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A B S T R A C T 13 

Shallow groundwater nitrate nitrogen (NO3
-
-N) concentrations in agricultural areas usually 14 

show high spatial and intra-annual variability. It is hard to predict such concentrations due to 15 

the complexity of influencing factors (e.g., different forms of N in soil, vadose zone 16 

characteristics, and groundwater environmental conditions). Here, a large number of 17 

groundwater and soil samples were collected monthly over two years at 14 sites to analyze 18 

the soil and groundwater physiochemical properties and the stable isotopes of δ
15

N and δ
18

O 19 

of groundwater NO3
-
-N in agricultural areas. Based on field observations, a random forest 20 

(RF) model was used to predict the groundwater NO3
-
-N concentrations and reveal the 21 

importance of effect factors. The results show that there are large spatiotemporal variations 22 

in NO3
-
-N, δ

15
N-NO3

-
, and δ

18
O-NO3

-
 in groundwater. NO3

-
-N is the major dominant specie 23 
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of inorganic N in groundwater, and the groundwater NO3
-
-N concentration in 24% of the 24 

samples failed to meet the drinking water standard of the WHO (10 mg L
-1

). The RF model 25 

satisfactorily predicted groundwater NO3
-
-N concentrations with R

2
 of 0.92–0.93, RMSE of 26 

3.87–4.94, and MAE of 2.10–2.89. Groundwater nitrite and ammonium are the most 27 

important factors related to NO3
-
-N removal and production in groundwater. Denitrification 28 

and nitrification were further identified by the relationships among δ
15

N-NO3
-
, δ

18
O-NO3

-
, 29 

and NO3
-
-N, and by the ranges of δ

15
N-NO3

-
, δ

18
O-NO3

-
, temperature, pH, DO, and ORP in 30 

groundwater. Soil-soluble organic nitrogen (S-SON) and the depth of groundwater table 31 

were identified as vital factors related to N sourcing and leaching. Overall, as a first 32 

approach to adopting a RF model for high spatiotemporal-resolution prediction of 33 

groundwater NO3
-
-N variations, the findings of this study enable a better understanding of 34 

groundwater N pollution in agricultural areas. Optimizing management of irrigation and N 35 

inputs is anticipated to reduce S-SON accumulation and mitigate the threat to groundwater 36 

quality in agricultural areas.  37 

  38 

  39 
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1. Introduction 43 

Groundwater is currently facing the severe challenges of depletion and deteriorating 44 

quality due to natural and anthropogenic factors around the world (Liu et al., 2016; 45 

Famiglietti and Ferguson, 2021). Among the many groundwater problems, nitrogen (N) 46 

pollution has become a global issue due to the use of N fertilizers and manures and elevated 47 

atmospheric deposition (Vystavna et al., 2017). Groundwater N pollution reduces N use 48 

efficiency and threatens the safety of the water supply in China (Gan et al., 2022; Gao et al., 49 

2022). The nitrate nitrogen (NO3
-
-N) contamination of groundwater is a severe problem 50 

threatening the environment and human health, especially in intensively irrigated 51 

agricultural areas. Accurately predicting the variations of shallow groundwater NO3
-
-N 52 

concentrations at high spatiotemporal resolution is very difficult due to the complex effect 53 

factors and processes (Hinkle and Tesoriero, 2014; Biddau et al., 2019; He et al., 2022). 54 

Therefore, exploration of the spatiotemporal patterns and any associated effect factors and 55 

processes is urgently needed to prevent widespread water-quality issues around the world. 56 

Climate variables, soil texture, land use, and human activities are commonly 57 

investigated and recognized as the main factors affecting the inter-annual variations of 58 

groundwater NO3
-
-N pollution on the large or macroscopic scale (Pennino et al., 2020; El 59 

Amri et al., 2022; He et al., 2022). Nonetheless, comprehensive identification of the effect 60 

factors and evaluation of their impact on dynamics of groundwater NO3
-
-N has seldomly 61 

been done at a high spatial and monthly temporal resolution, especially in irrigated 62 

agricultural areas. Climate variables and agricultural management activities, such as 63 
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precipitation, irrigation, and fertilizer input, cause the high level of variability in the 64 

different forms of N content in soil and subsequent leaching to groundwater. Vadose zone 65 

thickness (i.e., the depth of the groundwater table) contributes significantly to the variations 66 

of groundwater NO3
-
-N concentrations by affecting the amounts of different forms of N 67 

leaching and groundwater environmental conditions (Li et al., 2021; Weitzman et al., 2022). 68 

Meanwhile, groundwater environmental parameters influence the different forms of N 69 

content by impacting transformation processes. Environmental factors related to N 70 

transformation in groundwater include temperature, dissolved oxygen (DO), 71 

oxidation-reduction potential (ORP), and dissolved organic carbon (DOC). The difficulty in 72 

understanding groundwater NO3
-
-N variations stems from the ability to determine the most 73 

critical explanatory variables among the many factors. This question is challenging when 74 

using common traditional methods, such as correlation analysis, attribution analysis, cluster 75 

analysis, principal component analysis, and numerical and distributed hydrological models.  76 

Overall, groundwater NO3
-
-N concentrations are controlled by diverse factors that are 77 

linked through the complex interaction of multiple processes. These processes involve 78 

inorganic and organic N transformation and transport in soil and groundwater (Zhang et al., 79 

2019). Surface soil N leaching to groundwater and the groundwater environment are both 80 

affected by characteristics of the vadose zone. The leaching of different forms of N content 81 

from the surface soil, as the source of N in groundwater, indirectly affects groundwater 82 

NO3
-
-N dynamics through N transformation in groundwater. The N transformation in 83 

groundwater is affected by the groundwater environment, and it increases the importance 84 
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and difficulty of identifying the roles of N transformation in groundwater. In terms of the N 85 

in groundwater, the widely reported mineralization, nitrification, and denitrification 86 

processes in groundwater can modify different forms of N species balance (Liu et al., 2022; 87 

Shen et al., 2023). For instance, the mineralization and nitrification processes in 88 

groundwater can produce NO3
-
-N, while denitrification can reduce NO3

-
-N. These 89 

processes in groundwater play a key influence in the spatiotemporal variations of NO3
-
-N 90 

dynamics in addition to N leaching in soil. Therefore, identifying the main N 91 

transformation processes in groundwater and evaluating their importance will further 92 

elucidate the mechanisms of groundwater NO3
-
-N pollution in agricultural areas. 93 

The complex factors and processes influencing groundwater NO3
-
-N concentrations 94 

lead to great difficulty in making predictions at high spatial and temporal resolution. For 95 

instance, physically based numerical and distributed hydrological models (e.g., HYDRUS, 96 

AgriFlux, and SWAT [Soil & Water Assessment Tool]) need to be coupled with 97 

groundwater flow models, such as MODFLOW-MT3D and the model of Lasserre et al. 98 

(1999) linked to a GIS (geographic information system), to predict groundwater NO3
-
-N 99 

dynamics (Wang et al., 2016; El Amri et al., 2022). The performance of these models 100 

basically depends on an adequate understanding of hydrological behaviors and 101 

biogeochemical processes and the availability of detailed data on the properties of the 102 

vadose zone and groundwater system. These data are usually difficult to measure and 103 

collect, resulting in unsatisfactory model performance (Coppola et al., 2005). Machine 104 

learning methods, for example, artificial neural networks, multiple logistic regressions, 105 



 

 6 

generalized additive models, generalized linear models, support vector regressions, and 106 

random forest models, have been widely used to predict the N status in agricultural and 107 

natural waste waters (Chlingaryan et al., 2018; Bagherzadeh et al., 2021; He et al., 2022). 108 

They were gradually accepted by researchers due to their advantages, such as their high 109 

generalization ability and low cost, but most of them have the problem of overfitting 110 

(Castrillo and García, 2020). Among these machine learning methods, the random forest 111 

model has the advantages of strong resistance to overfitting, no feature selection, and 112 

automatic data filling. It has been proven to accurately predict inter-annual groundwater 113 

NO3
-
-N concentrations on a large scale (Band et al., 2020; He et al., 2022). However, the 114 

random forest model has not yet been applied to predict intra-annual variations of shallow 115 

groundwater NO3
-
-N in irrigated agricultural areas.  116 

The North China Plain (NCP) is the main crop production area in China, and 117 

groundwater resources in the NCP are generally dealing with the issue of N pollution. This 118 

study was conducted in a semiarid heavily irrigated agricultural area located in the NCP, 119 

that is characterized by a shallow groundwater table depth and, thus, vulnerable to 120 

groundwater pollution. Monthly meteorological data were obtained from the Xinxiang 121 

weather station, which is located near the study site. Two years’ worth of monthly soil 122 

physiochemical data and groundwater quality parameters were measured in the field and 123 

laboratory. The objectives of this study were to: (1) reveal the spatial and intra-annual 124 

variations of inorganic N species and isotopic signature of NO3
-
-N in groundwater, (2) 125 

construct a random forest model to predict spatiotemporal variations of groundwater 126 
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NO3
-
-N using a simplified approach to the model, and (3) identify the main effect factors 127 

and processes, and evaluate their relationships with groundwater NO3
-
-N based on the 128 

constructed random forest model and isotope approaches. The ability to prediction the 129 

levels of groundwater NO3
-
-N pollution and uncover the mechanism that underlies its high 130 

spatial and temporal variability is important for future management of agricultural N input 131 

and water-quality protection in all developing and developed countries. 132 

2. Materials and Methods 133 

2.1. Site description 134 

 This study was conducted in an irrigated agricultural area (35°00′– 35°30′ N, 113°31′– 135 

114°25′ E) located in the piedmont region of Taihang mountain, NCP, near the lower 136 

reaches of the Yellow River (Fig. 1). The study site covers about 1,500 km
2
 and belongs to 137 

the temperate continental monsoon climate. Weather data from Xinxiang station, located 138 

near our study site, were obtained from the China Meteorological Data Service Center 139 

(http://data.cma.cn/). From 2010 to 2019, the average annual temperature was 15.6°C, with a 140 

maximum temperature of 40°C and a minimum temperature of -13.1°C.The average annual 141 

potential evaporation was 1,025 mm yr
-1

, and the average annual rainfall was about 500 mm 142 

yr
-1

. The rainfall mainly occurred from June to September. According to the aquifer data 143 

collected by field surveys, the average annual groundwater table depth ranged from 1.9 to 144 

18 m, and the groundwater level ranged from 54.1 to 82.4 m (Fig. 1a–b). The particle size of 145 

the soil was analyzed using a Malvern laser particle size analyzer as reported in our previous 146 

study (Wang et al., 2021). According to the international soil texture classification standard, 147 

the soil in the study area was classified into silt (8.3%), silty loam (61.1%), and sandy loam 148 

(30.6%) (Fig. 1c). The main crops were winter wheat and summer maize (44%), winter 149 

wheat and summer peanut (27%), and winter wheat and summer rice (11%) at the study site 150 
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(Fig. 1d). Other land uses, including rural residential areas, urban areas, and water body areas, 151 

constitute the remaining 18% of the study site (Fig. 1d). Irrigation and fertilization play 152 

important roles in ensuring stable crop production and the N applied on the agricultural 153 

land surface was mainly derived from chemical fertilizers, manure, and crop residues. The 154 

crop residues of winter wheat and summer corn/summer peanuts were all returned to the 155 

fields. The large amount and temporal variability in N input causes the groundwater N 156 

content to show high spatiotemporal variations and increase continuously, which poses a 157 

serious burden on groundwater N pollution and its management.  158 

 159 
Fig. 1. Location of the study area in the North China Plain and the sampling sites, and maps of (a) the 160 
depth of the groundwater table, (b) the groundwater level, (c) the soil type and (d) land use. The land use 161 
map was obtained from the Geospatial Data Cloud (http://www.gscloud.cn/search) 162 

2.2. Field monitoring, sampling and chemical analysis 163 

Fourteen representative sampling sites were selected according to the geographical 164 

location, land use, soil types, and the groundwater table depth to conduct field monitoring 165 

and collect surface soil and groundwater samples (Fig. 1a and Table 1). The field 166 
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monitoring and sample collection were conducted monthly from May 2017 to April 2019 at 167 

the 14 observation sites (Fig. 1a). The field monitoring involved the use of a multiparameter 168 

water quality probe (HORIBA, Ltd., Japan) to determine the basic physicochemical 169 

parameters of groundwater, including water temperature (GW-Temp), pH (GW-pH), total 170 

dissolved solids concentration (GW-TDS), oxidation-reduction potential (GW-ORP), and 171 

dissolved oxygen (GW-DO). At the same time, the depth of the groundwater table 172 

(GW-Dep) was measured and groundwater water samples were collected using a bailer tube. 173 

The data on irrigation were collected through a survey of the local farmers.  174 

Table 1. Soil texture, crops, depth of groundwater table, and groundwater level at sampling sites  175 

Sampling site 
Soil 

texture  
Crop rotation 

Groundwater table  

depth (m) 

Groundwater 

 level (m) 

SG1 Silt Winter wheat-summer rice 2 82.4 

SG2 Silty loam Winter wheat-summer corn 3.9 65.5 

SG3 Silty loam Winter wheat-summer corn 4.9 65.9 

SG4 Silty loam Winter wheat-summer corn 6 69.3 

SG5 Silty loam Winter wheat-summer corn 9.4 74.5 

SG6 Silty loam Winter wheat-summer corn 9.9 64.5 

SG7 Silty loam Winter wheat-summer corn 10.5 63.6 

SG8 Silty loam Winter wheat-summer corn 10.7 71.5 

SG9 Sandy loam Winter wheat-summer peanuts 12.2 60.1 

SG10 Silty loam Winter wheat-summer corn 12.3 60.8 

SG11 Sandy loam Winter wheat-summer peanuts 12.9 58.8 

SG12 Sandy loam Winter wheat-summer peanuts 13.3 55.2 

SG13 Silty loam Winter wheat-summer corn 14.8 54.1 

SG14 Silty loam Winter wheat-summer corn 18 60.1 

Groundwater and soil samples were collected at a frequency of once a month during the 176 

two-year study period. The groundwater samples were collected from wells and filtered 177 

using a 0.45 μm filter. These groundwater samples were brought back to the laboratory, and 178 

1 L of each sample was stored in a refrigerator at a temperature of 2°C until physiochemical 179 

analysis. At the same time, 100 ml groundwater samples were immediately frozen until 180 
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isotope analysis. Moreover, soil samples were collected from farmland within 500 m of the 181 

wells where the groundwater samples were collected. The soil samples were gathered at the 182 

soil surface with a depth of 0–10 cm in the farmland. All the soil samples were randomly 183 

collected from six sites and mixed thoroughly to obtain a representative soil sample (500 g) 184 

at each sampling site. Meanwhile, additional soil samples were collected in aluminum boxes 185 

that were sealed and brought back to the laboratory. The mixed soil samples were dried 186 

naturally, crushed through a 2 mm sieve, and stored in a cool and dry place until 187 

physiochemical analysis. 188 

The soil samples stored in the aluminum boxes were further used to analyze the soil 189 

water content (SWC) through the oven-drying method. The parameters measured in the 190 

laboratory include groundwater dissolved organic carbon (GW-DOC), groundwater 191 

dissolved organic N (GW-DON), groundwater ammonium (GW-NH4
+
-N), groundwater 192 

nitrate (GW-NO3
-
-N), groundwater nitrite (GW-NO2

-
-N), soil organic carbon (SOC), 193 

soil-soluble organic N (S-SON), soil nitrate (S-NO3
-
-N), soil nitrite (S-NO2

-
-N), and soil 194 

ammonium (S-NH4
+
-N). All these chemical parameters of soil and groundwater were 195 

determined by the colorimetric method using a spectrophotometer (Thermo Fisher Scientific, 196 

Inc, USA) according to the procedures reported by Hood-Nowotny et al. (2010) and Wang 197 

et al. (2021). 198 

Since August 2018, the influence of N leaching on groundwater has been weaker in the 199 

following eight-month dry period than in the wet period. Therefore, in this study the isotope 200 

analysis was performed on groundwater samples to identify nitrification and denitrification 201 

in groundwater from August 2018 to April 2019. The stable isotope (
15

N and 
18

O) 202 
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abundance of groundwater NO3
-
-N was determined using the denitrifying bacteria method. 203 

A seed solution (of glycerol 500 μL + bacteria 500 μL) was shaken for 12–15 hrs, purged 204 

with N2 for 3 hrs, and then added to the sample and placed in a shaking table at 100 rpm 205 

overnight, shaking and as determined by an IRMS-100 mass spectrometer. USG32, USG34, 206 

and USG35 were used as standard samples, and the results were corrected based on a 207 

two-point calibration method. The measured isotope values correspond to the international 208 

standard substances, expressed as follows: 209 

           
              

      
     210 

       [1] 211 

where         is the isotope value of the corresponding sample,         is the ratio of 212 

heavy and light isotopic abundance of elements in the sample, and RVSMOW is the ratio of 213 

heavy and light isotopic abundance of Vienna Standard Mean Ocean Water (VSMOW).  214 

2.3. Random forest model 215 

A random forest model was used to predict the intra-annual variations of groundwater 216 

NO3
-
-N at the study site. The random forest model is a machine learning algorithm based on 217 

the combination of the bagging integrated learning theory and the random subspace 218 

algorithm, and it overcomes the drawbacks of overfitting and instability (Breiman, 2001). 219 

The model constructs several regression trees (ntree) by setting nodes (mtry) on a random 220 

subset of the original training dataset, according to Amit and Geman (1997). The random 221 

forest model divides the data into training and test sets by setting a certain ratio (P), and the P 222 

ratio of 2:1 was chosen in this study. The random forest model was then calibrated using the 223 

training subset and validated using the test subset. A package of randomForest in Rstudio 224 

(version 4.2.2) was adopted to construct the random forest model. 225 
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The model accuracy was made to meet the research needs by adjusting the three 226 

parameters ntree, mtry, and P. Three error metrics, the root mean square error (RMSE), the 227 

coefficient of determination (R
2
), and the mean absolute error (MAE), were selected to 228 

evaluate the random forest model’s performance. The trained and validated random forest 229 

model was used to analyze the importance of groundwater NO3
-
-N influencing factors. The 230 

importance of an effect factor is defined as the increase in the predicted mean squared error 231 

(MSE) after randomly permuting this factor (Breiman, 2001). It reflects the contribution of 232 

each effect factor to a groundwater nitrate concentration. The normalized increased MSE, 233 

that is, the relative importance, for each effect factor was between 0% and 100%. The 234 

partial dependence shows the marginal effect of each explanatory variable for the response 235 

after considering the average effects of the other variables. The partial dependence plots of 236 

the important effect factors were used to analyze the relationship between a single 237 

independent variable and the groundwater NO3
-
-N subject to the influence of the other 238 

independent variables. 239 

2.4. Data analysis 240 

The spatial distribution of the measured data was interpolated using inverse distance 241 

weighting in ArcGIS to analyze the spatial distribution characteristics of different N species 242 

in groundwater from the study site. The Spearman coefficient (r), paired t-tests, and a 243 

one-way analysis of variance (ANOVA) were used to calculate the correlation coefficient 244 

and test the significance using SPSS software (version 25.0, IBM Corporation, Chicago, 245 

Illinois). Denitrification was identified based on NO3
-
-N isotopes and their relationships, 246 

that is, the enrichment of δ
15

N-NO3
- 
and δ

18
O-NO3

-
 with a slope of 0.5–1.0 (Δδ

18
O/δ

15
N), 247 
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and a decrease of NO3
-
-N concentrations. An increase of NO3

-
-N concentrations and 248 

decrease of δ
15

N-NO3
- 
and δ

18
O-NO3

-
 were analyzed to identify nitrification.  249 

3. Results and Discussion 250 

3.1. Statistical analysis of groundwater nitrate concentration and its effect factors 251 

Table 2 lists the variables analyzed in this study, that is, the precipitation, irrigation, 252 

soil sand content (SSC), SWC, SOC, S-SON, S-NO3
-
-N, S-NH4

+
-N, S-NO2

-
-N, 253 

GW-NO3
-
-N, GW-NH4

+
-N, GW-NO2

-
-N, GW-DON, GW-DOC, GW-Dep, GW-Temp, 254 

GW-TDS, GW-pH, GW-DO, and GW-ORP. The 19 predictor variables in Table 2 were 255 

considered as effect factors that could potentially influence groundwater GW-NO3
-
-N. The 256 

maximum, minimum and mean values; standard deviation (SD); coefficient of variation 257 

(CV); and quartile of these variabiles are shown in Table 2. Different forms of N content 258 

from surface soil were considered instead of N input due to the complex sources and 259 

transformation processes of N input. The statistical characteristics of N input were not 260 

analyzed. As shown in Table 2, all the CV values, which can reflect the size of dispersion of 261 

the measured data, ranged from 0.08 to 2.06, and most of the factors had small CVs and 262 

low variability. However, the CV values of groundwater inorganic N were all greater than 1, 263 

indicating that spatial and temporal patterns of groundwater inorganic N concentrations 264 

were highly variable in the study area. The SD and CV of groundwater NO3
-
-N 265 

concentrations were the largest compared with NH4
+
-N and NO2

-
-N, indicating that the 266 

spatiotemporal variability of groundwater NO3
-
-N concentrations was the highest among 267 

the three forms of inorganic N.  268 

Table 2 Summary statistics of the variables analyzed in this study (May 2017-April 2019) 269 
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Variables Max Min Mean SD CV 
Quartiles 

 25th 50th 75th 

Predictor 

variables, i.e., 

the effect 

factors that 

could 

potentially 

influence 

GW-NO3
-
-N 

Precipitation 

(mm) 
98.20 0.20 35.47 33.07 0.93 4.78 26.65 67.95 

Irrigation  

(mm) 
300.0 0.00 96.10 93.25 0.97 0.00 

105.0

0 

200.0

0 

GW-Dep  

(m) 
19.00 0.10 10.03 4.48 0.45 5.82 10.90 13.03 

SSC  

(%) 
71.26 12.45 31.10 16.60 0.53 

21.4

0 
25.70 28.2 

SWC 

 (mg mg
-1

) 
0.42 0.01 0.16 0.09 0.54 0.09 0.16 0.22 

SOC  

(g kg
-1） 

37.19 0.75 16.80 6.83 0.41 
11.5

7 
16.19 21.91 

S-SON  

(mg kg
-1

) 

805.5

0 
34.55 

333.6

2 

146.3

2 
0.44 

209.

80 

335.0

6 

440.3

3 

S-NO3
-
-N 

 (mg kg
-1

) 

265.1

0 
6.87 53.89 47.22 0.88 

25.5

7 
38.00 59.64 

S-NO2
-
-N  

(mg kg
-1

) 
11.40 0.01 2.74 1.80 0.66 1.68 2.28 3.15 

S-NH4
+
-N 

 (mg kg
-1

) 
62.80 6.41 18.99 7.12 0.38 

14.8

9 
18.49 22.25 

GW-pH 8.70 3.42 7.14 0.58 0.08 6.84 7.13 7.52 

GW-Temp  

(℃) 
31.20 6.95 18.40 4.07 0.22 

15.5

6 
17.85 20.80 

GW-DO  

(mg L
-1

) 
50.00 2.65 11.78 7.28 0.62 7.31 9.91 13.37 

GW-ORP  

(mV) 
308.0 

-136.

0 

137.2

4 

120.6

7 
0.88 

46.2

5 

172.5

0 

235.0

0 

GW-DOC  

(mg L
-1

) 

280.3

0 

<LO

D 
42.84 43.27 1.01 

13.3

5 
25.83 64.60 

GW-TDS  

(g L
-1

) 
3.17 0.22 1.15 0.65 0.56 0.73 0.95 1.30 

GW-DON  

(mg L
-1

) 

808.3

8 

<LO

D 
69.40 78.20 1.13 

25.7

0 
69.40 73.30 

GW-NO2
-
-N  

(mg L
-1

) 
0.52 

<LO

D 
0.08 0.11 1.49 0.01 0.03 0.07 

GW-NH4
+
-N  

(mg L
-1

) 
22.80 0.04 1.52 1.61 1.05 0.77 1.23 1.93 

Response 

variable 

GW-NO3
-
-N  

(mg L
-1

) 

132.2

0 
0.09 8.31 14.77 1.78 1.60 3.60 9.24 

Note: standard deviation (SD), coefficient of variation (CV), depth of groundwater table (GW-Dep), 270 

soil sand content (SSC), soil water content (SWC), soil organic carbon content (SOC), soil soluble 271 

organic N content (S-SON), soil nitrate content (S-NO3
-
-N), soil nitrite content (S-NO2

-
-N), soil 272 

ammonium content (S-NH4
+
-N), groundwater pH (GW-pH), groundwater temperature (GW-Temp), 273 

groundwater dissolved oxygen content (GW-DO), groundwater oxidation-reduction potential 274 

(GW-ORP), groundwater dissolved organic carbon concentration (GW-DOC), groundwater total 275 

dissolved solids (GW-TDS), groundwater dissolved organic N concentration (GW-DON), 276 

groundwater ammonium concentration (GW-NH4
+
-N), groundwater nitrite concentration 277 
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(GW-NO2
-
-N), groundwater nitrate concentration (GW-NO3

-
-N), Limit of detection (LOD). 278 

3.2. Spatiotemporal variations of inorganic N species in groundwater 279 

The temporal and spatial variations of groundwater inorganic N concentrations in the 280 

study area are shown in Figs. 2–3. There is a large difference in the temporal variations of 281 

groundwater inorganic N concentrations (Fig. 2a–c). The groundwater NO3
-
-N 282 

concentrations ranged from 0.09 to 132.16 mg L
-1

. The groundwater NO3
-
-N concentrations 283 

were higher from May to August and usually decreased from September to April of the 284 

following year. In this study, the peaks of the groundwater NO3
-
-N concentrations were 285 

caused by high level of NO3
-
-N leaching after fertilization, irrigation, and heavy rain in the 286 

rainy season (May–August). This result is consistent with the previous findings of Biddau 287 

et al. (2019), who reported the high levels of NO3
-
-N concentrations (up to 162 mg L

-1
) in 288 

shallow groundwater also occur when NO3
-
-N leaching is high, particularly during 289 

fertilization and irrigation periods. The groundwater NH4
+
-N concentrations ranged from 290 

0.04 to 22.8 mg L
-1

. They showed a fluctuating increasing trend from May 2017 to May 291 

2018, and the values were relatively high and stable from September 2018 to April 2019. 292 

The concentrations of groundwater NO2
-
-N ranged from 0.01 to 0.52 mg L

-1
, and they were 293 

higher from May to October than in other months for both 2017 and 2018. Comparing the 294 

three inorganic forms of N, the concentrations of groundwater NO3
-
-N were the highest, 295 

while NO2
-
-N was the lowest among them. Overall, all three forms of groundwater 296 

inorganic N in the second year were generally higher than in the first year (Fig. 2d–f). This 297 

increase in annual NO3
-
-N indicates that the shallow groundwater system might not be able 298 

to rapidly recover from N pollution. 299 
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The spatial variations of inorganic N concentrations in groundwater at the 14 sampling 300 

sites are shown in Fig. 3 a–f. The GW-NO3
-
-N concentrations were high and followed the 301 

order of SG3, SG4, SG6, SG7, and SG2, while they were lower at the other sites. 302 

Groundwater NH4
+
-N concentrations were the highest at SG3, followed by SG2, SG7. 303 

Groundwater NO2
-
-N concentrations were the highest at SG6, followed by SG4, SG5, SG7. 304 

Overall, all the forms of groundwater inorganic N concentrations varied spatially in the 305 

study area. Among them, the spatial variations of GW-NO3
-
-N concentrations were highly 306 

variable in the study area. Site SG1 showed the lowest GW-Dep and low GW-NO3
-
-N 307 

concentrations (Table 1). This is likely because the soil NO3
-
-N source was lost by 308 

denitrification under intermittent ponding irrigation during the summer rice season. Thus, 309 

the NO3
-
-N leaching was reduced at SG1. Compared with sites SG8–SG14, the sites 310 

SG2–SG4 and SG6–SG7 had lower GW-Dep and showed higher GW-NO3
-
-N 311 

concentrations (Table 1). This could be because NO3
-
-N leaching decreased with the 312 

increase of vadose zone thickness (Weitzman et al., 2022). Sites SG5 and SG8-SG14 313 

showed similar GW-NO3
-
-N concentrations but were characterized by different GW-Dep. It 314 

indicates that in addition to N source and leaching, other groundwater environmental 315 

factors might affect GW-NO3
-
-N. Overall, for the GW-NO3

-
-N concentrations, about 24% 316 

of samples exceeded the World Health Organization (WHO)’s water quality standard of 10 317 

mg L
-1

.  318 
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 319 

 320 

 321 

 322 
Fig. 2 Temporal variations of concentrations of (a) monthly nitrate, (b) monthly ammonium, (c) monthly 323 

nitrite, (d) annual nitrate, (e) annual ammonium, and (f) annual nitrite in groundwater. The different 324 
letters above the error bars in (d), (e), and (f) indicate significant difference (p<0.05) between the 325 

different years. 326 
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Fig. 3 Spatial distribution of concentrations of (a) nitrate, (b) ammonium, and (c) nitrite in groundwater 331 
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 332 

3.3. Spatiotemporal variations of groundwater nitrate isotopes 333 

The  15
N-NO3

-
 values ranged from -20.16‰ to 107.88‰ with a mean value of 334 

11.16±16.30‰. The  18
O-NO3

-
 values ranged from -15.69‰ to 56.56‰ with a mean 335 

value of 8.39±12.40‰. The temporal variations of the  15
N-NO3

-
 and  18

O-NO3
-
 336 

values in groundwater from August 2018 to April 2019 are shown in Fig. 4a. The 337 

 15
N-NO3

-
 and  18

O-NO3
-
 values showed similar temporal variation trends. 338 

Groundwater NO3
-
-N in August was heavily affected by leaching because of the 339 

application of fertilizer and manure and wheat residue return to the field in the wet 340 

season when heavy and high-frequency precipitation happens. Meanwhile, in the 341 

following months (September to April of the following year), the leaching amount was 342 

reduced due to less precipitation in the dry seasons. The measured mean  15
N-NO3

-
 343 

value was 26.36‰ in August 2018, and the mean  18
O-NO3

-
 value was 17.83‰ in the 344 

same month. While the mean  15
N-NO3

-
 values ranged from 3.54‰ to 19.73‰ and the 345 

mean  18
O-NO3

-
 values ranged 2.91‰ to 10.79‰ from September 2018 to April 2019, 346 

both are lower than the measured values obtained in August 2018. During the periods 347 

August–October 2018, December 2018–January 2019, and March–April 2019, the 348 

 15
N-NO3

-
 and  18

O-NO3
-
 showed decreasing trends. The slight increase in the 349 

 15
N-NO3

-
 and  18

O-NO3
-
 values after October 2018 (during wheat sowing) and 350 

February 2019 (during wheat regeneration) can be attributed to the application of 351 

fertilizer, crop residue returning to the field, and irrigation. These management practices 352 

caused an increase in NO3
-
-N denitrification rates due to the increase of soil NO3

-
-N, 353 



 

 20 

soil water, and organic carbon in the vadose zone.  354 

The spatial distribution of the  15
N-NO3

-
 and  18

O-NO3
-
 values in groundwater 355 

are shown in Fig. 4b–c. The δ
15

N-NO3
−
 values from the SG5 (mean value of 29.55‰) 356 

were obviously higher than those of the other sites (mean values ranged from 0.92‰ to 357 

14.35‰) (Fig. 4d). The maximum  15
N-NO3

-
 value of 107.88 ‰ was observed in 358 

August 2018 at SG5. This could be because the silt loam soil could have preserved soil 359 

water, and the manure application could have provided a carbon source for 360 

denitrification during wet season. Thus, the NO3
-
-N denitrification rates could be higher 361 

during NO3
-
-N leaching in the vadose zone at this silt loam site during the late wet 362 

season of August. Meanwhile, the δ
18

O-NO3
-
 values from the SG5, SG6, SG9, and 363 

SG14 (mean values ranged from 13.97‰ to 18.03‰) were higher than those of the 364 

other sites (mean values ranged from 2.05‰ to 8.67‰). At these sites, the δ
18

O-NO3
-
 365 

values were as high as 33.93‰ to 50.69‰ in August 2018, indicating that NO3
-
-N in 366 

precipitation was a direct source of recharge to the groundwater. This agrees well with 367 

the measured δ
18

O-NO3
-
 values in precipitation which ranged from 35‰–59‰ 368 

(VSMOW) as reported by Spoelstra et al. (2001). 369 

 370 Aug Sep Oct Nov Dec Jan Feb Mar Apr

0

25

50

75

100

Is
o

to
p

e 
v

al
u

es
 (

‰
)

 δ15N-NO3
- (25%~75%)

 δ18O-NO3
- (25%~75%)

 Range within 1.5IQR

 Median

 Mean

(a) Temporal variations of stable isotopes of nitrate



 

 21 

 371 

 372 

Fig. 4 (a) temporal variations of δ
15

N-NO3
-
 and δ

18
O-NO3

-
values, spatial variations of (b) δ

15
N-NO3

-
 373 

and (c) δ
18

O-NO3
-
 values, and (d) box plots of δ

15
N-NO3

-
 and δ

18
O-NO3

-
 values at 14 sampling sites  374 

3.4. Prediction of spatiotemporal variations of groundwater nitrate  375 

In this study, the 19 effect factors in Table 2 were set as predictor variables, and 376 

GW-NO3
-
-N was set as a response variable when applying random forest model. Fig. 5 377 

shows the comparison between the measured and random forest model predicted 378 

GW-NO3
-
-N for the training dataset and test dataset. For the training dataset, the 379 

simulation results yielded an R
2
 of 0.93, an RMSE of 4.94, and an MAE of 2.10. After 380 

training, the model was validated using the test dataset, which yielded an R
2
 of 0.92, an 381 

RMSE of 3.87, and an MAE of 2.89, indicating that the model simulation results were 382 

good. Compared with previous results from random forest models reported by 383 

Ouedraogo et al. (2019), Pennino et al. (2020) and He et al. (2022), the model 384 
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constructed in this study achieved better performance in predicting NO3
-
-N 385 

concentrations in groundwater. In addition, the result of this study showed better model 386 

accuracy (R
2
 range of 0.92–0.93) compared to the studies of Knoll et al. (2019) and El 387 

Amri et al. (2022), which used other machine learning models,e.g., classification and 388 

regression trees and artifcial neural network, to assess groundwater NO3
-
-N and yielded 389 

a model accuracy (R
2
) range of 0.39–0.90. 390 

(a) Training dataset 

 

(b) Test dataset 

 

Fig. 5 Comparison between the observed and random forest model predicted groundwater nitrate 391 

concentrations in groundwater for the (a) training and (b) test datasets 392 

The spatial and temporal distribution of the observed and random forest model 393 

predicted groundwater NO3
-
-N concentrations are shown in Fig. 6. Comparing the 394 

measured and predicted spatial and temporal distributions of groundwater NO3
-
-N 395 

concentrations, the results showed that the predicted values were generally close to the 396 

measured values. Despite its remarkable performance, the random forest model may 397 

result in a loss when predicting the extreme ends or responses beyond the boundaries of 398 

the training data (Smarra et al., 2018). Therefore, predicting values beyond the range in 399 

the training data is not recommended. A representative training dataset is important for 400 

R
2
 = 0.92 

RMSE = 3.87  

MAE = 2.89 

R
2
 = 0.93 

RMSE = 4.94  

MAE = 2.10 



 

 23 

assuring model performance when constructing a random forest model. In addition, it 401 

was found that the performance of the model may be influenced by other factors, such 402 

as the choice of a dependent variable, and independent variables, and the size of the 403 

dataset. 404 

 405 
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 406 

Fig. 6 Comparison between (a) observed and (b) the random forest model predicted spatiotemporal 407 

variation of nitrate in groundwater 408 

 409 

3.5. Importance of effect factors on spatiotemporal variations of groundwater nitrate 410 

The random forest importance and partial dependency analysis were used to 411 

calculate the importance of each influential factor on the spatiotemporal variations of 412 

GW-NO3
-
-N, and to comprehensively analyze the relationship between environmental 413 

factors and GW-NO3
-
-N (Figs. 7–8). As shown in Fig. 7, the key factors affecting 414 

GW-NO3
-
-N concentrations were GW-NO2

-
-N, GW-NH4

+
-N, S-SON, and GW-Dep, 415 

with relative importance of 21.46%, 6.92%, 6.91%, and 6.01%, respectively, which are 416 

all higher than 5.0%. Meanwhile the relative importance of the other factors to 417 

GW-NO3
-
-N concentrations were all less than 5.0%. The GW-DON as the substrate of 418 

mineralization contributed an importance of 3.83%, which was less important than 419 

GW-NO2
-
-N and GW-NH4

+
-N. Among the different surface soil N species, SON was 420 

the main influential factor on GW-NO3
-
-N, followed by the S-NH4

+
-N (3.32%) and 421 

S-NO3
-
-N (0.69%), whereas the importance of S-NO2

-
-N (0.13%) was the smallest. The 422 
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GW-Dep impacted the leaching of N out of the vadose zone. Moreover, the SOC, SWC, 423 

and SSC also influenced GW-NO3
-
-N with a relative importance of 4.19%, 2.56%, and 424 

1.13%, respectively. Precipitation and irrigation were identified with a contribution of 425 

3.96% and 1.45%, respectively. As for groundwater environmental factors influencing 426 

N transformation by changing microbial survival, GW-Temp was identified with a 427 

relative importance of 4.53%. Finally, the relative importance of the other factors 428 

yielded the following order GW-TDS (2.90%), GW-ORP (2.59%), GW-DO (1.71%), 429 

GW-DOC (1.12%), and GW-pH (0.96%). The relationships between the effect factors 430 

and groundwater NO3
-
-N were further analyzed and are shown in Fig. 8 according to their 431 

order of importance. 432 

 433 

Fig. 7 Relative importance of potential effect factors to groundwater nitrate concentrations  434 

3.6. Relationship between effect factors and groundwater nitrate 435 

The relationships between the observed mean values of each explanatory variable, 436 

i.e., each effect factor (Table 2) and GW-NO3
-
-N at the 14 sites are shown in Fig. S1 in the 437 

supporting information. Significant correlations were found between GW-NO2
-
-N and 438 
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GW-NO3
-
-N (r=0.84, p<0.01), between GW-NH4

+
-N and GW-NO3

-
-N (r=0.59, p<0.05), 439 

between GW-Dep and GW-NO3
-
-N (r=-0.68, p<0.01), between GW-TDS and and 440 

GW-NO3
-
-N (r=0.56, p<0.05), and between GW-ORP and GW-NO3

-
-N (r=0.57, 441 

p<0.05). However, the interactions of all the effect factors resulted in nonsignificant 442 

correlations between other factors and GW-NO3
-
-N, and led to difficulty in reflecting 443 

their impacts on groundwater NO3
-
-N concentrations. Therefore, the partial dependence 444 

plots based on the random forest model were used to show the complex nonlinear 445 

relationships between GW-NO3
-
-N and each effect factor, along with the frequency 446 

distribution (Fig. 8a–s). 447 

3.6.1 Different forms of N in groundwater 448 

The GW-NO2
-
-N and GW-NH4

+
-N were significantly positively correlated with the 449 

GW-NO3
-
-N, with an r of 0.92 (p<0.01) and 0.56 (p<0.01), respectively (Fig. 8a–b). A 450 

positive correlation (r = 0.42, p<0.01) was identified between GW-DON and 451 

GW-NO3
-
-N (Fig. 5h). However, a negative correlation was found when DON was 452 

below 100 mg L
-1

. The GW-NO2
-
-N, an intermediate product of nitrification and 453 

denitrification, is of great importance in the N transformation process and is the most 454 

crucial factor as an indicator of the NO3
-
-N transformation rate. In this study, the 455 

presence or accumulation of NO2
-
-N showed the highest impacts on groundwater 456 

NO3
-
-N concentrations compared to the other factors (Fig. 7). This could be due to 457 

denitrification as a heterotrophic process. The previous results of Du et al. (2016) 458 

indicated that denitrifying bacteria in the system preferred using NO3
-
-N as an electron 459 

acceptor rather than NO2
-
-N. Thus, the accumulation and production of NO2

-
-N can 460 

occur during denitrification, and NO2
-
-N could be regarded as an index of the activity of 461 

denitrifying bacteria. The high-throughput sequencing analysis of Du et al. (2016) 462 
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revealed that the genus of Thauera bacteria was dominant in the denitrifying community 463 

with high NO2
-
-N accumulation. According to the previous study, the DON retained by 464 

the soil accounts for 25%-35% of the total DON, and the remaining amount enters the 465 

groundwater with leaching (Zhou et al., 2003). The leached DON undergoes 466 

mineralization (ammonification and nitrification) and subsequently causes an increase of 467 

both NH4
+
-N and NO3

-
-N in groundwater (Liu et al., 2022). The GW-DON can produce 468 

GW-NH4
+
-N through ammonification and then indirectly influence GW-NO3

-
-N 469 

through nitrification of GW-NH4
+
-N (Wang et al., 2020; Liu et al., 2022). In this study, 470 

the GW-NH4
+
-N was the second important factor influencing GW-NO3

-
-N. This could 471 

be due to the nitrification processes, where the GW-NH4
+
-N are the substrates for 472 

NO3
-
-N production by the nitrification process. During the nitrification processes, 473 

because the oxidation of NO2
-
-N to NO3

-
-N is rapid in natural systems, the slower 474 

oxidation of NH4
+
-N to NO2

-
-N is the main process that controls NO2

-
-N production 475 

(Nikolenko et al., 2018). Both NO3
-
-N and NO2

-
-N appeared when organic N 476 

mineralization occurred in groundwater. The GW-NH4
+
-N showed higher importance 477 

and a greater correlation coefficient than GW-DON, which might indicate that NH4
+
-N 478 

can be rapidly converted into NO3
-
-N. Thus, it is likely that the GW-NO2

-
-N is an 479 

intermediate product of denitrification in this study. Overall, the availability of 480 

GW-NO2
-
-N and GW-NH4

+
-N are indicated them as the primary factors reflecting the 481 

denitrification and nitrification rates. Their highly ranked importance showed clear 482 

evidence that N transformation played a critical role in controlling groundwater NO3
-
-N 483 

variations. 484 
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485 

486 

487 

 488 

Fig. 8 Partial dependence plots of constructed random forest model. Blue lines show the partial dependence function, and red lines show the x-axis factor frequency489 
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3.6.2 Different forms of N in surface soil and vadose zone characteristics 490 

The spatiotemporal variations of GW-NO3
-
-N depended on different forms of N 491 

content in the soil and leaching. In terms of N forms in the soil, there are positive 492 

correlations bwtween SON and GW-NO3
-
-N (r = 0.97, p<0.01, Fig. 8c), bwtween 493 

S-NO2
-
-N and GW-NO3

-
-N (r = 0.59, p<0.01, Fig. 8s), and bwtween S-NH4

+
-N and 494 

GW-NO3
-
-N (r = 0.33, p<0.05, Fig. 8i). This is mainly because mineralization and 495 

nitrification play critical roles in the production of NO3
-
-N and the subsequent NO3

-
-N 496 

leaching. Moreover, a higher S-SON might indicate more accumulated organic and 497 

inorganic N in the vadose zone. On the other hand, another possible explanation is 498 

that the soil-leached SON, NH4
+
-N, and NO2

-
-N has undergone a transformation and 499 

produced NO3
-
-N in the vadose zone before entering into the groundwater. Despite 500 

the fact that S-NO3
-
-N has a direct impact on GW-NO3

-
-N, no significant correlation 501 

was found between them (r = 0.26, p>0.01) (Fig. 8r). The S-NO3
-
-N could be divided 502 

into two groups by the threshold around 30 mg kg
-1

. A negative correlation was found 503 

when S-NO3
-
-N was below 30 mg kg

-1
, indicating that the lower S-NO3

-
-N could be 504 

attributed to more NO3
-
-N leaching loss. In contrast, their relationship changed to be 505 

positive when S-NO3
-
-N was above 30 mg kg

-1
, indicating that more NO3

-
-N in 506 

surface soil resulted in more NO3
-
-N leaching loss into the groundwater. 507 

The depth from the soil surface to the groundwater table plays an essential role 508 

in the accumulation and reduction of N leaching loss in the vadose zone. The 509 

GW-Dep was significantly negatively correlated with the GW-NO3
-
-N (r = -0.99, 510 

p<0.01) (Fig. 8d). Our results showed that a shallower groundwater table leads to an 511 

increasing amount of NO3
-
-N in groundwater, consistent with many previous studies 512 

(Awais et al., 2021; Li et al., 2021; El Amri et al., 2022; He et al., 2022). Other 513 

characteristics of the vadose zone also affected N transformation and subsequent 514 
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leaching of NO3
-
-N, including SWC, SSC, and SOC. A significant negative 515 

correlation (r = -0.80, p<0.01) was found between SWC and GW-NO3
-
-N (Fig. 8l). 516 

The increase of SWC caused the decrease of NO3
-
-N production by nitrification and 517 

enhanced denitrification removal of NO3
-
-N in the soil (Sexstone et al., 1985). 518 

However, it is notable that a positive correlation was identified when the SWC was 519 

above 0.30. This could be because higher SWC increases NO3
-
-N leaching into the 520 

groundwater. No significant negative correlation (r = -0.56, p>0.05) was found 521 

between irrigation and GW-NO3
-
-N (Fig. 8n). Meanwhile, a significant positive 522 

correlation (r = 0.92, p<0.01) was identified between precipitation and GW-NO3
-
-N 523 

(Fig. 8g). Irrigation and precipitation influenced both soil water content and soil water 524 

percolation. Irrigation mainly results in the increase of SWC but might not increase N 525 

leaching loss because the higher SWC could enhance the denitrification rate, which 526 

reduces NO3
-
-N content in root zone soil (Sexstone et al., 1985). However, 527 

precipitation is more likely to increase soil-soluble N leaching into the groundwater 528 

due to the increase of antecedent SWC by irrigation (Razzaghi et al., 2012). Thus, 529 

precipitation exhibited higher importance than irrigation and SWC, as shown in Fig. 7. 530 

No significant correlation (p>0.05) was observed between SSC and GW-NO3
-
-N (Fig. 531 

8o). However, it should be noted that when SSC is around 20%, the GW-NO3
-
-N was 532 

obviously higher; that is, the GW-NO3
-
-N decreased with SSC when the SSC was less 533 

than 60%. In contrast, the GW-NO3
-
-N showed a slight increase when the SSC was 534 

higher than 60%. The SSC can influence SWC and the subsequent N leaching in soil. 535 

Less sand content might be associated with higher antecedent SWC and more 536 

preferential flow (Van Es et al., 2004; Razzaghi et al., 2012). Thus, the N leaching 537 

might be increase with the decrease of SSC. On the other hand, the nitrification rate 538 

increased when the SSC was higher than 60% in sandy loam soil. Thus, the soil 539 
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NO3
-
-N content and leaching correspondingly increased. A significant positive 540 

correlation (r = 0.79, p <0.01) was identified between SOC and GW-NO3
-
-N (Fig. 8f). 541 

This could be due to the higher SOC, which usually associated with higher SON in 542 

soil and corresponds to more N leaching. Nevertheless, when SOC was below 15 g 543 

kg
-1

, it had a minor impact on GW-NO3
-
-N.  544 

3.6.3 Groundwater environmental conditions 545 

The DO and ORP are indicators of redox status in the groundwater environment. 546 

In this study, DO usually ranged from 4 to 20 mg L
-1

. It is generally believed that the 547 

appropriate DO concentration for denitrification is 2 mg L
-1

 (Peng et al., 2020). 548 

Denitrification still exists when the DO concentration of groundwater is 2~6 mg L
-1

, 549 

but the rate is reduced with higher DO (Peng et al., 2020). The average monthly DO 550 

concentration in the study area from May 2017 to April 2019 was 11.78 mg L
-1

, and 551 

there was no record of below 2 mg L
-1

 values in any of the samples. Instead, the DO 552 

values in 14.6% of the 336 samples were between about 2 and 6 mg L
-1

, mainly in 553 

April and August–October. Overall, a significant positive correlation (r = 0.96, 554 

p<0.01) was identified between GW-DO and GW-NO3
-
-N (Fig. 8m), which could be 555 

due to nitrification. Meanwhile a negative correlation was identified when DO was 556 

less than 10 mg L
-1

 (Fig. 8m). This could be due to stronger denitrification than 557 

nitrification. An increase of GW-NO3
-
-N with ORP is observed when ORP is above 558 

200 mV. This could be due to the positive correlation between ORP and actual 559 

nitrification (Bohrerova et al., 2004). No significant correlation (p>0.05) was found 560 

between GW-ORP and GW-NO3
-
-N (Fig. 8k). When ORP was less than -100 mV, it 561 

is notable that there was a negative correlation, while a positive correlation was 562 

identified when ORP was great than 100 mV. Nevertheless, when the ORP was 563 

between -100 mV and 100 mV, it had a minor impact on GW-NO3
-
-N. According to 564 
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the relationships between GW-NO3
-
-N and DO and between GW-NO3

-
-N and ORP 565 

based on the partial dependence plots of the random forest model (Fig. 8), the 566 

environment of groundwater can be classified as being under nitrate-reducing 567 

conditions if the DO is less than 10 mg L
-1

 and the ORP is less than -100 mV. On the 568 

other hand, the groundwater environment can be described as being and under 569 

nonreducing conditions if the DO is greater than 10 mg L
-1

 and the ORP is greater 570 

than 100 mV. This is in accordance with previous studies (Rivett et al., 2008; Jahangir 571 

et al., 2017; Thayalakumaran et al., 2008). Groundwater DO and ORP are shown to 572 

be pH dependent. Thus, the nitrification and denitrification rates could vary with 573 

changes in pH (Bohrerova et al., 2004). The GW-pH showed a significantly negative 574 

correlation with GW-NO3
-
-N (r = -0.28, p<0.05) (Fig. 8q). The groundwater NO3

-
-N 575 

decreased with an increasing trend of pH from 6.0 to 7.0, which could be attributed to 576 

denitrification. Meanwhile groundwater NO3
-
-N increased with pH from 7.0 to 8.0, 577 

which could be attributed to nitrification. The results of this study are consistent with 578 

previous studies, which reported that the highest denitrification removal of NO3
-
-N 579 

was at a pH of 6.0–7.5 and the most adapted pH range for nitrifying bacteria is 7.0 to 580 

9.0 (Ghafari et al., 2009; Hu et al., 2018; Bergamasco et al., 2019). A drastic increase 581 

of NO3
-
-N is observed when pH was above 8.0. This could be attributed to soil water 582 

percolation to shallow groundwater following fertilization and irrigation during the 583 

rainy season (Jendia et al., 2020). 584 

The DOC is considered as the source of electron donors for denitrification 585 

(Thayalakumaran et al., 2008). Overall, there was no significant correlation (r = -0.05, 586 

p>0.05) observed between GW-DOC and GW-NO3
-
-N (Fig. 8p). A negative 587 

correlation was found when DOC was below 75 mg L
-1

, while a positive correlation 588 

was found when DOC was above 75 mg L
-1

. A concentration value of DOC > 1.0 mg 589 
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L
-1

 can indicate the presence of electron donors significant enough to support 590 

denitrification (Rivett et al., 2008; Thayalakumaran et al., 2008). The DOC 591 

concentrations of the 336 samples observed in this study ranged from 0.42 to 280.26 592 

mg L
-1

, with more than 99% of samples exceeding 1.0 mg L
-1

. The negative 593 

relationship between GW-NO3
-
-N and DOC indicates the role of DOC as a carbon 594 

source in the reduction processes (Rivas et al., 2017). The other electron donors, such 595 

as Fe
2+

, Mn
2+

, and S
2-

, might also exist in groundwater and influence N 596 

transformation, but their roles are not dependent on temperature, DO, and ORP (Pang 597 

and Wang, 2021). A significant positive correlation (r = 0.94, p<0.01) was found 598 

between GW-TDS and GW-NO3
-
-N (Fig. 8j). The GW-TDS was usually higher than 599 

0.5 g L
-1

; however, when it was lower than this value, there was a negative correlation 600 

between them. The other electron donors, rather than DOC, might have played critical 601 

roles when TDS was below 0.50 g L
-1

, causing the negative correlation between 602 

GW-NO3
-
-N and TDS. However, when it was higher than 0.5 g L

-1
, a positive 603 

correlation was found between NO3
-
-N and TDS. This could be because the growth of 604 

denitrification bacteria is reduced with the increase of salinity. A previous study 605 

reported that denitrification was more sensitive to salt compared to nitrification 606 

(Dinçer and Kargi, 1999). Besides, it could also be because the groundwater TDS was 607 

increased by a large amount of NO3
-
-N leaching. 608 

The groundwater temperature controls microbial activity. Overall, a positive 609 

correlation (r = 0.62, p<0.01) was found between GW-Temp and GW-NO3
-
-N (Fig. 610 

8e), which could be due to higher N leaching to groundwater in the summer period. 611 

When the GW-Temp was below 20℃, a negative correlation was found between 612 

GW-Temp and GW-NO3
-
-N. This could be because the increased temperature 613 
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enhances the growth and activity of denitrifiers, thus, reducing NO3
-
-N in 614 

groundwater (Singh et al., 2010). The groundwater temperature also impacts other 615 

environmental factors, such as DO and DOC availability (Thayalakumaran et al., 616 

2008; Nikolenko et al., 2018). The DOC can be stimulated, and the DO can be 617 

depleted by increased groundwater temperature (Guo et al., 2017). The suitable 618 

temperature for the nitrification rate is 10°C–35°C, with the optimum temperature 619 

ranging between 25°C–30°C (Hayatsu and Kosuge, 1993). In contrast, the suitable 620 

temperature for denitrification is 20°C–43°C (Strous et al., 1999). In general, higher 621 

temperatures result in stronger denitrification and nitrification activity in the 622 

groundwater environment with temperatures less than 25°C. The optimum 623 

temperature for denitrification is relatively higher than that for nitrification 624 

(Nikolenko et al., 2018).  625 

Although the relative importance of groundwater environmental factors (i.e., 626 

temperature, DO, ORP, DOC, TDS, and pH) to groundwater NO3
-
-N were less than 627 

5.0% (Fig. 7), the partial dependence plots generated by the random forest model 628 

suggested that they play important roles in influencing nitrification and/or 629 

denitrification in groundwater (Fig. 8). The groundwater NO3
-
-N,  15

N-NO3
-
 and 630 

 18
O-NO3

-
 exhibited tremendous changes in the summer periods in this study, 631 

probably due to simultaneous leaching and denitrification (Figs. 2–4). The 632 

nitrification rate also increases with an increase in temperature. In November, January, 633 

and February, when the temperature is low, the DO and ORP increase, and less DOC 634 
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is consumed, indicating a more oxidizing condition. During these months, denitrifying 635 

bacteria growth might be limited by the low temperature (Nikolenko et al., 2018). 636 

Thus, the denitrification is low, and nitrification might superimpose on denitrification 637 

during these low-temperature periods. 638 

3.7. Identification of key N transformation processes in groundwater using isotopes 639 

The simultaneous increase of δ
15

N-NO3
- 
and δ

18
O-NO3

-
 with a slope of 0.5-1.0 640 

(δ
18

O/δ
15

N) is attributed to denitrification (Osaka et al., 2010; Wells et al., 2016) (Fig. 641 

9). If strong denitrification occurs in groundwater, the slope of the linear relationship 642 

(k) between δ
15

N-NO3
- 
and δ

18
O-NO3

- 
is close to 0.5, and δ

15
N-NO3

- 
in groundwater is 643 

significantly negatively correlated with ln[NO3
-
] (Zhang et al., 2019). Among the 14 644 

observation sites in the study area, the linear relationship slope (k) of δ
15

N-NO3
- 
and 645 

δ
18

O-NO3
- 
in 8 sites, that is, SG1 (k = 0.98, R

2
 = 0.85), SG3 (k = 0.83, R

2
 = 0.98), 646 

SG4 (k = 0.50, R
2
 = 0.047), SG6 (k = 0.87, R

2
 = 0.87), SG8 (k = 0.81, R

2
 = 0.12 ), 647 

SG13 (k = 0.59, R
2
 = 90), SG14 (k = 0.82, R

2
 = 0.70), and SG11 (k = 1.05, R

2
 = 0.50), 648 

ranged from 0.5 to 1.0 and with high δ
15

N-NO3
-
 composition, strongly supporting the 649 

occurrence of denitrification in the NO3
-
-N source and/or transformation in 650 

groundwater (Fig. 9). The k value at SG7 (0.30, R
2
 = 0.64), SG5 (0.44, R

2
 = 0.84), 651 

and SG10 (0.34, R
2
 = 0.22) did not fall into the denitrification line. However, 652 

relatively higher δ
15

N-NO3
- 

and δ
18

O-NO3
-
 than the potential NO3

-
-N sources 653 

indicated that weak denitrification still existed. The δ
15

N-NO3
- 
and δ

18
O-NO3

-
 at SG1, 654 

SG4, SG10, SG11, and SG12 were relatively smaller, indicating weaker 655 

denitrification. In this study, the groundwater δ
15

N-NO3
-
 was barely found to be 656 

negatively correlated with ln[NO3
-
]. It is likely that the isotopic fingerprint of 657 

denitrification was simply masked by the pulse inputs of leached NO3
-
-N from the 658 
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vadose zone. In addition, it might also be because shallower groundwater has a short 659 

residence time. Thus, transport of NO3
-
-N affects the isotopic fingerprint of 660 

denitrification. 661 

 662 
Fig. 9. Relationship between δ

15
N-NO3

-
 and δ

18
O-NO3

-
 in groundwater (the * indicates the 663 

range of nitrified δ
18

O-NO3
-
 within the dotted line, the 1:2 broken line indicates strong 664 

denitrification, and the 1:1 broken line indicates nitrification and denitrification) 665 

Nitrification will simultaneously increase NO3
-
-N concentrations and reduce the 666 

abundance of δ
15

N-NO3
- 

due to the isotope fractionation. The δ
15

N-NO3
- 

and 667 

δ
18

O-NO3
- 

vary along the 1:1 line and, with an R
2
 closer to 1, indicates that the 668 

nitrification occurred concurrently with denitrification (Fig. 9). Moreover, 669 

nitrification in the groundwater environment resulted in the final δ
18

O-NO3
- 
values 670 

being mostly between -10‰ and 10‰ (Xue et al., 2009; Ji et al., 2021). In this study, 671 

the δ
18

O-NO3
- 
values of 64.28‰ of the 182 measured data were between -10‰ and 672 

10‰, indicating that nitrification also existed in the shallow groundwater of the study 673 

area. The NO3
-
-N is expected to be mainly from nitrifying processes since δ

18
O-NO3

-
 674 

values in 80% of the samples the ranged from −5‰ to 5‰, which is fits within the 675 

range of -6.1‰–5.2‰ (Osaka et al., 2010). The relationship between the monthly 676 
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δ
15

N-NO3
-
 and NO3

-
-N (from September 2018 to April 2019) in the 14 sites is shown 677 

in Fig. 10. Nitrification along the groundwater flow path was identified, including in 678 

the flow path along L1 surrounded by sites SG5, SG7, SG3, and SG1 and in the flow 679 

path L2 surrounded by sites SG8, SG10, SG11, SG12, and SG13 (Fig. 10). Data with 680 

negative δ
15

N-NO3
- 

abundance in September 2018, January 2019, and April 2019 681 

were excluded from SG11 because the site was irrigated and fertilized in those 682 

months. The more negative δ
15

N-NO3
-
 and δ

18
O-NO3

-
 ranges measured fell within the 683 

expected range for NO3
-
-N produced from urea/urine (Wells et al., 2016). Wang et al. 684 

(2020) has reported that nitrification occurred in the groundwater, which is consistent 685 

with results of this study. 686 

Along the groundwater flow path L1, nitrification increased NO3
-
-N 687 

concentrations by about 10 mg L
-1

. Meanwhile along the groundwater flow path L2, 688 

nitrification increased NO3
-
-N concentrations by about 2 mg L

-1
. Higher nitrification 689 

rates along flow path L1 were observed. This is due to the shallower and decreased 690 

depth of the groundwater table along the groundwater flow direction (from 9.37 to 691 

3.86 m). On the other hand, along flow path L2, the depth of the groundwater table 692 

increased from 2.0 to 14.8 m. The denitrification rates along flow path L1 were also 693 

stronger, as evidenced by the higher 
15

N-NO3
-
 at sites around flow path L1. This is 694 

because the temperature and contents of electron donors (DOC and TDS) at sites 695 

around flow path L1 were higher than those around flow path L2. Therefore, both 696 

denitrification and nitrification were higher in shallower groundwater around flow 697 

path L1 than flow path L2. Overall, based on the DO, ORP, different forms of N 698 

concentrations, and nitrate isotopic composition, it can be concluded that nitrification 699 

occurred concurrently with denitrification in this shallow groundwater system. The 700 
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co-occurrence of denitrification and nitrification found in this study is consistent with 701 

the findings from a previous study by Osaka et al. (2010).  702 

(a)                                (b) 703 

 704 

(c)                                          (d) 705 

 706 

Fig. 10. (a) Locations of sampling sites along the groundwater flow path lines (L1 and L2) or the 707 

groundwater-level contour line (L3) and the relationship between monthly average (from 708 

September 2018–April 2019) groundwater δ
15

N-NO3
-
 and NO3

-
-N concentrations at the 14 709 

sampling sites along (b) L1, (c) L2, and (d) L3 (SG11*: data with negative δ
15

N-NO3
- 
abundance 710 

in September 2019, January 2019, and April 2019 were excluded from SG11) 711 

Site SG1 was located upstream of groundwater flow with the shallowest depth of 712 

the groundwater table. However, NO3
-
-N concentration at SG1 ranged between SG8 713 

and SG12 as shown in Fig. 10.This is because the irrigation water source was from 714 

the Yellow River at SG1, while groundwater was abstracted for irrigation at other 715 
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sites. Moreover, the groundwater at SG1 might have received NO3
-
-N from vertical 716 

and lateral recharge of the Yellow River. It is notable, though, that the irrigation 717 

schedule during the summer rice growth period at SG1 was different from that of the 718 

other sites. High δ
15

N-NO3
-
 and low NO3

- 
concentration values were found at SG14. 719 

The groundwater table depth of SG14 was the deepest and was caused by 720 

groundwater abstraction for paper production in factories, according to the Xinxiang 721 

City Water Resources Bulletin in 2017 (XCWRB, 2017). The deep groundwater table 722 

meant that NO3
-
-N might have already been denitrified before arriving in the 723 

groundwater (Vidon and Hill, 2004). As for SG9, there was a river nearby where 724 

surface water could recharge the groundwater. The mean DO concentration was about 725 

14.6 mg L
-1

 at SG9, while it ranged from 10.2 to 12.8 mg L
-1

 at the other sites. The 726 

relatively higher DO at SG9 than the other sites could support the reasoning that 727 

surface water existed recharge to the groundwater. The denitrification occurred 728 

underneath the riverbed, and the denitrified NO3
-
-N continuously flowed to the 729 

groundwater at SG9. In addition, the DOC was lower at SG9 (41.9 mg L
-1

) than at the 730 

neighboring sites of SG11 (45.8 mg L
-1

) and SG 12 (45.2 mg L
-1

) because DOC was 731 

consumed by denitrification underneath the riverbed. Therefore, the isotopic 732 

composition and proportion of NO3
-
-N sources at SG9 differed from that of the other 733 

sites. The sites SG6 and SG4 near L3 in Fig. 10 lay along the groundwater water-level 734 

contour line. The value of δ
15

N-NO3
-
 at SG6 was higher than that at SG4. The 735 

groundwater table depth at SG6 was slightly higher than that of SG4. In addition, the 736 

concentration of DOC in the groundwater of SG6 was higher than that at SG4. 737 

Therefore, the stronger denitrification at SG6 could be attributed to the sufficient 738 

carbon sources in the groundwater to support denitrification. Furthermore, the deeper 739 
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vadose zone thickness could provide enough time for denitrification before entering 740 

the groundwater.  741 

4. Implications and Limitations 742 

4.1. Groundwater nitrate pollution risk and attenuation in agricultural areas 743 

The spatiotemporal variations of groundwater NO3
-
-N concentrations can be 744 

explained by inorganic and organic N leaching and subsequent N transformation in 745 

groundwater. A shallower groundwater table is more vulnerable to N contamination. 746 

The deeper the vadose zone, the less likely contaminants are coming from leaching. 747 

However, continuous organic and inorganic fertilizer application under the combined 748 

effects of irrigation and precipitation can result in massive N accumulation in the deep 749 

vadose zone, and the peak of N content in soil contentiously moves downward to 750 

groundwater (Weitzman et al., 2022). The inorganic and organic N in groundwater 751 

located in a region with both a shallower groundwater table and high groundwater 752 

level can be transported to a lower groundwater water-level region. In addition, the 753 

groundwater is undergoing nitrification along the groundwater-level gradient. Thus, 754 

slow DON mineralization and nitrification might continuously increase NO3
-
-N along 755 

the groundwater flow path, threatening groundwater quality for a long time. Therefore, 756 

the soil DON and NH4
+
-N leaching and the subsequent transformation in groundwater 757 

should not be overlooked when evaluating groundwater N pollution and making 758 

nonpoint source control policies. In our research, the groundwater flow could export 759 

the N out of the study area, thus, contributing to the temporal decrease of NO3
-
-N in 760 

the local groundwater while also posing as a groundwater pollution threat to 761 

neighboring areas.  762 

The rapid decrease of NO3
-
-N during May–August indicated that the leached 763 

NO3
-
-N was consumed immediately by denitrification. The temporal increases of 764 
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NO3
-
-N were observed from September 2017 to January 2018 and from January 2019 765 

to March 2019. In addition, the increase of NO3
-
-N occurred along the groundwater 766 

flow during September 2018–April 2019. These results suggested that the NO3
-
-N 767 

accumulation might occur under low groundwater temperature conditions. This is 768 

mainly due to the denitrification rate decreasing at lower temperatures in groundwater 769 

(Singh et al., 2010). Therefore, sufficient DOC must be provided for the efficient 770 

removal of groundwater NO3
-
-N when the groundwater temperature is suitable or 771 

optimum for denitrification, particularly in late spring, summer, and early autumn. In 772 

the future, quantifying nitrification and denitrification rates at different time scales 773 

(e.g., daily, monthly, seasonally, or annually) is necessary to put forward N 774 

attenuation measures. Agronomists recommend the application of organic fertilizer 775 

and crop residue return with reduced chemical fertilizer in China and around the 776 

world to increase soil quality (Zhao et al., 2016). Management of organic fertilizers 777 

and crop residue is as crucial as chemical fertilizer application for reducing the risk of 778 

SON accumulation and subsequent groundwater and surface water pollution while 779 

providing enough DOC for denitrification. Furthermore, scientists and policy makers 780 

should pay attention to the leaching risk of stocked N and evaluate its transport delay 781 

time to protect groundwater quality in agricultural areas. 782 

4.2. Implications of groundwater nitrate prediction and limitations of this study 783 

The performance of the random forest model demonstrates that it can be well 784 

applied for predicting spatial and intra-annual variations of groundwater nitrate 785 

concentrations. The importance analysis for the influencing factors likewise provides 786 

strong evidence for determining the main influencing factors and processes of NO3
-
-N 787 

in groundwater. In the NCP irrigation area, the effect of N transformation in 788 
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groundwater is as important as soil N leaching on the variations of NO3
-
-N in shallow 789 

groundwater. The findings of this study can provide technical support for the rapid 790 

prediction and evaluation of N pollution in shallow groundwater through readily 791 

available effect factors at higher spatial and temporal resolution. The simplified 792 

approach of the random forest model can be applied in irrigation regions around the 793 

world to predict the spatial and temporal variations of NO3
-
-N in groundwater. Unlike 794 

NO3
-
-N, adsorption/desorption processes dominate DON and NH4

+
-N transport in the 795 

soil-groundwater systems (Vandenbruwane et al., 2007; Wang et al., 2021). Therefore, 796 

other factors related to adsorption/desorption processes are required to predict 797 

spatiotemporal variations of DON and NH4
+
-N concentrations in groundwater using 798 

machine learning models (Wang et al., 2016; Wang et al., 2021). 799 

The N leaching and transformation in groundwater, especially denitrification and 800 

nitrification, must be considered in other numerical and/or distributed groundwater 801 

flow models to accurately predict NO3
-
-N dynamics. The NO3

-
-N in groundwater 802 

tends to be the most sensitive to NO2
-
-N, indicating that biotic factors play critical 803 

roles in controlling the N transformation (Yang et al., 2012). These biochemical 804 

processes cause the difficulty and challenge of building and verifying groundwater 805 

flow and solute transport models. It is essential to study microbial communities and 806 

growth response to changes in N and C substrates and environmental factors to gain 807 

better insights into N transformation processes and rates (Nikolenko et al., 2018). It 808 

should be noted that except for the commonly considered nitrification and 809 
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denitrification processes identified in this study, other N transformation processes in 810 

shallow groundwater are also possible. For instance, NO2
-
-N accumulation in 811 

denitrification can provide the substrate for anammox (Smith et al., 2015), DNRA 812 

(Jahangir et al., 2017), and shortcut nitrification-denitrification (Hu et al., 2018). 813 

Therefore, it is necessary to measure the N transformation rates using the 
15

N tracing 814 

method, and analyze microbial communities based on in situ experiments and 815 

laboratory simulation of the groundwater environment to precisely understand the fate 816 

of N in groundwater in future studies.  817 

5. Conclusions 818 

Nitrate as the primary source of inorganic N pollutants in shallow groundwater, 819 

showed highly variable spatiotemporal patterns in an irrigated agricultural area, the 820 

NCP. Monthly soil physiochemical data, groundwater quality data, and groundwater 821 

NO3
-
-N isotopic composition data were measured and analyzed from May 2017 to 822 

April 2019 in the study area. This research focused on predicting spatial and 823 

intra-annual variations of shallow groundwater NO3
-
-N and evaluating their main 824 

effect factors and processes. The random forest model, as a simplified approach 825 

compared to numerical and distributed hydrological models, performed well in 826 

predicting the spatial and intra-annual variations of NO3
-
-N in groundwater with R

2
 827 

value of 0.93 and 0.92, RMSE value of 4.94 and 3.87, and MAE values of 2.10 and 828 

2.89 for the training and test datasets, respectively. The application of the random 829 

forest model may have important implications for groundwater NO3
-
-N prediction in 830 

other regions worldwide. Evaluation of the importance of the effect factors 831 

emphasized the roles of N transformation, including denitrification and nitrification, 832 
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in controlling spatiotemporal variations of NO3
-
-N in addition to N leaching. The 833 

impacts of soil SON on groundwater NO3
-
-N was the greatest among different forms 834 

of N in surface soil. The temporal increase of NO3
-
-N was mainly attributed to 835 

NO3
-
-N leaching, while the temporal decrease of NO3

-
-N can be attributed to 836 

denitrification. Although the N leaching usually decreases with the increase of 837 

groundwater table depth, nitrification along the groundwater flow path will adversely 838 

affect groundwater quality in deep vadose zone areas. Monitoring and management of 839 

SON in soil and DON in groundwater will become increasingly important since 840 

agronomists and policy makers widely recommend the use of manure instead of 841 

chemical fertilizers in developing and developed countries. The groundwater NO3
-
-N 842 

is significantly related to nitrite which is an indicator of biotic factors, but 843 

groundwater NO3
-
-N is less sensitive to other environmental factors. The prediction of 844 

groundwater NO3
-
-N dynamics using hydrological or biochemical models should 845 

address all forms of N leaching and transformation in groundwater, which is still a 846 

considerable challenge due to the involvement of biological factors. The ability to 847 

identify the N transformation process and quantify the N transformation rates is 848 

urgently needed and deserves further attention through the adoption of 849 

microbiological techniques and 
15

N tracing methods based on in situ and laboratory 850 

groundwater experiments. 851 
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