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Perception of other road users is a crucial task for intelligent vehicles.
Perception systems can use on-board sensors only or be in cooperation
with other vehicles or with roadside units. In any case, the performance of
perception systems has to be evaluated against ground-truth data, which
is a particularly tedious task and requires numerous manual operations. In
this article, we propose a novel semi-automatic method for pseudo ground-
truth estimation. The principle consists in carrying out experiments with
several vehicles equipped with LiDAR sensors and with fixed perception
systems located at the roadside in order to collaboratively build reference
dynamic data. The method is based on grid mapping and in particular on the
elaboration of a background map that holds relevant information that remains
valid during a whole dataset sequence. Data from all agents is converted
in time-stamped observations grids. A data fusion method that manages
uncertainties combines the background map with observations to produce
dynamic reference information at each instant. Several datasets have been
acquired with three experimental vehicles and a roadside unit. An evaluation
of this method is finally provided in comparison to a handmade ground truth.

1 Introduction

In order to navigate safely, intelligent vehicles must perceive their environment. Perception
systems have become more and more complex and evaluating them under real conditions
is a difficult task that generally requires manual annotation and processing. In addition
to being a time-consuming task, ground-truth annotation of perception systems is error-
prone, as occlusions can limit perceivable objects. Therefore, this task can be especially



Figure 1: LiDAR and GNSS data gathered by several moving vehicles and a roadside
sensor before processing.

challenging in dynamic and cluttered environments. One way to address this issue is to
use and record complementary points of view from remote sources of information that can
be other road users or roadside units. The objective is then to merge in a post-processing
stage all the available data through space and time into a coherent reference.

In this paper, we propose a method that builds occupancy grid maps on recorded driving
sequences for the evaluation of perception and tracking systems using several sensors that
are either embedded on vehicles or fixed in the environment. Each agent participating in
the mapping registers the time-stamped data of its sensors, the synchronization of the
clocks being provided by Global Navigation Satellite System (GNSS) receivers.

To represent and fuse data from various perception systems in a common frame, bird eye
view grids can be used. As such, our method provides both a grid of the background
containing all static elements and time-stamped perception grids in which moving road
users are detected. Such grids are a first step towards the generation of a reliable ground
truth for object tracking evaluation built semi-automatically.

Moreover, a dataset is released with real data coming from three vehicles and a road-side
sensor, including three short scenarios of interest involving a dozen road-users. To our
knowledge, it is the first dataset with real data and multiple moving points of view for
collaborative perception. A video illustrating the dataset recording and the method is

given'.
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The article is organized as follows. Section 2 gives an overview of related work on post-
processing for object tracking and on occupancy grids. Section 3 introduces the notion
of background map and its representation as an evidential occupancy grid. In section
Section 4, we provide examples about how to build this map with high-accuracy GNSS
receivers, on-car and roadside LiDAR sensors. In Section 5, we explain how we construct
the final grids and how the background map we created helps to take into account past
and future observations. Finally section Section 6 presents experimental results and
evaluation of our method on a multi-vehicle dataset recorded for this purpose.

2 Related Work

Perceiving other road users is a complex but mandatory task for autonomous vehicles. It
allows the navigation system to find a safe trajectory in the complex environment of the
roads. Road users can be represented and tracked object-wise (Vo et al. 2015) but a dense
mapping approach is particularly adapted to planning and reactive control in opened
and uncontrolled environments (Ziegler and Stiller 2010). Introduced in (Elfes 1989), 2D
probabilistic occupancy grids, that densely represent where the space is free or occupied,
have widely gained traction in the perception community. One of their main drawback is
the difficulty to represent movement of the environment, a limitation alleviated in (Coué
et al. 2006) by using a 4D grid to represent the position and velocity of obstacles with
probabilities. Another common extension is to use the theory of Dempster-Shafer (or
theory of evidence) to represent multiple possible states of a cell (Moras, Cherfaoui, and
Bonnifait 2011). Combining both tracking and multi-state is referred to as Grid-Based
Tracking and Mapping (GTAM) (Steyer, Tanzmeister, and Wollherr 2018; Tanzmeister
and Wollherr 2017). These approaches often use a particle filter to estimate the motion
of obstacles in the grid.

Another important aspect of perception systems is their evaluation. There exist many
single Point of View (PoV) datasets such as KITTI (Geiger, Lenz, and Urtasun 2012),
SemanticKITTI (Behley et al. 2019) or NuScenes (Caesar et al. 2020) for the evaluation
of automotive perception systems. They provide manually labeled datasets with delimited
3D bounding boxes. To extend evaluations to navigation, Ettinger et al. (Ettinger et al.
2021) provide a perception dataset with a focus on motion prediction. However, multi-
PoV datasets are not yet widely developed with most being based either on simulated
data (Xu et al. 2022; Yiming Li et al. 2022; Mao et al. 2022) or static sensors (Busch et
al. 2022). Recently, the DATIR-V2X dataset (H. Yu et al. 2022) has been released with
several points of view from real sensors. However, it is focused on vehicle-to-infrastructure
communication and only contains one vehicle. A possible reason for this is the complexity
of labeling a multi-PoV dataset, which is why several methods have been proposed to
label them semi-automatically (Han et al. 2023).

Approaches for ground-truth generation are done offline on recorded datasets. They can
take advantage from heavy-computational tasks such as multiple point clouds registra-



tion (Ye, Spiegel, and Althoff 2020) or the use of non-causal (i.e. depending on future
information) algorithms (Erik Stellet, Walkling, and Marius Zollner 2016; B. Yu and Ye
2020). In (B. Yu and Ye 2020), the tracks corresponding to other road users are created
at the most certain point in the dataset before being propagated forward and backward
by filtering and smoothing algorithms. Other approaches (Ye et al. 2021) are based on
GTAM techniques and use offline post-processing to make a backward smoothing pass
on the particle filter to help its convergence.

Our method builds on previously cited GTAM techniques (Steyer, Tanzmeister, and
Wollherr 2018; Tanzmeister and Wollherr 2017; Ye et al. 2021). A finer frame of discern-
ment allows us to better represent the environment to take advantage of segmentation
algorithms to gather more information. We use the possibilities offered by offline post-
processing to gather all the information of a recording in a “background map”, that is
then fused with observation grids.

3 Definition of the Background Map

3.1 Semantics of the Map

In general, the mapping of an environment holds information that is true over very
long periods of time. Here, the information stored by the mapping is defined as the
information that is reliable during the whole dataset. It represents statically occupied
areas and passable areas, which can be either free or contain a moving object.

Occupancy of the space can be divided into two main classes: immowvable occupancy
that corresponds to non-movable features (e.g. buildings, trees or road signals), and
objects that corresponds to movable features (i.e. vehicles or vulnerable road users). The
distinction between those two classes can be made in a single measurement, while objects
have to be refined into static or dynamic using multiple measurements. As the goal of the
map is to determine some information that is valid for the whole dataset, static objects
are defined as objects that do not move during the whole sequence. Dynamic objects are
thus objects that moved at least once during the sequence.

3.2 Evidential Grid Representation

The map has to represent several classes and combinations, a problem well suited for
the Dempster-Shafer Theory (DST) framework (Dempster 1968; Shafer 1976). In the
DST, a mass function m assigns a non-negative value to each element of a power set 2
where O is the frame of discernment, the exhaustive and atomic set of hypotheses about
a variable, such that - 4c0e m(A) = 1.

This framework allows a fine representation of uncertainty by assigning some mass to a
set of classes, including the whole frame of discernment to represent full uncertainty. This



is especially suited to the case of partial sensor information, which can be represented by
a union of classes but not as an atomic hypothesis from the frame. Mass functions can
also be combined using for example the conjunctive rule:

mi2(A) = > mi(B) ma(C), VA € 2° (1)
BNC=A

To represent this information, we project the 3D data into a 2D discrete Grid Map at
the ground level. 2D grids provide an efficient framework for data representation for
terrestrial vehicles and help for data fusion in a common spatial frame.

3.3 Frame of Discernment

The frame of discernment to characterize an environment is defined as follows:
©={F1,S5 D}, (2)

where F' stands for free space, I for immovable, S for static objects and D for dynamic
objects, as defined in Section 3.1. For convenience, we add the following definitions:

o M ={S, D} for movable objects that can be static or dynamic;

o O={I,S,D} for generic unclassified occupancy;

o P = {F,D} which stands for Passable as defined in (Steyer, Tanzmeister, and
Wollherr 2018), corresponding to zones that are either free or occupied by a dynamic
object.

Finally, cells of the grid without any information will have all the mass assigned to ©.

As the map only contains information that is valid during the whole dataset, its frame of
discernment does not include time-dependent classes such as dynamic objects and free
space. It is a 2D spatial discrete structure, in which each cell contains a mass function
defined on the following frame of discernment:

Opm ={P IS} (3)

Indeed, information about passable areas, immovable occupancy and static objects is
time independent during a whole sequence, contrary to dynamic objects and free space
that should not appear in the background map.

Compared to the frame of discernment used by previous approaches (Steyer, Tanzmeister,
and Wollherr 2018; Tanzmeister and Wollherr 2017), ours allows a finer representation
thanks to the distinction between immobile and mobile features. This distinction allows
us to integrate class information from segmentation algorithms, as explained in the next
section.



4 Background Map Construction
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Figure 2: Schematic presentation of the method. Sensor data is turned into Measurement
Grids. These grids are then fused into a Background Map. Finally, Measurement
Grids are filtered through time and fused with the Background Map to generate
Filtered Grids at each time step.

4.1 Collaborative Background Map Generation

The method to construct the background map takes different sources providing information
about obstacles or free space in a common East-North-Up frame. GNSS and LiDAR
sensors are used in this work, but other sensors could be adapted such as cameras or
RADARs. The background map is generated in several steps, as illustrated in Figure 2.



4.1.1 Observation Grid Generation

As illustrated in Figure 2, observations are grids constructed from all sources separately
at different instants by projecting sensor data in 2D. Depending on the sensor, different
evidences can be derived such as free space F', occupancy O or dynamic objects D.

4.1.2 Map Size Deduction

In addition to being stored for further processing, observations are first used to determine
the size of the background map as being wide enough to fuse all the observations.

4.1.3 Data accumulation

The map is then constructed in a second pass by accumulating the previously stored
observations, as shown in Figure 2. Successive observations are accumulated on a per-
cell basis. Each cell ¢ stores the values of its consecutive observations m! through
time ¢ in an observation buffer m, = {...,mf,...}. The longest string of mostly free,
mostly immovable and mostly static beliefs in m. are then computed as wy, w; and ws,
respectively, to determine the overall state of cell c¢. For this, two thresholds ¢ and ¢, are
defined as the minimal number of consecutive free and occupancy observations required
to consider that a cell is free or occupied in a noise resilient manner:

P if lwg| > ty;

I elseif |w; + ws| > t, and |w;| > |wsl; (4)
S, =
‘ S else if |w; +ws| > t, and |ws| > |w;l;

© otherwise

The thresholds are a trade-off between the completeness of the map and its coherence.
Augmenting them will result in more unknown areas, while decreasing them could lead
to unwanted passable or occupied evidence. To tune the thresholds, we ensure that
the static and immovable obstacles are well mapped, and that there is no ghost (cells
classified as static object because an object passed on them for too long) in the map.
Figure 5 shows the effect of tuning the thresholds in our experiments. We keep them
as low as possible while being consistent to avoid the creation of unknown zones in the
map.

4.2 Segmentation of LIDAR Point Clouds

In the current implementation of the method, we use point clouds from rotating LiDARs
on-board vehicles or installed on fixed supports at the roadside. This section describes



the processing applied to point clouds to extract information used in the generation of
the map.

Raw point cloud data in itself is insufficient to derive the pieces of evidence required
for the map generation process. However, it is processed to extract such evidence. For
example, points hitting the ground support the free space hypothesis while points hitting
a building support the infrastructure hypothesis. Such processing is described hereafter
for each source and time step.

4.2.1 Ground Segmentation

A common task on point clouds is to segment non-ground points from ground ones. Such
segmentation allows to make the difference between points on the ground supporting
the free space evidence F' from points above the ground, supporting the existence of an
obstacle and thus some unclassified occupancy O.

For this purpose, we use the method from (Jiménez et al. 2021) which gives very good
results with an Fl-score above 95% for obstacle detection on nuScenes dataset (Caesar
et al. 2020). This method is based on gradient and height difference between consecutive
points in a vertical scan of the LiDAR. Ground height is then estimated in a cylindrical
voxel using loopy belief propagation to refine the segmentation previously done.

4.2.2 Class Segmentation

In parallel, points are classified to refine the unclassified occupancy O. This task (called
class segmentation) has seen major improvements in the previous years, in particular
based on neural networks (Zamanakos et al. 2021; Ying Li et al. 2020). We use the
method from (Zhu et al. 2021) which achieved an Intersection over Union (IoU) score
above 93% for car segmentation in both nuScenes and SemanticKITTI (Behley et al.
2019) datasets. This method is based on asymmetrical convolution networks on cylindrical
voxels, that match to the polar nature of a rotating LiDAR. A per-point refinement is
applied to segment the point cloud. The overall mean IoU (mloU) is around 68% on
SemanticKITTI and 76% on nuScenes. Other approaches such as (Chen et al. 2021;
Dewan et al. 2016) propose instead to segment which point is moving across time or
not, a task called Moving-Object Segmentation. Such a technique could be used to derive
dynamic evidence, but would not provide a class for obstacles. Although class information
is not directly used for ground-truth generation, it is a precious semantic information
that we would like to keep.

Class segmentation thus provides evidence based on class, with for example the ground
class supporting free space F', non-movable classes (i.e. buildings, fences or vegetation)
supporting Infrastructure I and movable classes (i.e. cars, trucks or pedestrians) support-
ing movable M. As, the performance of the chosen deep learning method is not high



enough with our LiDARs, the segmented class has only been used to refine points labeled
as obstacles by the ground segmentation of (Jiménez et al. 2021).

5 Final Map for Tracking Evaluation

Using the previously generated background map and observation grids, we compute
ground-truth maps that characterize free space and dynamic objects (see Figure 2). These
maps are obtained at each time step by fusing the background map and the observations
with the conjunctive rule. This fusion allows to take into account information from the
whole dataset given by the background map at each timestamp. As is, occupancy O
seen at a time ¢ in a passable area P will lead to the creation of dynamic cells D, as
O NP = D. The observation of occupancy in immovable or static zone will result in
the same immovable or static evidence, and free space will be added on top of passable
zones when observed. In the case of incoherent information between the background
map and the observation, we use the information from the map as an output as it results
from information from the whole dataset and is less subject to noise than instantaneous
observations.

The final result provided by the method is then a 2D evidential grid containing all
classes defined in Section 3.2. Passable zones resulting from this fusion correspond to
non-observed zones at this timestamp, and are just some information provided by the
map. These grids can be used for moving object tracking evaluation as they contain cells
occupied by dynamic objects. Static objects are contained in the map and their detection
can then be evaluated, or one may choose to ignore them in the validation process if it is
irrelevant.

6 Experiments

6.1 Collaborative Dataset

As highlighted in the review of related work, to our knowledge, no dataset provides all at
once moving, multi-vehicle, with real data. To develop and test our method, we thus
recorded a multi-vehicle dataset which is available online?. This dataset contains three
scenarios involving three vehicles equipped with sensors and a roadside sensor. These
scenarios have been made as typical use cases for cooperative perception (Ambrosin et
al. 2019) with obstructions from buildings or other vehicles on the open road with other
road-users. An overview of the experimental setup is shown at Figure 1.

The three experimental vehicles are equipped with a Velodyne VLP-32C LiDAR mounted
on their roof and a Novatel SPAN-CPT IMU with Post-Processed Kinematics (PPK)

Zhttps://datasets.hds.utc.fr/share/KrXdEBzaMnMmWhbV
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corrections providing centimeter-level localization accuracy. In addition, a Velodyne
VLS-128 LiDAR sensor statically placed on a curb was used as a roadside sensor. All
sensors are synchronized with GNSS time with a known extrinsic calibration.

6.2 Map Generation Using Real Data

Figure 3: Generated map. Colors are the same as described in Figure 2. The black
rectangle is the area zoomed-in for Figure 4.

Accurate poses and point clouds have been thus recorded and processed according to
Section 4.1. In particular, the threshold ¢, and ¢; were manually tuned to 5 and 30,
respectively (see Figure 5 for the effects of the threshold tuning). The thresholds appear
to be dependant of the dataset, and can vary with the number of sensors or the number
of passages in a given area.

The map resulting from this processing is illustrated in Figure 3, Figure 4, respec-
tively showing the whole generated map and a zoom on a point of interest (top-right
intersection).

A proper evaluation of the map has been realized and shows interesting results: passable
areas fit well with the road, parked cars are well identified as static and tree/buildings
are well identified as immovable.

10



Figure 4: Zoom on the top-right intersection of the map. Uncertain zones (white),
immovable occupancy (red), static objects (orange) and passable space (cyan)
are visible.
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(a) (b)

Figure 5: Effects of threshold tuning for the map generation. In (a), free space threshold
is too low, leading noise to create passable areas inside vehicles (cyan regions
inside orange borders). In (b), free space and occupancy thresholds are too
high, leading to a complete lack of information and the creation of unknown
zones (white).
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6.3 Fusion of Map and Observations

The observations contain the perception (LiDAR) from our vehicles and their position
and orientation as shown in Figure 6.

Figure 6: Fused observation grid. It contains all the LiDAR observation at a given
timestamp and the position of the vehicles. Black cells represent conflicts
between point of views, green cells represent free space.

The result of the fusion is illustrated in Figure 7 and Figure 8 at a given time step and
is evaluated in Section 6.4. Qualitatively, one can see that the free space is observed
on top of the passable zones of the map. Obstacles observed on top of passable zones
are correctly classified as dynamic objects. On the opposite, occupancy observed over
statically occupied zones correctly classifies them as static S and thus prevents the
creation of dynamic cells.

6.4 Evaluation of the Method

Existing datasets are not relevant to evaluate this method, as they either lack moving
vehicles or real data. A particular sequence of the dataset introduced in Section 6.1 has
thus been manually labeled to this end. It consists of 5 to 10 objects over 50 seconds
or 500 frames. The manual labeling methodology is as follows: based on accumulated
point clouds, bird-eye-view bounding boxes have been delimited by a human operator
for several key frames of the dataset. Bounding boxes have then been synchronized
with the output of the above method by interpolation. The center g} = (2%, yt) of each
bounding box k for each time ¢ has then been concatenated to form the ground truth
G ={g.} =12, Finally, a Region of Interest R is also delimited by the human operator.
Inside R, the human operator certifies that no objects were missed, but objects outside
of it were ignored.

13



Figure 7: Fusion of map and observations. The colors are the same as explained in
Figure 2.
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Figure 8: Zoom on Figure 7. Dynamic objects create blue cells unless static evidence
(orange cells) is present in the background map.
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As our interest is about object existence and not spatial accuracy, we evaluate our method
object-wise. To do this, objects are first extracted from the background and final maps
from of Section 4.1 and Section 5. The extraction is done by clustering static cells in
the background map and dynamic cells in final grids using the DBSCAN algorithm

(Ester et al. 1996). The center 02‘ = <x§, y§> of each cluster j for each time ¢ are then

concatenated to form the object list O = {0?-}#1 . In a second time, objects of O

that fall within R are compared to G. Objects and ground truth are associated for
each time step using the Hungarian algorithm and Euclidean distances. Metrics are
then derived from these associations, with associated objects being True Positives (T'P),
un-associated objects being False Positives (F'P) and un-associated ground-truth being

False Negatives (F'N). Classical metrics such as precision (Yﬁipmg), recall (TPZ;%)

and Fl-score (%) are provided in Table 1. We believe that these scores are
satisfactory as a first pass to generate ground-truths, but that human verification still
remains mandatory.

Table 1: Evaluation of the proposed method

Precision Recall F1l-score

0.95 0.97 0.96

7 Conclusion and Future Work

In this work, we proposed a novel approach to take advantage of post-processing for
ground truth semi-automatic generation by introducing a complete frame of discernment
for environment representation and a background map constructed using the whole dataset.
The fusion of the observation grids with the map allows the instantaneous classification
of objects as dynamic when they are on passable areas, in contrast to other GTAM
techniques (Steyer, Tanzmeister, and Wollherr 2017; Tanzmeister and Wollherr 2017).
Moreover, we provided a dataset with multiple real moving points of view, on which our
method proved to have very good results.

Further improvements can be made such as tracking at object level above the clustered
dynamic cells or the generation of parametric free space above the grid. We believe that
tracking the dynamic objects using filtering and smoothing algorithms would lead to
better results as it would remove some noise from the detection and would help to follow
dynamic obstacles in occluded environments. Additionally, the current implementation
was made using binary masses. A further task would be to implement finer masses using
confidence provided by the sensors or processing methods. This would allow a finer
representation of uncertainty during the fusion of different information sources.
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