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The GW Approximation: A Quantum Chemistry Perspective
Antoine Marie,1, a) Abdallah Ammar,1, b) and Pierre-François Loos1, c)

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

We provide an in-depth examination of the GW approximation of Green’s function many-body perturbation
theory by detailing both its theoretical and practical aspects in the realm of quantum chemistry. First, the
quasiparticle context is introduced before delving into the derivation of Hedin’s equations. From these, we
explain how to derive the well-known GW approximation of the self-energy. In a second time, we meticulously
explain each step involved in a GW calculation and what type of physical quantities can be computed. To
illustrate its versatility, we consider two contrasting systems: the water molecule, a weakly correlated system,
and the carbon dimer, a strongly correlated system. Each stage of the process is thoroughly detailed and
explained alongside numerical results and illustrative plots. We hope that the contribution will facilitate
the dissemination and democratization of Green’s function-based formalisms within the computational and
theoretical quantum chemistry community.
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I. QUASIPARTICLES

The concept of quasiparticles stands as the cornerstone
of many-body perturbation theory, serving as a vital
tool for characterizing the intricate behaviors of particles
within a complex quantum many-body system.1 Quasi-
particles allow, for example, to elucidate the collective
behavior of the underlying particles while staying in a
single-particle picture. This is achieved by “dressing” the
particles of interest with the complex many-body effects
to create fictitious particles. Despite being treated within
a single-particle framework, these quasiparticles encapsu-
late correlation through their dressing.

To illustrate this, consider the example of the removal
or addition of an electron. In a single-particle framework,
like Hartree-Fock (HF) theory, the electrons are perceived
as independent entities. According to Koopmans’ theorem,
the energy needed to extract one electron from the system
is merely the negative of its one-particle energy, denoted
as −ϵ. However, this depiction assumes that the act of

a)Electronic mail: amarie@irsamc.ups-tlse.fr
b)Electronic mail: aammar@irsamc.ups-tlse.fr
c)Electronic mail: loos@irsamc.ups-tlse.fr

withdrawing an electron has no impact on the surrounding
electrons, which, of course, is far from accurate.

A more realistic perspective portrays the removal of
an electron as likely to perturb its neighboring electrons,
giving rise to minor disruptions. These disturbances man-
ifest as neutral excitations, maintaining the total number
of particles, yet elevating some electrons to higher-energy
one-particle states due to the removal of the targeted
electron. In the quasiparticle framework, these neutral
excitations are dressed on the electron transforming it
into a “quasielectron” with distinct properties compared
to its bare counterpart (as illustrated in Fig. 1). For
example, the interaction between two quasielectrons is
characterized by a screened Coulomb interaction because
the dressing effectively “shields” or “screens” each particle.

Consequently, in a single-particle treatment, the energy
required to extract this quasielectron becomes −ϵ − Σ,
where Σ represents the so-called self-energy of the quasi-
particle. Thus, even when quasiparticles are considered
independently from the rest of the system, the removal
energy takes into account many-body effects between real
particles through the contribution of the self-energy. This
concept similarly applies to the electron addition process.

In essence, quasiparticles enable a more accurate por-
trayal of how particles in a many-body quantum system
interact and influence one another, shedding light on their
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FIG. 1. Schematic representation of an electron removal (left)
and electron addition (right) process within the GW approxi-
mation: the bare hole (white) and the bare electron (blue) are
“dressed” by the RPA neutral excitations and then become a
quasihole (green) and a quasielectron (red).

collective behavior and dynamic responses to perturba-
tions.

The GW approximation of Green’s function many-body
perturbation theory, which is discussed in detail in the
following, aims to provide a detailed description of the
electronic structure and spectral properties of materials
and molecules by utilizing the one-body Green’s function.
It makes extensive use of the quasiparticle concept via
the construction of a dynamically-screened version of the
Coulomb interaction.2 GW has been particularly success-
ful in condensed matter physics and has emerged as a
highly valuable tool for computing excited-state proper-
ties such as bandgaps and band-edge energy levels. We
refer the interested reader to Refs. 3–6 for an in-depth
discussion of GW (and beyond). The book of Martin,
Reining, and Ceperley7 is a particularly valuable resource,
especially for those newly venturing into this field (see
also Refs. 8 and 9).

Within this context, we propose a more “quantum chem-
ical” perspective on the GW approximation. First, we
provide a detailed derivation of the GW equations, as
outlined in Sec. II. Then, we present concrete numerical
examples involving typical molecular systems exhibiting
both weak and strong correlations (see Sec. III). The
content featured in these sections aims to facilitate the
implementation ofGW within existing quantum chemistry
software, bridging the gap between theory and practical
applications.

II. GW IN THEORY

The primary objective of the GW method is to approx-
imate the exact one-body Green’s function

G(11′) = (−i) ⟨ΨN
0 |T̂ [ψ̂(1)ψ̂†(1′)]|ΨN

0 ⟩ (1)

where ΨN
0 is the exact N -electron ground-state wave func-

tion, T̂ is the time-ordering operator, and 1 = (t1,x1) =

(t1, σ1, r1) is a time-spin-space composite index. ψ̂(1) and
ψ̂†(1′) are second-quantized annihilation and creation field
operators in the Heisenberg picture, respectively, that are
related to their counterparts in the Schrödinger picture
as follows:

ψ̂(1) = eiĤt1 ψ̂(x1)e
−iĤt1 (2)

Because the electronic Hamiltonian Ĥ is time-
independent, it is easy to show that G(11′) depends only
on the time difference t1 − t1′ .

The one-body Green’s function gives access to the
charged excitation energies of the system through its
poles in the complex plane as can be readily seen by its
Lehmann representation

G(x1x1′ ;ω) =
∑
S

IS(x1)I∗
S(x1′)

ω − (EN
0 − EN−1

S )− iη

+
∑
S

AS(x1)A∗
S(x1′)

ω − (EN+1
0 − EN

S ) + iη

(3)

where η is a positive infinitesimal, EN
0 is the ground-state

energy of the N -electron system, while EN+1
S and EN−1

S
are the Sth excited-state energies of the (N − 1)- and
(N + 1)-electron systems, respectively. The numerators

IS(x) = ⟨ΨN−1
S |ψ̂(x)|ΨN

0 ⟩ (4a)

AS(x) = ⟨ΨN
0 |ψ̂(x)|ΨN+1

S ⟩ (4b)

are known as the Lehmann amplitudes or Dyson orbitals.
The success of the GW approximation (and of any

other approximations based on Green’s functions) hinges
on the ability to compute G without explicit reference
to the many-body wave function. This remarkable prop-
erty is made possible through a closed set of equations
known as Hedin’s equations.2 In the following, we give the
outline of their derivation, while a more comprehensive
derivation is provided as supporting information. Note
that, here, we rely on four-point quantities to derive
Hedin’s equations.10–12 We refer the interested reader to
Refs. 6, 7, and 13 for details about the usual two-point
version.

The initial step of this derivation consists of writing
down the equation of motion of the one-body Green’s
function∫

d3

[
iδ(13)

∂

∂t3
− h(13)

]
G(31′)

+ i

∫
d(232′) v(12; 32′)G2(32

′+; 1′2++) = δ(11′) (5)

This equation establishes a connection between G and
the two-body Green’s function, defined as

G2(12; 1
′2′) = (−i)2 ⟨ΨN

0 |T̂ [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)]|ΨN
0 ⟩
(6)



3

Here, h(12) is the one-body part of the Hamiltonian,
δ(12) = δ(t1 − t2)δ(x1 − x2) is the Dirac delta func-
tion, and 1± = (t1 ± η,x1). Additionally, the four-point
Coulomb interaction is given by

v(12; 34) = δ(x1 − x3)
δ(t1 − t2)

|r1 − r2|
δ(x2 − x4) (7)

The equation of motion associated with G2 would link
the two- and three-body Green’s functions. However, this
path does not lead to a closed set of equations for G,
which is our primary objective.

To proceed, we reframe the equation of motion pre-
sented in Eq. (5) as a Dyson equation

G(11′) = G0(11
′) +

∫
d(23)G0(12)Σ(23)G(31

′) (8)

by introducing the self-energy

Σ(11′) =

− i

∫
d(232′3′) v(12; 3′2′)G2(3

′2′+; 32++)G−1(31′) (9)

and the non-interacting one-body Green’s function∫
d3

[
iδ(13)

∂

∂t3
− h(13)

]
G0(31

′) = δ(11′) (10)

Then, the next step is to express the self-energy in terms
of G and the crucial element for this task is the Martin-
Schwinger relation14

δG(11′; [U ])

δU(2′2)

∣∣∣∣
U=0

= −G2(12; 1
′2′) +G(11′)G(22′) (11)

which express G2 in terms of the derivative of the one-
body Green’s function with respect to a fictitious external
potential U . The equilibrium Green’s function is retrieved
by taking the limit U → 0, i.e., G(11′; [U = 0]) = G(11′).
In the following, to lighten the notations, we omit the
functional dependence in U and the corresponding limit.
The second term in the right-hand side of Eq. (11) leads
to the Hartree (H) part of the self-energy

ΣH(11
′) = −iδ(11′)

∫
d(22′) v(12; 1′2′)G(2′2+) (12)

and the remaining term encapsulates all the exchange-
correlation (xc) effects, which reads, after some manipu-
lation,

Σxc(11
′) = i

∫
d(22′33′)G(33′)W (12′; 32)Γ̃(3′2; 1′2′)

(13)
In Eq. (13), the dynamically-screened Coulomb inter-

action W is also defined through a Dyson equation

W (12; 1′2′) = v(12−; 1′2′)

− i

∫
d(343′4′) W (14; 1′4′) L̃(3′4′; 3+4) v(23; 2′3′) (14)

which kernel is the “irreducible” polarizability

L̃(12; 1′2′) =
∫

d(33′)G(13)G(3′1′)Γ̃(32; 3′2′) (15)

The missing ingredient to close Hedin’s equations is the
four-point “irreducible” vertex function

Γ̃(12; 1′2′) = δ(12′)δ(1′2)

+

∫
d(33′44′) Ξxc(13

′; 1′3)G(34)G(4′3′)Γ̃(42; 4′2′) (16)

where

Ξxc(12
′; 1′2) =

δΣxc(11
′)

δG(22′)
(17)

is the exchange-correlation kernel.
We are now in a position to derive the GW approxi-

mation. Neglecting the so-called vertex effects by only
considering the first term in Eq. (16), i.e., Γ̃(12; 1′2′) ≈
δ(12′)δ(1′2), yields the following form of the self-energy

ΣGW
xc (11′) = i

∫
d(22′)G(2+2′)W (2′1; 1′2) (18)

which gives its name to this particular approximation.
It is worth noting that since Γ̃ also plays a role in the
polarizability, as seen in Eq. (15), one has the flexibility to
choose whether to apply the same approximation or to opt
for an alternative. This choice results in different forms of
the GW self-energy.11,13,15–31 However, the most common
and natural approach is to use the same approximation
of Γ̃ for both the self-energy and the polarizability. In
this case, the irreducible polarizability reads

L̃(1′2′; 12) = G(1′2)G(2′1) (19)

and the correponding reducible polarizability

L(12; 1′2′) = L̃(12; 1′2′)

− i

∫
d(33′44′) L̃(13; 1′3′)v(3′4′; 34)L(42; 4′+2′) (20)

is computed in the well-known random-phase approxi-
mation (RPA).32–35 Consequently, GW can be regarded
as the first-order approximation of the self-energy with
respect to the screened interaction within which the dy-
namical screening is computed at the RPA level.

Note that here we focus on Hedin’s equation, i.e., a
closed set of equations in terms of the screened interaction.
However, an analogous set of equations in terms of the
Coulomb interaction can be derived. This alternative set
is also derived in the supporting information for the sake
of completeness.

III. GW IN PRACTICE

In this section, we propose to explain the various pro-
cesses involved in a GW calculation and what type of
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physical quantities can be computed, and at which step.
As examples, we consider one weakly correlated system,
the water molecule H2O, and one strongly correlated sys-
tem, the carbon dimer C2. Their geometry has been
extracted from the quest database.36–38 By strong cor-
relation, we mean that several electronic states are close
in energy to each other (near degeneracy effects). In this
case, a multireference treatment might be more appropri-
ate, but one can also employ a single-reference formalism
and hope that the post-treatment is accurate enough to
compensate for the poor choice of reference configuration.
For both closed-shell systems, we consider Dunning’s aug-
cc-pVTZ basis set. All GW calculations are initiated from
HF quantities computed in the restricted formalism.39 All
the orbitals are corrected within our scheme and, unless
otherwise stated, we set η = 0. Note that the GW method
can be used to correct any mean-field calculations and
it is common practice to “tune” the starting point using
Kohn-Sham orbitals and energies with the “right” func-
tional. However, for the sake of simplicity, we shall not
consider nor discuss this point in the present review (see,
for example, Refs. 22, 28, 40–43 for illustrative examples).

All the GW calculations reported in the present section
have been performed with quack, an open-source soft-
ware for emerging quantum electronic structure methods,
which source code is available at https://github.com/
pfloos/QuAcK. Implementations of GW methods for lo-
calized basis sets are available in several software, such as
fiesta,44,45 bedeft,46,47 molgw,48 turbomole,49–52
adf,31,53–55 fhi-aims,56–59 and pyscf.60–62

Throughout this section, we assume real spinorbitals
which is usually the case in molecular calculations, unless
a magnetic field is considered.63 The indices i, j, k, and l
are occupied (hole) orbitals; a, b, c, and d are unoccupied
(particle) orbitals; p, q, r, and s indicate arbitrary orbitals;
m labels single excitations/deexcitations; and µ, ν, λ, and
σ denote basis functions.

A. GW Self-Energy

In practice, the first step toward obtaining the self-
energy is to compute the polarizability. As alluded to
earlier, the irreducible polarizability L̃, Eq. (19), is em-
ployed to calculate W within the GW approximation via
its link with the reducible polarizability L, Eq. (20), con-
structed by utilizing the eigenvalues and eigenvectors of
the RPA problem.64–66 The non-Hermitian RPA linear
eigenvalue problem is completely defined by the following
Casida-like equations expressed in the basis of excitations
(i→ a) and deexcitations (a→ i)

(
A B
−B −A

)
·
(
X Y
Y X

)
=

(
X Y
Y X

)
·
(
Ω 0
0 −Ω

)
(21)

where the diagonal matrix Ω contains the positive eigen-
values and the normalization conditions are

XT ·X − Y T · Y = 1 (22a)

XT · Y − Y T ·X = 0 (22b)

The matrix elements of the (anti)resonant block A and
the coupling block B read

Aia,jb = (ϵa − ϵi)δijδab + ⟨ib|aj⟩ (23a)
Bia,jb = ⟨ij|ab⟩ (23b)

with

⟨pq|rs⟩ =
∫∫

ϕp(x1)ϕq(x2)ϕr(x1)ϕs(x2)

|r1 − r2|
dx1dx2 (24)

the usual electron repulsion integrals in the spinorbital
basis. One can estimate the correlation energy at the
RPA level via the “trace” or “plasmon” RPA formula67–72

ERPA
c =

1

2
Tr(Ω−A) (25)

In practice, in the absence of instabilities,73 the lin-
ear eigenvalue problem (21) has particle-hole symmetry
which means that the eigenvalues are obtained by pairs
±Ωm. Hence, Eq. (21) can be recast as a Hermitian prob-
lem of half its original dimension thanks to the positive
definiteness of A−B:

(A−B)1/2 · (A+B) · (A−B)1/2 ·Z = Z ·Ω2 (26)

with

X + Y = (A−B)+1/2 ·Z ·Ω−1/2 (27a)

X − Y = (A−B)−1/2 ·Z ·Ω+1/2 (27b)

(See the supporting information for a detailed derivation
of these expressions.) At the RPA level, instabilities are
quite unusual. Indeed, in the case of real spin orbitals, we
have ⟨ib|aj⟩ = ⟨ij|ab⟩, which yields (A−B)ia,jb = (ϵa −
ϵi)δijδab. Therefore, except in the case of unusual orbital
occupations, A−B is positive definite. Alternatively, one
can enforce the Tamm-Dancoff approximation by setting
B = 0 but, in this case, one gets ERPA

c = 0, as readily
seen in Eq. (25).

Using these quantities, one can compute the elements
of the dynamically screened Coulomb interaction as

Wpq,rs(ω) = ⟨pq|rs⟩+
∑
m

[
Mpr,mMqs,m

ω − Ωm + iη
− Mpr,mMqs,m

ω +Ωm − iη

]
(28)

where the transition densities (or “screened” two-electron
integrals) are given by

Mpq,m =
∑
jb

⟨pj|qb⟩ (Xjb,m + Yjb,m) (29)

Due to the spin structure of the GW equations, only
the singlet RPA excitations contribute to the transition

https://github.com/pfloos/QuAcK
https://github.com/pfloos/QuAcK
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densities, which is used in practice to further reduce the
size of the RPA problem via spin adaptation.12,72

It is important to note that one needs to compute the en-
tire spectrum of eigenvalues and their corresponding eigen-
vectors, as the sum overm in Eq. (28) cannot be truncated
to the first few excitations, as commonly performed in lin-
ear response calculations via Davidson’s algorithm.74 (We
shall get back to this point later on.) Because the RPA
matrices [see Eq. (21)] are of size O(N2) (where N is the
number of orbitals), this step costs O(N6) and is thus the
computational bottleneck of a GW calculation. Important
techniques, such as the contour deformation approach,
have been designed to leverage this.46,47,49,54,55,75–82 (See
Ref. 6 for an extensive list of the different techniques.)

Figure 2 shows the low-frequency part of the absorption
spectrum of H2O and C2 computed at the RPA/aug-
cc-pVTZ level. It has been modeled as a convolution
of Gaussian functions centered at each (singlet) neutral
excitation frequency Ωm with intensity proportional to
the corresponding oscillator strength of the transition:83

fm =
2

3
Ωm∥µm∥2 (30)

where the transition dipole moment is

µm =
∑
ia

⟨i|r|a⟩ (Xia,m + Yia,m) (31)

and

⟨p|r|q⟩ =
∫
ϕp(x)rϕq(x)dx (32)

are one-electron integrals. Figure 2 evidences the fine
structure of such a quantity and the difficulty of modeling
it with the well-known (generalized) plasmon-pole approx-
imation that is widely applied in solid-state calculations,84
but also in molecular systems.85,86

Finally, performing the convolution of the Green’s
function and the dynamically screened interaction [see
Eq. (18)], the elements of the correlation part of the GW
self-energy read

Σc
pq(ω) =

∑
im

Mpi,mMqi,m

ω − ϵi +Ωm − iη
+
∑
am

Mpa,mMqa,m

ω − ϵa − Ωm + iη

(33)
Note that, in a GW calculation, it is not mandatory to
compute explicitly the elements of W defined in Eq. (28).
Only the transition densities [see Eq. (29)] are required
to compute the self-energy elements in Eq. (33).

At this stage, we have not specified the nature of the
orbitals and their energies in Eqs. (23a), (23b), (24), and
(33) as this choice depends on the level of self-consistency
one is willing to include.

B. Level of Self-Consistency

The practical equation to be solved is known as the
quasiparticle equation

[F +Σc(ω = ϵp)]ψp(x) = ϵpψp(x) (34)

where ϵp are the quasiparticle energies and ψp(x) are
the corresponding (Dyson) orbitals. F is the usual Fock
matrix and Σc(ω) is a matrix with elements derived from
Eq. (33). This equation can be interpreted as the HF equa-
tion augmented with an additional term that accounts for
correlations arising from the screening effect among elec-
trons. Note also the close link with Kohn-Sham density-
functional theory. However, the primary challenge in
solving this equation stems from the frequency-dependent
nature of the self-energy, rendering it a nonlinear and non-
Hermitian matrix equation. As a result, it is common
practice to employ approximations to solve the quasipar-
ticle equation.

In the popular one-shot scheme, known as G0W0,87–93
one only considers the diagonal part of the self-energy
and performs a single iteration of Hedin’s equations (see
pseudo-code in Fig. 3). Considering a HF starting point,
the quasiparticle energies are thus obtained by solving
the non-linear quasiparticle equation for each orbital p:

ω − ϵHF
p = Σc

pp(ω) (35)

where ϵHF
p are the HF one-electron energy of the pth

orbital.
It is also practically convenient to linearize this quasi-

particle equation by performing a first-order Taylor expan-
sion of the self-energy around the starting point energy,
i.e., ω = ϵHF

p ,

Σc
pp(ω) ≈ Σc

pp(ϵ
HF
p ) + (ω − ϵHF

p )
∂Σc

pp(ω)

∂ω

∣∣∣∣
ω=ϵHF

p

(36)

yielding

ϵp = ϵHF
p + ZpΣ

c
pp(ω = ϵHF

p ) (37)

where the value of the renormalization factor Zp gives the
spectral weight of the corresponding quasiparticle solution
ϵp:

(Zp)
−1

= 1− ∂Σc
pp(ω)

∂ω

∣∣∣∣
ω=ϵHF

p

(38)

The value of Zp can easily be shown to be strictly re-
stricted between 0 and 1. This scheme is coined linG0W0

in the following and its pseudo-code is given in Fig. 3.
When the so-called quasiparticle approximation holds, the
weight of the quasiparticle equation is close to unity, while
the remaining weight is distributed among the satellite
(or shake-up) transitions.

Several levels of self-consistency can be achieved. One
common approach is to enforce self-consistency on the
quasiparticle energies, a scheme referred to as the “eigen-
value” self-consistent GW (evGW ) method.44,94–97 In the
evGW approach, a series of iterations is conducted, during
which updates are made solely to the one-electron energies
ϵp used in defining the RPA matrices [as seen in Eqs. (23a)
and (23b)] and the self-energy [see Eq. (33)], while the cor-
responding orbitals remain unchanged. This represents
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0 20 40 60 80 100 120 140

FIG. 2. Low-frequency part of the absorption spectrum of H2O (orange) and C2 (purple) computed at the RPA level with the
aug-cc-pVTZ basis. See main text for more details.

the simplest and most widely employed self-consistent
scheme. The pseudo-code of the evGW procedure is
given in Fig. 3.

For a more comprehensive self-consistent treatment,
the quasiparticle self-consistent GW (qsGW ) scheme can
be employed, which extends the self-consistency to the
orbitals themselves.41,51,54,98–102 In this approach, both
the one-electron energies and the orbitals are iteratively
updated until convergence is achieved. The procedure
involves diagonalizing an effective Fock matrix that incor-
porates a correlation potential. This potential is derived
from a static Hermitian self-energy, expressed as:

Σ̃c
pq =

Σc
pq(ϵp) + Σc

qp(ϵq)

2
(39)

Recently, we derived, from first-principles, an alternative
static Hermitian form for the qsGW self-energy based on
the similarity renormalization group (SRG) approach.102
The pseudo-code of the qsGW procedure is given in Fig. 3.
Although qsGW performs self-consistency on the orbitals
and the quasiparticle energies, it is not strictly indepen-
dent of the starting point as it is not unusual to obtain
different solutions depending on the initial set of orbitals
and energies.

One should not confuse qsGW with the fully self-
consistent GW (scGW ) approach,56,58,59,103–106 where
one updates the poles and weights of G retaining quasi-
particle and satellite energies at each iteration. We shall
not address this scheme here.

C. Correlation energy

Despite being a one-body quantity, G can be used to
compute the energy of the system. The Galitskii-Migdal
(GM) functional,107 which reads

EGM = − i

2

∫
dx1 lim

2→1+

[
i
∂

∂t1
+ h(x1)

]
G(12) (40)

gives the total electronic energy of the system. The
correlation energy can thus be extracted from it and is
obtained via the convolution of the correlation part of the

self-energy and the Green’s function as

EGM
c = − i

2

∫ ∞

−∞

dω

2π

∫
dx1x3e

iωηΣc(x1x3;ω)G(x3x1;ω)

(41)
which can be recast as

EGM
c = −

∑
iam

M2
ia,m

ϵa − ϵi +Ωm
(42)

The derivation of the previous equations starting from
Eq. (40) is included in the supporting information. In the
context of GW , the Galitskii-Migdal functional, which
is known to be non-variational and strongly dependent
on the quality of G, grossly overestimates the correlation
energy in molecular systems.56–59,108–112 Meaningful en-
ergies are only obtained at full self-consistency105,113 or
by adding higher-order terms.114

The Galitskii-Migdal functional is not the only func-
tional based on G available to compute energies. There
are two well-known alternatives, the Luttinger-Ward115

and Klein116 functionals, which become variational if G
satisfies a Dyson equation. These two functionals are
equivalent to the Galitskii-Migdal functional if G is ob-
tained through full self-consistency. To calculate the
correlation energy at the GW level using these function-
als, an additional RPA calculation is performed and the
correlation energy is evaluated via Eq. (25) using the
corresponding GW quantities.108,117–122 (See Ref. 59 for
a detailed derivation.)

D. Quasiparticle energies

Here, we compute the principal ionization potential
(IP), IN , principal electron affinity (EA), AN , and fun-
damental gap (Efun

g = IN − AN ), as depicted in Fig. 4.
At the GW level, these quantities are simply given by

IN ≈ −ϵGW
HOMO AN ≈ −ϵGW

LUMO (43)

where HOMO and LUMO stand for the highest-occupied
and lowest-unoccupied molecular orbitals, respectively.

The black curves in Fig. 5 correspond to the variation
of the G0W0 self-energy associated with the HOMO and
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1: procedure G0W0@HF
2: Perform HF calculation to get orbital coefficients cHF and energies ϵHF

3: Integral transformation ⟨µν|λσ⟩ cHF
−−→ ⟨pq|rs⟩

4: Construct RPA matrices A and B from ϵHF and ⟨pq|rs⟩, as defined in Eqs. (23a) and (23b)
5: Compute RPA eigenvalues Ω and eigenvectors X + Y by diagonalizing the linear eigenvalue problem (21)
6: Construct screened two-electron integrals Mm

pq, as defined in Eq. (29)
7: for p = 1, . . . , N do
8: Solve the non-linear equation ω = ϵHF

p +Σc
pp(ω) using Newton’s method starting from ω = ϵHF

p to get the
quasiparticle energy ϵG0W0

p

9: end for
10: end procedure

1: procedure linG0W0@HF
2: Perform HF calculation to get orbital coefficients cHF and energies ϵHF

3: Integral transformation ⟨µν|λσ⟩ cHF
−−→ ⟨pq|rs⟩

4: Construct RPA matrices A and B from ϵHF and ⟨pq|rs⟩, as defined in Eqs. (23a) and (23b)
5: Compute RPA eigenvalues Ω and eigenvectors X + Y by diagonalizing the linear eigenvalue problem (21)
6: Construct screened two-electron integrals Mm

pq, as defined in Eq. (29)
7: for p = 1, . . . , N do
8: Compute the self-energy element Σpp(ω) given in Eq. (33) at ω = ϵHF

p

9: Compute the renormalization factor Zp defined in Eq. (38)
10: Evaluate the quasiparticle energy ϵG0W0

p = ϵHF
p + ZpΣ

c
pp(ω = ϵHF

p )
11: end for
12: end procedure

1: procedure evGW@HF
2: Perform HF calculation to get orbital coefficients cHF and energies ϵHF

3: Integral transformation ⟨µν|λσ⟩ cHF
−−→ ⟨pq|rs⟩

4: Set ϵG−1W−1 = ϵHF, and n = −1
5: while ∆ > τ do
6: n← n+ 1
7: Construct RPA matrices A and B from ϵGnWn and ⟨pq|rs⟩, as defined in Eqs. (23a) and (23b)
8: Compute RPA eigenvalues Ω and eigenvectors X + Y by diagonalizing the linear eigenvalue problem (21)
9: Construct screened two-electron integrals Mm

pq, as defined in Eq. (29)
10: for p = 1, . . . , N do
11: Solve the non-linear equation ω = ϵHF

p +Σc
pp(ω) using Newton’s method starting from ω = ϵGnWn

p to get
the quasiparticle energy ϵ

Gn+1Wn+1
p

12: end for
13: ∆ = max

∣∣ϵGn+1Wn+1 − ϵGnWn
∣∣

14: end while
15: end procedure

1: procedure qsGW
2: Perform HF calculation to get orbital coefficients cHF and energies ϵHF

3: Set ϵG−1W−1 = ϵHF, cG−1W−1 = cHF, and n = −1
4: while ∆ > τ do
5: n← n+ 1

6: Integral transformation ⟨µν|λσ⟩ cGnWn

−−−−−→ ⟨pq|rs⟩
7: Construct RPA matrices A and B from ϵGnWn and ⟨pq|rs⟩, as defined in Eqs. (23a) and (23b)
8: Compute RPA eigenvalues Ω and eigenvectors X + Y by diagonalizing the linear eigenvalue problem (21)
9: Construct screened two-electron integrals Mm

pq, as defined in Eq. (29)
10: Evaluate the self-energy elements Σc

pq(ω) given in Eq. (33) at ω = ϵGnWn
p and form Σ̃

c
= [Σc + (Σc)⊺]/2

11: Form the Fock matrix F in orbital basis from cGnWn

12: Diagonalize F + Σ̃ to get ϵGn+1Wn+1 and cGn+1Wn+1

13: ∆ = max
∣∣ϵGn+1Wn+1 − ϵGnWn

∣∣
14: n← n+ 1
15: end while
16: end procedure

FIG. 3. Pseudo-algorithm for each GW scheme: G0W0@HF, linG0W0@HF, evGW@HF, and qsGW .
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E

IN AN

Efun
g

e−

h+

Efun
g = IN −AN

FIG. 4. Fundamental gap Efun
g = IN − AN , where IN and

AN are the principal ionization potential and the principal
electron affinity of the N -electron system.

LUMO orbitals of H2O and C2 as a function of ω, while
the colored lines correspond to ω − ϵHF

p . Therefore, the
solutions of the diagonal quasiparticle equation (35) can
be found where the black and colored curves intersect.
Their respective spectral weight is directly related to
the slope of the self-energy at these specific intersections.
When the slope is small, the renormalization factor is
close to unity [see Eq. (38)] and the solution is catego-
rized as a quasiparticle. In the scenario where the slope
is high, the renormalization factor is small and the solu-
tion corresponds to a satellite. As illustrated in Fig. 5,
satellite solutions typically originate from poles in the
self-energy. In all the cases depicted in Fig. 5, there is
a well-defined quasiparticle solution, clearly separated
from the region where the self-energy poles are located.
However, it is not uncommon to encounter situations
where the weight is almost equally distributed between
two solutions.46,86,113,123,124 In such a case, one can refer
to a breakdown of the quasiparticle picture.

One can gain a deeper understanding of how spectral
weight is distributed among multiple solutions by exam-
ining the spectral function linked to each orbital p. This
spectral function, as evidenced by the following equa-
tion, is intricately connected to the imaginary part of the
one-body Green’s function:

Ap(ω) =
1

π
|ImGpp(ω)|

=
η/π[

ω − ϵHF
p − Σc

pp(ω)
]2

+ η2

(44)

Figure 5 reports AHOMO(ω) and ALUMO(ω) for both sys-
tems. As one can see, it is clear that the quasiparticle
solution carries most of the weight in these two specific
examples.

The GW results for the IP, EA, and fundamental gap
obtained at various levels of self-consistency are reported
in Table I. They are compared with the exact results,
computed in the same basis set, through full configuration
interaction (FCI) calculations on the cationic, anionic, and

neutral species.125 Additionally, Table I includes the RPA
and Galitskii-Migdal correlation energies [see Eqs. (25)
and (42)]. It is clear that the RPA estimates are in
much better agreement with the FCI reference values
than the Galitskii-Migdal correlation energies which are
significantly lower (approximately by a factor of two)
and exhibit larger fluctuations with respect to the level
of self-consistency, in line with our earlier discussion in
Sec. III C.

As anticipated, the GW estimates for the IP of water
are fairly accurate, while the EA of water is found to
be negative. Hence, GW is not suited to model such
an unstable anion. In contrast, the carbon dimer has a
stable anionic state, and although C2 is a prototypical
strongly correlated system characterized by a substantial
configuration mixing in the N -electron ground state (the
weight of the HF reference determinant being only 0.69
in the ground-state FCI wave function), the IP and EA
values obtained at the GW level are satisfactory.

A point worth mentioning is that the linearization of
the quasiparticle equation (35) is usually an outstanding
approximation. This is clearly exemplified here with
errors below 0.001 eV for H2O and C2. Actually, if one
observes a substantial disparity between the linG0W0@HF
and linG0W0 numbers, it might indicate a potential issue,
raising concerns about the validity of the quasiparticle
approximation. In such situations, it may be prudent to
closely examine the spectral function and check for the
presence of additional close-lying solutions with significant
weight.

Let us return quickly to the RPA problem. In Sec. III A,
we mentioned that one must compute the entire spectrum
of eigenvalues and eigenvectors to obtain well-converged
quasiparticle energies. This is illustrated in Fig. 6 where
we show the evolution of the quasiparticle energy asso-
ciated with the HOMO of H2O and C2 with respect to
the percentage of RPA excitations taken into account in
Eq. (28). From this, it is clear that the convergence is
quite erratic and non-monotonic, and it is thus hard to
design an approximate model with a limited number of
poles for the RPA polarizability.

Overall, self-consistency has a beneficial effect in finite
systems like atoms and molecules, where both partially
and fully self-consistent GW methods have exhibited sig-
nificant promise.44,45,53,56–59,96,101–103,128,129 Conversely,
the situation is more contentious in solid-state calcula-
tions, as the self-consistency and vertex corrections are
recognized to offset each other to a certain extent.7 The
debate surrounding the significance of partial and full
self-consistency in the GW method has persisted for a
long time.56–59,79,103,108,122,130 In certain scenarios, it has
been observed that self-consistency can actually degrade
spectral properties when compared to the simpler one-shot
G0W0 approach. This phenomenon was notably demon-
strated in the context of calculations on the uniform elec-
tron gas,131–134 a fundamental model with relevance to
many fields of physics and chemistry.135 Such observations
were further confirmed in real extended systems.136–139 It
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FIG. 5. Self-energy (black curves) associated with the HOMO (top) and LUMO (bottom) orbitals of H2O (left) and C2 (right)
computed at the G0W0 level of theory with the aug-cc-pVTZ basis and η = 10−3 Eh. The solutions of the quasiparticle equation
are given by the intersection of the black and colored curves. In the central panels, the spectral function associated with the
HOMO and LUMO orbitals are represented.

is important to acknowledge that other approximations
might have contributed to this deterioration, such as the
use of pseudo-potentials140 or finite-basis set effects.141
Consequently, these studies have cast doubt on the neces-
sity of employing self-consistent schemes within the GW
framework, at least for solid-state calculations.

In Fig. 7, we report the mean signed error (MSE) and
mean absolute error (MAE) associated with the principal
IPs of the GW100 dataset86 computed at the G0W0@HF
and qsGW levels127 considering the ∆CCSD(T) values
as reference.52 The distributions of the errors and the

corresponding scatter plots are also provided. Going from
G0W0@HF to qsGW lowers both the MAE from 0.31 eV
to 0.22 eV and the MSE from −0.26 eV to −0.15 eV. Al-
though the overall underestimation of GW for principal
IPs remains, it is significantly reduced via the introduction
of self-consistency.
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TABLE I. Principal IP (IN ), principal EA (AN ), fundamental gap (Efun
g = IN −AN ), in units of eV, and RPA and Galitskii-

Migdal correlation energies (ERPA
c and EGM

c ), in units of Eh, for H2O and C2 computed at various levels of theory with the
aug-cc-pVTZ basis. The corresponding FCI values and a selection of experimental measurements are reported for the sake of
comparison.

Mol. linG0W0@HF G0W0@HF evGW@HF qsGW a FCIb Exp.c

H2O IN 12.885 12.884 12.764 12.879 12.679 12.600
AN −0.685 −0.685 −0.681 −0.662 −0.608
Efun

g 13.570 13.569 13.446 13.541 13.287
ERPA

c −0.343 −0.345 −0.348 −0.358 −0.298
EGM

c −0.615 −0.615 −0.631 −0.647
C2 IN 12.928 12.928 12.953 12.561 12.463 11.4± 0.3

AN 4.153 4.153 4.229 3.840 3.175 3.273± 0.008
Efun

g 8.775 8.775 7.914 8.722 9.288
ERPA

c −0.395 −0.399 −0.401 −0.423 −0.416
EGM

c −0.685 −0.685 −0.699 −0.730

a Calculations performed with SRG regularization and a flow parameter s = 500, as described in Ref. 102
b Calculations performed with quantum package (freely available at https://github.com/QuantumPackage/qp2) using the
“Configuration Interaction using a Perturbative Selection made Iteratively” (CIPSI) method.125

c Values extracted from the Computational Chemistry Comparison and Benchmark DataBase (CCCBDB)126 at
https://cccbdb.nist.gov.

0 20 40 60 80 100

12.5

13.0

13.5

FIG. 6. Evolution of the quasiparticle energy associated with
the HOMO of H2O (blue) and C2 (green) computed at the
linG0W0 level of theory with the aug-cc-pVTZ basis with
respect to the percentage of RPA excitations taken into account
in Eq. (28).

IV. CONCLUDING REMARKS

We report an extensive review of the GW approxima-
tion within the framework of Green’s function many-body
perturbation theory, offering, we hope, a comprehensive
analysis of both its theoretical foundations and practi-
cal applications in the context of quantum chemistry.
As a starter, we introduce the concept of quasiparticles,
providing a necessary backdrop for a deep dive into the
derivation of Hedin’s equations, a crucial starting point
for our subsequent discussion on how to derive the well-
established GW approximation of the self-energy.

Following this, we meticulously guide the reader
through each step involved in a GW calculation, elu-
cidating the panel of physical quantities that can be com-
puted using this approach. To showcase its adaptability

and effectiveness, we turn our attention to two distinct
systems: the weakly correlated water molecule and the
strongly correlated carbon dimer. At each stage of the
process, we provide a comprehensive breakdown and offer
clear explanations, complemented by numerical results
and illustrative plots. The effect of self-consistency on
the quasiparticle energies, which is clearly beneficial in
the case of molecular systems, has been illustrated on the
GW100 database.

The ultimate goal of this review is to facilitate the
dissemination and democratization of Green’s function-
based formalisms within the computational and theoreti-
cal quantum chemistry community. Given the numerous
successes of many-body perturbation theory across var-
ious fields of physics, quantum chemistry can certainly
benefit from this formalism.9,142 We refer the interested
reader to Refs. 3–9 for more in-depth discussions around
Green’s function many-body perturbation theory.
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