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Abstract: SWAT+ is a revised version of the SWAT model that has the capability to route flow across
landscape units in the catchment, which is expected to improve the spatial representation of processes
in watersheds. We applied the SWAT+ model in the Uruguay River Basin, an international river
basin in South America with a total surface area of 370,000 km2, in order to (1) assess the water
balance components, (2) represent their spatial distribution, and (3) examine their changes over time.
The catchment was divided into uplands and floodplains and a decision table rule was developed
based on streamflow data. The SPOTPY Python library was linked to SWAT+ and used as a tool to
perform sensitivity analyses and calibration. The model represented the fluctuations of discharge
well, although there was a general tendency to underestimate peak flows. Blue (precipitation and
runoff) and green (evapotranspiration and soil water content) hydrological components were spatially
plotted. Overall, SWAT+ simulated a realistic spatial distribution of the water cycle components.
A seasonal Mann–Kendall test suggests a positive increasing trend in the average temperature
(p-value = 0.007; Sen’s slope = 0.09), the soil water content (p-value = 0.02; Sen’s slope = 1.29), and
evapotranspiration (p-value: 0.03; Sen’s slope = 1.97), indicating that the ecosystem experienced a
changing climate during the simulation period. The findings presented in this study are of significant
value for the impacts of sustainable management and the evaluation of climate change on water
resources in the Uruguay River Basin.

Keywords: uplands; floodplains; landscape units; blue and green water; water balance; flow routing

1. Introduction

Due to the impact of anthropogenic activity and climate change on water systems,
hydrologists are being tasked with providing a scientific basis for future water management
and development. This requires comprehending the water dynamics of the study area. To
establish sound management practices, it is imperative to have an accurate depiction of the
hydrological cycle within a watershed. To gain insights into the water system, hydrological
models are employed as a tool. These models help researchers to obtain information
on various aspects such as hydrological fluxes [1], trends [2], and the impacts of climate
change [3].
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However, in some cases, models are applied to estimate sediment yields, nutrient
fluctuation, and climate change impacts with little knowledge or lack of information on
the hydrological processes of the study area, which influences how well the system can be
represented by the model [4].

The SWAT+ model has been proposed as a tool for modelling due to its emphasis on
the connectivity of spatial elements within a watershed, such as hydrologic response units,
aquifers, channels, reservoirs, ponds, canals, and pumps. With the inclusion of landscape
units (LSUs), SWAT+ offers an improved spatial heterogeneity, making it more adaptable
than SWAT in depicting the interactions and processes occurring within a watershed [5]. In
addition, it has been demonstrated that SWAT+ provides good predictions of the streamflow
and water balance due to its improved watershed discretization. Wagner et al. (2022) [1]
conducted a study to examine how well SWAT+ represented hydrological processes in a
lowland catchment. Their findings showed that SWAT+ not only performed well at the
catchment outlet, but it also accurately represented the spatial heterogeneity of processes
within the watershed.

To date, SWAT+ has been applied mostly in the United States, Africa [6–10], Eu-
rope [1,3,11–13], and in some watersheds in Asia [14,15]. Examples of SWAT+ applications
include determining the impact of climate change on water and sediment yield [2,9,11,16],
hydrological mass balance calibration and reservoir representation [6], and reproducible
model studies [17]. Furthermore, the inclusion of decision tables [18] to represent manage-
ment such as crop irrigation and reservoir release provides a more realistic representation
of anthropogenic influences on the watershed.

Moreover, there are publications on the inclusion of novel algorithms that aim to im-
prove the representation of certain processes in the hydrologic cycle. Bailey et al. (2020) [7]
developed a new physics-based, spatially distributed model to address the limitations of
the representation of groundwater flow; this model was tested in the Little River Experi-
mental Watershed, Cache River, Nanticoke River, Winnebago River, Sauk River, and Upper
Yellowstone River [7,19] in the United States and in the Dijle and Kleine Nete catchments
in Belgium [20,21].

Rockström [22] defined the concept of blue and green water based on the major
separations that precipitation undergoes: (1) water that comes from rainfall or irrigation is
separated into infiltration and runoff on the soil surface and (2) the infiltrated water then
moves to the plant root zone and the deep aquifer. Therefore, blue water could be defined
as all exploitable stocks and flows. Blue water is quantified as the sum of the water yield
and the deep aquifer recharge. On the other hand, green water is defined as the water
returning to the atmosphere, notably by evaporation and transpiration by plants. Water
stored in the soils is also part of green water.

In this study, we applied the new version of the Soil and Water Assessment Tool model
(SWAT+) in the Uruguay River Basin (URB) to quantify some components of blue and green
water in order to (1) estimate the water balance components over the basin, (2) represent
their spatial distribution, and (3) examine their changes over time. This research offers
a detailed description of the hydrological components including a large-scale temporal
analysis of hydro-meteorological components in the Uruguay River Basin. To date, there
are no large-scale applications of the SWAT+ model in South America. We provide an
open-source tool to perform sensitivity analyses and calibration for the SWAT+ model, and
give insights in the hydro-meteorological components under climate change.

2. Materials and Methods
2.1. Study Region

The Uruguay River Basin (URB) forms part of the Great Basin of La Plata in South
America. The watershed has a total surface area of 370,000 km2, and it covers parts of
Uruguay (38%), Brazil (32%), and Argentina (30%) [23]. The URB lies in temperate latitudes
(Figure 1), the annual average precipitation values are between 1200 and 2400 mm, and
the annual isotherms are approximately between 16 and 24 °C degrees [24] (Figure 2). The



Water 2023, 15, 2604 3 of 18

source of the river is located in the Sierra do Mar (Brazil), and it flows into the River of La
Plata. The Uruguay River has a length of 1800 km, and an annual average streamflow of
approximately 4600 m3/s. During winter and spring, streamflow values are generally high,
with an average of around 7000 m3/s, whereas in summer, values are below 2000 m3/s [24].

Its physiographic characteristics make the URB very responsive to precipitation events.
It has a long but narrow shape, which results in a relatively short lag time between rainfall
and discharge events [25].

Figure 1. Topography map of the study area of the Uruguay River Basin (URB), with a catchment size
of 370,000 km² and an elevation ranging from 0 to 1500 m above sea level, located in South America.
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Figure 2. Monthly temperature in degrees Celsius based on the ERA5 dataset. The color palette
indicates the increase in temperature between months. Isotherm values are approximately between
16 and 24 degrees.

2.2. The SWAT+ Model

The hydrological simulation of the Uruguay River Basin was carried out using the
revised version of the Soil and Water Assessment Tool model (SWAT+, revision 60.5.4).
SWAT+ is a process-based eco-hydrological model, which can simulate a wide range of
watershed processes, such as the catchment water balance, routing of in-stream runoff, or
the transport of sediments and nutrients. It has been developed to address present and
future challenges to water resource modeling and management [5]. In comparison to the
previous versions of SWAT, the major changes to the model include:

1. Spatial objects: Aquifers, channels, reservoirs, ponds, point sources, inlets, and HRUs
are individual spatial objects, which do not require a rigid model structure anymore.
This allows the modeller a better and more flexible option to represent the watershed
characteristics with the conceptual model.

2. Connectivity: SWAT+ allows one to flexibly connect the defined spatial objects of a
model setup to route different fractions of runoff and fluxes of sediments or nutrients
between them. A SWAT+ model setup with QSWAT+, for example, allows to include
the landscape unit (LSU) concept in the model setup. With LSUs, the landscape which
drains into a channel is divided into upland and a floodplain. The upland, for example,
routes a certain fraction of water through the floodplain before it is finally routed
into the channel (Figure 3). This is a major improvement over previous versions of
SWAT [26] models, which followed, by default, a very rigid model structure and
restricted the routing of water through the landscape.

3. Decision tables: Decision tables allow representing rule sets and their corresponding
actions to simulate management in the watershed [18]. In this work, we implemented
rules to represent the release of the Salto Grande dam. The implementation of decision
tables makes modelling more realistic as it provides to the user the possibility to set
an easy or complex real-world decision-making process.



Water 2023, 15, 2604 5 of 18

Figure 3. Connectivity representation in SWAT+. AQU, aquifer; LSU, landscape unit; HRU, hydro-
logic response unit. Different colors represent different hydrological components in the sub-basin.

2.3. Water Balance Calculation

The hydrologic cycle as simulated in SWAT+, when the subbasin is divided into
uplands and floodplains, is based on the water balance equation:

SWt = SW0 +
t

∑
i=1

(Rday + surqrunon + latqrunon − wateryld − perc − ET) (1)

where

wateryld =
t

∑
i=1

(surqgen + latq + Qgw), (2)

SWt is the final soil water content (mm H2O), SW0 is the initial soil water content on day i (mm
H2O), Rday is the amount of precipitation on day i (mm H2O), surqrunon is the surface runoff
from the upland landscape to the floodplain on day i (mm H2O), latqrunon is the lateral soil
flow from the upland landscape to the floodplain on day i (mm H2O), wateryld is the water
yield on day i (mm H2O), perc is the amount of water percolated into the soil (mm H2O), ET is
the evapotranspiration on day i (mm H2O), surqgen is the surface runoff generated from the
landscape on day i (mm H2O), latqgen is the lateral soil flow generated from the landscape on
day i (mm H2O), and Qgw is the amount of return flow on day i (mm H2O).

2.4. Data Description and Model Set Up

The required data to built a SWAT+ model include meteorological, hydrological, and
physical variables. Figure 4 shows all the input data used for the model setup. Dur-
ing the watershed configuration process, sub-basins were subdivided into upland and
floodplain areas.
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Figure 4. Maps of (A) topography (in meters), (B) land use and land cover, (C) soil type, (D) chan-
nel network and sub-basins of the Uruguay River Basin. FRSE: forest—evergreen, FRSD: forest—
deciduous, RNGE: range—grasses, PAST: pasture, GRAR: grarigue, WETN: wetlands non-forested,
AGRL: agricultural land—generic, WWGR: western wheatgrass, CWGR: crested wheatgrass, BARR:
barren, WATR: water, URBN: residential.

2.5. Meteorological Data

Daily total precipitation data were acquired from the Climate Hazards group Infrared
Precipitation with Stations (CHIRPSv2), with a spatial resolution of 0.25 degrees [27].
Maximum and minimum temperature and relative humidity daily data were obtained
from the ERA5 reanalysis from the Copernicus Climate Change Service, with a spatial
resolution of 0.5 degrees [28]. Wind speed and solar radiation were simulated using the
weather generator integrated into SWAT+.

2.6. Topography

The Digital Elevation Map at 30 m resolution (DEM) was obtained from the shutter
Radar Topography Mission, which is available from http://srtm.csi.cgiar.org/strmdata/
(accessed on 21 April 2021). Sub-basins and channel networks were obtained from this map.

2.7. Soil Data

The soil data were obtained from the Harmonized World Soil Database with the
information contained within the 1:5,000,000 scale. Thirteen major soil groups were iden-
tified based on FAO/UNESCO-ISRIC classifications. Leptsols (shallow and stony soil)
and ferrasols (red and yellow weathered soils with high concentrations of Al and Fe ox-
ides) are predominant in the basin, and they comprise 26.75% and 9.83% of the total area,
respectively.

2.8. Land Use Land Cover Data

Land Use and Land Cover data were obtained from the Copernicus Global Land
Service (2019). Twelve land use types were identified according to SWAT+ classifications,
in which pasture (PAST), western wheatgrass (WWGR), and agricultural land generic
(WWGR) are the main classes, and occupy 35.49%, 18.09%, and 13.47% of the total area,
respectively.

http://srtm.csi.cgiar.org/strmdata/
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2.9. Model Set Up

The Uruguay River Basin was discretized into 221 sub-basins, 444 LSUs, and 4472 HRUs;
the SWAT+ model setup covered approximately 215,000 km2. In addition, five categories of
slope were defined; (1) flat (0–3%), (2) smooth (3–8%), (3) undulating (8–20%), (4) strongly
undulating (20–45%), and (5) hilly (>45%). This slope classification was defined according to
Embrapa (soil system classification of Brazil). For the calculation of evapotranspiration, the
Hargreaves equation was chosen, and channel routing was calculated using the Muskingum
routing method. SWAT+ uses the Soil Conversation Service Curve Number Method for
runoff estimations [29]. The QGIS (v.3.22.5) QSWAT+ (v.60.5.4) interface was used to set up
the model and run it at the daily time step, with a simulation period from 1987 to 2020 and
three years of model warm-up.

2.10. River Discharge Data

Daily streamflow data were obtained from the National Water Agency (ANA) of Brazil
and from the Undersecretary of Water Resources in Argentina, and used for calibrating and
validating the model. In this study, three stations located in the main river stream were
calibrated. These cover the upper, mid, and low areas of the basin (Figure 5). We divided
the Uruguay River Basin into three main areas in order to facilitate the discussion of results,
these are (I) Salto Grande; (II) Santo Tomé; and (III) Río Grande. Table 1 shows the mean,
standard deviation, median and asymmetry of the streamflow data for each hydrological
station. The calibration and validation period varied according to the data availability of
each station. The calibration and validation periods were, respectively:

I. Salto Grande: from 1990 to 1997 and 1998 to 2001.
II. Santo Tomé: from 1990 to 2010 and 2011 to 2020.
III. Río Grande: from 1990 to 2000 and 2001 to 2010.

Figure 5. Uruguay River Basin with its sub-basins showing the spatial distribution of the hydrological
stations. I. Salto Grande (low URB), II. Santo Tomé (mid URB), III. Río Grande (upper URB).
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Table 1. Mean, standard deviation, median (in m3/s), and asymmetry coefficient of the observed
monthly streamflow.

Gauge Mean Standard Deviation Median Asymmetry

Salto Grande 6213.17 3830.18 5220.49 1.26
Santo Tomé 4949.86 3444.33 4153.01 1.33
Río Grande 1410.01 982.49 1104.18 1.39

2.11. SPOTPY and Parameter Calibration

Parameter calibration and sensitivity and uncertainty analyses were performed using
the SPOTPY open-source python library and it was linked with the SWAT+ model. SPOTPY
has a model-independent structure, which means that can be easily linked to any eco-
hydrological model. It contains eight commonly used algorithms and eleven objective
functions, and can sample from eight parameter distributions [30].

In order to link SWAT+ to SPOTPY, three general applicable Python routines were
developed. The first routine reads and modifies the parameter values used in the equations
of SWAT+. The second routine reads the model outputs. Finally, the last routine reads the
observed values, sets which parameters to calibrate and how to change them (whether
absolute change, absolute value or percentage change), and defines the objective function(s)
sample algorithm. For the calibration, we selected the Dream algorithm [31] and 3000 model
runs. For the presented results herein, we show only the best performing model run,
based on the calibrated likelihood function and quantify its performance with the NSE
(Nash–Sutcliffe efficiency), KGE (Kling–Gupta efficiency), PBIAS (percent bias), and COR
(correlation coefficient) objective functions. The underlying Python code is freely available
at https://github.com/osvaluis/Spotswatplus (accessed on 21 April 2021).

2.12. Decision Table for Salto Grande Dam

SWAT+ allows the user to develop a set of rules (from simple to complex) to simulate
reservoir release according to the variability of the volume of the reservoir. One main
difficulty in developing a precise set of rules is the access to the management of the dam
against flood and drought periods, ecological actions, and energy demands. In this study,
we did not have access to Salto Grande dam data, and we developed the rules based on
the available streamflow data. The dam of Salto Grande has two main uses: (1) energy
production and (2) flood control. Thus, we extracted a decision table from the SWAT+
database for a dam that has approximately the same purpose and adjusted it to our case
(Table 2). The structure, equations, and variables of the decision tables are explained in the
work by Arnold et al. (2018) [18] and Wu et al. (2020) [32].

The decision table for the Salto Grande dam is interpreted as follows:

1. If reservoir volume > e-pv * −14.92, reservoir volume < e-pv * 0.005, and month < 5.86,
then release volume for multiple_use_fl.

2. If reservoir volume > e-pv * −14.92, reservoir volume < e-pv * 0.005, and month > 10.06,
then release volume for multiple_use_fl.

3. If reservoir volume > e-pv * −14.92, reservoir volume < e-pv * 0.005, month > 5.864,
and month < 10.06, then release volume for multiple_use_nf.

4. If reservoir volume > e-pv * 0.005, reservoir volume < e-pv * 0.93, and month < 5.86,
then release volume for sfl_cont+mu_fl.

5. If reservoir volume > e-pv * 0.005, reservoir volume < e-pv * 0.93, and month > 10.06,
then release volume for sfl_cont+mu_fl.

6. If reservoir volume > e-pv * 0.005, reservoir volume < e-pv * 0.93, month > 5.86, and
month < 10.06, then release volume for sfl_cont+mu_nf.

7. If reservoir volume > e-pv * 0.929, then release volume for efc_cont.

https://github.com/osvaluis/Spotswatplus
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Table 2. Decision table for the Salto Grande dam. Conditions (conds); alternatives (alts); limit variable
(lim_var); limit operator (lim_op); limit constant (lim_const); file pointer (fp); storage volume in ha-m
(e-pv); day rate (dyrt). Multiple use flood (multiple_use_fl); multiple use non-flood (multiple_use_nf);
seasonal flood control + multiple use flood (sfl_cont+mu_fl); seasonal flood control + multiple use
non-flood (sfl_cont+mu_nf); emergency flood control (efc_cont).

Name Conds Alts Acts
Salto 5 7 5

Variable Object lim_var lim_op lim_const alt1 alt2 alt3 alt4 alt5 alt6 alt7

volume res e-pv * −14.92 > > > - - - -
volume res e-pv * 0.005 < < < > > > -
volume res e-pv * 0.93 - - - < < < >
month null null * 5.86 < - > < - > -
month null null * 10.06 - > < - > < -

Action Object Name Option Constant Constant 2 fp Outcome

release res multiple_use_fl dyrt 195 0.17 con1 y y n n n n n
release res multiple_use_nf dyrt 45 0.29 con1 n n y n n n n
release res sfl_cont+mu_fl dyrt 15 3.00 con2 n n n y y n n
release res sfl_cont+mu_nf dyrt 25 4.93 con2 n n n n n y n
release res efc_cont dyrt 5 5.16 con3 n n n n n n y

3. Results
3.1. Model Parameterization

The parameters perco (percolation coefficient), cn3_swf, and latq_co were first param-
eterized based on the Soil Vulnerability Index proposed by Tompson et al. (2020) [33]. The
final values were assigned to each HRU classified as high, moderate, or low runoff and
leaching potential based on the topography (slope of each HRU) and the hydrologic soil
group. The calibrated parameters and their values are shown in Table 3.

Table 3. Initial boundaries and final calibrated values of each investigated SWAT+ model parameter.
Absolute value (absval); absolute change (abschg).

Parameter Description Min Max Change Final Value

flo_min Threshold required for return flow to occur (meters) 10 15 absval 10.03
alpha Baseflow recession constant (days) 0.01 2.0 absval 1.97

sp_yld Ratio of the volume of water drained by gravity (fraction) 0.10 0.20 absval 0.15
esco Soil evaporation coefficient 0 1 absval 0.99
epco Plant uptake coefficient 0 1 absval 0.90
awc Available water capacity of the soil layer (mm H2O/mm) −0.09 −0.30 abschg −0.24

cn3_swf Soil water factor for the curve number condition III −0.30 −0.10 abschg −0.25
cn2 Curve number condition II 0.05 0.15 abschg 0.10

canmx Maximum canopy storage (mm H2O) −0.10 −0.35 abschg −0.29
chw Channel width (meters) −0.10 −0.30 abschg −0.15

k Saturated hydraulic conductivity (mm/h) −0.1 −0.7 abschg −0.49
bf_max Baseflow rate (mm) 0.1 2.0 absval 1.98
surlag Surface runoff lag coefficient 0.9 0.1 abschg 0.50

3.2. Model Performance

The model’s performance was analyzed on a monthly scale. Goodness-of-fit values for
each region are shown in Table 4. The overall objective functions for both periods indicate
a good performance on the model [34], while the model performs well for low flows, there
is a general tendency to underestimate peak flows (Figures 6–8).
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Table 4. Objective function values for calibration and validation periods on a monthly time scale.
Nash–Sutcliffe model efficiency (NSE); percent bias (PBIAS); correlation coefficient (COR); Kling–
Gupta efficiency (KGE).

Calibration
Objective Function Salto Grande Santo Tomé Rio Grande

NSE 0.62 0.65 0.77
PBIAS −22.01 −17.02 −7.61
COR 0.89 0.88 0.93
KGE 0.60 0.60 0.63

Validation

NSE 0.63 0.62 0.70
PBIAS −24.73 −7.05 −5.59
COR 0.92 0.80 0.86
KGE 0.60 0.68 0.65

Figure 6. Río Grande (upper Uruguay Basin). Comparison between observed and simulated values
from 1990 to 2010. Calibration period: NSE 0.77; PBIAS −7.61; COR 0.93; KGE 0.63. Validation period:
NSE 0.70; PBIAS −5.59; COR 0.86; KGE 0.65.

Figure 7. Santo Tomé (middle Uruguay Basin). Comparison between observed and simulated values
from 1990 to 2020. Calibration period: NSE 0.65; PBIAS −17.02; COR 0.88; KGE 0.60. Validation
period: NSE 0.62; PBIAS −7.05; COR 0.80; KGE 0.68.
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Figure 8. Salto Grande (lower Uruguay Basin). Comparison between observed and simulated values
from 1990 to 2001. Calibration period: NSE 0.62; PBIAS −22.01; COR 0.89; KGE 0.60. Validation
period: NSE 0.63, PBIAS −24.73; COR 0.92; KGE 0.60.

3.3. Water Balance Components

The final average annual amounts of the simulated water balance components are
shown in Table 5. The spatial distributions for green and blue water are plotted for
winter (June, July, and August) and summer periods (December, January, and February)
in Figures 9–12. Figures 9 and 10 illustrate the seasonal soil water content and evapo-
transpiration in mm. The results indicate a higher content of water in floodplain areas.
Figures 11 and 12 show the spatial distribution of precipitation and surface runoff in mm.
The upper URB receives more water from rainfall in both summer and winter periods. The
total surface runoff generated from the landscape is also higher in the floodplain.

Table 5. Mean annual water balance components for the Uruguay River Basin in mm.

Variable Description Value

pcp Precipitation 1689.13
ET Evapotranspiration 739.73

surqgen Runoff generated from the landscape 933.64
surqrunon Runoff from upland to the floodplain 83.81

latq Lat. flow from landscape 38.83
latqrunon Lat. flow from upland to the floodplain 34.30

perco Percolation 91.86
wateryld Water yield 972.47

Obs * Observed flow at Salto Grande (outlet) 990.34

* Undersecretary of Water Resources in Argentina (Concepcion gauge).

Figure 9. Monthly mean of the soil water content in mm for June, July, and August and December,
January, and February (1990–2020).
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Figure 10. Monthly mean evapotranspiration from the soil in mm for June, July, and August and
December, January, and February (1990–2020).

Figure 11. Monthly mean precipitation in mm for June, July, and August and December, January, and
February (1990–2020).

Figure 12. Monthly mean runoff in mm for June, July, and August and December, January, and
February (1990–2020).



Water 2023, 15, 2604 13 of 18

3.4. Observed and Simulated Data Evaluation

In order to analyze the variation of some hydro-meteorological components, thirty
years of data were plotted within the period 1990–2020. Figure 13 illustrates the progression
of precipitation, streamflow, and temperature. Figure 14 shows the evolution of ET and soil
water content for the simulation period. A linear regression plot suggests a decrease in the
annual evapotranspiration and an increase in the annual average temperature, precipitation,
soil water content, and streamflow. In order to confirm these yearly variation trends, a
Mann–Kendall seasonal test was performed using the pymannkendall python package [35].

The Mann–Kendall test showed a significant increasing trend for temperature (DJF),
soil water content (JJA), and ET (DJF), with p-values of 0.007, 0.04, and 0.03, respectively
(Table 6). No trends were identified for other water fluxes, such as precipitation and runoff.

Table 6. Annual variability analysis for meteorological and hydrological components from 1990 to
2020. Mann–Kendall seasonal test (significance level 0.05) and Sen’s slope (β > 0 increasing trend and
β < 0 decreasing trend). Average temperature (Avg. Temp), evapotranspiration (ET), precipitation,
runoff, and soil water content (soil water) for December–January–February (DJF) and June–July–
August (JJA).

Variable Z (Trend) p-Value Sen’s Slope

Precipitation DJF no trend 0.37 3.90
Precipitaion JJA no trend 0.65 1.11
Avg. Temp DJF increasing 0.007 0.09
Avg. Temp JJA no trend 0.88 0.03

Runoff DJF no trend 0.26 2.72
Runoff JJA no trend 0.94 0.47

ET DJF increasing 0.03 1.97
ET JJA no trend 0.16 0.37

Soil Water DJF no trend 0.08 1.09
Soil Water JJA increasing 0.04 1.13

Figure 13. Yearly average precipitation and simulated streamflow in mm and temperature in Celsius
degrees with their linear regression curves.
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Figure 14. Yearly average soil water content and evapotranspiration in mm with their respective
linear regression curves.

4. Discussion

This study provides a detailed description of water fluxes and their principal trends in
the Uruguay River Basin. One of the strengths of the current work is that the simulation was
performed at a high spatial resolution, accounting for the upland and floodplain processes.
In addition, this project was built for a long-term simulation over 30 years (1990–2020).
These spatial and temporal resolutions were not found in previous studies of large-scale
SWAT+ applications in the URB. For example, Tucci et al. (2003) [36] described a procedure
for predicting seasonal flow in the Uruguay River Basin, but only modelled 75,000 km2 of
the watershed. In addition, Guizzardi and Gerbec (2017) [37] applied the HEC-RAS model
to calibrate and validate streamflow in only a five-year period.

4.1. Calibration and Validation Performance

The monthly simulations exhibited a range of performance levels from very good
to satisfactory during both the calibration and validation periods, according to Moriasi
et al. (2007) [34]. The upper and middle Basin area (Río Grande and Santo Tomé) provided
the most accurate representation of the streamflow. However, the outlet zone showed the
greatest underestimation, although it still had a satisfactory PBIAS. One potential reason of
the model performance is the absence of marked seasonality in the streamflow regime in the
URB [38]; consequently, there is a major difficulty for the model configuration in capturing
the associated hydrological processes [39]. In addition, the inadequate knowledge of
the Salto Grande reservoir management can lead to an insufficient representation of the
release rates. Moreover, similar to SWAT, SWAT+ simulates two types of aquifers: shallow
aquifer(s) that contribute to streamflow and deep or confined aquifers that account for
the flow leaving the system. This simplistic representation of the groundwater-driven
processes may lead to unrealistic base flow predictions in some model configurations,
and therefore low NSE values [40,41]. Other sources of uncertainty may arise from the
use of global reanalysis products that sometimes do not correctly resolve the atmosphere
complexity [28]. Finally, the calibration procedure relies on achieving a good simulation of
the actual physical processes in the URB. Therefore, we constrained the parameter sample
space to obtain a realistic water balance, as recommended by Pfannerstill et al. (2017) [42].

4.2. Spatial Distribution of Water Fluxes

The water balance results indicate a good representation of the hydrological processes
in the URB. The spatial distribution of the water balance components was performed at
the LSU level. The addition of landscape units as a spatial discretization of the watershed
allows a better representation of the hydrological components in the watershed [1,5,8,11,43].
The maximum ET and soil water content can be observed in the floodplain areas in both
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summer (DJF) and winter periods (JJA). This supports our hypothesis that the updated
model structure results in a greater amount of water being available for ET and a higher
soil water content in the lowlands (Figures 10 and 11).

An increased surface runoff in the floodplain occurs because the runoff from the upland
area is directed towards the floodplain, providing an additional source of input (Figure 13).
The reduced values of lateral flow and percolation are attributable to specific characteristics
of the river basin, namely (1) brief floods, (2) prompt reactions to precipitation, (3) soils
with a low permeability and a shallow depth, and (4) a steep landscape [44]. Berbery and
Barros studied the water cycle in the La Plata River Basin [24]. They hypothesized that the
balance between precipitation, river discharge, evaporation, and infiltration are such that
extreme interannual variability in precipitation is mostly translated to the river discharge
and only a small fraction of it is converted in evapotranspiration or infiltration.

Differences in precipitation values in the uplands and floodplains can be explained by
the spatial distribution of rainfall stations. SWAT+ reads the values of the nearest station to
the HRU, and different stations do not have equal precipitation values. Figure 15 shows,
for an upland–floodplain pair, the presence of at least six different rainfall stations.

Figure 15. Spatial distribution of precipitation stations over the watershed. For the upland–floodplain
pair there are at least six different rainfall stations.

4.3. Annual Variation in the Hydro-Meteorological Components during the Simulation Period
(1990–2020)

An increase in the soil water content suggests that the URB can be considered as an
atmospheric moisture sink. Su and Lettenmaier (2009) [38] also addressed this topic and
concluded, through their estimation, that precipitation values exceed evapotranspiration
levels in all seasons. A similar behavior, in a nearby geographical area, was reported by
Collischonn et al. [45]. They observed an evapotranspiration increase over almost all the
Parana river basin. This increase is related mostly to higher air temperatures and a potential
precipitation increase. Even though there is a gradual warming over the URB (Figure 16),
no trends were identified for other water fluxes, such as precipitation and runoff. One
potential reason for this is the absence of regular patterns in precipitation regimes [24,38]
in the river basin.
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Figure 16. Annual mean maximum and minimum temperature in the URB.

4.4. Limitations

The limitations of this model are mostly related in the data, i.e., (1) unavailability
of reservoir management data and (2) no information on agricultural and management
practices.

There are also limitations in the model configuration. For instance, for the SWAT+
revision used in this study, the connection between soils and aquifers is inaccurately
represented; when the aquifer table is above the bottom of the soil, percolation from the
soil is not limited, resulting in an underestimation of evapotranspiration and an unrealistic
ground water flow.

5. Conclusions

The aim of this study was to represent the hydrological components across the
Uruguay River Basin using the new version of the Soil and Water Assessment Tool (SWAT+)
model. Furthermore, we analyzed hydro-meteorological trends using the large-scale
built model.

The discretization of the watershed into LSUs results in a good representation of the
spatial variability of the hydrological components. This is achieved through the quantifica-
tion of upland and floodplain hydrological components, including runoff generated from
the upland to the floodplain and lateral flow from the upland to the floodplain.

The goodness-of-fit results varied from very good to satisfactory at the three differ-
ent gauges. The model performance at the outlet could be enhanced by providing an
accurate decision table for the Salto Grande dam. A historical data analysis of different
hydro-meteorological simulated variables indicated a significant increase in the average
temperature (p-value = 0.007; Sen’s slope = 0.09), the soil water content (p-value = 0.02;
Sen’s slope = 1.29), and evapotranspiration (p-value: 0.03; Sen’s slope = 1.97), indicating
that the ecosystem experienced a changing climate during the simulation period.

The application of climate change models and the development of different scenario
pathways can provide deeper insights into how climate change will affect water balance
components in the catchment area.
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