is also similar using biorthogonal wavelet bases. If t ∈ [0, 1] then

B γ (t) = ∞ j=0 k∈Z 2 -γj ξ j,k ψ γ+1/2 (2 j t -k) + R(t) (44) 
where R(t) is a C ∞ random process, and the ξ j,k are I.I.D. standard centered Gaussians, see [START_REF] Abry | The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: remarks and fast implementation[END_REF][START_REF] Meyer | Wavelets, generalized white noise and fractional integration: The synthesis of fractional brownian motion[END_REF].

The case γ = 1/2 corresponds to the Brownian motion.

Corollary 5.3 The weak scaling exponent of the fBm of Hurst exponent γ coincides with its Hölder exponent and satisfies p.s. ∀x h ws f (x) = γ.

Proof: It is just a consequence of the fact that the sample paths of fBm are obtained from those of the white Gaussian noise by a fractional integration of order γ + 1/2.

The (θ, ω)-leaders formalism provides an excellent estimate of the spectrum whose support is very tight around the point H = γ which is the Hurst exponent of the fBm, and H = -1/2 for the Gaussian white noise, see Fig. 10. 

Wavelet binomial cascades

We now consider a function defined by its wavelet coefficients as follows:

for k = 0, • • • 2 j , c j,k = r 2 j -k (1 -r) k . It follows that ∀j ≥ 0, k |c j,k | q = 2 j k=0 2 j k r (2 j -k)q (1 -r) kq = [r q + (1 -r) q ] 2 j .
Thus, the scaling wavelet function of this binomial cascade is

η Fr (q) = lim inf j→+∞ log 2 2 -j k∈Λ j |c j,k | q -j = 1 -log 2 (r q + (1 -r) q ) .
We deduce that for all q > 0, η Fr (q) > 0 because 0 < r q + (1 -r) q < 2. Thus, in this particular case, the multifractal spectrum can be estimated by computing the Legendre transform of the scaling function associated with the leaders. The support of this spectrum is the interval

[min{-log 2 (r), -log 2 (1 -r)}, max{-log 2 (r), -log 2 (1 -r)}]
and H min Fr = min{-log 2 (r), -log 2 (1-r)}. As regards the fractional derivative of order n of this wavelet binomial cascade, we obtain

η F (n) r (q) = 1 -nq -log 2 (r q + (1 -r) q ) .
And,

∀q > 0, η F (n) r (q) ≤ 0 ⇐⇒ ∀q > 0, n ≥ 1 -log 2 (r q + (1 -r) q ) q .
It follows that

∀q > 0, η F (n) r (q) ≤ 0 ⇐⇒ n ≥ -log 2 r(1 -r) .
In order to estimate the multifractal spectrum of the n-th fractional derivative of binomial cascade, three cases can occur :

• If n ∈ [0, min{-log 2 (r), -log 2 (1 -r)}], then H η F (n) r min
≥ 0, so that one can use the Legendre spectrum derived from the leader scaling function.

• If n ∈] min{-log 2 (r), -log 2 (1 -r)}, -log 2 r(1 -r) [
, then the derivation of a multifractal spectrum using wavelet leaders is no longer possible because H F (n) r min < 0. But there exist values of p > 0 such that η F (n) r (p) > 0, so that one can estimate a Legendre spectrum using p-leaders.

• If n ≥ -log 2
r(1 -r) , then for all q > 0, one has η F (n) r (q) ≤ 0. So that no value of p is available for the computation of p-leaders. In that case, one has to use weak scaling exponents.

For example with r = 0, 8, we have -log 2 r(1 -r) ≈ 1, 3219. So for n = 0, the leader can be used to estimate the spectrum; for n = 1, we can use p-leaders and for n = 2, we use the weak scaling exponent. This is illustrated by Fig. 11. In the case of the binomial cascade, we observe that all three estimated spectra closely match the theoretical spectrum. In fact, the spectrum based on leaders and (θ, ω)-leaders coincides and provides a more precise estimation. Moving on to the derivative case, it is evident that the graphic confirms the theoretical calculations. Actually, the leader-based spectrum does not estimate the theoretical spectrum accurately, but notably, the p-leaders with p=0.5 provide a very accurate estimation. When checking with (θ, ω)-leaders, we notice that it approaches the true spectrum and offers a reliable estimation. As for the final case, the second derivative of the binomial cascade, we observe that the spectra of leaders and 0.5-leaders deviate from the theoretical spectrum, while the (θ, ω)-leaders based spectrum provides an accurate estimation. The key lesson from this example is that the (θ, ω)-leaders based spectrum consistently delivers a precise estimation of the true spectrum, independent of the order of derivation.

Lacunary wavelet series

A Lacunary Wavelet Series (LWS) X α,γ of type (α, γ) on R (for α ∈ R and γ ∈ (0, 1)) is defined as follows: An orthogonal wavelet basis in the Schwartz class is used for the construction. At generation j, each wavelet coefficient has probability 2 (γ-1)j of taking the value 2 -αj ; the drawings are performed independently and all other coefficients are set to 0. In order to define the LWS on R, one repeats this construction on all intervals of width 1, see [14]. Depending on the value of α, the sample paths of X α,γ can either be continuous functions (if α > 0), or nowhere locally bounded functions in some L p loc space (if α < 0 and p < (η -1)/α), or Schwartz distributions (when this value yields p < 1 in which case the sample paths belong to the corresponding Hardy space H p loc ). Let us first recall the main results proved in [14,19]. In the following, the case p = +∞ yields the Hölder spectrum (if α > 0). Theorem 3 Let α < 0 and γ < 1; then a.e. sample paths of X α,γ belongs to L p loc if p < (η -1)/α, and its wavelet scaling function for any p > 0 is a.s. η X (p) = αp -η + 1.

The p-spectrum of a.e. sample path is supported by the interval

I = α, α η + 1 η -1 1 p ,
where it takes the value

∀H ∈ I, D p (H) = η H + 1/p α + 1/p .
We now complement this theorem by the following result which shows that, in strong difference with the other pointwise exponents, LWS are monofractal if one considers the weak scaling exponent.

Theorem 4 Let α ∈ R. The wavelet scaling function of a.e. sample paths of X α,γ is ∀p < 0, η X (p) = -∞, methods based on multiresolution quantities such as increments, wavelet coefficients, and leaders, it demonstrated that wavelet-based methods exhibit greater resilience against quantization due to their ability to localize frequencies effectively. Practical guidelines for conducting multifractal analysis on quantized data were provided, highlighting the advantages of using wavelets for maintaining accuracy in the presence of quantization.

We now complement this study by investigating the robustness of multifractal analysis based on pleaders and (θ, ω)-leader as multiresolution quantities against quantization using Gaussian white noise as distribution and binomial wavelet cascades due to their known multifractal properties. For this study, we investigate the stability of estimating the multifractal attribute c 1 , which represents the regularity almost everywhere of the data, and the scaling function η(q) against quantization. We recall that c 1 is referred to as the log-cumulant. In fact, it is estimated by mean of linear regressions of C 1 (j) versus log(2 j ), where C 1 (j) represents the mean of the logarithm of multiresolution quantity at scale j, and this quantity varies depending on the specific regularity we are considering, such as p-leader and (θ, ω)-leader in our case. For more details see [START_REF] Wendt | Impact of data quantization on empirical multifractal analysis[END_REF].

Starting with a signal X(t) , the quantized signal is defined as

X ∆ (n) = [X(n)/∆].∆, b = -log 2 ∆, (45) 
where [.] indicates the rounding operation, ∆ is the quantization interval width and b is the quantization level (in bit). The numerical study is carried out using Daubechies 3 wavelets (i.e., with N ψ = 3) and the size of the data is N = 2 15 .

We start by investigating the impact of quantization on multifractal analysis based on p-leaders. More precisely, the impact is important on the part where q < 0 and has almost no impact when q ≥ 0. Hence, the quantization affects the decreasing part of the multifractal spectrum based on p-leaders.

We now investigate the impact of quantization on multifractal analysis based on (θ, ω)-leaders. Fig. 15 presents a comparative analysis of the estimated scaling function η(q) as a function of q across various quantization levels, juxtaposed with the theoretical scaling function of the dataset. In the context of Gaussian white noise, we observe that quantization has only a subtle impact on the estimation of the scaling function: as b decreases (∆ increases), the degradation in estimation remains minimal.

However, in the case of the second derivative of the binomial cascade, the influence of quantization is markedly more pronounced. Notably, a significant impact on the estimation of the scaling function is observed for q < 0 when b ≤ 13. In contrast, for q ≥ 0, no discernible impact on the estimation of the scaling function can be put in evidence. In consequence, the higher the degree of quantification, the more pronounced its influence on the estimation of the decreasing part of the multifractal spectrum.

Our analysis leads to the conclusion that, when dealing with quantized data, p-leaders and (θ, ω)leaders exhibit a high resistance to quantization effects. In fact, the higher the quantization, the more it has a notable adverse impact on empirical multifractal analysis particularly at the finest scales.

Furthermore, by carefully selecting a suitable regression region, it is possible to mitigate the impact of quantization on ĉ1 at coarser quantization levels. Indeed, upon comparing our conclusions with the work of P.Abry and H.Wendt, we have shown that their results can be extended to the settings of p-exponents and weak-scaling exponents based multifractal analysis, thus confirming and expanding their contributions.

Multifractal analysis of cadence

In a previous article [START_REF] Saës | Analyse multifractale des données physiologiques de marathoniens[END_REF], we presented a multifractal analysis of marathon runners heart rates (in beats per minute).

In the examples we analyzed, the exponent H min f is negative, justifying that a multifractal analysis analysis based on wavelet leaders cannot be performed; furthermore, we found out that the wavelet scaling function is positive, at least for certain values of p, allowing to perform a multifractal analysis based on p-exponents heart rate. On the other hand, in the case of marathon cadence (Fig. 16), the wavelet scaling function of the runners is negative for all values of p > 0 (Fig. 3), so that it is not possible to apply this method. Thus, we have to perform a multifractal analysis based on the weak scaling exponent, which allows to sidestep the necessity of executing fractional integrations and consequently transform the signal.

Numerical study:

The numerical estimations are performed with linear regressions between j = 5 and j = 8 (i.e. between 32s and 4min27s), scales identified as relevant for physiological data [START_REF] Cantrambone | Quantifying functional links between brain and heartbeat dynamics in the multifractal domain: a preliminary analysis[END_REF]. To estimate the spectrum using the weak scaling exponent, the (θ, ω)-leaders are computed with θ(j) = j 0.25

and ω(j) = j, j > 0.

Spectrum estimation: In Figure 17, we determine the scaling function and the weak scaling Legendre spectrum (41) of marathon runners cadence, using (θ, ω)-leaders. On table 1, we represent two multifractal parameters linked to the spectrum: h min and c ws 1 , which corresponds to the value of H for which the spectrum maximum is reached. In fact, it corresponds mathematically to the value taken almost everywhere by the weak scaling exponent of the signal. Furthermore, we supply some informations that allow to put in perspective the results obtained: In Table 1, R 1 is an overall ranking of these runners and R 2 is the ranking for this particular marathon, and their age is also supplied.

Comparison of the cadence marathon runners:

The data obtained from the multifractal analysis of runners allow to compare the values taken by the multifractality parameters derived from the cadence of each runner, see Fig. 18.

A multifractal analysis of marathon runners cadence based on the weak scaling exponent reveals three groups: ). H min calculated from wavelet coefficients and c ws 1 deduced from the (θ, ω)-cadence spectrum.

The center group contains the top-performing marathon runners, M9 (1st), M8 (2nd), M7 (3rd), M5 (4th), M2 (5th), and M3 (8th). These runners improved their rankings compared to the general field.

• M3 is ranked 8th, which is not a particularly good ranking, but he is included in this group because he improved his ranking compared to the general field, as did M2, M8, and M9.

• Fig. 18 shows that the multifractal parameters of M7 and M5 are very close, which confirms that they are ranked 3rd and 4th. It is true that their rankings have fallen compared to their general rankings, but they are still good rankings. Both runners are accustomed to good rankings.

The right group contains M10 (6th), M6 (9th), and M4 (10th). In fact, M6 and M10 maintained their usual rankings, and M4 is in last place. He is usually 8th, but in this marathon he fell to 10th. This group is the weakest, and they are always ranked among the last. M1 (7th) is alone on the left. It is unusual for him to be ranked 7th, as he is usually 4th. In this marathon, his performance fell, which may explain why he is not in the center group.

Evolution of cadence' multifractal parameters during the marathon

We sharpened the previous analysis by investigating changes in multifractal parameters during the marathon. Indeed, it is well known that in the last 12 km, many runners perceived an increase in difficulty on the Borg RPE scale (Rate of Perceived Exertion) greater than 15/20, indicating strenuous exercise, and it is interesting to see how the multifractality parameters are affected by these changes.

Figure 19 shows changes in multifractal parameters between the first and last quarters of the marathon, highlighting differences in physiological reactions to fatigue after the 30th kilometer. The changes were similar for all marathon runners except for three: M3, M9, M6, and M7. Interestingly, M6 and M7 (h min and c ws 1 ) did not exhibit significant changes in their multifractal parameters between the start and end of the race, compared to the other runners. This suggests that they were able to pace themselves effectively and maintain a consistent rhythm. For M7, h min remained unchanged, but c ws 1 increased significantly. In fact, M3, M9, M6, and M7 are marathoners who run at a constant pace, but for different reasons:

• M3 did not run at his maximum and maintained a constant pace to control his race at a submaximal intensity.

• M9 and M6 achieved their personal bests through a prudent 10 km, allowing them to complete the marathon without "hitting the wall."

• M7 also ran at a constant pace due to his monotonous training, which lacked interval training at VO2max (maximal oxygen uptake).

The other runners were more familiar with pace variation in their training. Overall, our findings suggest that multifractal parameters can be used to assess physiological changes during the marathon and identify runners who are able to pace themselves effectively.

Concluding remarks

On the methodological side, our study showed the possibility to use the weak scaling exponent as a new supplier of multifractality parameters, which should prove useful, in particular when no other regularity exponent can be used. As regards applications to marathon data, we note that the analysis of cadence is becoming more and more relevant; indeed, the popularity of footworn accelerometers, commonly known as foot pods, capable of sampling at high frequencies, gives the possibility of analyzing stride interval characteristics in the field. Therefore, it was then possible to analyze the fatigue effect on the gait during an entire real race. Fractal analysis has already been applied for analyzing the gait pattern during the marathon [START_REF] Hunter | Fractal analyses of gait variability during a marathon[END_REF]. Even if Detrended fluctuation analysis (DFA) and Higuchi's fractal dimension (HG) have previously been used to characterize motor control during gait, Hunter et al., (2021) examined statistical persistence and fractal dimension of stride dynamics during a marathon and explored the relationship between DFA and HG for running gait applied to stride interval series of each km of the 2018 TCS New York Marathon. They showed consistent persistence, variability, and fractal dimension of stride interval series throughout the marathon with no significant differences observed between the beginning, middle, and end of the Marathon. Moreover, HG was shown to correlate strongly with DFA, which may be useful in monitoring motor control using fractal analyses in real time, by decreasing computation time and improving robustness to changing time series lengths. In this current study, we emphasize the multifractal analysis of cadence using a novel multifractal formalism. This analysis shows that the most significant determinant of marathon performance is the temporal evolution of stride frequency, which is closely associated with a runner's strength. In contrast, the time series of Cadence does not serve as a decisive factor in performance but rather functions as an individual fatigue indicator, as previously demonstrated in earlier research utilizing Meyer's approach. This is of potential interest for a new way of marathon training which will have to adapt individually the strength training.
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 2 Figure 2: Three different estimations of wavelet scaling functions using a binomial cascade with parameter r = 0.8 and its fractional derivatives of order 0.5 and 2, compared with the theoretical wavelet scaling function in each case using the results in section 5.2. The estimated scaling function is in good accordance with the theoretical value.

Figure 3 :

 3 Figure 3: Estimation of wavelet scaling function of heart rate (left) and cadence (right). It enables the identification of p values for which η(p) > 0.Consequently, we infer that a multifractal analysis based on pexponents is directly applicable to heart rate data with p ∈ [0, 4], whereas for cadence data, η(p) < 0, ∀p > 0. Thus, a multifractal analysis has to to be based on weak scaling exponents.

Figure 4 :

 4 Figure 4: Three different representations of log-log regression to estimate the value of H min f using a binomial cascade with parameter r = 0.8 and its fractional derivatives of order 0.5 and 1. Theoretically, we know that the corresponding values of H f min are respectively: H f min = -log 2 (r) ≈ 0.3219, H f min = -0.5 -log 2 (r) ≈ -0.1781 and H f min = -1 -log 2 (r) ≈ -0.6781..

Figure 5 :

 5 Figure 5: Two different representations of log-log regression to estimate the value of H min f of heart rate (left) and cadence (right). The points of the regression line align remarkably well along a nearly straight line, indicating a sharp and negative estimation for H min f

Figure 6 :

 6 Figure 6: Estimation of the Legendre wavelet spectrum of Brownian motion based on wavelet coefficients. It yields a poor estimation of the theoretical multifractal spectrum (which is supported by a unique point H = 0.5)

Figure 7 :

 7 Figure 7: Selected wavelet coefficients for leaders (left) and (θ, ω)-leaders (right)

Figure 8 :

 8 Figure 8: Estimation of wavelet scaling function η(q) (left) and Legendre spectrum (right) using a Gaussian white noise with fixed ω(j) = j and different θ(j) = j k , k ∈ {0.25, 0.3, 0.4, 0.5}, compared to the theoretical scaling function η(p) = -p/2 and spectrum D ws f (H) = -1/2 and the results obtained using a multifractal analysis based on Hölder exponents.

Figure 9 :

 9 Figure 9: Estimation of wavelet scaling function η(q) (left) and Legendre spectrum (right) using a Gaussian white noise with fixed θ(j) = j 0.25 and different ω(j) = j k , k ∈ {0.6, 0.8, 1, 1.2, 1.4}, compared to the theoretical scaling function η(p) = -p/2 and spectrum D ws f (H) = -1/2.

Figure 10 :

 10 Figure 10: Estimation of Legendre spectrum of the Gaussian white noise and fractional Brownian motion with different Hurst exponents γ ∈ {0.3, 0.5, 0.7}, with θ(j) = j 0.25 and ω(j) = j.

Figure 11 :

 11 Figure 11: Above: representation of the binomial cascade with r = 0.8 (on the left), its fractional derivative (in the middle), and its second fractional derivative (on the right). Below: representation of the associated Legendre spectra with leaders (in blue), p-leaders with p=0.5 (in green), (θ, ω)-leaders (in magenta), and the theoretical spectrum (in black).
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 12 Figure 12: Ĉ1 (j) as linear functions of j for non quantized (dashed dotted line, b=0) and quantized data (derivative of order 0.5 of binomial cascade), at different quantization levels b (solid lines).

Fig. 12

 12 Fig. 12 compares the estimation of C 1 (j) as a function of j, for quantized data at different levels compared with non quantized data. Let us examine how quantization affects the estimation based on

Figure 13 :

 13 Figure 13: η(q) as a function of q at different levels of b of derivative of order 0.5 of binomial cascade.

Fig. 13

 13 Fig.13compares the estimation of the scaling function η(q) as a function of q for different quantization levels with the scaling function of non quantized data, based on p-leaders for p ∈ {1, 2, 3}. In all three cases, quantization affects dramatically the estimation of the scaling function as b decreases (∆ increases). More precisely, the impact is important on the part where q < 0 and has almost no impact

Fig. 14 compares the estimation of C 1

 1 Fig.14compares the estimation of C 1 (j) as a function of j, for quantized data at varying levels compared with non quantized data. The influence of quantization propagates fast up to the coarsest scale as δ increases (equivalently by decreasing b) and it remains restricted to fine scales preserving the coarser scales unvarying and usable to perform the linear regressions yielding ĉ1 . The impact of quantization also is more striking on the second derivative of binomial cascade which is multifractal than the Gaussian white noise that is monofrcatal. In fact, for binomial cascade linear regression is meaningless already below b = 9 to evaluate c 1 ; whereas for Gaussian white noise a meaningful range of scales for linear regression can still be identified, even when quantization levels significantly below

Figure 14 :

 14 Figure 14: Ĉ1 (j) as linear functions of j for non quantized (dashed dotted line, b=0) and quantized Gaussian white noise (left) and second derivative of binomial cascade (right) at different quantization levels b (solid lines).

Figure 15 :

 15 Figure 15: η(q) as a function of q at different levels of b of Gaussian white noise (left) and for the second derivative of of the binomial cascade (right)

Figure 16 :

 16 Figure 16: Representation of a cadence (number of step by minute) signal of a marathon runner with a size of around 12000.

Figure 17 :

 17 Figure 17: Estimates of the (θ, ω)-leaders scaling function (left) and its Legendre transform (right).

Figure 18 :

 18 Figure 18: Representation of the pair (h min , c ws 1 ). H min calculated from wavelet coefficients and c ws 1 deduced from the (θ, ω)-cadence spectrum.

Table 2 :hhFigure 19 :

 219 Figure 19: Evolution of the couple (h min , c ws 1 ) deduced from the (θ, ω)-cadence spectrum between the first half (in red) and the last fourth (in blue) of the marathon.

Table 1 :

 1 Multifractal cadence analysis

		M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
	h min -0, 071 -0, 285 -0, 23	-0, 411 -0, 263 -0, 493 -0, 259 -0, 197 -0, 278 -0, 478
	c ws 1	0, 341	0, 121	-0, 09	-0, 093 0, 047	-0, 113 0, 026	0, 14	-0, 1	-0, 278
	age 47	22	44	58	29	36	43	42	34	47
	R 1	4	7	10	8	3	9	1	5	2	6
	R 2	7	5	8	10	4	9	3	2	1	6

and its decreasing wavelet profile is

Its weak scaling spectrum is given by if H = α then D ws X (H) = η if H ̸ = α then D ws X (H) = -∞.

Proof: We pick for analyzing wavelet the one which is used in the construction. The two first statements follow directly from the following remark: there are 2 ηj(1+o(1)) nonvanishing wavelet coefficients (of size 2 -αkj ); therefore, because of the slow growth assumptions on θ and ω, there are at most 2 ηj(1+o(1)) nonvanishing (θ, ω)-leaders and the others vanish. As regards the last point, we consider two cases, see [START_REF] Aubry | Random wavelet series[END_REF]:

• The "cusp points" where the Hölder exponent is α and for which a fractional integration of order n shifts this exponent by n exactly.

• The other points, which are oscillating singularities with a strictly positive oscillation exponent β. In that case a fractional integration of order n shifts the Hölder exponent by n(1 + β), so that the weak scaling exponent takes the value +∞.

Multifractal analysis of marathon data

We now present an application of the methods developed in the previous sections: We derive parameters deduced from the estimation of the weak scaling spectrum for the cadence recorded on marathon runners.

Because these data are heavily quantized, see Fig. 16, we start by investigating the impact of this quantization on multifractal analysis.

The quantization effect

The quantization of data is a crucial aspect in various scientific fields, including statistics, finance, and signal processing. Data quantization can distort the scaling invariance properties of data. Note that it is sometimes inevitable (it is is the case here for cadence, which necessarily takes integer values).

A first analysis on this effect was carried out by H. Wendt and P. Abry see [36] [35].They examined the interplay between data quantization and multifractal analysis, aiming to understand its impact on scaling properties in complex datasets. Their study assesses the resilience to quantization of standard multifractal estimation methods, by evaluating their performance at various quantization levels with synthetic multifractal processes. In a nutshell, their study established that these estimation procedures can maintain their accuracy against quantization effects by limiting the range of scales used in multifractal parameter estimation to the largest scales. When comparing different multifractal analysis