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Abstract

We study an interconnection between a switched affine system and a fast LTI dynamics. Often, the classical stabilization
method based on the existence of a stable convex combination is directly used for systems on two time scales while using only
the slow dynamics. Here, we provide conditions for checking the Uniform Ultimate Boundedness when the fast dynamics is
taken into account. In addition, criteria for verifying asymptotical stability are provided for a special case. Numerical examples
illustrate the main results.
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1 Introduction

Switched affine systems, consisting of a family of conti-
nuous-time dynamics and a switching law managing the
switch among them, are a class of hybrid systems [1].
This class of systems is interesting since it has applica-
tions in various domains of physics and engineering. For
example, in DC-DC power converters, which are widely
used in electronic devices, the switched circuit indicates
different modes of operation [2, 3, 4]. However, the sta-
bilization of such switched affine systems is challenging
since one has to handle some complex phenomena such
as non standard equilibrium points, fast switching, zeno
behaviour, etc.. Different approaches have been consid-
ered to deal with such problems. Control design meth-
ods have been proposed based on the existence of Hur-
witz convex combinations [5, 2], generalized relays [6, 7],
adaptive control methods [8] and hybrid approaches [9]-
see also the pioneering work in [10, 11].

In large number of switching electronic devices [12], the
analysis and design of the system is complex since the
system evolve on multiple time scales. We may encounter
simultaneously fast dynamics (for example current in
inductances) and slow system (for example voltage in
capacitors), interactions with mechanical parts. Taking
into account switching controllers in such problem set-
tings is an open challenging problem. Singular perturba-
tion methods [13, 14] which are widely used for two time-
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scale continuous-time systems are not applicable to the
case under study. In this work we focus on switched affine
systems with state-dependent switching laws, which re-
sult in complex phenomena such as sliding modes and
non unique sliding solutions. To the best of our knowl-
edge, the case (multiple time scales dynamics with state-
dependent switching laws) considered in this work has
not been studied in the literature. However, some re-
sults are available for a related problem of two time-
scale switched systems with time-dependent switching
laws [15, 16, 17, 18, 19].

The main contribution of this work is to provide a new
method for the stability analysis of an interconnection
between switched affine system and fast LTI dynamics.
Often the classical stabilization method based on the ex-
istence of a stable convex combination [5] is used while
ignoring the fast dynamics. Here, we propose simple con-
ditions for checking the stability (in the sense of Uni-
form Ultimate Boundedness) when the fast dynamics is
taken into account. A preliminary version of this work
has been presented in [20]. Compared to the preliminary
version, in the present work we provide an estimation of
the upper bound of the perturbation parameter ε∗ such
that the stability property holds for all ε ∈ (0, ε∗). In
addition, we prove the asymptotical stability for a spe-
cial case. From a theoretical point of view, the results
in this work can also be related with the studies con-
cerning the Uniform Ultimate Boundedness of switched
affine systems with dwell-time switching [9, 21, 22].

The paper is organized as follows. Section 2 presents
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motivations and the system under consideration. Section
3 states the stability properties of such system under a
state-dependent switching law. In Section 4, the main
results are illustrated by numerical examples. Finally,
concluding remarks end the paper.

Notation. Given a matrix K, K−1 and K> represent
the inverse and the transpose matrix of K respectively.
For a symmetric matrix, ? denotes the symmetric part.
K � 0 (K � 0) means that the matrix K is positive
(negative) semi-definite. K � 0 (K ≺ 0) means that the
matrix K is positive (negative) definite. ‖ ·‖ denotes the
usual Euclidean norm in Rn. For a positive integer N ,
IN denotes the set {1, . . . , N}. The convex closure of the
set S is denoted by Conv{S}. The simplex is presented
by

∆N=

{
v=
(
v1 · · · vN

)>
∈ RN:

N∑
i=1

vi = 1, vi > 0,∀i ∈ IN

}
.

For a set of scalars γi with i ∈ IN , we denote

arg min
i∈IN

γi = {i ∈ IN : γi ≤ γj ,∀j ∈ IN}.

2 Problem statement

2.1 Motivation

Consider the following system{
ẋs = A11

σ(xs)xs +A12
σ(xs)xf + bσ(xs),

εẋf = A21xs +A22xf ,

(1a)

(1b)

where xs ∈ Rn, xf ∈ Rm are the state variables and the
switching law is σ : Rn → IN , with IN = {1, . . . , N}.
ε is a fixed system’s parameter which is positive and
sufficiently small, i.e., 0 < ε � 1. The affine term is
bi ∈ Rn, and the matrices A11

i ∈ Rn×n, A12
i ∈ Rn×m for

i ∈ {1, . . . , N}, A21 ∈ Rm×n, A22 ∈ Rm×m.

Since 0 < ε � 1, the dynamics of system (1) evolve ac-
cording to two time scales. We adopt the standard sin-
gular perturbation approach [13] to decompose (1) into
the slow and fast subsystems. Assuming A22 invertible
and setting ε = 0 in (1b), we have

xf = −A22−1
A21xs. (2)

Replacing xf in (1a) by the right-hand side of (2), we
get the slow switched affine subsystem

ẋs = Asσ(xs)xs + bσ(xs), (3)

where

Asσ(xs) = A11
σ(xs) −A

12
σ(xs)A

22−1
A21. (4)

In the following, we compute the fast subsystem. Per-
forming the following change of variable

y = xf +A22−1
A21xs,

we can write

εẏ = A22y + ε(G1
σ(xs)xs +G2

σ(xs)y +A22−1
A21bσ(xs)),

whereG1
σ(xs)=A

22−1
A21Asσ(xs),G

2
σ(xs)=A

22−1
A21A12

σ(xs).

Using a new time scale τ = t
ε and ε→ 0, we get the fast

LTI subsystem
dy

dτ
= A22y. (5)

We first consider the following assumption.

Assumption 1 Assume that there existsα=
(
α1 · · ·αN

)>
∈ ∆N such that the convex combinations b(α) =
N∑
i=1

αibi = 0, and As(α) =
N∑
i=1

αiA
s
i is Hurwitz, with Asi

defined in (4) for i ∈ {1, . . . , N}, that is

As(α)>P + PAs(α) � −csP, (6)

with a matrix P = P> � 0, and a scalar cs > 0. 2

Remark 1 Assumption 1 is widely used in the litera-

ture [9]. Let us remark that condition b(α) =
N∑
i=1

αibi = 0

is a necessary condition [6] for the existence of a switch-
ing law σ(xs) such that 0 is an equilibrium of the differ-
ential inclusion associated with system (3). Note that α
satisfying condition (6) should be the same as the one
which satisfies b(α) = 0. Moreover, it is worth to em-
phasize that condition (6) does not require the stability
of each mode of the slow subsystem (3). ◦

Based on Assumption 1, we consider the following state-
dependent switching law of the following form

σ(xs) ∈ arg min
i∈IN

x>s P (Asixs + bi), (7)

with P defined in (6). Note that it is always possible
to transform inclusion (7) into an identity by choosing
either the smallest or the largest index.

Remark 2 The state-dependent switching law (7) is
obtained by using the classical method based on the ex-
istence of a stable convex combination [5] when ignoring
the fast dynamics. This switching law is widely used in
the literature and we believe that it is important to study
it when slow and fast dynamics occur simultaneously. ◦
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Remark 3 In the literature, for switched affine systems
(with only one time scale) there exist other types of
switching laws, and other, less restrictive, design condi-
tions. For instance, the method in [23] is able to handle
systems where the convex combination is rank-deficient.
When the study is restricted to local stability, condition
(6) can be replaced by a less restrictive one such that the
Hurwitz convex combination is not necessary [6]. How-
ever, for the sake of simplicity in the case of systems with
two time scales, we focus on this classical assumption
(Assumption 1) and on the switching law (7). ◦

Remark 4 It is well known that the switching law
(7) may lead to chattering and sliding dynamics. In
some practical cases, a sampled-data implementation
of switching laws is preferable. This guarantees a mini-
mum dwell time between two switching instants. From
a theoretical point of view, it was shown that the
sampled-data implementation of the switching law re-
sults in practical stability. Moreover, it has been shown
that the domain of chattering is of the order of the
sampling interval [22, 9]. One could imagine an exten-
sion of the problem setting we propose here, where a
sampled-data implementation of the switching law (7) is
considered. However, in this work we prefer to focus on
a basic problem setting which highlights the effects of
interconnected switched systems on two time scales. ◦

We next state a second assumption.

Assumption 2 A22 is Hurwitz, that is

A22>Q+QA22 � −cfQ, (8)

with a matrix Q = Q> � 0, and a scalar cf > 0. 2

Note that condition (8) is a standard stability condition
for the fast subsystem.

Considering a sufficiently small positive scalar ε∗, for
two time-scale linear continuous-time systems, the sta-
bility of slow and fast subsystems implies the stability of
the whole system for any ε ∈ (0, ε∗] [13]. This property
does not hold for two time-scale switched systems with
time-dependent switching laws. Additional constraints
are needed to ensure the stability [24, 17, 18].

For switched systems with state-dependent switching
laws, the analysis is more complex. We need to handle
phenomena such as non unique equilibria and sliding
modes. Under the state-dependent switching law (7), the
interconnection of switched affine system (1a) and fast
LTI dynamics (1b) can be unstable for small value of ε,
even if both slow and fast subsystems are stable. We use
the following numerical example to illustrate this fact.

Example 2.1. Let us consider system (1) with N = 2

modes, and matrices given as

A11
1 =

(
2 2

−3 1

)
, A11

2 =

(
−3 −3

2 −1

)
,

A12
1 =

(
2 −3

−1 −2

)
, A12

2 =

(
3 −2

−2 2

)
,

b1 =

(
−1

1

)
, b2 =

(
1

−1

)
,

A21 =

(
−0.5 0.3

−0.5 0.4

)
, A22 =

(
−0.03 0.02

−0.02 0.01

)
,

and ε = 1 × 10−3. With α =
(

1
2

1
2

)>
, we get As(α) =

N∑
i=1

αiA
s
i =

(
−0.5 −25.5

74.5 −75

)
is Hurwitz, such that As-

sumption 1 is satisfied with P =

(
0.86 −0.07

? 0.16

)
. Thus,

the slow subsystem (3) under the switching law (7) is
stable. Moreover, A22 is also Hurwitz, that is Assump-

tion 2 is verified with Q =

(
17.11 −12.84

? 15.20

)
. Therefore,

the fast subsystem (5) is also stable. However, the inter-
connected system (1), (7) diverges. Figure. 1 illustrates
the time evolution of the system with the initial condi-
tion xs(0) = (0 1)>, xf (0) = (0 1)>.
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Fig. 1. Time evolution of system (1) with (7) (Example 2.1)

In this work, we aim to provide conditions for check-
ing the stability of switched affine system (1a) inter-
connected with fast LTI system (1b) under the state-
dependent switching law (7). Under Assumptions 1-2
(ensuring the stability of both fast and slow subsystems),
an additional constraint is proposed to guarantee the
stability of the closed-loop system (1) and (7).
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2.2 Main problem

In the following, we rewrite the interconnected system
(1) in the coordinate (xs, y) as

(
ẋs

ẏ

)
=H(xs, y) =

{
h1(xs, y, σ(xs))

h2ε(xs, y, σ(xs))

:=

{
Asσ(xs)xs +A12

σ(xs)y + bσ(xs),

1
εA

22y+
(
G1
σ(xs)xs+G2

σ(xs)y+A22−1
A21bσ(xs)

)
.

(9)

The objective of this work is to study the stability prop-
erties of the closed-loop system (9) and (7). The stability
notion adopted in this work is given as follows.

Definition 1 [UUB] Let S be a neighborhood of the ori-
gin. The closed-loop system (9) and (7) is said to be Uni-
formly Ultimately Bounded in S if for all a > 0 there

exists T (a) > 0 such that, for any

∥∥∥∥∥ xs(0)

y(0)

∥∥∥∥∥ ≤ a, the so-

lutions
(
xs(t) y(t)

)>
∈ S, for all t ≥ T (a). The set S is

called Ultimately Bounded set.

Definition 2 The closed-loop system (9) and (7) is said
to be asymptotically stable at the origin if for each µ > 0

there exists δ > 0 such that for each

∥∥∥∥∥ xs(0)

y(0)

∥∥∥∥∥ < δ, the

solutions

∥∥∥∥∥ xs(t)y(t)

∥∥∥∥∥ < µ,∀t ≥ 0, and limt→+∞

∥∥∥∥∥ xs(t)y(t)

∥∥∥∥∥ =

0.

Note that in the above definitions, solutions can be con-
sidered in the sense of Krasovskii. As any Filippov solu-
tion is also a Krasovskii solution, the result could also
be applied when the Filippov regularization procedure
is used [25, 26, 27].

3 Stability analysis

In this section, we provide conditions for checking the
stability properties of system (9) with the switching law
(7). The main results are stated as follows.

Theorem 1 Consider symmetric positive definite ma-
trices P,Q satisfying Assumptions 1-2 for some positive
scalars cs, cf . For given c > 0 and 0 < ε � 1, if there
exists θ > 0, such that


−csP + θP 0

√
ε(PA12

i +G1
i
>
Q)

? −θcI
√
ε(QA22−1

A21bi)
>

? ? −cfQ+ ε(G2
i
>
Q+QG2

i ) + θQ

 ≺ 0,

(10)

for all i ∈ IN , then, system (9) with the state-dependent
switching law (7) is Uniformly Ultimately Bounded in

D(c) =


xs
y

 ∈ Rn+m :

xs
y

>P 0

0 Q

xs
y

 ≤ c
 .

(11)

Proof. The proof is based on the Lyapunov analysis.
Step 1 First, for each xs ∈ Rn, we define the subset of

index I∗(xs) ⊆ IN that minimize the term x>s P (Asixs+
bi),

I∗(xs) = arg min
i∈IN

x>s P (Asixs + bi). (12)

Note that (12) corresponds to the set in which the switch-
ing law (7) takes values. Since the closed-loop system (9)
and (7) is a discontinuous ODE system, we study the
following enlarged differential inclusion(

ẋs

ẏ

)
∈ F∗(xs, y) := Conv

{
fi(xs, y), i ∈ I∗(xs)

}
,

(13)

with

fi(xs, y) =

(
Asixs +A12

i y + bi
A22

ε y + (G1
ixs +G2

i y +A22−1
A21bi)

)
.

(14)

This allows to show UUB when the Krasovskii or Filip-
pov regularization procedure is used [25, 26, 27].

Step 2 The objective is to show that the following
candidate Lyapunov function (15) decreases along the
solutions of (13) whenever it is greater than c.

V (xs, y) = x>s Pxs + y>Qy, (15)

with P and Q satisfying (6) and (8) respectively.

Let us consider vectors (h̄1, h̄2ε) ∈ Rn × Rm. We need
to prove that

sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V

∂xs
h̄1 +

∂V

∂y
h̄2ε

}
< 0,
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whenever V (xs, y) > c.

We first define the set ∆∗N(xs) such that

∆∗N(xs) =

{
β ∈ ∆N : βi = 0, i /∈ I∗(xs)

}
. (16)

Then F∗(xs, y) in (13) becomes

F∗(xs, y) =

{
N∑
i=1

βifi(xs, y), i ∈ I∗(xs) : βi ∈ ∆∗N(xs)

}
.

(17)

In view of (14), with using(
h̄1

h̄2ε

)
∈

(
Asixs +A12

i y + bi
A22

ε y + (G1
ixs +G2

i y +A22−1
A21bi)

)
, (18)

it holds that

sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V

∂xs
h̄1 +

∂V

∂y
h̄2ε

}
= sup

{
Conv

{
Ω1
i + Ω2

i , i ∈ I∗(xs)
}}

, (19)

where Ω1
i = ∂V

∂xs
× (Asixs + A12

i y + bi) and Ω2
i = ∂V

∂y ×(
A22

ε y + (G1
ixs +G2

i y +A22−1
A21bi)

)
.

Due to the compactness of the set ∆∗N(xs) defined by

(16), the following holds for i ∈ I∗(xs)

sup

{
Conv

{
Ω1
i + Ω2

i , i ∈ I∗(xs)
}}

= sup
β∈∆∗

N(xs)

{
N∑
i=1

βi(Ω
1
i + Ω2

i )

}

≤ max
β∈∆∗

N(xs)

{
N∑
i=1

βi(Ω
1
i + Ω2

i )

}
. (20)

In the following, let us overbound Ω1
i ,Ω

2
i . For all i ∈

I∗(xs),

Ω1
i =

∂V

∂xs
× (Asixs +A12

i y + bi)

= x>s (Asi
>P + PAsi )xs + 2x>s PA

12
i y + 2x>s Pbi.

(21)

From (12), since i ∈ I∗(xs), we have

x>s (Asi
>P + PAsi )xs + 2x>s Pbi

≤ x>s (Asj
>P + PAsj)xs + 2x>s Pbj ,∀j ∈ IN . (22)

Let α ∈ ∆N such that Assumption 1 is verified. We
deduce from equation (22)

N∑
j=1

αj(x
>
s (Asi

>P + PAsi )xs + 2x>s Pbi)

≤
N∑
j=1

αj(x
>
s (Asj

>P + PAsj)xs + 2x>s Pbj).

Then using
N∑
j=1

αj = 1, we have

x>s (Asi
>P + PAsi )xs + 2x>s Pbi

≤ x>s (As(α)>P + PA(α))xs + 2x>s Pb(α).

Using Assumption 1, we get, for i ∈ I∗(xs)

Ω1
i =

∂V

∂xs
× (Asixs +A12

i y + bi)

= x>s (Asi
>P + PAsi )xs + 2x>s PA

12
i y + 2x>s Pbi

≤ x>s (−csP )xs + 2x>s PA
12
i y.

(23)

Similarly, we overbound Ω2
i as follows, for i ∈ I∗(xs)

Ω2
i =

∂V

∂y
×
(
A22

ε
y + (G1

ixs +G2
i y +A22−1

A21bi)

)
=

1

ε
y>
(
A22>Q+QA22 + ε(G2

i
>
Q+QG2

i )
)
y

+2x>s G
1
i
>
Qy + 2y>QA22−1

A21bi. (24)

Under Assumption 2, we deduce from inequality (24)

Ω2
i =

∂V

∂y
×
(
A22

ε
y + (G1

ixs +G2
i y +A22−1

A21bi)

)
≤ 1

ε
y>
(
−cfQ+ ε(G2

i
>
Q+QG2

i )
)
y

+2x>s G
1
i
>
Qy + 2y>QA22−1

A21bi. (25)
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In view of (23) and (25), we have, for i ∈ I∗(xs)

Ω1
i + Ω2

i

≤ x>s (−csP )xs +
1

ε
y>
(
−cfQ+ ε(G2

i
>
Q+QG2

i )
)
y

+2x>s

(
PA12

i +G1
i
>
Q
)
y + 2y>QA22−1

A21bi

=


xs

1

y


>
−csP 0 PA12

i +G1
i
>
Q

? 0 (QA22−1
A21bi)

>

? ?
−cfQ
ε +G2

i
>
Q+QG2

i



xs

1

y


=: φi(xs, y). (26)

Recall (19)-(20), therefore

sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V

∂xs
h̄1 +

∂V

∂y
h̄2ε

}

≤ max
β∈∆∗

N(xs)

{
N∑
i=1

βiφi(xs, y)

}
, (27)

with φi(xs, y) defined in (26).

In the following, we aim at proving that under condition

(10), sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V
∂xs

h̄1 + ∂V
∂y h̄2ε

}
< 0, whenever

V (xs, y) > c. Using convexity arguments it is sufficient
to show that φi(xs, y) < 0, for all i ∈ I∗(xs) whenever
V (xs, y) > c. By using the Schur complement, condition
(10) is equivalent to(

−csP + θP 0

? −θcI

)
≺ 0, (28)

and

−cfQ+ ε(G2
i
>
Q+QG2

i ) + θQ

−ε

(
PA12

i +G1
i
>
Q

(QA22−1
A21bi)

>

)>
(
−csP + θP 0

? −θcI

)−1(
PA12

i +G1
i
>
Q

(QA22−1
A21bi)

>

)
< 0. (29)

The above inequality (29) can be rewritten as follows

ε

{(
−cfQ

ε
+G2

i
>
Q+QG2

i

)

−

(
PA12

i +G1
i
>
Q

(QA22−1
A21bi)

>

)>
(
−csP + θP 0

? −θcI

)−1(
PA12

i +G1
i
>
Q

(QA22−1
A21bi)

>

)+θQ < 0.

(30)

Since 0 < ε � 1, θ > 0, and Q � 0, inequality (30)
implies

(
−cfQ

ε
+G2

i
>
Q+QG2

i

)
−

(
PA12

i +G1
i
>
Q

(QA22−1
A21bi)

>

)>
×

(
−csP + θP 0

? −θcI

)−1(
PA12

i +G1
i
>
Q

(QA22−1
A21bi)

>

)
+ θQ < 0.

(31)

In view of (28) and (31), using again the Schur comple-
ment, we have
−csP + θP 0 PA12

i +G1
i
>
Q

? −θcI (QA22−1
A21bi)

>

? ?
−cfQ
ε +G2

i
>
Q+QG2

i + θQ

 ≺ 0.

(32)

Multiplying both sides of (32) by the vector
(
xs 1 y

)
,

we get

φi(xs, y) +


xs

1

y


>

θP 0 0

0 −θcI 0

0 0 θQ



xs

1

y

 < 0, (33)

with φi(xs, y) defined in (26).

In addition, let us remark that if V (xs, y) > c, it holds


xs

1

y


>

P 0 0

0 −cI 0

0 0 Q



xs

1

y

 ≥ 0. (34)

Since θ > 0 and in view of (33) and (34), it holds
φi(xs, y) < 0 (given in (26)), whenever V (xs, y) > c, for
i ∈ I∗(xs). Thus, from (19) and (27), we have

sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V

∂xs
h̄1 +

∂V

∂y
h̄2ε

}
< 0, (35)

whenever V (xs, y) > c. Then, system (9) with the state-
dependent switching law (7) is uniformly ultimately
bounded. 2

Remark 5 Theorem 1 provides a simple condition for
checking the UUB property of the closed-loop system

6



(9), (7). In the following, let us summarize the tuning
parameters. The matrices P and Q are the correspond-
ing Lyapunov matrices, which are given such that As-
sumptions 1-2 are satisfied. For a given ε, θ is solved as
an LMI parameter and a line search can be performed
to minimize the ultimate bound c.
Note that in the present work, we are mainly interested
in analysing the UUB for a given switching law, that is,
when the matrices P,Q are given such that Assumptions
1-2 are satisfied. We emphasize that condition (10) is
sufficient only for the UUB, not necessary, that is, the
existence of a parameter θ satisfying condition (10) is
only a sufficient condition for the UUB of the closed-loop
system. ◦

Remark 6 The result of Theorem 1 can also be turned
into a control design condition. In order to find a switch-
ing law (7) which guarantees that the ultimate bound
set (11) is contained in a ball of desired radius ρ, we
need to solve simultaneously conditions (6), (8), (10)

and

(
P 0

0 Q

)
≥ c

ρ2 I. In this case, without loss of gener-

ality, c can be fixed as 1, (P,Q) are considered as LMI
parameters and a line search can be performed for θ. ◦

Remark 7 In the singular perturbation theory [13], it
is usually interesting to study the influence of variations
of the perturbation parameter ε on the stability of the
system. It is a useful information when choosing sys-
tem parameters (for instance, inductances, resistances
in electrical systems). Let us remark that if the condi-
tions in Theorem 1 are satisfied for systems (9) and (7)
with ε = ε∗, then the UUB is also guaranteed for sys-
tems with the same matrices A11

i , A12
i , A21, A22, bi and

for all ε ∈ (0, ε∗]. This can be shown using simple argu-
ments. Note that if condition (10) holds for ε = ε∗, then
(31) also holds for the same ε∗. In addition, (31) holds
for all ε ∈ (0, ε∗], when it holds for ε = ε∗. Therefore,
using similar arguments as the ones around equations
(32)-(35) in the proof of Theorem 1, the UUB can be
guaranteed for all ε ∈ (0, ε∗]. ◦

Remark 8 Let us remark that if we set ε = 0, condition
(10) becomes

−csP + θP 0 0

? −θcI 0

? ? −cfQ+ θQ

 ≺ 0. (36)

Note that for any given ultimate bound c, there always
exists a positive scalar θ < min{cs, cf} such that (36)
holds. Then, by continuity, we can also find a sufficiently
small ε∗ such that (10) is satisfied with the same c and
θ. Therefore, if Assumptions 1-2 are satisfied, then we
can always find a system in the form of (9), (7) which
guarantees a desired Ultimate Bound. In particular, in

Example 2.1, stabilization is guaranteed if one takes ε
sufficiently small. ◦

In the following, we provide explicitly an upper bound
of the perturbation parameter ε∗ such that, for a desired
ultimate bound c, the UUB is guaranteed or all ε ∈
(0, ε∗).

Corollary 1 Consider symmetric positive definite ma-
trices P,Q verifying Assumptions 1-2 for some positive
scalars cs, cf . For any given positive constant c, there ex-
ists

ε∗ = sup
θ∈(0,cs)

min
i∈IN

cfλmin(Q)

‖M3
i −M2

i
>
M1−1M2

i + θQ‖
, (37)

where

M1 =

(
−csP + θP 0

? −θcI

)
,

M2
i =

(
PA12

i +G1
i
>
Q

(QA22−1
A21bi)

>

)
,

M3
i =

(
G2
i
>
Q+QG2

i

)
,

(38)

(39)

(40)

such that for any ε ∈ (0, ε∗), the closed-loop system (9)
and (7) is Uniformly Ultimately Bounded in the set D(c)
as defined in (11).

Proof. The proof is based on the same steps as the proof
of Theorem 1. Since symmetric positive definite matrices
P,Q satisfy Assumptions 1-2, inequality (27) holds with
φi(xs, y) given in (26). In the following, the objective is to
show that φi(xs, y) < 0 whenever V (xs, y) > c. This im-

plies sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V
∂xs

h̄1 + ∂V
∂y h̄2ε

}
< 0, whenever

V (xs, y) > c.

Consider ε∗ defined in (37) and ε̄ ∈ (0, ε∗). From the
definition of ε∗ and from the fact that the function
mini∈IN

cfλmin(Q)

‖M3
i
−M2

i
>M1−1M2

i
+θQ‖ is continuous in θ on

the interval (0, cs), there exists θ ∈ (0, cs) such that

ε̄ = mini∈IN
cfλmin(Q)

‖M3
i
−M2

i
>M1−1M2

i
+θQ‖ . Consider such a

θ ∈ (0, cs) and c > 0, we have that condition (28) holds.
Moreover, for any ε ∈ (0, ε̄], the following holds, for
i ∈ I∗(xs)

ε(M3
i −M2

i
>
M1−1

M2
i + θQ)

≤ ε‖M3
i −M2

i
>
M1−1

M2
i + θQ‖I

≤ ε̄‖M3
i −M2

i
>
M1−1

M2
i + θQ‖I

≤ cfλmin(Q)I

≤ cfQ, (41)

where M1, M2
i ,M

3
i are defined in (38)-(40).
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Condition (41) implies that (31) holds. Then, follow-
ing similar arguments as in the proof of Theorem 1,
we get that for any 0 < ε ≤ ε̄ < ε∗, condition (35)
holds whenever V (xs, y) > c. Therefore, system (9) with
the state-dependent switching law (7) is uniformly ulti-
mately bounded. 2

In the following, we show that asymptotical stability can
be guaranteed for a special case in which the effect of
the affine term bi in the slow dynamics can be rejected
by the fast dynamics.

Corollary 2 Consider symmetric positive definite ma-
trices P,Q satisfying Assumptions 1-2 for some positive
constants cs, cf . Assume that there exist positive con-
stants c, θ, ε∗ � 1 such that condition (10) holds for all
i ∈ IN . If

Span(bi)
i∈IN

⊂ Ker(QA22−1
A21), (42)

then, for all ε ∈ (0, ε∗), the closed-loop system (9) and
(7) is asymptotically stable.

Proof. Following Step 2 in the proof of Theorem 1, under
Assumption 2 and using (42), inequality (25) becomes

Ω2
i =

∂V

∂y
×
(
A22

ε
y + (G1

ixs +G2
i y +A22−1

A21bi)

)
≤ 1

ε
y>
(
−cfQ+ ε(G2

i
>
Q+QG2

i )
)
y + 2x>s G

1
i
>
Qy,

(43)

Under Assumption 1, in view of (23) and (43), we have,
for i ∈ I∗(xs)

Ω1
i + Ω2

i

≤ x>s (−csP )xs +
1

ε
y>
(
−cfQ+ ε(G2

i
>
Q+QG2

i )
)
y

+2x>s

(
PA12

i +G1
i
>
Q
)
y

=

(
xs

y

)>(
−csP PA12

i +G1
i
>
Q

? − cfQε +G2
i
>
Q+QG2

i

)(
xs

y

)
=: gi(xs, y). (44)

Then, the inequality (27) becomes

sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V

∂xs
h̄1 +

∂V

∂y
h̄2ε

}

≤ max
β∈∆∗

N(xs)

{
N∑
i=1

βigi(xs, y)

}
, (45)

where gi(xs, y) defines in (44).

In the following, we prove that under condition (10)
gi(xs, y) < 0, for i ∈ I∗(xs). Using (42), we deduce from
inequality (31)

− cfQ

ε
+ (G2

i
>

+QG2
i )

+ (PA12
i +G1

i
>
Q)>((cs − θ)P )−1(PA12

i +G1
i
>
Q) < 0.

(46)

Since cs > (cs − θ) > 0, inequality (46) implies

− cfQ

ε
+ (G2

i
>

+QG2
i )

+ (PA12
i +G1

i
>
Q)>(csP )−1(PA12

i +G1
i
>
Q) < 0.

(47)

Using the Schur complement, we have(
−csP PA12

i +G1
i
>
Q

? − cfQε +G2
i
>
Q+QG2

i

)
≺ 0. (48)

Multiplying both sides of (48) by the vector (xs, y), we
get gi(xs, y) < 0, i ∈ I∗(xs). Thus

sup
(h̄1,h̄2ε)∈F∗(xs,y)

{
∂V

∂xs
h̄1 +

∂V

∂y
h̄2ε

}
< 0,

Therefore, system (9) with the state-dependent switch-
ing law (7) is asymptotically stable. 2

Remark 9 Corollary 2 provides a simple assumption to
verify asymptotical stability for a switched affine system
interconnected with fast LTI dynamics. ◦

Numerical examples will be shown in the following sec-
tion to illustrate the main results.

4 Numerical example

In this section we use academic numerical examples to
illustrate the main results.

Example 4.1. We consider system (1) withN = 2 modes,
and matrices defined as

A11
1 =

(
2 2

−3 1

)
, A11

2 =

(
−3 −3

2 −1

)
,

A12
1 =

(
2 −3

−1 −2

)
, A12

2 =

(
3 −2

−2 2

)
,

8



b1 =

(
−1

1

)
, b2 =

(
1

−1

)
,

A21 =

(
−5 3

−5 4

)
, A22 =

(
−3 2

−2 1

)
, and ε = 1× 10−2.

Considering α =
(

1
2

1
2

)>
, we have b(α) =

N∑
i=1

αibi =

0. From the definition of the matrices Asi , i ∈ IN in

(4), we get that As(α) =
N∑
i=1

αiA
s
i =

(
−0.5 −3

7 −7.5

)
is

Hurwitz, which means that Assumption 1 is satisfied.
Furthermore, we can see that A22 is also Hurwitz, which
means that Assumption 2 is also satisfied.

It is important to note that in this example, none of
the Asi matrices for i ∈ IN is Hurwitz, which means
that even if the fast subsystem (with state y) converges,
the slow subsystem (with state xs) will converge only
by using of a switching law (i.e. staying only in one
mode will lead to the unstability of the slow subsys-
tem). Consider a state-dependent switching law pro-

posed in (7), with P =

(
0.5513 −0.0697

? 0.1627

)
, cs = 1, and

Q =

(
0.7571 −0.7462

? 0.8842

)
, cf = 1 satisfying Assumptions

1-2. We are able to show that the closed-loop system is
UUB, and the best estimate of the ultimate bound found
by using a line search as c = 0.8 with θ = 10−2. Fig-
ures 2-4 illustrate the evolution of the closed-loop system
(1) and (7) with the initial condition xs(0) = (2 2)>,
xf (0) = (5 5)>. The time evolution of the Lyapunov
function is shown in Figure 5.

Example 4.2. In order to show the asymptotical stability,
we consider the following example that verifies condition
(42) with

A11
1 =

(
3 0

−1 −17

)
, A11

2 =

(
−9 0

1 3

)
,

A12
1 =

(
1 0

0 1

)
, A12

2 =

(
−1 0

0 −1

)
,

b1 =

(
0

1

)
, b2 =

(
0

−1

)
,

A21 =

(
1 0

1 0

)
, A22 =

(
−1 0

0 −1

)
, and ε = 1× 10−3,

and α =
(

1
2

1
2

)>
. The time evolution of the closed-loop

system (1) and (7) with the initial condition xs(0) =
(15 15)>, xf (0) = (5 10)> is given in Figure 6.

0 0.2 0.4 0.6 0.8 1

0

1

2

3

0 0.2 0.4 0.6 0.8 1

0

2

4

6

Fig. 2. System’s evolution (Example 4.1)
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0

1

2

3

4

5

Fig. 3. Evolution of the fast dynamics y (Example 4.1)

0 0.05 0.1 0.15

-2

-1

0

1

2

3

4

5

Fig. 4. Zoom of the fast dynamics y (Example 4.1)

5 Conclusion

In this work, we studied a switched affine system inter-
connected with a fast LTI dynamics. We considered a
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c
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Fig. 5. Time evolution of the Lyapunov function V (Example
4.1)

0 0.2 0.4 0.6 0.8 1
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20
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0

5

10

15

Fig. 6. System’s evolution (Example 4.2)

state-dependent switching law (depending only on the
slow dynamics) based on the classical convex combi-
nation method and we provided simple conditions for
checking stability when the fast dynamics has been taken
into account. Moreover, we proposed an additional con-
dition for ensuring the asymptotical stability for a spe-
cial case.

Perspectives for future works are numerous. Further ex-
tensions will include the study of sampled-data imple-
mentations, the generalization to the case of systems
with switching in both fast and slow dynamics, as well
as the applications of the results to DC-DC power con-
verters.
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