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ABSTRACT: Describing protein dynamical networks through
amino acid contacts is a powerful way to analyze complex
biomolecular systems. However, due to the size of the systems,
identifying the relevant features of protein-weighted graphs can be
a difficult task. To address this issue, we present the connected
component analysis (CCA) approach that allows for fast, robust,
and unbiased analysis of dynamical perturbation contact networks
(DPCNs). We first illustrate the CCA method as applied to a
prototypical allosteric enzyme, the imidazoleglycerol phosphate
synthase (IGPS) enzyme from Thermotoga maritima bacteria. This
approach was shown to outperform the clustering methods applied
to DPCNs, which could not capture the propagation of the
allosteric signal within the protein graph. On the other hand, CCA
reduced the DPCN size, providing connected components that nicely describe the allosteric propagation of the signal from the
effector to the active sites of the protein. By applying the CCA to the IGPS enzyme in different conditions, i.e., at high temperature
and from another organism (yeast IGPS), and to a different enzyme, i.e., a protein kinase, we demonstrated how CCA of DPCNs is
an effective and transferable tool that facilitates the analysis of protein-weighted networks.

■ INTRODUCTION
Recent advances in computational technologies have enabled
us to perform classical molecular dynamics (MD) simulations
on systems of considerably large size and timescale.1−5 With
such long simulations producing large data sets, understanding
the dynamics of the system can be difficult. In recent years,
dynamical network analysis has become an increasingly
popular and effective computational tool for understanding a
variety of biological processes.6−13 This approach has been
used to examine the arrangement of atoms in proteins14 and to
study signaling pathways in allosteric systems.6,8,13,15,16 A
commonly used network approach is the analysis of atomic
contacts between amino acid residues in crystal structures of
multiple protein types/families.17−22 Another approach in-
volves monitoring the contact perturbations induced by
mutations,23,24 namely, perturbation contact networks. Dy-
namical networks can be constructed from static networks by
running MD simulations and monitoring the frequency of a
contact,25,26 or the average number of interatomic contacts.27

This method has been found to be particularly useful in
analyzing the effect of perturbations due to effector binding
and thus allosteric signaling mechanisms.26,27

The use of dynamical perturbation contact networks
(DPCNs) to analyze allosteric signals has enabled a deeper
understanding of the local conformation changes that occur
during the allosteric regulation of prototypical allosteric
proteins, such as the imidazoleglycerol phosphate synthase
(IGPS) enzyme from Thermotoga maritima.27 Compared to
more commonly used weighted protein networks, such as
those involving weights based on correlated motions obtained
from MD simulations,8,10,28−30 using dynamical contact
networks provides complementary information to acquire a
deep knowledge of allosteric signal propagation. This is
particularly valid when the allosteric pathways involve the
propagation of local contact perturbations from the effector to
the active site, as has been demonstrated in IGPS.8,27,31−33 In
fact, using correlated motions features the limitation of
compressing the atomistic details of the signal propagation in
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a single numerical coefficient for each interacting amino acid
pair. Thus, recovering the atomistic information from a protein
graph based on correlation coefficients requires the re-analysis
of the MD simulations, while the DPCN graph can be easily
decomposed in subgraphs for specific types of interactions
(e.g., considering only hydrophobic residues or ionic ones, or
just backbone atoms to focus on partial folding/unfolding
events, etc.), without re-analyzing the MD trajectories. In fact,
although various computational means can reach a consensus
on allosteric signal propagations, they generally tend to be
complementary to each other in the specific aspects under
investigation.34

By constructing a protein graph weighted by differences in
atomic contacts between two systems, such as the apo- and
effector-bound IGPS enzymes,27 the DPCN can capture
allosteric pathways previously described in the literature.8,32

Moreover, the DPCN is a powerful tool not only for studying
allostery but, in general, can be potentially used for
comparisons of MD simulations. This highly transferable
method has been demonstrated to be quite useful for studies of
various protein dynamics, including the allostery of bacterial
IGPS at high temperatures, yeast IGPS, and adenosine
monophosphate-activated protein kinase (AMPK), making it
a valuable tool.33,35−37 In this work, we investigated the
capabilities of the connected component (CC) analysis (CCA)
tool38−41 in providing a fast, robust, and unbiased analysis of
DPCNs. The CCA approach can partition the contact network
by grouping connected nodes, similar to what has been
successfully done for energy-weighted protein graphs,42 with
the advantage of providing information on the local
propagation of the perturbations. In particular, starting by
testing the CCA for the DPCN of bacterial IGPS, since it is a
well-studied allosteric system, we evaluated its transferability
by applying it to IGPS under other conditions (i.e., at high

temperature and from another organism) and to a different
protein, i.e., to the AMPK allosteric enzyme.

The IGPS enzyme is composed of two subunits, HisH and
HisF. HisH is a glutamine amidotransferase that catalyzes the
hydrolysis of glutamine (Gln, the substrate) into glutamate.
HisF is a cyclase, where the allosteric effector PRFAR (N′-[(5′-
phosphoribulosyl)formimino]-5-amino-imidazole-4-carboxa-
mide-ribonucleotide) binds (see Figure 1A). Upon PRFAR
binding, the affinity of Gln for HisH increases slightly
(fivefold), while the catalytic activity increases by 3 orders of
magnitude, making IGPS a V-type allosteric enzyme.43 The
impressive functionality of IGPS lies in the ability of its active
site to detect the allosteric effector over a distance of
approximately 25 Å through an allosteric signal that is initiated
in the HisF protein and is transferred to the HisH subunit. In a
series of computational studies of IGPS allostery,8,27,31−33 we
have predicted that the allosteric propagation mechanism
involves a collection of both short- and long-range displace-
ments, i.e., a set of local (hydrophobic, salt-bridges, and H-
bond) interactions that increase the correlations of inter-
residue motions on one side of the protein (“side R”, opposite
to “side L” indicating right and left sides in the representation
depicted in Figure 1A, respectively) and a slow collective
motion that alters the HisF/HisH interface, namely, the
breathing motion.8,32 Our earlier theoretical predictions have
been successfully used to design allosteric drugs31 and IGPS
mutants44 that alter the IGPS allosteric pathways, resulting in
inactive enzymes. Very recently, both short- and long-range
predicted effects have been demonstrated experimentally by X-
ray structural characterization of active IGPS ternary
complexes45 and light-switching activation,46 respectively.
The secondary structures mainly involved in the IGPS
allosteric pathways associated with local contact changes
initiated at the effector binding site include elements at the

Figure 1. (A) Complete graph associated with the DPCN analysis of PRFAR-bound IGPS and apo-IGPS complexes. Blue edges represent more
atomic contacts in apo-IGPS, while red edges represent more contacts in the PRFAR-bound holoenzyme. Binding sites for the effector (PRFAR)
and the substrate (Gln) are represented by including the molecular species in black. (B) DPCN graph of IGPS upon removal of edges, leaving only
the top 50 edges with the largest weights. Binding sites for the effector and the substrate are represented by a red triangle and blue circle,
respectively. (C) Number of edges in the DPCN graph of IGPS decaying as a function of the associated contact weight, with the inset zooming in
the region of the DPCN graph shown in panel B.
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side R of HisF and HisH, which propagate the signal toward
the active site, as shown in Figure 1A (see also Figure S1 in the
Supporting Information for details of the secondary structure
elements involved in these allosteric pathways).

In this context, our DPCN analysis of IGPS allostery has
been crucial in discovering the role of specific secondary
structure elements and key allosteric contacts. However, this
analysis required two arbitrary and biased choices. First, an
arbitrary edge weight threshold parameter was chosen (with a
brute-force approach) in order to reduce the number of
perturbed contacts for an eye-friendly visualization of the
perturbed graph. Then, a biased selection of the most relevant
perturbations within the reduced network (i.e., the subgraph)
was performed based on the previous knowledge of the IGPS
allosteric pathways, i.e., focusing on contact perturbations at
side R.

Here, we show that by using an unbiased protocol involving
a parameter with clear physical meaning, the CCA becomes a
powerful tool for the DPCN analysis of MD simulations,
showing the successful application to the IGPS allostery under
various conditions and transferability to other allosteric
proteins.

■ MATERIALS AND METHODS
Aiming to assess the impact of the methodological extension
presented here, we started from the DPCN results in ref 27,
which introduced DPCN analysis on bacterial IGPS, thus
employing previously reported structural models of apo- and
PRFAR-bound IGPS complexes from T. maritima (described
in detail in ref 8). Accordingly, we used the corresponding MD
trajectories that comprise four replica simulations of 100 ns for
both the IGPS apoenzyme and the holoenzyme (PRFAR-
bound).8 Here, a short description (with full details available in

ref8) of the MD simulations procedure is provided: the
AMBER-ff99SB47 force field for the IGPS protein and the
generalized AMBER force field48 for the PRFAR ligand were
employed; following a pre-equilibration procedure, production
runs were simulated in the NPT ensemble at 303 K and 1 atm,
using the Langevin piston, periodic boundary conditions, and
particle mesh Ewald method,49 as implemented in the NAMD2
software package,50 with van der Waals interactions calculated
using a switching distance of 10 Å and a cutoff of 12 Å. A
multiple time-stepping algorithm51,52 was adopted, with
bonded, short-range nonbonded, and long-range electrostatic
interactions evaluated respectively at every one, two, and four
time steps, using a time step of integration of 1 fs.

MD simulations of the yeast IGPS, from Saccharomyces
cerevisiae, were performed under similar conditions, notably
using the same force field. In this system, 12 independent MD
simulations of 100 ns (6 for apo and 6 for the PRFAR-bound
enzyme) were performed, totaling up to 1.2 μs simulations,
with more technical details described in ref 36. During the
study of temperature activation of the bacterial IGPS, new
simulations were performed using AMBER GPU53,54 and the
CHARMM36m force field.55,56 We generated three replicas for
each system, including apo at two different temperatures (30
and 50 °C) and holo at one temperature (30 °C). Each replica
was simulated for a duration of 1.5 μs. For the DPCN analysis,
we focused on the data from the final microsecond of each
simulation. Additional technical details can be found in ref 33.
Finally, for the AMPK allosteric system, three replica
simulations of 1 μs were performed for each system (apo-
and holo-enzymes), using the AMBER ff99SBILDN force
field,57 with more technical details described in ref 35.

Here, post-processing analyses were performed using the
NumPy package,58 handling MD trajectories and topologies
with MDTraj59 and network theory tools of NetworkX.60

Figure 2. (A) Schematic representation of the changes in the number of components upon sequential removal of edges with the smallest weights.
(B) Number of CCs as a function of the contact weight, i.e., the smallest weight left in the graph upon sequential removal of edges. The latest
occurrence of the highest number of components, i.e., 36, is highlighted as it is associated with the final CC structure, featuring a minimum edge
weight of 4.45. The inset shows such a CC structure in the 3D representation of the IGPS complex. (C) Box plot distribution of the vanishing
points of each component in the final CC structure.
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Dynamical Perturbation Contact Network. The full
procedure to compute the DPCN graph is described in ref 27
and reported here briefly. At each frame of MD simulations,
the Cython61 implementation of the KD-tree algorithm62−64

found in SciPy65 is used to get the list of all atomic pairs in
contact. From this list, the atomic contact matrix Aij, with
elements aij = 1 if atoms i and j are in contact or aij = 0 in the
opposite case, is constructed. Here, the distance cutoff value of
5 Å was used to define when two atoms are set to be in
contact, consistently with the previous analyses.8,27 In fact, the
5 Å cutoff value is considered to be a robust choice for protein
structure networks, as documented in the literature.66,67

The average atomic contact matrix of a set of simulations is
defined by averaging each element on all the individual

matrices, i.e., =aij
a

n,avg
t ij t,

frames
. In contrast with atomic contact

matrices of each frame, which are binary, the average matrix
will generally involve decimal numbers, thus requiring floating-
point arithmetic. Finally, this matrix can be converted to the
residue contact matrix using transformation matrices T such
that tij = 1 if atom i is in residue j, or 0 elsewhere. The average
residual contact matrix R can be expressed as R = TtAT. This
definition allows using different transformation matrices to also
describe asymmetric contacts (i.e., contacts between different
atomic selections between residues). However, here, the
default selection with the protein stripped from hydrogen
atoms is used. Looking at intra-residual contacts is beyond the
scope of this study; thus, we set all the diagonal elements of the
average residue contact matrix to be equal to 0. The average
residual contact matrix is then the adjacency matrix of the
contact network. The average perturbation contact matrix
between an initial set of simulations and a perturbed one is here
defined as the subtraction of their two average residual contact
matrices. The DPCN is the network created from the latter
adjacency matrix. For visualization purposes, we add a coloring
scheme to the edges: blue if the weight is bigger in the initial
state and red if the weight is bigger in the f inal state.
Connected Component Analysis. Two nodes u and v in

a graph G are connected if there exists a path in G that connects
them. The graph G is connected if all its nodes are connected,
so isolated nodes are not present. The CCs of a graph are the
connected subgraphs (so in these subgraphs, there are no
isolated nodes) that are not contained in a larger subgraph. In
other words, the CCs are the largest subgraphs that are not
connected to each other. Thus, a connected graph contains
only one CC, which is the whole graph itself, while a unique
set of (several) CCs can be defined for disconnected graphs
(see Figure 2A). CCs were found, here, using the Breadth-First
search algorithm.68−70 An amino acid graph representing a
protein is generally connected, thus featuring a single CC.
However, clearing protein networks of their faintest edges, for
instance by using a threshold value to highlight the most
relevant connections, is a common practice, making such
protein graphs generally disconnected. This is also the case for
DPCN graphs,27,35,37 for which then the CCs can be generated
in order to simplify their analysis and visualization.

■ RESULTS AND DISCUSSION
The whole graph resulting from a DPCN analysis is quite
congested and extremely difficult to be inspected by the human
eye. For instance, the DPCN graph obtained by comparison of
PRFAR-bound and apo-IGPS MD simulations contains more
than 4000 edges, as shown in Figure 1A. From this quite

intricate picture, one can still extract some clues about the
overall contact changes in the IGPS complex due to effector
binding. In fact, a significant amount of contact changes,
represented by (colored) edges is clearly visible at the HisF/
HisH interface, as a consequence of changes in the relative
motion between the two subunits (namely, the breathing
motion), which has been shown to be an allosteric effect
associated with the effector binding.8,31−33,44,71 However, the
pattern associated with the most important contribution to the
allosteric pathways, which is running along one side of IGPS
(namely, side R), is difficult to detect in the complete DPCN
graph since the visual inspection of a large number of edges
represents a quite tedious work.

In order to obtain DPCN subgraphs whose graphical
representations are both easy to visualize and featuring
patterns associated with the allosteric pathways, a reliable
way to remove/select edges from the complete DPCN graphs
must be determined. In previous studies,27,35,37 we decided to
remove edges below a certain threshold weight from the
complete DPCN graph or from some of its subgraphs, such as
those resulting from specific contacts among backbone atoms,
or heavy atoms (removing hydrogens), etc. Notably, for each
type of graph, a certain threshold weight was chosen, based on
various attempts of graph visualization. Such arbitrary choices
call for more reliable ways of edge selection in DPCN analysis.
Considering what a human eye can feasibly analyze from a
representation of a DPCN graph, one could first consider a
brute-force approach in which just the 50 edges with the largest
weights, i.e., representing the largest changes in number of
contacts, are left in the subgraph. For the DPCN of IGPS, this
will correspond to the choice of a threshold weight equal to
6.38, resulting in the graph depicted in Figure 1B. With such
crude selection criterion, one can visualize the HisF
perturbations near the effector site at side R; partial
propagation toward the active site, and also several other
displacements (at sideL, at the HisF/HisH interface, and at the
top of HisH) can be detected. This brute-force approach, thus,
does not really fit the wish to selectively recognize the allosteric
pathways at side R and, anyway, it involves an arbitrary
selection of the number of edges (i.e., 50 in this example).

Therefore, one can attempt to use clustering techniques for
the selection of DPCN subgraphs that detect allosteric
pathways. In the Supporting Information, we report an
extensive analysis of such attempts. In particular, we evaluated
the clustering of the edges according to their weights, which
are related to the number of contact perturbations, i.e., with
edges in the same cluster representing similar perturbations.
Then, we ranked these clusters going from largest to smallest
weights and selected the most important ones. This approach
provided interesting results in terms of recognizing relevant
contact perturbations but suffered from two main limitations:
i) this analysis does not provide insights on the local
propagation of contact perturbations and, thus, straightforward
detection of allosteric pathways and ii) the choice of the
number of important clusters to take into consideration
remains rather arbitrary and potentially biased by previous
knowledge of the allosteric signaling mechanism.
Connected Component Analysis. Given the limitation of

the brute-force and clustering approaches discussed above, we
introduced CCA as a tool that provides a way to cluster edges
by spatial proximity, possibly granting information on the local
propagation of allosteric signals. As shown in Figure 2A, when
sequentially removing edges with the smallest weights, the
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number of CCs (after pruning isolated nodes) can increase (if
this edge is the last one connecting two components, as in Step
1 of Figure 2A), decrease (if the edge is the last member of a
component; see the disappearance of component 2 in Step 2 of
Figure 2A), or plateau (if the edge is inside a CC with more
than one edge). The DPCN graph of IGPS is “connected” in
the sense of a topological space, i.e., there is a path from any
node to any other node in the graph (see Figure 1A); thus, it
contains just one CC. This initial, single CC is conserved until
the edges with weights <0.80 are removed, as shown in Figure
2B. Then, the first split of the DPCN graph into two CCs
occurs, and the number of CCs steadily increases until around
35 (for weights equal to 3.03). This means that in the range of
0.8−3.03, the action of removing an edge generally creates a
new component. Then, moving to the 3.03−4.45 range, the
number of CCs oscillates between 30 and 36 components.
Here, the components are created and destroyed approx-
imately at the same rate, thus featuring fast and small
oscillations for sequential edge cuts. The network with the
maximum number of components at the largest weight (i.e., at
4.45) is considered as the graph containing its “final”
components, i.e., the final CC structure, since from this
point, the number of components is destined to quickly
decrease after each edge cut. Indeed, only occasionally, the
number of components can slightly increase upon a new edge
cut after this point, but with the total number of components
always smaller than the maximum (36, found at weight 4.45)
(see Figure 2B). From this point, in fact, edge removal will
create mostly (pruned) isolated nodes, indicating that a graph
structure where the components are interconnected by edges
with large weights is reached. This structure resembles a
community structure, where the edges with the smallest
weights are removed and the corresponding nodes pruned.
Indeed, as shown in Figure 2B, there is a fast decrease in the
number of CCs from 36 to 20 between weights 4.45 and 6.
This corresponds to the removal of the smallest components,
usually containing a single edge. At weights >6, the number of
components undergoes a much slower decay (even plateauing
in some ranges) until zeroing at the final weight of around 16.
This behavior is due to the strongest components that
disappear slowly. Here, then, the strength of a given
component is related to its edge with the largest weight,
namely, the “vanishing point” of that component.

Figure 2C shows the distribution of vanishing points for the
final CC structure (with 36 components). About 50% of these
components have a vanishing point between 4.45 and 6, which
belongs to the initial fast decrease in the number of
components down to 20. The median value of the whole
distribution of vanishing points is 6.01, which, notably, is quite
close to the threshold weight corresponding to the top 50
edges (i.e., 6.38). Above 6, the distribution of vanishing points
is really spread, with one or (maximum) two components
sharing the same vanishing point, in line with the slow
disappearance of components following edge removal with
weights >6, as discussed above.

The number of edges and nodes, namely, the size and order
of the components, respectively, in the final CCs (see Figure
S7 in the Supporting Information) shows that the sizes of the
36 CCs are typically quite similar to their orders. This implies
that the CCs are not a fully connected subgraph (i.e., not all
edges are connected with each other), but they are relatively
sparse and spread along the DPCN graph. Another interesting
metric for classifying a CC is its diameter (d), defined as the
largest distance (i.e., the number of edges in the shortest path)
between any pair of nodes present in the component.

For the DPCN graph analyzed here, the sizes of the final
components indicate how much influence a local perturbation
has on other amino acids, or, better, how many amino acids are
impacted by the perturbation spreading. On the other hand,
the diameter evaluates how far the perturbation is spread
through the protein matrix. Notably, we observed an
interesting trend of the diameters of the final components as
a function of their vanishing points, which is depicted in Figure
3A. Most of the 36 final components are composed of two
nodes and one edge, so they have a diameter of 1, but also a
good portion of them have a diameter of 2 and represent the
case of the first (minimal) propagation of the contact
perturbations. The overall distribution of the diameters of
the final components is reported in Figure S8 in the
Supporting Information. Notably, as reported in Figure 3A,
the CCs with the highest vanishing points also feature the
highest diameters. As we are interested in exploiting the CCA
to characterize the local propagation of allosteric signals, it is
remarkable to observe that the components with the largest
vanishing points, i.e., containing as a maximum edge weight a
large value (associated with many atomic contacts perturbed),

Figure 3. (A) Scatter plot of the relation between the diameter of the CCs in the final CC structure and their vanishing points, with colored points
assigned to CCs with d > 2. (B) DPCN containing the major CCs (with d > 2) plotted in the 3D structure of IGPS, with a color scheme following
the scattered plot in (A). Binding sites for the effector and the substrate are represented by a red triangle and blue circle, respectively. The black
arrow indicates the allosteric pathways associated with the local propagation of contact perturbations from the effector to the active site.
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likely feature large diameters. This implies that the pair contact
perturbations are not just many within these CCs, but they also
spread significantly across the protein graph.

Thus, in order to analyze the allosteric signal propagation
detectable by the DPCN analysis of IGPS, we focused on the
most relevant CCs of the final CC structure, i.e., the CCs
featuring a diameter associated with a sizable spreading of the
contact perturbations (d > 2). This choice is, in fact, not really
arbitrary as it has a clear physical meaning, implying that one
considers just the cases that are beyond the minimal (d = 2)
propagation of the contact perturbations. As shown in Figure
3B, this choice selects 9 CCs, spreading across the entire IGPS
protein complex but, notably, now recovering the allosteric
pathways of IGPS expected to run along the side R. These CCs
involve specific secondary structures, which are listed in Table
S1 in the Supporting Information. The main advantage of the
CCA proposed here is the rational partitioning and automatic
drawing of a DPCN subgraph, which allows for an easy
understanding of the local contact perturbations associated
with allostery. In fact, in reference,27 we used a brute-force
approach to analyze the DPCN graph, employing a set of
different weight thresholds and various selections of atoms that
define the contact subgraphs. Such tedious work can be
avoided if the proposed CCA is adopted, facilitating the
application of the DPCN method to much larger and more
complex systems compared to IGPS.
Applications of CCA to Other Proteins and Con-

ditions. After showing that the CCA approach can effectively
detect the propagation of the atomic contact perturbations
associated with the allosteric pathways of bacterial IGPS, in the
following, we discuss the application of this approach to other
proteins and conditions. In particular, in our previous
investigations, we demonstrated the peculiar effects that
temperature has on the allosteric pathways of bacterial
IGPS.33 The temperature increase significantly alters the
collective motions associated with the IGPS allostery but,
unexpectedly, it also triggers a cascade of local contact
perturbations (probed with our DPCN approach) that
remarkably resembles the allosteric activation induced by the
effector binding, i.e., the allosteric pathways along side R of the
IGPS complex. Since it was experimentally proved that the
temperature increase mimics the allosteric activation of IGPS
by the effector binding,43 this further demonstrates the role of
local contact perturbations in the IGPS allostery. Therefore, we
used the CCA protocol proposed here to verify if this approach
can also provide a fast and robust tool for the detection of
temperature-dependent allosteric pathways. As shown in
Figure 4A,B, the CCA partitioning of the complete DPCN
graph, computed by subtracting the protein contacts network
at 50 °C from that at 30 °C, indeed provides clear evidence of
the side R allosteric propagation of local contact perturbations
induced by the temperature increase.

On the other hand, one might wonder if such perturbations
of local contacts among amino acid residues, equally induced
by effector binding and temperature increase, are “conserved”
in the protein family of the IGPS enzymes. To address this
question, we previously investigated the allosteric pathways in
the IGPS enzyme from another organism, in particular from
the S. cerevisiae yeast.36 We found rather distinct allosteric
pathways between the IGPS from the yeast with respect to
those of the bacteria, in terms of both collective motions and
local contact perturbations. The latter, in particular, were
determined by our DPCN method and indicated that by

partially changing the primary sequence of the IGPS enzyme,
going from bacteria to yeast, the allosteric signal propagation
(induced by effector binding) shifts from the surface residues
on side R to pathways located more internally in the protein
matrix, respectively. As shown in Figure 4C,D, in fact, the yeast
IGPS features a single protein chain, namely, His7, in contrast
with the HisF/HisH heterodimeric structure in the bacteria,
and it has a very similar, but not identical, protein scaffold. In
the case of yeast IGPS, the DPCN complete network,
computed by subtracting the protein contact network of the
holoenzyme (associated with PRFAR binding as in bacterial
IGPS) with that of the apoenzyme, features numerous contact
perturbations (see Figure 4C) that are, as expected, very
difficult to disentangle by visual inspection. Here, the
application of our CCA protocol (see Figure 4D) nicely
provides a clear picture of the allosteric pathways that, as
mentioned above, are not anymore associated with the surface-
exposed residues at side R, as shown in bacterial IGPS for both
effector binding (see Figure 2B) and temperature increase (see
Figure 4A,B). In fact, the CCs selected in the DPCN of yeast
IGPS connect the effector and the active sites via local contact
perturbations that lie in the inner part of the IGPS protein (see
Figure 4D).

Finally, in order to further demonstrate the transferability of
the CCA approach to other types of allosteric protein, we
applied it to our DPCN study of the AMPK enzyme.35 AMPK
is an energy sensor that has a fundamental role in regulating
cell metabolism and thus is often used as a target for metabolic
diseases. It is a heterotrimeric complex, consisting of a catalytic
α-subunit and two (β and γ) regulatory subunits, which are
finely regulated by different mechanisms. In fact, each of these
subunits can be found in different isoforms, i.e., α1, α2, β1, β2,
γ1, γ2, and γ3, whose selectivity toward specific AMPK

Figure 4. Complete DPCN graphs and the corresponding CCA
subgraphs for the allosteric signal induced by temperature increase in
bacterial IGPS (A,B) and effector binding in yeast IGPS (C,D).
Binding sites for the effector and the substrate are represented by a
red triangle and a blue circle, respectively. The black arrow indicates
the allosteric pathways associated with the local propagation of
contact perturbations from the effector to the active site.
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activators can be significantly different.72 In our recent work,35

we were able to characterize key features that mediate the
different activation of the α2β1 and α2β2 isoforms induced by
the so-called “pan-activators” (in particular, two molecules
named with the codes PF-739 and A-769662) that bind in the
allosteric drug and metabolite (ADaM) site of AMPK (see
Figure 5).

One of the main conclusions of our study was that the subtle
difference in the two β isoforms, featuring different residues in
position 111, i.e., N111 and D111 in β1 and β2, respectively,
can change the networks of atomic interactions in the ADaM
site, ultimately providing a better mechanical response of the
α2β1 isoform toward the interaction with the pan-activators
than that observed in the case of the α2β2 species.35 Figure
5A,C shows the changes in local contact perturbations due to
the binding of the PF-739 pan-activator in the ADaM site, as
obtained with our DPCN method. Looking at the complete
DPCN graphs, many perturbations are observed across the
α2β1 and α2β2 complexes, including those nearby the ADaM
site. However, applying the CCA protocol proposed in this
work, the significant differences between the isoforms with
regard to the propagation of the local contact perturbations
appear quite clear. In fact, contrary to what it appears from a
first look at the complete DPCN graphs (see Figure 5A,C), the
CCA subgraphs shown in Figure 5B,D clearly demonstrate
how the subtle difference at the 111 position significantly
changes the number of selected CCs, being much larger in
α2β1 than in α2β2, featuring 6 and 3 CCs with d > 2,
respectively. Moreover, considering the secondary structure
elements of the α subunit interfacing with the β ones, i.e., the

so-called P-loop and C-interacting helix, the CCA results
clearly show that the number of local contact perturbations in
the selected CCs is also significantly larger in α2β1 than in
α2β2. These results are in line with the experimental evidence
of better activation response for the α2β1 isoform with respect
to the α2β2 one. Moreover, they clearly highlight both the
effectiveness and the transferability of the proposed CCA
analysis for the study of signal propagations in proteins.

■ CONCLUSIONS
Protein graphs can be used to provide simple representations
of dynamical chemical interactions within complex proteic
systems, which are particularly useful for understanding
allostery. DPCN graphs, representing connections (i.e.,
edges) among pairs of amino acid residues weighted by the
number of atomic contacts, have been previously proven to be
valuable networks for the analysis of signal propagation in
prototypical allosteric proteins. The visualization of dense
DPCN graphs, however, requires a reliable selection of the
protein network for catching the regions that are relevant to
the process under study, i.e., the allosteric pathways associated
with local contact perturbations. The simple selection of a
limited number of perturbed atomic contacts, e.g., 50 edges,
represents an arbitrary but still reasonable choice for the
primary visual inspection of a DPCN graph. Such selection,
indeed, corresponds to an edge weight threshold of about six
atomic contacts, which was previously chosen for the DPCN
analysis of bacterial IGPS. Still, besides being arbitrary, this
brute-force solution would not be transferable to other proteic
systems since for a given edge threshold, the number of
selected perturbed contacts would significantly change with the
system size.

On the other hand, clustering methods could be employed
to automatically select groups of perturbed edges with similar
relevance in the network, i.e., with similar weights. This
provides a less arbitrary and more transferable method than
brute-force edge selection. However, the clustering of the
weighted graph is performed in the edge weight space rather
than in the three-dimensional space of the proteic system,
hampering the direct detection of the local propagation of
perturbations that characterizes the allosteric pathways.
Moreover, the clustering approach gives a way to progressively
increase the dimension of the selected subgraph by defining
the number of clusters to be considered, which still remains
somehow arbitrary and system-dependent.

Here, we propose a CCA protocol to analyze weighted
DPCN graphs, minimizing the bias and the arbitrary selection
of parameters. We used the bacterial IGPS as the reference
allosteric system, and we tested the transferability of this tool
by analyzing its performance for other proteins and conditions.
We showed that CCA is a powerful tool that clusters the
DPCN graph, preserving spatial proximity, and provides an
automatic selection of the perturbations associated with the
allosteric pathways of bacterial IGPS. Here, the only parameter
that has to be selected is the component’s diameter d that
represents just the degree of expansion of the local propagation
that one wants to consider and, thus, it is system independent
and with a clear physical meaning. Indeed, excluding the trivial
cases of single-pair interactions (with d = 1) and of minimal
propagation (d = 2), we observed that the structure of CCs
with d > 2 for the DPCN of IGPS involves nine components
that properly describe the allosteric propagation in terms of
atomic contact perturbations. In fact, besides localizing the

Figure 5. Complete DPCN graphs and the corresponding CCA
subgraphs for the allosteric signal induced by binding of the PF-739
pan-activator to the α2β1 (A,B) and α2β2 (C,D) different isoforms of
AMPK. Blue edges represent more atomic contacts in apo AMPK,
while red edges represent more contacts in the activator-bound
holoenzyme. The ADaM binding site for the pan-activator is
represented by a red triangle, while gray circles highlight the
secondary structure elements of the α2 subunit interacting with the
β ones. The N111 and D111 residues differentiating the β1 and β2
subunits are indicated in red.
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main effector perturbations, as expected, the CCA is also able
to straightforwardly capture the allosteric contacts that
previously required fine-tuning of DPCN parameters. Finally,
the proposed CCA protocol has been tested for detection of
the allosteric pathways in the bacterial IGPS at high
temperatures, in the yeast IGPS, and in the activation of
AMPK enzymes. These successful tests demonstrated the
transferability and the robustness of this approach, which
would greatly facilitate the automatic analysis of any
perturbation contact networks. Since this tool is easy to
implement and applicable to all weighted networks, the
proposed method features the potential to become a standard
procedure to guide the investigation of different types of
protein-weighted networks.
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