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We study an interconnection between a switched affine system and a fast LTI dynamics. Often, the classical stabilization method based on the existence of a stable convex combination is directly used for systems on two time scales while using only the slow dynamics. Here, we provide conditions for checking the Uniform Ultimate Boundedness when the fast dynamics is taken into account. In addition, criteria for verifying asymptotical stability are provided for a special case. Numerical examples illustrate the main results.

Introduction

Switched affine systems, consisting of a family of continuous-time dynamics and a switching law managing the switch among them, are a class of hybrid systems [START_REF] Liberzon | Switching in systems and control[END_REF]. This class of systems is interesting since it has applications in various domains of physics and engineering. For example, in DC-DC power converters, which are widely used in electronic devices, the switched circuit indicates different modes of operation [START_REF] Beccuti | Optimal control of the boost DC-DC converter[END_REF][START_REF] Buisson | On the stabilisation of switching electrical power converters[END_REF][START_REF] Deaecto | Switched affine systems control design with application to DC-DC converters[END_REF]. However, the stabilization of such switched affine systems is challenging since one has to handle some complex phenomena such as non standard equilibrium points, fast switching, zeno behaviour, etc.. Different approaches have been considered to deal with such problems. Control design methods have been proposed based on the existence of Hurwitz convex combinations [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF][START_REF] Beccuti | Optimal control of the boost DC-DC converter[END_REF], generalized relays [START_REF] Hetel | Local stabilization of switched affine systems[END_REF][START_REF] Kader | Control and observation of switched affine systems[END_REF], adaptive control methods [START_REF] Beneux | Robust stabilization of switched affine systems with unknown parameters and its application to DC/DC Flyback converters[END_REF] and hybrid approaches [START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF]see also the pioneering work in [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF][START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF].

In large number of switching electronic devices [START_REF] Bacha | Power electronic converters modeling and contol[END_REF], the analysis and design of the system is complex since the system evolve on multiple time scales. We may encounter simultaneously fast dynamics (for example current in inductances) and slow system (for example voltage in capacitors), interactions with mechanical parts. Taking into account switching controllers in such problem settings is an open challenging problem. Singular perturbation methods [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF][START_REF] Khalil | Nonlinear systems[END_REF] which are widely used for two time-1 E-mail adresses: {ying.tang, christophe.fiter, laurentiu.hetel}@univ-lille.fr scale continuous-time systems are not applicable to the case under study. In this work we focus on switched affine systems with state-dependent switching laws, which result in complex phenomena such as sliding modes and non unique sliding solutions. To the best of our knowledge, the case (multiple time scales dynamics with statedependent switching laws) considered in this work has not been studied in the literature. However, some results are available for a related problem of two timescale switched systems with time-dependent switching laws [START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF][START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF][START_REF] Malloci | Stability and stabilization of two time scale switched systems in discrete time[END_REF][START_REF] Hachemi | Stability analysis of singularly perturbed switched linear systems[END_REF][START_REF] Chitour | Upper and lower bounds for the maximal lyapunov exponent of singularly perturbed linear switching systems[END_REF].

The main contribution of this work is to provide a new method for the stability analysis of an interconnection between switched affine system and fast LTI dynamics. Often the classical stabilization method based on the existence of a stable convex combination [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] is used while ignoring the fast dynamics. Here, we propose simple conditions for checking the stability (in the sense of Uniform Ultimate Boundedness) when the fast dynamics is taken into account. A preliminary version of this work has been presented in [START_REF] Tang | About switched affine system interconnected with fast LTI dynamiques[END_REF]. Compared to the preliminary version, in the present work we provide an estimation of the upper bound of the perturbation parameter ε * such that the stability property holds for all ε ∈ (0, ε * ). In addition, we prove the asymptotical stability for a special case. From a theoretical point of view, the results in this work can also be related with the studies concerning the Uniform Ultimate Boundedness of switched affine systems with dwell-time switching [START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF][START_REF] Della Rossa | Stability of switched affine systems: Arbitrary and dwell-time switching[END_REF][START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF].

The paper is organized as follows. Section 2 presents motivations and the system under consideration. Section 3 states the stability properties of such system under a state-dependent switching law. In Section 4, the main results are illustrated by numerical examples. Finally, concluding remarks end the paper.

Notation. Given a matrix K, K -1 and K represent the inverse and the transpose matrix of K respectively. For a symmetric matrix, denotes the symmetric part. K 0 (K 0) means that the matrix K is positive (negative) semi-definite. K 0 (K ≺ 0) means that the matrix K is positive (negative) definite. • denotes the usual Euclidean norm in R n . For a positive integer N , I N denotes the set {1, . . . , N }. The convex closure of the set S is denoted by Conv{S}. The simplex is presented by

∆ N = v = v 1 • • • v N ∈ R N : N i=1 v i = 1, v i 0, ∀i ∈ I N .
For a set of scalars γ i with i ∈ I N , we denote arg min

i∈I N γ i = {i ∈ I N : γ i ≤ γ j , ∀j ∈ I N }.
2 Problem statement

Motivation

Consider the following system ẋs

= A 11 σ(xs) x s + A 12 σ(xs) x f + b σ(xs) , ε ẋf = A 21 x s + A 22 x f , (1a) (1b)
where x s ∈ R n , x f ∈ R m are the state variables and the switching law is σ : R n → I N , with I N = {1, . . . , N }. ε is a fixed system's parameter which is positive and sufficiently small, i.e., 0 < ε 1. The affine term is b i ∈ R n , and the matrices

A 11 i ∈ R n×n , A 12 i ∈ R n×m for i ∈ {1, . . . , N }, A 21 ∈ R m×n , A 22 ∈ R m×m .
Since 0 < ε 1, the dynamics of system (1) evolve according to two time scales. We adopt the standard singular perturbation approach [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF] to decompose (1) into the slow and fast subsystems. Assuming A 22 invertible and setting ε = 0 in (1b), we have

x f = -A 22 -1 A 21 x s . (2) 
Replacing x f in (1a) by the right-hand side of (2), we get the slow switched affine subsystem

ẋs = A s σ(xs) x s + b σ(xs) , (3) 
where

A s σ(xs) = A 11 σ(xs) -A 12 σ(xs) A 22 -1 A 21 . (4) 
In the following, we compute the fast subsystem. Performing the following change of variable

y = x f + A 22 -1 A 21 x s ,
we can write

ε ẏ = A 22 y + ε(G 1 σ(xs) x s + G 2 σ(xs) y + A 22 -1 A 21 b σ(xs) ),
where 

G 1 σ(xs) =A 22 -1 A 21 A s σ(xs) , G 2 σ(xs) =A
We first consider the following assumption.

Assumption 1 Assume that there exists

α = α 1 • • •α N ∈ ∆ N such that the convex combinations b(α) = N i=1 α i b i = 0, and A s (α) = N i=1 α i A s i is Hurwitz, with A s i defined in (4) for i ∈ {1, . . . , N }, that is A s (α) P + P A s (α) -c s P, (6) 
with a matrix P = P 0, and a scalar c s > 0. 2

Remark 1 Assumption 1 is widely used in the literature [START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF]. Let us remark that condition b(α)

= N i=1 α i b i = 0
is a necessary condition [START_REF] Hetel | Local stabilization of switched affine systems[END_REF] for the existence of a switching law σ(x s ) such that 0 is an equilibrium of the differential inclusion associated with system (3). Note that α satisfying condition (6) should be the same as the one which satisfies b(α) = 0. Moreover, it is worth to emphasize that condition [START_REF] Hetel | Local stabilization of switched affine systems[END_REF] does not require the stability of each mode of the slow subsystem (3).

•

Based on Assumption 1, we consider the following statedependent switching law of the following form

σ(x s ) ∈ arg min i∈I N x s P (A s i x s + b i ), (7) 
with P defined in [START_REF] Hetel | Local stabilization of switched affine systems[END_REF]. Note that it is always possible to transform inclusion [START_REF] Kader | Control and observation of switched affine systems[END_REF] into an identity by choosing either the smallest or the largest index.

Remark 2

The state-dependent switching law (7) is obtained by using the classical method based on the existence of a stable convex combination [START_REF] Bolzern | Quadratic stabilization of a switched affine system about a nonequilibrium point[END_REF] when ignoring the fast dynamics. This switching law is widely used in the literature and we believe that it is important to study it when slow and fast dynamics occur simultaneously. • Remark 3 In the literature, for switched affine systems (with only one time scale) there exist other types of switching laws, and other, less restrictive, design conditions. For instance, the method in [START_REF] Egidio | Stabilization of rank-deficient continuous-time switched affine systems[END_REF] is able to handle systems where the convex combination is rank-deficient. When the study is restricted to local stability, condition (6) can be replaced by a less restrictive one such that the Hurwitz convex combination is not necessary [START_REF] Hetel | Local stabilization of switched affine systems[END_REF]. However, for the sake of simplicity in the case of systems with two time scales, we focus on this classical assumption (Assumption 1) and on the switching law [START_REF] Kader | Control and observation of switched affine systems[END_REF].

• Remark 4 It is well known that the switching law (7) may lead to chattering and sliding dynamics. In some practical cases, a sampled-data implementation of switching laws is preferable. This guarantees a minimum dwell time between two switching instants. From a theoretical point of view, it was shown that the sampled-data implementation of the switching law results in practical stability. Moreover, it has been shown that the domain of chattering is of the order of the sampling interval [START_REF] Hetel | Robust sampled-data control of switched affine systems[END_REF][START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF]. One could imagine an extension of the problem setting we propose here, where a sampled-data implementation of the switching law ( 7) is considered. However, in this work we prefer to focus on a basic problem setting which highlights the effects of interconnected switched systems on two time scales. •

We next state a second assumption.

Assumption 2 A 22 is Hurwitz, that is

A 22 Q + QA 22 -c f Q, (8) 
with a matrix Q = Q 0, and a scalar c f > 0. 2

Note that condition ( 8) is a standard stability condition for the fast subsystem.

Considering a sufficiently small positive scalar ε * , for two time-scale linear continuous-time systems, the stability of slow and fast subsystems implies the stability of the whole system for any ε ∈ (0, ε * ] [13]. This property does not hold for two time-scale switched systems with time-dependent switching laws. Additional constraints are needed to ensure the stability [START_REF] Alwan | Exponential stability of singularly perturbed switched systems with time delay[END_REF][START_REF] Malloci | Stability and stabilization of two time scale switched systems in discrete time[END_REF][START_REF] Hachemi | Stability analysis of singularly perturbed switched linear systems[END_REF].

For switched systems with state-dependent switching laws, the analysis is more complex. We need to handle phenomena such as non unique equilibria and sliding modes. Under the state-dependent switching law [START_REF] Kader | Control and observation of switched affine systems[END_REF], the interconnection of switched affine system (1a) and fast LTI dynamics (1b) can be unstable for small value of ε, even if both slow and fast subsystems are stable. We use the following numerical example to illustrate this fact.

Example 2.1. Let us consider system (1) with N = 2 modes, and matrices given as

A 11 1 = 2 2 -3 1 , A 11 2 = -3 -3 2 -1 , A 12 1 = 2 -3 -1 -2 , A 12 2 = 3 -2 -2 2 , b 1 = -1 1 , b 2 = 1 -1 , A 21 = -0.5 0.3 -0.5 0.4 , A 22 = -0.03 0.02 -0.02 0.01
,

and ε = 1 × 10 -3 . With α = 1 2 1 2
, we get . Therefore, the fast subsystem ( 5) is also stable. However, the interconnected system (1), ( 7) diverges. Figure . 1 illustrates the time evolution of the system with the initial condition x s (0) = (0 1) , x f (0) = (0 1) . In this work, we aim to provide conditions for checking the stability of switched affine system (1a) interconnected with fast LTI system (1b) under the statedependent switching law [START_REF] Kader | Control and observation of switched affine systems[END_REF]. Under Assumptions 1-2 (ensuring the stability of both fast and slow subsystems), an additional constraint is proposed to guarantee the stability of the closed-loop system (1) and (7).

A s (α) = N i=1 α i A s i = -0.5 -

Main problem

In the following, we rewrite the interconnected system (1) in the coordinate (x s , y) as

ẋs ẏ = H(x s , y) = h 1 (x s , y, σ(x s )) h 2ε (x s , y, σ(x s )) := A s σ(xs) x s + A 12 σ(xs) y + b σ(xs) , 1 ε A 22 y+ G 1 σ(xs) x s +G 2 σ(xs) y+A 22 -1 A 21 b σ(xs) . (9) 
The objective of this work is to study the stability properties of the closed-loop system ( 9) and [START_REF] Kader | Control and observation of switched affine systems[END_REF]. The stability notion adopted in this work is given as follows.

Definition 1 [UUB] Let S be a neighborhood of the origin. The closed-loop system ( 9) and ( 7) is said to be Uniformly Ultimately Bounded in S if for all a > 0 there exists T (a) > 0 such that, for any x s (0)

y(0)
≤ a, the solutions x s (t) y(t) ∈ S, for all t ≥ T (a). The set S is called Ultimately Bounded set.

Definition 2

The closed-loop system ( 9) and ( 7) is said to be asymptotically stable at the origin if for each µ > 0 there exists δ > 0 such that for each

x s (0)

y(0)
< δ, the solutions x s (t) y(t) < µ, ∀t ≥ 0, and lim t→+∞ x s (t)

y(t) = 0.
Note that in the above definitions, solutions can be considered in the sense of Krasovskii. As any Filippov solution is also a Krasovskii solution, the result could also be applied when the Filippov regularization procedure is used [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF][START_REF] Cortes | Discontinuous dynamical systems[END_REF][START_REF] Bacciotti | On several notions of generalized solutions for discontinuous differential equations and their relationship[END_REF].

Stability analysis

In this section, we provide conditions for checking the stability properties of system (9) with the switching law [START_REF] Kader | Control and observation of switched affine systems[END_REF]. The main results are stated as follows.

Theorem 1 Consider symmetric positive definite matrices P, Q satisfying Assumptions 1-2 for some positive scalars c s , c f . For given c > 0 and 0 < ε 1, if there exists θ > 0, such that

    -csP + θP 0 √ ε(P A 12 i + G 1 i Q) -θcI √ ε(QA 22 -1 A 21 bi) -c f Q + ε(G 2 i Q + QG 2 i ) + θQ     ≺ 0, (10) 
for all i ∈ IN , then, system (9) with the state-dependent switching law [START_REF] Kader | Control and observation of switched affine systems[END_REF] is Uniformly Ultimately Bounded in

D(c) =      xs y   ∈ R n+m :   xs y     P 0 0 Q     xs y   ≤ c    . ( 11 
)
Proof. The proof is based on the Lyapunov analysis.

Step 1 First, for each x s ∈ R n , we define the subset of index I * (x s ) ⊆ I N that minimize the term

x s P (A s i x s + b i ), I * (x s ) = arg min i∈I N x s P (A s i x s + b i ). ( 12 
)
Note that (12) corresponds to the set in which the switching law [START_REF] Kader | Control and observation of switched affine systems[END_REF] takes values. Since the closed-loop system ( 9) and ( 7) is a discontinuous ODE system, we study the following enlarged differential inclusion

ẋs ẏ ∈ F * (x s , y) := Conv f i (x s , y), i ∈ I * (x s ) , (13) 
with

f i (x s , y) = A s i x s + A 12 i y + b i A 22 ε y + (G 1 i x s + G 2 i y + A 22 -1 A 21 b i ) . ( 14 
)
This allows to show UUB when the Krasovskii or Filippov regularization procedure is used [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF][START_REF] Cortes | Discontinuous dynamical systems[END_REF][START_REF] Bacciotti | On several notions of generalized solutions for discontinuous differential equations and their relationship[END_REF].

Step 2 The objective is to show that the following candidate Lyapunov function [START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF] decreases along the solutions of (13) whenever it is greater than c.

V (x s , y) = x s P x s + y Qy, (15) 
with P and Q satisfying ( 6) and ( 8) respectively.

Let us consider vectors ( h1 , h2ε ) ∈ R n × R m . We need to prove that sup ( h1, h2ε)∈F * (xs,y)

∂V ∂x s h1 + ∂V ∂y h2ε < 0, whenever V (x s , y) c.

We first define the set ∆ * N (xs) such that

∆ * N (xs) = β ∈ ∆ N : β i = 0, i / ∈ I * (x s ) . (16) 
Then F * (x s , y) in ( 13) becomes

F * (x s , y) = N i=1 β i f i (x s , y), i ∈ I * (x s ) : β i ∈ ∆ * N (xs) . (17) 
In view of ( 14), with using

h1 h2ε ∈ A s i x s + A 12 i y + b i A 22 ε y + (G 1 i x s + G 2 i y + A 22 -1 A 21 b i ) , (18) 
it holds that sup ( h1, h2ε)∈F * (xs,y)

∂V ∂x s h1 + ∂V ∂y h2ε = sup Conv Ω 1 i + Ω 2 i , i ∈ I * (x s ) , (19) 
where

Ω 1 i = ∂V ∂xs × (A s i x s + A 12 i y + b i ) and Ω 2 i = ∂V ∂y × A 22 ε y + (G 1 i x s + G 2 i y + A 22 -1 A 21 b i ) .
Due to the compactness of the set ∆ * N (xs) defined by ( 16), the following holds for i ∈ I * (x s )

sup Conv Ω 1 i + Ω 2 i , i ∈ I * (x s ) = sup β∈∆ * N (xs ) N i=1 β i (Ω 1 i + Ω 2 i ) ≤ max β∈∆ * N (xs ) N i=1 β i (Ω 1 i + Ω 2 i ) . (20) 
In the following, let us overbound Ω 1 i , Ω 2 i . For all i ∈ I * (x s ),

Ω 1 i = ∂V ∂x s × (A s i x s + A 12 i y + b i ) = x s (A s i P + P A s i )x s + 2x s P A 12 i y + 2x s P b i . (21) 
From ( 12), since i ∈ I * (x s ), we have

x s (A s i P + P A s i )x s + 2x s P b i ≤ x s (A s j P + P A s j )x s + 2x s P b j , ∀j ∈ I N . (22) 
Let α ∈ ∆ N such that Assumption 1 is verified. We deduce from equation ( 22)

N j=1 α j (x s (A s i P + P A s i )x s + 2x s P b i ) ≤ N j=1
α j (x s (A s j P + P A s j )x s + 2x s P b j ).

Then using N j=1 α j = 1, we have

x s (A s i P + P A s i )x s + 2x s P b i ≤ x s (A s (α) P + P A(α))x s + 2x s P b(α).
Using Assumption 1, we get, for i ∈ I * (x s )

Ω 1 i = ∂V ∂x s × (A s i x s + A 12 i y + b i ) = x s (A s i P + P A s i )x s + 2x s P A 12 i y + 2x s P b i ≤ x s (-c s P )x s + 2x s P A 12 i y. (23) 
Similarly, we overbound Ω 2 i as follows, for i ∈ I * (x s )

Ω 2 i = ∂V ∂y × A 22 ε y + (G 1 i x s + G 2 i y + A 22 -1 A 21 b i ) = 1 ε y A 22 Q + QA 22 + ε(G 2 i Q + QG 2 i ) y +2x s G 1 i Qy + 2y QA 22 -1 A 21 b i . (24) 
Under Assumption 2, we deduce from inequality ( 24)

Ω 2 i = ∂V ∂y × A 22 ε y + (G 1 i x s + G 2 i y + A 22 -1 A 21 b i ) ≤ 1 ε y -c f Q + ε(G 2 i Q + QG 2 i ) y +2x s G 1 i Qy + 2y QA 22 -1 A 21 b i . (25) 
In view of ( 23) and ( 25), we have, for i ∈ I * (x s )

Ω 1 i + Ω 2 i ≤ x s (-c s P )x s + 1 ε y -c f Q + ε(G 2 i Q + QG 2 i ) y +2x s P A 12 i + G 1 i Q y + 2y QA 22 -1 A 21 b i =     x s 1 y         -c s P 0 P A 12 i + G 1 i Q 0 (QA 22 -1 A 21 b i ) -c f Q ε + G 2 i Q + QG 2 i         x s 1 y     =: φ i (x s , y). (26) 
Recall ( 19)-( 20), therefore sup ( h1, h2ε)∈F * (xs,y)

∂V ∂x s h1 + ∂V ∂y h2ε ≤ max β∈∆ * N (xs) N i=1 β i φ i (x s , y) , (27) 
with φ i (x s , y) defined in [START_REF] Cortes | Discontinuous dynamical systems[END_REF].

In the following, we aim at proving that under condition [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF], sup ( h1, h2ε)∈F * (xs,y)

∂V ∂xs h1 + ∂V ∂y h2ε < 0, whenever V (x s , y) c. Using convexity arguments it is sufficient to show that φ i (x s , y) < 0, for all i ∈ I * (x s ) whenever V (x s , y) c. By using the Schur complement, condition ( 10) is equivalent to

-c s P + θP 0 -θcI ≺ 0, (28) 
and

-c f Q + ε(G 2 i Q + QG 2 i ) + θQ -ε P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) -c s P + θP 0 -θcI -1 P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) < 0. (29)
The above inequality (29) can be rewritten as follows

ε - c f Q ε + G 2 i Q + QG 2 i - P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) -c s P + θP 0 -θcI -1 P A 12 i + G 1 i Q (QA 22 -1 A 21 b i )    +θQ < 0. ( 30 
)
Since 0 < ε 1, θ > 0, and Q 0, inequality (30) implies

- c f Q ε + G 2 i Q + QG 2 i - P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) × -c s P + θP 0 -θcI -1 P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) + θQ < 0. (31)
In view of ( 28) and (31), using again the Schur complement, we have

    -c s P + θP 0 P A 12 i + G 1 i Q -θcI (QA 22 -1 A 21 b i ) -c f Q ε + G 2 i Q + QG 2 i + θQ     ≺ 0. ( 32 
)
Multiplying both sides of (32) by the vector x s 1 y , we get

φ i (x s , y) +     x s 1 y         θP 0 0 0 -θcI 0 0 0 θQ         x s 1 y     < 0, ( 33 
)
with φ i (x s , y) defined in [START_REF] Cortes | Discontinuous dynamical systems[END_REF].

In addition, let us remark that if V (x s , y) c, it holds

    x s 1 y         P 0 0 0 -cI 0 0 0 Q         x s 1 y     ≥ 0. ( 34 
)
Since θ > 0 and in view of ( 33) and (34), it holds φ i (x s , y) < 0 (given in ( 26)), whenever V (x s , y) c, for i ∈ I * (x s ). Thus, from ( 19) and ( 27), we have sup

( h1, h2ε)∈F * (xs,y) ∂V ∂x s h1 + ∂V ∂y h2ε < 0, ( 35 
)
whenever V (x s , y) c. Then, system (9) with the statedependent switching law ( 7) is uniformly ultimately bounded. 2

Remark 5 Theorem 1 provides a simple condition for checking the UUB property of the closed-loop system ( 9), [START_REF] Kader | Control and observation of switched affine systems[END_REF]. In the following, let us summarize the tuning parameters. The matrices P and Q are the corresponding Lyapunov matrices, which are given such that Assumptions 1-2 are satisfied. For a given ε, θ is solved as an LMI parameter and a line search can be performed to minimize the ultimate bound c. Note that in the present work, we are mainly interested in analysing the UUB for a given switching law, that is, when the matrices P, Q are given such that Assumptions 1-2 are satisfied. We emphasize that condition ( 10) is sufficient only for the UUB, not necessary, that is, the existence of a parameter θ satisfying condition ( 10) is only a sufficient condition for the UUB of the closed-loop system.

•

Remark 6

The result of Theorem 1 can also be turned into a control design condition. In order to find a switching law [START_REF] Kader | Control and observation of switched affine systems[END_REF] which guarantees that the ultimate bound set [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF] is contained in a ball of desired radius ρ, we need to solve simultaneously conditions ( 6), ( 8), [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF] and

P 0 0 Q ≥ c ρ 2 I.
In this case, without loss of generality, c can be fixed as 1, (P, Q) are considered as LMI parameters and a line search can be performed for θ. • Remark 7 In the singular perturbation theory [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF], it is usually interesting to study the influence of variations of the perturbation parameter ε on the stability of the system. It is a useful information when choosing system parameters (for instance, inductances, resistances in electrical systems). Let us remark that if the conditions in Theorem 1 are satisfied for systems ( 9) and ( 7) with ε = ε * , then the UUB is also guaranteed for systems with the same matrices A 11 i , A 12 i , A 21 , A 22 , b i and for all ε ∈ (0, ε * ]. This can be shown using simple arguments. Note that if condition [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF] holds for ε = ε * , then (31) also holds for the same ε * . In addition, (31) holds for all ε ∈ (0, ε * ], when it holds for ε = ε * . Therefore, using similar arguments as the ones around equations (32)-(35) in the proof of Theorem 1, the UUB can be guaranteed for all ε ∈ (0, ε * ].

• Remark 8 Let us remark that if we set ε = 0, condition

   -c s P + θP 0 0 -θcI 0 -c f Q + θQ     ≺ 0. (10) becomes  
Note that for any given ultimate bound c, there always exists a positive scalar θ < min{c s , c f } such that (36) holds. Then, by continuity, we can also find a sufficiently small ε * such that (10) is satisfied with the same c and θ. Therefore, if Assumptions 1-2 are satisfied, then we can always find a system in the form of ( 9), ( 7) which guarantees a desired Ultimate Bound. In particular, in Example 2.1, stabilization is guaranteed if one takes ε sufficiently small. •

In the following, we provide explicitly an upper bound of the perturbation parameter ε * such that, for a desired ultimate bound c, the UUB is guaranteed or all ε ∈ (0, ε * ).

Corollary 1 Consider symmetric positive definite matrices P, Q verifying Assumptions 1-2 for some positive scalars c s , c f . For any given positive constant c, there exists

ε * = sup θ∈(0,cs) min i∈I N c f λ min (Q) M 3 i -M 2 i M 1 -1 M 2 i + θQ , (37) 
where

M 1 = -c s P + θP 0 -θcI , M 2 i = P A 12 i + G 1 i Q (QA 22 -1 A 21 b i ) , M 3 i = G 2 i Q + QG 2 i , (38) (39) 
(40)

such that for any ε ∈ (0, ε * ), the closed-loop system ( 9) and ( 7) is Uniformly Ultimately Bounded in the set D(c) as defined in [START_REF] Geromel | Stability and stabilization of continuous-time switched linear systems[END_REF].

Proof. The proof is based on the same steps as the proof of Theorem 1. Since symmetric positive definite matrices P, Q satisfy Assumptions 1-2, inequality [START_REF] Bacciotti | On several notions of generalized solutions for discontinuous differential equations and their relationship[END_REF] holds with φ i (x s , y) given in [START_REF] Cortes | Discontinuous dynamical systems[END_REF]. In the following, the objective is to show that φ i (x s , y) < 0 whenever V (x s , y) c. This implies sup ( h1, h2ε)∈F * (xs,y)

∂V ∂xs h1 + ∂V ∂y h2ε < 0, whenever

V (x s , y) c.
Consider ε * defined in (37) and ε ∈ (0, ε * ). From the definition of ε * and from the fact that the function

min i∈I N c f λmin(Q) M 3 i -M 2 i M 1-1 M 2 i +θQ
is continuous in θ on the interval (0, c s ), there exists θ ∈ (0, c s ) such that ε

= min i∈I N c f λmin(Q) M 3 i -M 2 i M 1-1 M 2 i +θQ .
Consider such a θ ∈ (0, c s ) and c > 0, we have that condition (28) holds. Moreover, for any ε ∈ (0, ε], the following holds, for i ∈ I * (x s )

ε(M 3 i -M 2 i M 1 -1 M 2 i + θQ) ≤ ε M 3 i -M 2 i M 1 -1 M 2 i + θQ I ≤ ε M 3 i -M 2 i M 1 -1 M 2 i + θQ I ≤ c f λ min (Q)I ≤ c f Q, (41) 
where M 1 , M 2 i , M 3 i are defined in (38)-(40).

Condition (41) implies that (31) holds. Then, following similar arguments as in the proof of Theorem 1, we get that for any 0 < ε ≤ ε < ε * , condition (35) holds whenever V (x s , y) c. Therefore, system (9) with the state-dependent switching law ( 7) is uniformly ultimately bounded. 2

In the following, we show that asymptotical stability can be guaranteed for a special case in which the effect of the affine term b i in the slow dynamics can be rejected by the fast dynamics.

Corollary 2 Consider symmetric positive definite matrices P, Q satisfying Assumptions 1-2 for some positive constants c s , c f . Assume that there exist positive constants c, θ, ε * 1 such that condition [START_REF] Feron | Quadratic stabilizability of switched systems via state and output feedback[END_REF] holds for all i ∈ I N . If

Span(b i ) i∈I N ⊂ Ker(QA 22 -1 A 21 ), (42) 
then, for all ε ∈ (0, ε * ), the closed-loop system ( 9) and ( 7) is asymptotically stable.

Proof. Following

Step 2 in the proof of Theorem 1, under Assumption 2 and using (42), inequality [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF] becomes

Ω 2 i = ∂V ∂y × A 22 ε y + (G 1 i x s + G 2 i y + A 22 -1 A 21 b i ) ≤ 1 ε y -c f Q + ε(G 2 i Q + QG 2 i ) y + 2x s G 1 i Qy, (43) 
Under Assumption 1, in view of ( 23) and (43), we have, for i ∈ I * (x s )

Ω 1 i + Ω 2 i ≤ x s (-c s P )x s + 1 ε y -c f Q + ε(G 2 i Q + QG 2 i ) y +2x s P A 12 i + G 1 i Q y = x s y -c s P P A 12 i + G 1 i Q - c f Q ε + G 2 i Q + QG 2 i x s y =: g i (x s , y). (44) 
Then, the inequality (27) becomes sup ( h1, h2ε)∈F * (xs,y)

∂V ∂x s h1 + ∂V ∂y h2ε ≤ max β∈∆ * N (xs) N i=1 β i g i (x s , y) , (45) 
where g i (x s , y) defines in (44).

In the following, we prove that under condition (10) g i (x s , y) < 0, for i ∈ I * (x s ). Using (42), we deduce from inequality (31)

- c f Q ε + (G 2 i + QG 2 i ) + (P A 12 i + G 1 i Q) ((c s -θ)P ) -1 (P A 12 i + G 1 i Q) < 0. ( 46 
) Since c s > (c s -θ) > 0, inequality (46) implies - c f Q ε + (G 2 i + QG 2 i ) + (P A 12 i + G 1 i Q) (c s P ) -1 (P A 12 i + G 1 i Q) < 0. ( 47 
)
Using the Schur complement, we have

-c s P P A 12 i + G 1 i Q - c f Q ε + G 2 i Q + QG 2 i ≺ 0. ( 48 
)
Multiplying both sides of (48) by the vector (x s , y), we get g i (x s , y) < 0, i ∈ I * (x s ). Thus sup ( h1, h2ε)∈F * (xs,y)

∂V ∂x s h1 + ∂V ∂y h2ε < 0, Therefore, system (9) with the state-dependent switching law ( 7) is asymptotically stable. 2

Remark 9 Corollary 2 provides a simple assumption to verify asymptotical stability for a switched affine system interconnected with fast LTI dynamics.

• Numerical examples will be shown in the following section to illustrate the main results.

Numerical example

In this section we use academic numerical examples to illustrate the main results.

Example 4.1. We consider system (1) with N = 2 modes, and matrices defined as

A 11 1 = 2 2 -3 1 , A 11 2 = -3 -3 2 -1 , A 12 1 = 2 -3 -1 -2 , A 12 2 = 3 -2 -2 2 , b 1 = -1 1 , b 2 = 1 -1 , A 21 = -5 3 -5 4 , A 22 = -3 2 -2 1 
, and ε = 1 × 10 -2 .

Considering α = 1 is Hurwitz, which means that Assumption 1 is satisfied. Furthermore, we can see that A 22 is also Hurwitz, which means that Assumption 2 is also satisfied.

It is important to note that in this example, none of the A s i matrices for i ∈ I N is Hurwitz, which means that even if the fast subsystem (with state y) converges, the slow subsystem (with state x s ) will converge only by using of a switching law (i.e. staying only in one mode will lead to the unstability of the slow subsystem). Consider a state-dependent switching law proposed in [START_REF] Kader | Control and observation of switched affine systems[END_REF] . The time evolution of the closed-loop system (1) and ( 7) with the initial condition x s (0) = (15 15) , x f (0) = (5 10) is given in Figure 6. 

Conclusion

In this work, we studied a switched affine system interconnected with a fast LTI dynamics. We considered a state-dependent switching law (depending only on the slow dynamics) based on the classical convex combination method and we provided simple conditions for checking stability when the fast dynamics has been taken into account. Moreover, we proposed an additional condition for ensuring the asymptotical stability for a special case.

Perspectives for future works are numerous. Further extensions will include the study of sampled-data implementations, the generalization to the case of systems with switching in both fast and slow dynamics, as well as the applications of the results to DC-DC power converters.
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 1 Fig. 1. Time evolution of system (1) with (7) (Example 2.1)
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 0 From the definition of the matrices A s i , i ∈ I N in (4), we get that A s (α) =

2 . 5 . 4 . 2 . 1 , and ε = 1 × 10 - 3 ,

 254211103 We are able to show that the closed-loop system is UUB, and the best estimate of the ultimate bound found by using a line search as c = 0.8 with θ = 10 -2 . Figures 2-4 illustrate the evolution of the closed-loop system (1) and (7) with the initial condition x s (0) = (2 2) , x f (0) = (5 5) . The time evolution of the Lyapunov function is shown in FigureExampleIn order to show the asymptotical stability, we consider the following example that verifies condition (
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Fig. 5 .Fig. 6 .

 56 Fig. 5. Time evolution of the Lyapunov function V (Example 4.1)