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Abstract. Thanks to the internet of things (IoT) and cyber physical systems (CPS), 

we face an incremental growth of the available data, either on the internet or in 

private databases. This resulted in data mining techniques becoming an 

essential piece in the information retrieval process. Moreover, trends like the 

industry 4.0 encourages its usage to support data driven decisions, for instance. 

Formal Concept Analysis (FCA) is one of the most used techniques in the 

unsupervised data mining field due to its inherent ability to find patterns 

between concepts. As a consequence, many applications need the use of fast 

algorithms to perform the calculations to retrieve either the lattice or the 

association rules related with the data at their disposal. Due to this, scientists 

often rely on manually crafted benchmarks to compare how certain algorithms 

perform under different circumstances. In this work, we propose the 

architecture of a software to generalize these benchmarks independently of the 

algorithms, to be integrated in the open source data analysis software Orange3. 

Keywords: Formal Concept Analysis · benchmarking · metaprogramming · open 

source. 

1 Introduction 

Data mining techniques are widely used to support data driven decisions [19], to infer 

knowledge automatically in contexts such as software modelling, or artificial 

intelligence [25,24]. Furthermore, the internet of things and cyber physical systems 

could use some gains the data mining provide through semantic interoperability 

[3,20]. However, these fields need precise and fast processing of the information since 

they usually work in real time [22]. In this context, the effort towards finding fast data 

mining algorithms and measuring their performance is understandable [13,14]. 

In conventional agriculture, pesticides, antimicrobials and other pest control 

products are undesired, thus the need of alternative solutions. The European Green 

Deal is one of the most important actions in Europe to overcome the challenges of 

climate change and environmental degradation, sometimes caused by the usage of 

pesticides. In the state of the art, there are numerous descriptions of active plant-

based products used as bio-pesticides. The Knomana (KNOwledge MANAgement on 

pesticide plants in Africa) project’s goal is to gather data about these bio-pesticides 



and implement methods to support the exploration of knowledge by the potential 

users (farmers, researchers, retailers, etc.). Considering the needs expressed by the 

domain experts, information retrieval is needed to obtain relevant insight on the 

matter. In addition, data clustering into similar groups is helpful when it comes to 

understanding key differences (or similarities) of objects in general. Formal Concept 

Analysis (FCA) appears as a suitable approach, due to its inherent qualities for 

structuring and classifying data through conceptual structures that provide a relevant 

support for data exploration. 

Additionally, the trend driven by the Industry 4.0 [4,15] is to increase the usage of 

the available data in order to increase the performance and the efficiency of processes. 

In particular, regarding the Agriculture 4.0, impulsed also by the Green Deal in the EU, 

several works have been carried out using the data mining method called Formal 

Concept Analysis (FCA) [23,9], and also its multi-relational data mining [7] extension 

Relational Concept Analysis (RCA) [21,11]. There are several good results about the 

time complexity in the worst case from the main FCA algorithm, which is the one that 

calculates the set of formal concepts (see Section 3). Nevertheless, according to some 

previous experiments, it is known that some algorithms with worse time complexity 

than others perform better under certain circumstances [13,14]. 

Consequently, while developing new algorithms in this area, it is important to also 

perform a good benchmarking suit of tests to understand in which situations the 

algorithms strives. This is something that usually takes extra effort since it is for the 

most part a manual process. In the current literature, one way to ease the manual work 

required to perform these tests is approached by providing generic testing tools for 

the particular application [17,26]. Particularly, we could not find any work in this area 

applied particularly to the algorithms for FCA and its extensions. 

In this work, we introduce a software tool to benchmark, and another to use FCA 

in data pipeline. Both of them are thought to be added to the architecture of the open 

access data analysis software Orange3 [18]. It is worth mentioning that some works 

have been published in the field of generically benchmarking algorithms [6,5], and that 

our goal in this paper is to present a tool that, while generic, it still provides specific 

functions for the FCA use case. 

The paper is organized as follows: In Section 2, we discuss the state of the art of 

generic testing tools for specific applications. Section 3 explains the notation and 

concepts we will use throughout the document. Section 4 presents a use case of the 

Formal Concept Analysis as a motivation for the creation of the generic tool. Section 5 

presents the software model, the context in which it is integrated, and the main 

algorithms. Finally, Section 6 summarizes the contribution and discusses the possible 

future work. 



2 Related Work 

For the purpose of this work, we consider that testing tools are divided in two 

categories. The first one, is a one in which the tool must provide a set of options to 

reliably test a specific process that never changes. For example, a tool to automatically 

test REST API’s load. Regardless of the specific endpoints, the testing part would always 

follow the pattern of reaching the endpoints, measuring the time between request 

and response, and so on and so forth [8,28]. The second group is the one that involves 

giving to the user a generic set of functions to test something that we do not know in 

advance, e.g., testing algorithms, functions in general. The challenge of this category 

is the fact that the process we want to test is not known beforehand, and thus, the 

techniques used to solve them usually involve metaprogramming or reflection [16]. A 

commonly applied method to tackle this type of tools, is to develop a domain specific 

language (DSL) in order to provide the users a flexible way to define what or how to 

test their functions [1,12]. 

In the case of benchmarking the calculation of formal concepts in FCA, the problem 

belongs to both categories. On the one hand, the main process will include one step 

that will always be a part of it: calculating derivatives (explained in Section 3). On the 

other hand, how or when the algorithm will do it is unknown and hence it belongs to 

the second category. Therefore, the solution we propose includes a part that explodes 

the common pattern the method will always follow, and one in which the user is given 

the possibility to manually choose what and how to test. The disadvantage of the 

solution, is that it will not completely remove the manual effort required, but since the 

complexity is encapsulated in the provided functions, it will reduce it. 

3 Preliminaries 

3.1 Formal Concept Analysis 

Formal Concept Analysis (FCA) is a clustering method whose input is a triple K = (O,A,I), 

where O is a set of objects, A is a set of attributes, and I is an incidence matrix, 

indicating whether each object has an attribute or not e.g.,

 is a formal context in which o1 only has the 

attribute a2, and o2 has both. Alternatively we can see it as a bipartite graph i.e., O and 

A are the disjoint sets of nodes, and I is the set of arcs. The derivative operation ′ on 

objects in the set X ⊆ O is defined as the intersection of attributes of each object o ∈ 

X. 

 X′ = {a ∈ A | ∀o ∈ X : Io,a} (1) 

Analogously, we can define the derivative of a set of attributes as follows, 



 Y ′ = {o ∈ O | ∀a ∈ Y : Io,a} (2) 

Having this in mind, a formal concept is a pair C = (X,Y ) where X ⊆ O, Y ⊆ A such that 

X′ = Y , Y ′ = X. X is called the extent and Y the intent. Put it into bipartite graph notation, 

a formal concept is a bi-clique i.e., a complete bipartite subgraph. For readability 

purposes, we note C.E to the extent, and C.I to the intent. The set of all the formal 

concepts and the relation of inclusion of extents form the so-called concept lattice, 

which is a partially ordered set, and is often noted with the letter L. 

3.2 Common algorithms and their differences 

Many reviews about algorithms for computing formal concepts have been made in the 

past [2,14,27]. There are many nuances to how they are implemented and also to their 

output. Some of them compute only the formal concepts, whilst others also calculate 

their underlying lattice diagram. For the purpose of this work, we will consider 

computing all the formal concepts and calculating their diagram to be separate 

problems, although they can be solved at the same time. 

As we mentioned in Section 1, and as we can see in the mentioned reviews, there 

are many approaches on how to deal with the repetition of results in the calculation 

of the concepts, which occurs mainly because different subsets X ⊆ O, might yield the 

same Y ⊆ A when the derivative operation is applied, but only the largest of them is 

present in a concept. Algorithms deal with this problem in different ways, from which 

in this work we aim to consider two: having a clever structure that allows to rapidly 

finding repeated results (e.g., Linding’s algorithm, etc), or by traversing the context in 

a certain order that ensures that some results will not be repeated (e.g., Andrews’ 

Inclose algorithm, etc). 

3.3 Orange3 software 

The Orange3 software [18] is an open source machine learning and data visualisation 

tool whose aim is to make data analysis accessible to the end user in an intuitive way. 

To achieve this, it provides a way to pipeline data through “boxes” with certain input 

and output each, allowing to reuse them whenever necessary. This structure also 

allows simplifying the way to contribute to the project, since boxes can be thought as 

independent programs that define how to interact with their input and how to export 

the output. Additionally, Orange3 allows the development of separate plugins or add-

ons, or in other words: external pieces of software that can be added to the main 

application. The scope of this paper is to introduce the architecture of an add-on with 

its components and interactions, and explaining how it would help to the analysis and 

benchmarking of formal concept analysis algorithms. 



4 Motivation 

To have a closer idea to what the Knomana dataset contains, an extract can be found 

in the Table 1. The formal context’s objects are names of organisms composed by three 

parts: species, genus, and family. Even though they could be considered as different 

types, i.e., crops, pests, and protection species, in this example, we put them in the 

same table because they share the same attributes. 

Table 1: Plants, crops and bio-aggressors formal context 

K Food Medical 
Abies sibirica/ Abies/ Pinaceae   

Acanthospermum hispidum/ Acanthospermum/ Asteraceae  X 

Anticarsia gemmatalis/ Anticarsia/ Noctuidae   

Allium sativum/ Allium/ Amaryllidaceae X X 
Spodoptera frugiperda/ Spodoptera/ Noctuidae   

Spodoptera littoralis/ Spodoptera/ Noctuidae   

Spodoptera litura/ Spodoptera/ Noctuidae   

CropS/ CropG/ CropF X X 
CropFabaS/ CropFabaG/ Fabaceae X  

Zanthoxylum rhetsa/ Zanthoxylum/ Rutaceae  X 

Zingiber officinale/ Zingiber/ Zingiberaceae X X 

Particularly, in the work [10], the FCA extension RCA is used to extract patterns in 

the data related to some plants being natural pesticides to other ones. Moreover, RCA 

needs to perform the algorithm to calculate the set of formal concepts of formal 

contexts many times in a loop until it converges, as explained in the Figure 1. Each 

iteration, using the calculated lattices and the relations in the input, increases the size 

of formal contexts in terms of their attributes, i.e., adds columns. This results on the 

possibility of the number of formal concepts increasing greatly, hence the need of fast 

algorithms to do it. In addition, available algorithms to calculate formal concepts 

perform differently according to the type of data, for instance, some of them perform 

better when formal contexts are sparse, and others when they are dense. 



 

Fig.1: RCA extension algorithm main loop 

This leads us to a state in which making all kinds of experiments on these 

algorithms is necessary to better understand when which of them are more suitable 

according to the situation. However, it is rather tedious, since algorithms are typically 

different between themselves and there is not a common pattern to test them all the 

same way. Therefore, this work aims to smoothen the effort needed to perform 

benchmarking experiments on particularly formal concepts calculation algorithms. 

Additionally, the paper is intended to serve as a first approach guide on how to tackle 

generic denotational testing frameworks using metaprogramming techniques. 

5 Software model 

As explained in the Section 3.3, the units that users have to deal with in the platform 

are represented by boxes that are in fact algorithms with defined inputs and outputs. 

In that regard, the first input that concerns us is the name of a file representing a 

Formal Context, which, in our particular case, will be a csv. For the mentioned input, 

there should be a box called Formal Context that outputs the parsed formal context K 

= (O,A,I) so that other algorithms do not have to deal with the parsing task over and 

over again. Then, to provide visualization to what we are parsing, there will be a box 

whose purpose is to show the bipartite graph representation of K (see Section 3). 

Furthermore, and continuing with the visualization, the add-on will provide a box for 

visualizing the Hasse diagram (and leave the door open to implement other 

visualizations such as the Iceberg concepts lattice). 

Regarding the core and therefore the most important part of the architecture, the 

plugin will include a box that computes the list (or stream) of formal concepts, and that 

will act as the entry point for the generic benchmarking abstract public interface 

(a.k.a., API). This box (red one in the Fig 2) will allow executing a default algorithm 
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(Inclose), or to choose a user defined one. There is where, depending on what are the 

metrics the user specified to measure, the box will show them in a table format. The 

goal is to provide the user a set of generic decorators that allow to annotate specific 

functions, or specific parts of the algorithm to be measured in different ways: how 

many times a certain function is executed, how much memory it consumes, how much 

time in total or in average it spent during the execution, etc. And some specific ones 

related to formal context analysis, such as the times a derivative was calculated 

repeatedly. 

5.1 Benchmarking API 

The benchmarking API will heavily rely on introspection and meta-programming 

patterns [16]. Particularly, it will use decorators to add meta information to the 

algorithm that will later be used for the runner to gather the data and be able to output 

it in some fashion. The notation we will use for the decorators is the same Python uses, 

and it consists of adding an @ to the beginning of each of them in order to identify 

them. Additionally, in the pseudocode, we will use 

 

Fig.2: Architecture diagram representing the expected components and their 

interactions 

*args as a way to say “any number of parameters”. The generic decorators will be the 

following, 



1. @measure_time() 

2. @measure_times_executed() 

3. @measure_memory() while the FCA 

specific ones will be, 

4. @object_derivative() 

5. @attribute_derivative() 

Specifically, the decorator 1 is expected to be applied to any function the user 

would want to measure the time it takes. In addition, the decorator 2 will count how 

many times a function is executed. And finally, the 3rd decorator will take note of the 

memory usage during the execution of the function and output the maximum usage 

of it. Notice that the runner will measure every decorated function, even if it is being 

called recursively, meaning that depending on what the user wants to do, sometimes 

it would be better to separate recursive functions in the first call and then the recursive 

one. Decorators 4 and 5, both describe a function that, each time is called, produces 

an object or an attribute derivative respectively. This provides essential information to 

the runner to measure how many times the overall algorithms repeats calculations. 

Implementation Firstly, we will use the words decorator and wrapper interchangeably. 

On the one hand, the three first decorators are very similar in structure: they will wrap 

the function with a specific type of function or class that hints the runner to call it in a 

particular way and also output their specific type of information, e.g., a float 

representing time, an integer representing the amount of times the function has been 

executed, etc. When the wrapper is called, it initializes the necessary objects to gather 

the information, then it calls and returns the same as the function it wraps. As the 

execution ends, the wrapper will have the information saved in a dictionary as an 

instance variable to be collected by the runner. 

On the other hand, the fourth and fifth decorators are different in the sense that 

they have to also keep track of what are the structures already generated. To do that, 

it is necessary to implement a way to tell whether two structures are the same or not. 

Algorithm 1: measure_time decorator 

Input: f, a function or a callable class 
Output: A callable class responsible for measuring the execution time of f 1 Def 

wrapper(*args, collector): 



 

Algorithm 2: measure_times_executed decorator 

Input: f, a function or a callable class 
Output: A callable class responsible for measuring how many times f is called 

1 Def wrapper(*args, collector): 

 
Algorithm 3: measure_memory decorator 

Input: f, a function or a callable class 
Output: A callable class responsible for measuring the maximum memory f consumes during 

its executions 

res, profiling_data ← profiled_function(*args) 
Output: A callable class responsible for measuring the amount of times a set has been 

calculated 
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5.2 Runner 

This component is the responsible for running the user provided code as its name 

suggests, but also for reporting the information at the end of the run. Thanks to the 

fact that decorators handle the complexity of knowing when the functions are 

executed, and also what to do in each case, for the running part, the runner should 

only execute the algorithm as it is. The challenge comes in the collecting part because 

the runner does not have control over when some of the functions are called, in fact, 

most of them will be instantiated to be executed and then discarded and the runner 

would not even notice it. To solve this problem, all decorators will expect one more 

parameter besides the function to wrap, being an object whose purpose is to save 

each measurable function call. Then, our runner will run a modified version of the 

abstract syntax tree (AST) that provides this parameter, having access to this new 

object, and thus having access to the information after its execution. 

Particularly, the Algorithm 1 starts a timer, runs the original function with its 

parameters, after, it measures the time that passed between the call and the end of 

the function, and finally, it tells the collector to add it to the total time spent for that 

specific function. Following the same pattern, the Algorithm 2, simply executes the 

function with its parameters, and afterwards it adds one to the total times executed 

for the specific function. And somehow more complex, the Algorithm 3 wraps the 

function to be executed to a profiling wrapper, and after executing it, sends the 

memory statistic to the collector. Lastly, the Algorithm 4 calls the collector’s 

object_derivative_calculated function, to add 1 to the amount of times that particular 

derivative has been calculated. The algorithm for attribute_derivative would be exactly 

the same as 4 but calling the function that adds to the attribute derivatives instead. It 

is important to notice that all these algorithms return a function defined inside it, 

meaning it is considering high order functions, i.e., functions as first class citizen values. 

On top of each wrapper, the collector is expected to be an object with the following 

methods 

Algorithm 5: add_measure_time collector’s method 

Input: f, a function or a callable class, and t, an integer representing the time spent by f 
Output: A mehod responsible for adding the time spent by f 

1 times_table[f] += t 

 

Algorithm 6: add_times_executed collector’s method 

Input: f, a function or a callable class 
Output: A mehod responsible for adding 1 to f times executes 



1 times_executed_table[f] += 1 

 

Algorithm 7: function_executed_with_memory collector’s method 

Input: f, a function or a callable class, and m an integer representing the memory spent by 

f 
Output: A mehod responsible for recording the most memory spent by the executions of f 

1 memory_spent_table[f] ← max(memory_spent_table[f], m) 

 

All three algorithms assume the existence of a mapping between functions and their 

specific value. In particular, the Algorithm 5 adds t to the mapping, here the algorithm 

assumes that the table has been previously initialized with 0, resulting in a semantic 

that will maintain the total amount of time spent by a function. In the same line, the 

Algorithm 6 adds 1 to the current value, meaning that it correctly counts how many 

times a function has been executed. Finally, the Algorithm 7 always remembers the 

maximum between what it had previously and the new m. 

6 Conclusion and future work 

In this work, we presented a generic tool to allow benchmarking certain aspects of FCA 

formal concepts generation algorithms instead of handcrafting them each time. The 

tool is currently being developed on their PIDIR, by Soukayna Ouabi and Loïc Chaillot, 

two students at TELECOM Nancy Engineering School. The advantages of the tool are 

not only the encapsulation and the centralization of the benchmarking complexities, 

but also the fact that it provides the programmers a denotational way to mark the 

parts of the code they want to benchmark, i.e., they write what instead of how. 

Furthermore, the PIDIR project is expected to be extended in the coming months, 

so the tool can be upgraded to also include FCA extensions such as the widely used 

Relational Concepts Analysis (RCA). This will come with its own challenges, mainly in 

the area of software modelling. On top of that, many challenges are still open in the 

development of a tool whose main goal is to be versatile and to provide an easy data 

visualization to the user. Combining that, plus the fact that both FCA and RCA produce 

an output with an exponential size in terms of their input, we realize that much work 

could be done in order to guarantee that all data can be explored, without the need of 

having everything loaded in memory. 

Finally, the work as a whole could be considered as an approach to tackle problems 

involving the generation of tools for programmers and scientists working on algorithms 

creation and benchmarking in general, since the form to proceed should be in the lines 



of: understanding what needs to be tested, generating the denotational API, adding 

the collector, and when the time to benchmark is needed, the runner should always 

run a modified version of the AST adding the extra parameter to all the places needed, 

e.g., all functions decorated with the API decorators. 
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