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This note is about the observation that the various transition formulas between bases of trigonometric polynomials can be expressed in terms binomial coefficients. More specifically, we write the entries of the Chebyshev matrices T and U in terms of binomial coefficients. We remark that the inverses of certain submatrices of the Chebyshev matrix T correspond to classical power reduction formulas for trigonometric functions. Therefore the entries of T -1 are expressible in terms of binomial coefficients and powers of two. The inverses of certain submatrices of the Chebyshev matrix U appear in power reduction formulas involving the Catalan triangles. We could not spot them in the literature. As a corollary the Catalan triangles are interpreted as inverses of rather natural matrices of binomial coefficients. We explain the matrix inversions in terms of Riordan arrays. We solve the integral 2π 0 cos 2m (x) sin 2n (x)dx and deduce a hypergeometric identity from the Fourier expansion of cos 2m (x) and sin 2n (x). As a corollary we prove that super Catalan numbers are integers. We emphasize that from the point of view of these base changes between the trigonometric polynomials it is more natural to work with 2 cos(x) and 2 sin(x) instead of cos(x) and sin(x), since the transition matrices become invertible over the integers. We do a similar analysis for the spread polynomials. This enables us to make a conjecture of Goh and Wildberger more precise. In this exposition we give a mostly self-contained account of the matter, the prerequisites just being four semesters of calculus, linear algebra, elementary complex variables and the residue theorem.

Introduction

When teaching basic calculus and trigonometry the educator is faced with the challenge that he or she cannot employ in a systematic way binomial coefficients, as Pascal's triangle is said to be too complicated for the modern student. On the other hand, since the advent of the Wilf-Zeilberger [START_REF] Petkovšek | [END_REF] method binomial coefficients are considered to be too shallow to be a subject of serious research. In the end, nobody appears to be responsible for this old subject, except the Online Encyclopaedia of Integer Sequences (OEIS) [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]. This invaluable resource contains no proofs however, but merely references. To find proofs of classical formulas in the literature can be a tedious task.

In this article we take the opportunity to discuss a number of trigonometric formulas that arise when doing base changes between the various bases of trigonometric polynomials. The formulas are all classical, even though the ones involving Catalan triangles we were not able to spot in the literature. We do not know of a reference where they are discussed in context and proofs are provided. Moreover, we try to exhibit the appearance of binomial coefficients as succinctly as possible and deduce the relevant simple hypergeometric identities behind the inversions. Among other things, we point out the close relation between the coefficients of the Chebyshev polynomials and higher dimensional pyramidal numbers, a link we stumbled into while contemplating on the OEIS. This is closely related to the observation that the base change formulas simplify when working with 2 cos(x) and 2 sin(x) instead of cos(x) and sin(x) (but remember to keep the 1 !). We do a similar analysis for Norman Wildberger's spread polynomials that play a central role in his rational trigonometry [START_REF] Wildberger | Divine proportions. Rational trigonometry to universal geometry[END_REF]. We express them in terms of the even-dimensional pyramidal numbers. The most elegant point of view on our matrix inversions is provided by the language of Riordan arrays [SSB + 22], relating generating functions and matrix multiplication. Since we got rid of the annoying factors of four, we cleared the view to make a conjecture of Goh and Wildberger on the factorization of spread polynomials more precise.

The paper is organized as follows. In Section 2 we review the definitions of the Chebyshev polynomials. In Section 3 we recall the the notion of a trigonometric polynomial. In Section 4 we discover the higher pyramidal numbers and binomial coefficients in the coeficients of the Chebyshev polynomials. In Section 5 we propose an easy way to deduce quickly the first few Chebyshev polynomials T n on a sheet of paper. In Section 6 (the only section in this paper where we refer to other sources) we recall the definition of the even and odd Catalan triangles. In Section 7 we provide proofs of the well-known power reduction formulas and not-so-well-known variants thereof. In Section 8 we relate the Chebyshev polynomials to the power reduction formulas via matrix inversion. In Section 9 we provide another proof of the matrix inversions using Riordan arrays. In Section 10 we deduce further hypergeometric identities evaluating Fourier integrals and deduce the integrality of the super Catalan numbers. In Section 11 we once again go through the laundry list of the paper for the case of the spread polynomials. In Section 12 elaborate on a conjecture of Goh and Wildberger and provide some empirical evidence.
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Chebyshev polynomials

For convenience of the reader we review here some basic facts about the Chebyshev polynomials (see, e.g., [PS98, Exercise VI.2]). The Chebyshev polynomials of the first kind (T n (x)) n≥0 and of the second kind (U n (x)) n≥0 are defined by the recursions

T 0 (x) = 1, T 1 (x) = x, T n (x) = 2xT n-1 (x) -T n-2 (x) for n ≥ 2, (2.1) U 0 (x) = 1, U 1 (x) = 2x, U n (x) = 2xU n-1 (x) -U n-2 (x) for n ≥ 2. (2.2) Proposition 2.1. ∞ n=0 T n (x)t n = 1 -tx 1 -2tx + t 2 (2.3) ∞ n=0 U n (x)t n = 1 1 -2tx + t 2 (2.4) Proof. From 1 -2tx + t 2 n≥0 T n (x)t n = n≥0 T n (x)t n - n≥0 T n (x)2t n+1 x + n≥0 T n (x)t n+2 = n≥0 T n (x)t n - m≥1 T m-1 (x)2t m x + m≥2 T m-2 (x)t m = 1 + tx -2tx + m≥2 (T m (x) -2xT m-1 (x) + T m-2 (x)) t m = 1 -tx
we deduce Eqn. (2.3); the proof of (2.4) is similar.

Theorem 2.2. For each integer n ≥ 0 we have

T n (cos(θ)) = cos(nθ), T n (sin(θ)) = (-1) n/2 cos(nθ) if n is even sin(nθ) if n is odd , U n (cos(θ)) = sin((n + 1)θ) sin(θ) , U n (sin(θ)) = (-1) n/2 cos((n+1)θ) cos(θ) n even sin((n+1)θ) cos(θ)
n odd .

Proof. We give an inductive proof of T m (cos(θ)) = cos(mθ) and sin(θ)U m (cos(θ)) = sin(mθ). The start of the induction is obvious. Let us assume that these identities hold for m = n -1 and m = n -2. Let us put for simplicity

U m (x) = 0 = T m (x) for m < 0. From n≥0 xT n-1 (x) + n≥0 x 2 -1 U n-2 (x)t n = n≥0 xT n (x)t n+1 + n≥0 x 2 -1 U n (x)t n+2 = xt 1 -tx 1 -2tx + t 2 + t 2 x 2 -1 1 1 -2tx + t 2 = xt -t 2 1 -2tx + t 2 = -1 + 2tx -t 2 + 1 -xt 1 -2tx + t 2 = 1 -tx 1 -2tx + t 2 -1 = n≥1 T n (x)t n , we see that xT n-1 (x) + x 2 -1 U n-2 (x) = T n (x) for n ≥ 1. Similarly, we observe that n≥0 (T n (x)t n + xU n-1 (x))t n = n≥0 T n (x)t n + n≥0 xU n (x)t n+1 = 1 -tx 1 -2tx + t 2 + tx 1 -2tx + t 2 = n≥0 U n (x)t n , so that T n (x) + xU n-1 (x) = U n (x)
for n ≥ 0. But, using the Addition Theorem for cosine, cos(nθ) = cos(θ) cos((n -1)θ) -sin(θ) sin((n -1)θ) = cos(θ)T n-1 (cos(θ)) -sin 2 (θ)U n-2 (cos(θ)), the first relation proves T n (cos(θ)) = cos(nθ). Moreover, the second relation in combination with the Addition Theorem for sine

sin((n + 1)θ) = cos(θ) sin(nθ) + sin(θ) cos(nθ) = sin(θ)(cos(θ)U n-1 (cos(θ)) + T n (cos(θ)))
shows sin(θ)U n (cos(θ)) = sin((n + 1)θ).

Trigonometric polynomials

A trigonometric polynomial of degree ≤ d in the variable θ is a univariate real function of the form

a 0 + d n=1 a n cos(θ) + d n=1 b n sin(nθ) with a 0 , a i , b i ∈ R for i = 1, 2, .
. . , d. The (2d + 1)-dimensional real vector space of trigonometric polynomials of of degree ≤ d will be denoted by Trig ≤d . By 2π-periodicity an f ∈ Trig ≤d is uniquely determined by its restriction to the interval [-π, π]. There is a inner product

1 f, g = 1 2π π -π f (θ)g(θ)dθ
1 In Fourier analysis it is more convenient to work with the inner product 2 f, g .

making Trig ≤d into an euclidean vector space. There is an orthogonal decomposition Trig ≤d = Trig 0 ≤d ⊕ Trig 1 ≤d into even and odd trigonometric polynomials Trig

j ≤d := f ∈ Trig ≤d |f (-θ) = (-1) j f (θ) , j = 0, 1. It is well-known that 1 √ 2 cos(θ) √ 2 cos(2θ) √ 2 cos(3θ) . . . √ 2 cos(dθ)
forms an orthonormal basis for Trig 0 ≤d and √ 2 sin(θ) √ 2 sin(2θ) √ 2 sin(3θ) . . . √ 2 sin(dθ) forms an orthonormal basis for Trig 1 ≤d . In this paper we find it convenient to view a basis as a frame, i.e., a row of vectors with trivial kernel. We can understand the space of all trigonometric polynomials as the direct limit Trig := ∪ d≥0 Trig ≤d with a decomposition Trig = Trig 0 ⊕ Trig 1 , Trig j := ∪ d≥0 Trig j ≤d . It follows that 1 √ 2 cos(θ) √ 2 cos(2θ) √ 2 cos(3θ) . . . forms an orthonormal basis for Trig 0 and that √ 2 sin(θ) √ 2 sin(2θ) √ 2 sin(3θ) . . . forms an orthonormal basis for Trig 1 . There are a lot of other (non-orthogonal) bases for Trig j , j = 0, 1. In this paper we are concerned, e.g., with the bases cos 0 (θ) cos 1 (θ) cos 2 (θ) cos 3 (θ) . . . , sin 1 (θ) sin(θ) sin 2 (θ) sin(θ) sin 3 (θ) sin(θ) sin 4 (θ) sin(θ) . . . for Trig 0 and sin(x) sin 2 (x) sin 3 (x) . . . for Trig 1 . To verify that these form bases we refer the reader to the classical literature (see, e.g., [START_REF] Pólya | Problems and theorems in analysis II. Theory of functions, zeros, polynomials, determinants, number theory, geometry[END_REF]). Alternatively, the claim also follows from the calculations of Section 9.

The Chebyshev polynomials T n provide, for example, a base change between the bases cos 0 (θ) cos 1 (θ) cos 2 (θ) cos 3 (θ) . . . and 1 cos(θ) cos(2θ) cos(3θ) . . . , while the Chebyshev polynomials U n provide a base change between the bases sin 1 (θ) sin(θ) sin 2 (θ) sin(θ) sin 3 (θ) sin(θ) sin 4 (θ) sin(θ)

. . . and 1 cos(θ) cos(2θ) cos(3θ) . . . .

In the interest of keeping the entries of the base change matrices as simple as possible we advocate (see Section 8) for working with the basis 1 2 cos(θ) 2 cos(2θ) 2 cos(3θ) . . . instead of 1 cos(θ) cos(2θ) cos(3θ) . . . and with 2 sin(θ) 2 sin 2 (θ) 2 sin 3 (θ) . . . instead of sin(θ) sin 2 (θ) sin 3 (θ) . . . . For the kabbalist the Chebyshev polynomials themselves appear to be a bit convoluted, and are probably defined this way for historical reasons.

There is also a more modern variation of the subject. The so-called spread polynomials, introduced by Norman Wildberger (see [START_REF] Wildberger | Divine proportions. Rational trigonometry to universal geometry[END_REF]), mediate a base change between sin 2 (θ) sin 4 (θ) sin 6 (θ) . . . and sin 2 (θ) sin 2 (2θ) sin 2 (3θ) . . . . Again, from the point of view of numerology it seems more natural to work with 4 sin 2 (θ) 16 sin 4 (θ) 64 sin 6 (θ) . . . and 4 sin 2 (θ) 4 sin 2 (2θ) 4 sin 2 (3θ) . . . instead. The details of the base change are to be addressed in Section 11.

Chebyshev matrix and higher dimensional pyramidal numbers

We define the infinite matrix T = (T mn ) m,n≥0 

T :=                  1 -1 1 -1 1 -1 • • • 1 -3 5 -7 9 
• • • • • •                  , (4.1)
so that T 0 (x) T 1 (x) T 2 (x) . . . = 1 x x 2 . . . T , i.e., T n (x) = m≥0 T mn x m . We take the liberty to not annotate zero entries.

Let us start our analysis by making an empirical observation. For i ≥ 1 we record in a table the sequence p

[i] j j≥0
of nonzero entries of T ith row multiplied by (-1) is usually referred to as the i-dimensional pyramidal numbers (we are sloppy here about the index shifts). Its generating function p [i] (t) = j p

[i] j t j is simply

p [i] (t) = 1 + t (1 -t) i+1 = 2 -(1 -t) (1 -t) i+1 = 2 (1 -t) i+1 - 1 (1 -t) i = j≥0 2 i + j j - i + j -1 j t j .
The matrix 

U =               1 -1 1 -1 1 2 -4 6 -8 10 
              , (4.2)
on the other hand, is defined such that U n (x) = m≥0 U mn x m . For i ≥ 0 we record in a table the sequence of nonzero entries of the ith row of U multiplied by (-1) j 2 -i , , which apparently turns out to be the Pascal matrix. We phrase our observation as follows (this type of formulas is known for quite some time [START_REF] Clenshaw | Chebyshev series for mathematical functions[END_REF]).

i\j 0 1 2 3 4 5 • • • 0th row 1 1 1 1 1 1 • • • 1st row 1 2 3 4 5 6 2nd
Theorem 4.1. The Chebyshev polynomials are given by the formulas

T 2n (x) = (-1) n + n j=1 (-1) n+j 2 2j-1 p [2j] n-j x 2j , T 2n+1 (x) = n j=0 (-1) n+j 2 2j p [2j+1] n-j x 2j+1 , (4.3) U 2n (x) = n j=0 (-1) n+j 2 2j n + j 2j x 2j , U 2n+1 (x) = n j=0 (-1) n+j 2 2j+1 n + j + 1 2j + 1 x 2j+1 , (4.4)
where n ≥ 0 is an integer.

Proof. The first step is to cleanse Eqn. (4.1) from its powers of 2. The trick is to define P 0 (z) := 1, (4.5) P n (z) := 2T n (z/2) for n > 0 to ensure that P 0 (1) = 1 and P n (2 cos(θ)) = 2T n (cos(θ)) = 2 cos(nθ) for n > 0. We easily deduce the bivariate generating function

n≥0 P n (z)t n = 2 -zt 1 -zt + t 2 -1 = 1 -t 2 1 -zt + t 2 . (4.6)
To cleanse the Taylor coefficients from the signs we make the substitution

t → t/ √ -1, z → √ -1z to obtain 2 1 -t 2 1 -zt + t 2 → 1 + t 2 1 -zt -t 2 . (4.7)
We extend our definition of the pyramidal numbers to include also j p

[0] j t j = (1 + t)/(1 -t) = 1 + 2t + 2t 2 + 2t 3 + . . . . Let K ⊂ C × be compact and r = min ||t| -|t| -1 | | t ∈ K . If |z| < r it follows that | tz 1-t 2 | < 1 for all t ∈ K. Then we have for t ∈ K, |z| < r m,l≥0 p [m] l z m t m+2l = m≥0 1 + t 2 (1 -t 2 ) m+1 (tz) m = m≥0 1 + t 2 1 -t 2 tz 1 -t 2 m = 1 + t 2 1 -t 2 1 1 -tz 1-t 2 = 1 + t 2 1 -t 2 -tz .
This holds everywhere outside of the poles, and obviously also at

t = 0. But now n P n (z)t n = 2-t 2 1-zt+t 2 = j p [i] j t 2j (-z) i . Similarly, we define V n (z) := U n (z/2) for n ≥ 0, (4.8) so that V n (2 cos(θ)) = U n (cos(θ)) = sin((n + 1)θ)/ sin(θ) for n ≥ 0. Hence the bivariate generating function is n≥0 V n (z)t n = 1 1 -zt + t 2 .
To get rid of the signs we make the substitution

t → t/ √ -1, z → √ -1z to obtain 1 1-zt+t 2 → 1 1-zt-t 2 . The relation m,l≥0 m + l l z m t m+2l = m≥0 (tz) m (1 -t 2 ) m+1 = m≥0 1 1 -t 2 tz 1 -t 2 m = 1 1 -t 2 1 1 -tz 1-t 2 = 1 1 -t 2 -tz ,
holds for t ∈ K and |z| < r, hence everywhere outside the poles.

For practical matters, let us mention that for i ≥ 0 the coefficients of j p

[i] j t j are the difference pattern of the coefficients of j p

[i+1] j t j . This is because the generating functions differ by a factor 1 -t. We introduce the infinite matrix P = (P mn ) n,m≥0 so that P n (x) = m≥0 P mn x m (cf. Eqn. (4.6)).

Mnemonics

If you are stranded on a lonesome island and want to recall quickly the Chebyshev polynomials T n (x) without entering some tedious recursions we have a suggestion. Start with the row of odd numbers and write on top of it its difference pattern. Then put on the bottom the row of the sequence whose differences are the odd numbers, (i.e., the square numbers). Proceed the same way with the resulting row and continue recursively. Introduce alternating signs for the diagonals and fill the gaps with zeros. The result is P .

1 2 2 2 2 • • • 1 3 5 7 1 4 9 16 • • • → 1 2 2 2 2 • • • 1 3 5 7 1 4 9 16 1 5 14 1 6 20 1 7 1 8 1 1 • • • • • • → P =                 1 0 -2 0 2 0 -2 0 2 • • • 0 1 0 -3 0 5 0 -7 0 0 0 1 0 -4 0 9 0 -16 0 0 0 1 0 -5 0 14 0 0 0 0 0 1 0 -6 0 20 0 0 0 0 0 1 0 -7 0 0 0 0 0 0 0 1 0 -8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 • • • • • •                
To obtain T turn all 2s in the 0th row into 1s and for each i ≥ 1 multiply the ith row with 2 i . There is another way to look at the coefficients of the Chebyshev polynomials that we would like to mention. We plan to discuss it in a more general context at another occasion. Namely, put

n k :=      T 00 /2 T 2k n if n > 0 is even, T 2k+1 n if n odd. Then n k satisfies the recurrence n k = a n -1 k + b n k -1 with a = 2, b = -1 and initial condition n 0 = 2 n-1 , 0 k = 1/2 if k = 0, (-1) k else.

Catalan triangles and the Fuß-Catalan numbers

The Catalan sequence (C n ) n≥0 can be defined by the Segner recursion

C 0 = 1, C n = n-1 k=0 C k C n-1-k .
In term of the generating function C(x) = n≥0 C n x n this can be written as xC = C 2 -1. On other words, if you have forgotten

C n but know C 0 , C 1 , . . . , C n-1 , let your computer expand ( n-1 k=0 C k x k ) 2 . The coefficient in front of x n-1 is C n .
By complementing the squares one can determine the two roots of C 2 -xC -1. This leads to the formula

C(x) = 1 - √ 1 -4x 2x , (6.1)
noting that only one root is a power series. From this one deduces

C n = 1 n+1 2n n = 2n n -2n-1 n
. The literature on the Catalan sequence is extensive (see, e.g., [Sta12, Sta15, GKP89, Kos09]). A closely related function is the generating function of the central binomial coefficients

B(x) = n≥0 2n n x n = C(x) 2 -C(x) = 1 √ 1 -4x . (6.2)
The Fuß-Catalan numbers are defined by

F m (p, r) := 1 mp + r mp + r m = r m(p -1) + r mp + r -1 m = r m mp + r -1 m -1 (6.3)
for integers m, p, r ≥ 0. They satisfy the important convolution property F m (p, s+r) = m k=0 F k (p, r)F m-k (p, s); see [GKP89, Eqn. (5.36)] or [START_REF] Riordan | Combinatorial identities[END_REF]. From this it follows that m≥0

F m (p, r)x m =   m≥0 F m (p, 1)x m   r , i.e., m≥0 F m (p, r)x m is the r-fold convolution of m≥0 F m (p, 1)x m . By inspection, m≥0 F m (1, 1)x m = (1-x) -1 and m≥0 F m (2, 1)x m = C(x).
The series m≥0 F m (p, 1)x m is also called the generalized binomial series. Let us record the first r-fold convolutions of C(x):

C(x) = 1 + x + 2x 2 + 5x 3 + 14x 4 + 42x 5 + 132x 6 + 429x 7 + . . . , C 2 (x) = 1 + 2x + 5x 2 + 14x 3 + 42x 4 + 132x 5 + 429x 6 + 1430x 7 + . . . , C 3 (x) = 1 + 3x + 9x 2 + 28x 3 + 90x 4 + 297x 5 + 1001x 6 + 3432x 7 + . . . , C 4 (x) = 1 + 4x + 14x 2 + 48x 3 + 165x 4 + 572x 5 + 2002x 6 + 7072x 7 + . . . , C 5 (x) = 1 + 5x + 20x 2 + 75x 3 + 275x 4 + 1001x 5 + 3640x 6 + 13260x 7 + . . . , C 6 (x) = 1 + 6x + 27x 2 + 110x 3 + 429x 4 + 1638x 5 + 6188x 6 + 23256x 7 + . . . , C 7 (x) = 1 + 7x + 35x 2 + 154x 3 + 637x 4 + 2548x 5 + 9996x 6 + 38760x 7 + . . . , C 8 (x) = 1 + 8x + 44x 2 + 208x 3 + 910x 4 + 3808x 5 + 15504x 6 + 62016x 7 + . . . . . .
The coefficients of the 2l-fold convolutions C 2l (x) for l ≥ 1 have been arranged by Louis Shapiro [START_REF] Shapiro | A Catalan triangle[END_REF] into an infinite lower triangular matrix B even that is usually referred to as the Catalan triangle. We will call it here the even Catalan triangle since we also need the odd Catalan triangle B odd . The latter is formed by arranging the (2l -1)-fold convolutions C 2l-1 (x) for l ≥ 1 into an infinite lower triangular matrix.

B even =           1 • • • 2 1 5 4 1 14 14 6 1 42 48 27 8 1 132 165 110 44 10 1 • • • • • •           , B odd =           1 • • • 1 1 2 3 1 5
9 5 1 14 28 20 7 1 42 90 75 35 9 1

• • • • • •           . (6.4)
The matrix entries are given by the formulas

B even ij = j i 2i i -j , B odd ij = 2j + 1 2i + 1 2i + 1 i -j , (6.5)
where i, j ≥ 1. One of the authors met B even ij already on another occasion [START_REF] Conca | Koszul properties of the moment map of some classical representations[END_REF]. We encounter the Catalan triangles in the next section.

Power reduction formulas

Theorem 7.1.

(1)

2 2n-1 cos 2n (θ) = 1 2 2n n + n k=1 2n n-k cos(2kθ), (2) 2 2n cos 2n+1 (θ) = n k=0 2n+1 n-k cos((2k + 1)θ), (3) 2 2n-1 sin 2n (θ) = 1 2 2n n + n k=1 (-1) k 2n n-k cos(2kθ), (4) 2 2n sin 2n+1 (θ) = n k=0 (-1) k 2n+1
n-k sin((2k + 1)θ).

Proof. The following proof of (1) we learnt from Daniel Herden.

n k=1 2n n -k cos(2kθ) = n k=1 2n n -k e 2k √ -1θ + e -2k √ -1θ 2 = e -2n √ -1θ n k=1 2n n -k e 2(n+k) √ -1θ + e 2(n-k) √ -1θ 2 = e -2n √ -1θ 2 n k=1 2n n -k e 2(n-k) √ -1θ + n k=1 2n n -k e 2(n+k) √ -1θ = e -2n √ -1θ 2 n k=1 2n n -k e 2(n-k) √ -1θ + n k=1 2n n + k e 2(n+k) √ -1θ = e -2n √ -1θ 2   - 2n n e 2n √ -1θ + j 2n j e 2j √ -1θ   = e -2n √ -1θ 2 1 + e 2 √ -1θ 2n - 1 2 2n n = 1 2 e √ -1θ + e - √ -1θ 2n - 1 2 2n n = 2 2n-1 cos 2n (θ) - 1 2 2n n .
By shifting the argument we deduce (3):

2 2n-1 sin 2n (θ) = 2 2n-1 cos 2n θ - π 2 = 1 2 2n n + n k=1 2n n -k cos 2k θ - π 2 = 1 2 2n n + n k=1 (-1) k 2n n -k cos(2kθ).
To show (2) along the lines of Herden's proof we calculate

n k=0 2n + 1 n -k cos((2k + 1)θ) = n k=0 2n + 1 n -k e (2k+1) √ -1θ + e -(2k+1) √ -1θ 2 = e -(2n+1) √ -1θ 2 n k=0 2n + 1 n -k e (2(n+k)+2) √ -1θ + n k=0 2n + 1 n -k e 2(n-k) √ -1θ = e -(2n+1) √ -1θ 2   2n+1 j=n+1 2n + 1 j e 2j √ -1θ + n j=0 2n + 1 j e 2j √ -1θ   = e -(2n+1) √ -1θ 2 2n+1 j=0 2n + 1 j e 2j √ -1θ = e (-2n-1) √ -1θ 2 1 + e 2 √ -1θ 2n+1 = 1 2 e √ -1θ + e - √ -1θ 2n+1 = 2 2n cos 2n+1 (θ).
By shifting the argument we deduce (4):

2 2n sin 2n+1 (θ) = 2 2n cos 2n+1 θ - π 2 = n k=0 2n + 1 n -k cos (2k + 1) θ - π 2 = n k=0 2n + 1 n -k cos (2k + 1)θ -kπ - π 2 = n k=0 (-1) k 2n + 1 n -k sin((2k + 1)θ).
The following banal calculation has a pretty matrix inversion as a consequence (see Eqn. (8.6)--(8.9)).

Corollary 7.2.

(1)

2 2n cos 2n (θ) = n k=0 B odd nk sin((2k+1)θ) sin(θ) , ( 2 
) 2 2n-1 cos 2n-1 (θ) = n k=1 B even nk sin(2kθ) sin(θ) .
Proof. We derive (1) of Theorem 7.1:

-2 2n-1 2n sin(θ) cos 2n-1 (θ) = d dθ 2 2n-1 cos 2n (θ) = - n k=1 2n n -k 2k sin(2kθ) =⇒ 2 2n-1 cos 2n-1 (θ) = n k=1 k n 2n n -k sin(2kθ) sin(θ) ,
which shows (2). Similarly, taking the derivative of (2) of Theorem 7.1 we obtain:

-2 2n (2n + 1) sin(θ) cos 2n (θ) = d dθ 2 2n cos 2n+1 (θ) = - n k=0 2n + 1 n -k (2k + 1) sin((2k + 1)θ) =⇒ 2 2n cos 2n (θ) = n k=0 2k + 1 2n + 1 2n + 1 n -k sin((2k + 1)θ) sin(θ) , proving (1) 
.

Hypergeometric identities from matrix inversions

In order to distill the relevant hypergeometric identities we choose to get rid of the superficial powers of 2. We put

κ(θ) := 2 cos(θ), σ(θ) := 2 sin(θ), ν m (θ) := sin((m + 1)θ) sin(θ) (8.1)
and work with the following bases 1 κ(θ) κ(2θ) κ(3θ) . . . ,

1 ν 1 (θ) ν 2 (θ) ν 3 (θ) . . .
for the even trigonometric polynomials and σ(θ) σ(2θ) σ(3θ) . . . for the odd trigonometric polynomials.

We are prepared to understand that T 2n (cos(θ)) = cos(2nθ) and Theorem 7.1 (1) can be interpreted as the following mutually inverse linear systems

(8.2) 1 κ(2θ) κ(4θ) κ(6θ) κ(8θ) • • • = κ 0 (θ) κ 2 (θ) κ 4 (θ) κ 6 (θ) κ 8 (θ) • • •          p [0] 0 -p [0] 1 p [0] 2 -p [0] 3 p [0] 4 • • • p [2] 0 -p [2] 1 p [2] 2 -p [2] 3 p [4] 0 -p [4] 1 p [4] 2 p [6] 0 -p [6] 1 p [8] 0 • • • • • •          , (8.3) κ 0 (θ) κ 2 (θ) κ 4 (θ) κ 6 (θ) κ 8 (θ) • • • = 1 κ(2θ) κ(4θ) κ(6θ) κ(8θ) • • •         0 0 2 1 4 2 6 3 8 4 • • • 2 0 4 1 6 2 8 3 4 0 6 1 8 2 6 0 8 1 8 0 • • • • • •         .
The equivalence of the relation T 2n (sin(θ)) = (-1) n cos(2nθ) and Theorem 7.1 (3) boils down to essentially the same matrix inversion.

Similary, T 2n+1 (cos(θ)) = cos((2n + 1)θ) can be compared with Theorem 7.1 (2):

(8.4) κ(θ) κ(3θ) κ(5θ) κ(7θ) κ(9θ) • • • = κ 1 (θ) κ 3 (θ) κ 5 (θ) κ 7 (θ) κ 9 (θ) • • •          p [1] 0 -p [1] 1 p [1] 2 -p [1] 3 p [1] • • • p [3] 0 -p [3] 1 p [3] 2 -p [3] p [5] 0 -p [5] 1 p [5] p [7] 0 -p [7] p [9] • • • • • •          , (8.5) κ 1 (θ) κ 3 (θ) κ 5 (θ) κ 7 (θ) κ 9 (θ) • • • = κ(θ) κ(3θ) κ(5θ) κ(7θ) κ(9θ) • • •         1 0 3 1 5 2 7 3 • • • 3 0 5 1 7 2 5 0 7 1 7 0 • • • • • •        
.

Essentially the same matrix inversion shows up when comparing T 2n+1 (sin(θ)) = (-1) n sin((2n + 1)θ) and Theorem 7.1 (4). Finally, U 2n (cos(θ)) = ν 2n (θ) is the inverse linear system to Corollary 7.2 (1)

(8.6) 1 κ 2 (θ) κ 4 (θ) κ 6 (θ) κ 8 (θ) • • • = 1 ν 2 (θ) ν 4 (θ) ν 6 (θ) ν 8 (θ) • • •         1 1 2 5 14 • • • 1 3 9 28 1 5 20 1 7 1 • • • • • •         , (8.7) 1 ν 2 (θ) ν 4 (θ) ν 6 (θ) ν 8 (θ) • • • = 1 κ 2 (θ) κ 4 (θ) κ 6 (θ) κ 8 (θ) • • •         0 0 -1 1 2 2 -3 3 • • • 2 0 -3 1 4 2 - 4 0 -5 1 6 0 - • • • • • •        
, and U 2n+1 (cos(θ)) = ν 2n+1 (θ) is the inverse linear system to Corollary 7.2 (2)

(8.8) κ κ 3 (θ) κ 5 (θ) κ 7 (θ) κ 9 (θ) • • • = ν 1 ν 3 (θ) ν 5 (θ) ν 7 (θ) ν 9 (θ) • • •         1 2 5 14 42 • • • 1 4 14 48 1 6 27 1 8 1 • • • • • •         , (8.9) ν 1 (θ) ν 3 (θ) ν 5 (θ) ν 7 (θ) ν 9 (θ) • • • = κ(θ) κ 3 (θ) κ 5 (θ) κ 7 (θ) κ 9 (θ) • • •         1 0 -2 1 3 2 -4 3 5 4 • • • 3 0 -4 1 5 2 -6 3 5 0 -6 1 7 2 7 0 -8 1 9 0 • • • • • •        
.

The transposed matrices of Eqn. (8.7) and (8.9) are the odd and the even Catalan triangles B odd and B even . The latter two matrix inversions were already observed by Louis Shapiro in [START_REF]Some open questions about random walks, involutions, limiting distributions, and generating functions[END_REF], and we gave here a trigonometric proof. In fact, all the matrices of this section are transposes of Riordan arrays. This can be used to explain all the inversions of this section; we do this in the next Section.

Interpretation in terms of the Riordan group

The Chebyshev matrix T itself cannot be interpreted as the transpose of a Riordan array, but the matrizes P, B even and B odd can. This means that the matrix inversions of the previous section can be understood as inversions in the so-called Riordan group. The calculations are based on Lagrange inversion and turn out to be surprisingly simple. Some of the statements of this section can be found in some form in the PhD thesis of Aoife Hennessy [START_REF] Hennessy | A study of Riordan arrays with applications to continued fractions, orthogonal polynomials and lattice paths[END_REF].

Let us review some basic ideas of the theory of Riordan arrays. The proofs of the facts reviewed here are actually quite accessible; we refer the reader to the monograph [SSB + 22]. We write R x for the formal power series with real coefficients. By R x × we mean the multiplicatively invertible formal power series.

The composition map

R x × x R x → R x that sends g(x) = n≥0 g n x n ∈ R x and f (x) = m≥1 f m x m ∈ x R x to n≥0 g n m≥1 f m x m n is denoted by (g, f ) → g • f . The space x R x × is
comprised of compositionally invertible formal power series. I.e., if f ∈ x R x × then the map R x → R x , g → g • f is invertible. The inversion is provided by the Langrange inversion formula: if

f (x) = x φ(x)
then the coefficients of the compositional inverse f are given by the formula (see, e.g., [Ges16])

[y n ] f (y n ) = 1 n x n-1 (φ(x)) n . (9.1) Definition 9.1. An infinite lower triangular matrix A = [a nk ] n,k≥0 ∈ R ∞×∞ is called a Riordan array if there exist (g, f ) ∈ R x × x R x × such that a nk = [x n ] g(x)f (x) k .
It is tradition to write, abusing notation, A = (g, f ), so that (g, f ) can be interpreted as a matrix or as a tuple. If g ∈ R x × then (g, f ) is called a proper Riordan array.

It turns out that R x × × x R x × with the composition (g 1 , f 1 ) * (g 2 , f 2 ) = (g 1 (g 2 • f 1 ), f 2 • f 1 ) forms a
group, the so-called Riordan group, with identity (1, x) and inverse (g, f ) -1 = 1 g•f , f . The Fundamental Theorem of Riordan Arrays links the Riordan group to matrix multiplication. Let us denote by h = h 0 h 1 h 2 . . .

T the infinite column vector associated to the formal power series

h(x) = n≥0 h n x n ∈ R x . Then the theorem says that (g, f ) h = -----→ g(h • f ). As a consequence one deduces the relation (g 1 , f 1 )(g 2 , f 2 ) = (g 1 , f 1 ) - → g 2 (g 1 , f 1 ) --→ g 2 f 2 (g 1 , f 1 ) --→ g 2 f 2 2 . . . = (g 1 , f 1 ) * (g 2 , f 2 ).
Lemma 9.2. Assume for i = 1, 2 the following inversions in the Riordan group

(g i , f ) -1 = (G i , F ). Then (g 1 g 2 , f ) -1 = (G 1 G 2 , F ) follows.
Proof. The assumption means (

g i , f ) * (G i , F ) = (1, x). It follows that (g 1 g 2 , f ) * (G 1 G 2 , F ) = (g 1 g 2 (G 1 G 2 • F ), f • F ) = (g 1 (G 1 • F )g 2 (G 2 • F ), f • F ) = (1, x).
The key observation we want to make now (it seems to be combinatorialist's folklore) is that

B odd = C, xC 2 , B even = C 2 , xC 2 , p [0] (-x), x p [2] (-x) p [0] (-x) = 1 -x 1 + x , x (1 + x) 2 , p [1] (-x), x p [3] (-x) p [1] (-x) = 1 -x (1 + x) 2 , x (1 + x) 2 .
are Riordan arrays. This permits to interprete Equations (8.2)-(8.9) in Section 8 as inversions in the Riordan group.

Theorem 9.3. Let C and B the generating functions of the Catalan numbers and of the central binomial coefficients, respectively. Then

(1) C, xC 2 -1 = 1 1+x , x (1+x) 2 , (2) C 2 , xC 2 -1 = 1 (1+x) 2 , x (1+x) 2 , (3) B, xC 2 -1 = 1-x 1+x , x (1+x) 2 , (4) BC, xC 2 -1 = 1-x (1+x) 2 , x (1+x) 2 .
Proof. First we show xC 2 (x) = x (1+x) 2 using formula (9.1). Namely, for n ≥ 1 we have

[y n ] x (1 + x) 2 (y) = 1 n x n-1 (1 + x) 2n = 1 n x n-1 j≥0 2n j x j = 1 n 2n n -1 = [x n ] xC 2 .
To prove (1) it remains to check that C • xC 2 = 1 + x. We do this by comparing

C = C • xC 2 • xC 2 with (1 + x) • xC 2 = 1 + xC 2 = 1 + C -1 = C, and remember that g → g • xC 2 is invertible.
To prove (3) we observe that 1-xC 2 

j≥0 2j + n j -m x j = j≥0 1 2π √ -1 γ (1 + z) n+2j z j-m x j dz z = j≥0 1 2π √ -1 γ z m (1 + z) n (1 + z) 2 z x j dz z = 1 2π √ -1 γ z m (1 + z) n 1 1 -(1+z) 2 z x dz z = 1 2π √ -1 1 x γ z m (1 + z) n z x -(1 + z) 2 dz = - 1 2π √ -1 1 x γ z m (1 + z) n (1 + z) 2 -z x dz.
We substitute 1 + z = w, xw r = (w -1) d and write

j≥0 n + 2j k + j x j = - 1 2π √ -1 1 x γ+1 w n (w -1) m w 2 -w-1 x dw.
Factoring the quadratic polynomial in the denominator

w 2 - w -1 x = w - 1 2x 2 - 1 -4x 4x 2 = w - 1 - √ 1 -4x 2x w - 1 + √ 1 -4x 2x = (w -C(x)) w - 1 x + C(x)
and observing that C(x) -1 x + C(x) = -1 xB(x) we can apply now the Residue Theorem and deduce the claim. In fact the second pole is outside γ + 1 for |x| small enough. 

2n n -m x n = (C -1) m B = x m BC 2m , n≥0 2n + 1 n -m x n = C(C -1) m B = x m BC 2m+1 .
Corollary 9.6.

(1)

1-x 2 (1+x) 2 -4 cos 2 (θ)x = 1 + 2 n≥1 cos(2nθ)x n , (2) 2(1-x) cos(θ) (1+x) 2 -4x cos 2 (θ) = n≥0 cos((2n + 1)θ)x n , (3) 1+x (1+x) 2 -4 cos 2 (θ) = n≥0 sin((2n+1)θ) sin(θ)
x n , (4)

2 cos(θ) (1+x) 2 -4x cos 2 (θ) = n≥0 sin(2(n+1)θ) sin(θ)
x n .

Proof. We put κ even

θ (x) := n≥0 κ 2 (θ)x n = 1 1-κ 2 (θ)
x and note that the right hand side of Equation (8.2)

is 1 -x 1 + x , x (1 + x) 2 ---→ κ even θ = ----------------→ 1 -x 1 + x 1 1 -κ 2 (θ) x (1+x) 2 = -------------→ 1 -x 2 (1 + x) 2 -xκ 2 (θ)
.

This shows

1-x 2 (1+x) 2 -κ 2 (θ)x = 1 + n≥1 κ(2nθ)
x n , which is equivalent to (1). Similarly, we put

κ odd θ (x) := n≥0 κ(θ) κ 2 (θ)x n = κ(θ) 1-κ 2 (θ)
x and express the right hand side of Equation (8.4) as -----------------→ 1 ------------→ (1 -x)κ(θ)

1 -x (1 + x) 2 , x (1 + x) 2 --→ κ odd θ = -
-x (1 + x) 2 κ(θ) 1 -κ 2 (θ) x (1+x) 2 = -
(1 + x) 2 -xκ 2 (θ)
.

This shows (1-x)κ(θ) (1+x) 2 -κ 2 (θ)x = n≥0 κ((2n + 1)θ)
x n , which is equivalent to (2). Writing the right hand side of Equation 8.7

1 1 + x , x (1 + x) 2 ---→ κ even θ = ----------------→ 1 1 + x 1 1 -κ 2 (θ) x (1+x) 2 = -------------→ 1 + x (1 + x) 2 -xκ 2 (θ) we prove 1+x (1+x) 2 -xκ 2 (θ) = n≥0 ν(2nθ)
x n , and hence (3). Finally, writing the right hand side of Equation (8.9) as 1 -----------------→ 1

(1 + x) 2 , x (1 + x) 2 --→ κ odd θ = -
(1 + x) 2 κ(θ) 1 -κ 2 (θ) x (1+x) 2 = -------------→ κ(θ) (1 + x) 2 -xκ 2 (θ) we deduce κ(θ) (1+x) 2 -xκ 2 (θ) = n≥0 ν((2n + 1)θ)
x n , which is equivalent to (4).

Hypergeometric identities from trigonometric intergrals

This section is not essential for the logic of the paper, but gives an example how the matrix inversions can be used. Our first aim is to deduce further hypergeometric identities by inspecting the trigonometric integral 2π 0 cos n (θ) sin m (θ)dθ. This could be evaluated using the beta function, but we prefer here an more elementary treatment. When n ≥ 1, m ≥ 0 we perform the partial integration

I n,m = 2π 0 cos n (θ) sin m (θ) dθ = cos n-1 (θ) sin m+1 (θ) m + 1 2π 0 + 2π 0 (n -1) sin(θ) cos n-2 (θ) sin m+1 (θ) m + 1 dθ.
We deduce (m + 1)I n,m = (n -1) I n-2,m+2 . From the substitution s = θ -π/2 we find

I n,m = 2π 0 cos n (θ) sin m (θ)dθ = 3π/2 -π/2 (-sin(s) n ) cos m (s)ds = (-1) n I m,n .
Evidently, I n,1 = 

I n,0 = 0 if n odd 2π 2 -n n n/2 if n even . (10.1)
Hence I n,m = 0 if and only if n are m even. By induction we obtain for k ≥ l ≥ 0:

I 2k,2l = l m=1 (2m + 1) (2k + 2m -1) I 2(k+l),0 . But l m=1 (2k + 2m -1) = (2k+2l-1)!! (2k-1)!! and hence I 2k,2l = (2k-1)!! (2k+2l-1)!! (2l -1)!! I 2(k+l),0 . From (2k -1)!! (2k + 2l -1)!! (2l -1)!! = 2 k+l-1 (k + l -1)! (2k + 2l -1)! (2k -1)! 2 k-1 (k -1)! (2l -1)! 2 l-1 (l -1)! = 2 k+l-1 k-1 l! 2k+2l-1 2k-1 (2l)! (2l -1)! (l -1)! = k+l-1 k-1 2k+2l-1 2k-1 = k+l-1 l 2k+2l-1 2l
Remembering I 2k,2l = I 2l,2k , we finally deduce that for k, l ≥ 0

I 2k,2l = k+l-1 l 2k+2l-1 2l I 2(k+l),0 .
Combining this this with (10.1) we have proven the following.

Theorem 10.1. For integers k, l ≥ 0 we have

2π 0 cos 2k (θ) sin 2l (θ) dθ = 2π 2 -2(k+l) ( k+l-1 l )( 2(k+l) k+l ) ( 2(k+l)-1 2l
)

.

We evaluate

2π = 2π 0 cos 2 (θ) + sin 2 (θ) m dθ = k,l≥0 k+l=m k + l l 2π 0 cos 2k (θ) sin 2l (θ) dθ = 2π k,l≥0 k+l=m k + l l 2 -2(k+l) k+l-1 l 2(k+l) k+l 2k+2l-1 2l
and find as a corollary

2 2m 2m m = m l=0 m-1 l m l 2m-1 2l . (10.2)
The rest of this section we use our base change of the previous section to show that the infinite symmetric matrix M = [M kl ] k,l≥0 ,

M kl := 1 2π π -π κ 2k (θ)σ 2l (θ) dθ = k+l-1 l 2(k+l) k+l 2(k+l)-1 2l
.

has integer entries. On the way we deduce another hypergeometric identity (namely Eqn. (10.3) below).

For the kabbalist3 the matrix M looks actually a bit curious 

M =             1 
(2k + 2l)! (k + l)! 2 (2l)! (2k -1)! ! (2k + 2l -1)! (k + l -1)! (k -1)!l! = 2(k + l) (2l)! (2k)! (k + l)!(k + l) (k -1)!l!2k = (2l)! (2k)! (k + l)! (k -1)!l!k .
Moreover, according to computer algebra the matrix M admits the neat LU factorization

M = L diag(1, -2, 2, -2, 2, . . . )L T , (10.3)
where L is the lower triangular matrix 2i i-j i,j≥0

. This entails that the upper left n × n-block M (n) of M has determinant (-1) n/2 2 n-1 and that M is integer. Once again, the number sequence 1, 2, 2, 2, . . . pops up.

It turns out that with our preparations we can easily find an explanation for Eqn. (10.3). By the results of Section 8 we have

κ 0 (θ) κ 2 (θ) κ 4 (θ) κ 6 (θ) • • • = 1 κ(θ) κ(2θ) κ(4θ) • • • L T , σ 0 (θ) σ 2 (θ) σ 4 (θ) σ 6 (θ) • • • = 1 κ(θ) κ(2θ) κ(4θ) • • • diag(1, -1, 1, -1, . . . )L T .
Transposing and integrating we deduce

M = 1 2π π -π       κ 0 (θ) κ 2 (θ) κ 4 (θ) κ 6 (θ) • • •       σ 0 (θ) σ 2 (θ) σ 4 (θ) σ 6 (θ) • • • dθ = L       1 2π π -π       1 κ(2θ) κ(4θ) κ(6θ) • • •       1 κ(2θ) κ(4θ) κ(6θ) • • • dθ       diag(1, -1, 1, -1, . . . )L T = L diag(1, 2, 2, 2, . . . )diag(1, -1, 1, -1, . . . )L T .

Spread polynomials

The spread polynomials (S n (x)) n≥0 (see [START_REF] Wildberger | Divine proportions. Rational trigonometry to universal geometry[END_REF]) play a central role in Wildberger's Rational Trigonometry, an approach to plane geometry free of transcendental expressions. They encode rotations in the plane and are defined by the following recursion:

S 0 (x) = 0, S 1 (x) = x, S n (x) = 2(1 -2x)S n-1 (x) -S n-2 (x) + 2x.
Proposition 11.1. For every integer n ≥ 0 we have S n (x) = 1-Tn(1-2x) 2 .

Proof. We define

S n (x) := 1 -T n (1 -2x) 2 ( * ) n .
Obviously, S 0 (x) = 0, S 1 (x) = x. Assuming ( * ) n we want to deduce the recurrence for S n (x) from the recurrence for T n (x). We observe that ( * ) n is equivalent to

T n (1 -2x) = 1 -2S n (x) ( * * ) n .
We have

T n (1 -2x) = 2(1 -2x)T n-1 (1 -2x) -T n-2 (1 -2x)
and hence

S n (x) = 1 -2(1 -2x)T n-1 (1 -2x) + T n-2 (1 -2x) 2 .
since n ≥ 1.

Let Wild be the subspace of the space Trig 0 consisting of functions that vanish at θ = 0. Put ¡(θ) := 4 sin 2 (θ) and consider the two alternative bases for Wild:

¡(θ) ¡(2θ) ¡(3θ) ¡(4θ) ¡(5θ) . . . , (11.2) ¡(θ) ¡ 2 (θ) ¡ 3 (θ) ¡ 4 (θ) ¡ 5 (θ) . . . . (11.
3)

The idea is now to get rid of the powers of 4 in the coefficients of S n by putting Z n (x) := 4S n x 4 . We refer to the polynomials Z n (x) as the zpread polynomials. It follows that Z n (¡(θ)) = ¡(nθ), (11.4) and we will see in a moment that Z n (x) ∈ Z[x]. We introduce the infinite zpread matrix (Z mn ) m,n≥1 such that

Z 1 (x) Z 2 (x) Z 3 (x) . . . = x x 2 x 3 . . . Z.
It turns out Z is a matrix of even pyramidal numbers of dimension ≥ 2.

Theorem 11.5. For m, n ≥ 1 we have Z mn = (-1) m+1 p

[2m]

n-m . Proof. Let k ≥ 0 be an integer. From the generating function of the pyramidal numbers we deduce

n≥k p [2m] n-k t n = n≥0 p [2m] n t n+k = t k 1 + t (1 -t) 2m+1 , and hence obtain n≥m (-1) m+1 p [2m] n-m t n = t m 1 + t (1 -t) 2m+1 .
For the bivariate generating function this leads us to n,m≥1

(-1) m+1 p [2m] n-m x m t n = - m≥1 (-x) m t m (1 -t) 2m 1 + t 1 -t = 1 + t 1 -t xt (1-t) 2 1 + xt (1-t) 2 = 1 + t 1 -t xt (1 -t) 2 + xt , (11.5) 
where we assume -1 < x, t < 1 and by default p 

¡(θ) ¡ 2 (θ) ¡ 3 (θ) ¡ 4 (θ) ¡ 5 (θ) . . . = ¡(θ) ¡(2θ) ¡(3θ) ¡(4θ) ¡(5θ) . . .         1 4 15 56 210 • • • -1 -6 -28 -120 1 8 45 -1 -10 1 • • • • • •         , (11.7) ¡(θ) ¡(2θ) ¡(3θ) ¡(4θ) ¡(5θ) . . . = ¡(θ) ¡ 2 (θ) ¡ 3 (θ) ¡ 4 (θ) ¡ 5 (θ) . . .         1 4 9 16 25 • • • -1 -6 -20 -50 1 8 35 -1 -10 1 • • • • • •        
, the latter matrix being Z, whose entries are relatively small. The former equation can be rephrased as

¡(θ) n = n k=1 (-1) k-1 2n n -k ¡(kθ).
(11.8)

The zpread matrix Z can also be understood as the transpose of a Riordan array.

Theorem 11.6. The transpose of the zspread matrix Z is the Riordan array

Z T = 1+x (1-x) 3 , -x (1-x) 2 with inverse (Z T ) -1 = BC 2 , -xC 2 = C , -xC 2 .
Proof. From Lemma 9.2 and Theorem 9.3 item (2) and (3) we deduce

1 -x (1 + x) 3 , x (1 + x) 2 * BC 2 , xC 2 = (1, x).
To adjust the sign in front of x we argue as follows. Let ρ ∈ xR x × and consider the formal pullback ρ * : R x → R x , f → f • ρ, which is an automorphism of the algebra (R x , •). Let us denote the product of two Riordan arrays (g 1 , f 1 ) and (g 2 , f 2 ) as (g

1 , f 1 ) * (g 2 , f 2 ) = (g 1 (g 2 • f 1 ), f 2 • f 1 ) =: (G, F ). It then follows that (ρ * g 1 , ρ * f 1 ) * (g 2 , f 2 ) = ((g 1 (g 2 • f 1 )) • ρ, (f 2 • f 1 ) • ρ) = (ρ * G, ρ * F ) . In the special case, when ρ(x) = -x we deduce 1 + x (1 -x) 3 , -x (1 -x) 2 * BC 2 , xC 2 = (1, -x).
But (1, -x) is an idempotent, i.e., (1, -x) * 2 = (1, x). Hence we obtain

(1, x) = 1 + x (1 -x) 3 , -x (1 -x) 2 * BC 2 , xC 2 * (1, -x) = 1 + x (1 -x) 3 , -x (1 -x) 2 * BC 2 , -xC 2 .
The verification of the well-known fact BC 2 = C we leave to the reader.

We refer to the following formula as the spreadometric series since it specializes to (1

-x 2 ) -1 when θ = π/2. Corollary 11.7. 1+x 1-x sin 2 (θ) (1-x) 2 +4x sin 2 (θ) = n≥0 sin 2 ((n + 1)θ)x n .
Proof. We use the language of Riordan arrays. Let us put ¡ θ (x) := n≥0 ¡(θ)(¡(θ)x) n = ¡(θ) 1-¡(θ)x . The right hand side of Equation (11.7) can be understood as

Z T -→ ¡ θ = 1 + x (1 -x) 3 , - x (1 -x) 2 -→ ¡ θ = ------------------→ 1 + x (1 -x) 3 ¡(θ) 1 + ¡(θ) x (1-x) 2 = ------------------→ 1 + x 1 -x ¡(θ) (1 -x) 2 + x ¡ (θ) .
Hence Equation (11.7) means

1 + x 1 -x ¡(θ) (1 -x) 2 + x ¡(θ) = n≥0 ¡((n + 1)θ)x n .
The claim follows by writing this in terms of sin 2 (θ).

To memorize S n (x) one can proceed as the follows. Start with the square numbers and put below it the sequence whose differences are made by the square numbers. Underneath that sequence put the sequence whose differences are made by the latter. Continue recursively. In the resulting pattern take every second row and arrange them into a triangle. The spread matrix S is then made by multiplying the mth row with (-4) m-1 , keeping in mind that the first row carries the row index m = 1: 1 4 9 16 25 36 49 

• • • • • •            
.

To obtain Z one has to multiply the mth row with (-1) m-1 instead. The transpose of the spread matrix is the Riordan array S T = 1+x

(1-x) 3 , -4x

(1-x) 2 , whose inverse BC 2 , -xC 2 /4 does of course not have integer entries.

12. A conjecture of Goh and Wildberger Goh and Wildberger [START_REF] Goh | Spread polynomials, rotations and the butterfly effect[END_REF][START_REF] Wildberger | Advice for maths exploration -Chebyshev and spread polynumbers: the remarkable Goh factorization[END_REF] formulated an interesting conjecture concerning the factorizations of the spread polynomials over the ring Z[x]. We take here the liberty to formulate it in terms of the zpread polynomials and speculate a bit about numbers appearing in the coefficients of the factors. Using the zpread polynomials those become less obscure. As spread polynomials are encoding rotations in the plane5 we find these unexpected phenomena intriguing. In order to convince the reader we provide some empirical evidence: 5 -5x + x 2 2 (1 -x) 2 7 -14x + 7x 2 -x 3 2 2 -4x + x 2 2 9 10 11 12 3 -9x + 6x 2 -x 3 2 1 -3x + x 2 2 11 -55x + 77x 2 -44x 3 + 11x 4 -x 5 2 1 -4x + x 2 2 13 14 15 13 -91x + 182x 2 -156x 3 + 65x 4 -13x 5 + x 6 2 1 -6x + 5x 2 -x 3 2 1 -8x + 14x 2 -7x 3 + x 4 2 16 17 2 -16x + 20x 3 -8x 3 + x 4 2 17 -204x + 714x 2 -1122x 3 + 935x 4 -442x 5 + 119x -17x 7 + x 8 2 .

It comes as a surprise that the coefficients of ψ d (x) seem to almost coincide with certain columns of the array (11.9). Up to shifts, there are merely differences in the linear and/or constant coefficients. The column index in the array relevant for ψ d (x) seems to be the coefficient in front of -x φ(d)/2-1 . From the empirical data we guess it is φ(d) -µ(d) (see entry A053139 in [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF]). We would like to mention that it seems to be the case that for each prime p we have Φ p (x) = Φ 2p (2 -x). Furthermore, the evaluations of the Φ n (x) at the integers x = 0, 1, 2, 3, 4 look interesting. One may ask which of those values Φ n (x) appear for infinitely many n.

Clearly, for each n ≥ 1 we have that Z n maps the square [0, 4] 2 into itself and all the zeros of Z n (x) have to be in [0, 4]. The question for what x ∈ [0, 4] there are distinct n, m such that Z n (x) = Z m (x) deserves further attention. With regards to this let us mention some empirical observations. Conjecture 12.2. Let n ≥ 1 be an integer an ϕ = 1 + √ 5 /2 be the golden ratio. Then (1) 2 = Z n (2) if and only if n ≡ 1 mod 2,

  = B is the generating function for the central binomial coefficients. Now (2) and (4) follow from (1) and (3) by Lemma 9.2. Theorem 9.4. Let n, m be integers with m ≥ 0. Then j≥0 2j+n j-m x j = BC n (C -1) m . Proof. We generalize here a trick from [Pap99, Exercise 8.6]. Note that for a simple closed curve around 0 ∈ C we have for N, M ∈ Z that N M = x ∈ C with |x| < dist(0, γ) we can swap summation and integral in the following calculation:

  Corollary 9.5. B, xC 2 = 2n n-m n,m≥0 , BC, xC 2 = 2n+1 n-m n,m≥0 . Proof. According to the Theorem 9.4 we have n≥0

2π0

  cos n (θ) sin(θ) dθ = -cos n+1 (t) n+1 2π 0 = 0. Moreover, from the power reduction formulas (see Theorem 7.1) we obtain

  l < 0. The last expression in Equation (11.5) coincides with 4S x 4 , t . The mutual inverse linear systems corresponding to Corollary 11.4 turn out to be (11.6)

Conjecture 12. 1 .

 1 There are Φ d (x) ∈ Z[x], d ≥ 1, with deg Φ d (x) = φ(d) such that for each n ≥ 1 we have Z n (x) = d|n Φ d (x). For d ≥ 3 the polynomial Φ d (x) = ψ d (x) 2 is the square of an irreducible polynomial ψ d (x) = Z[x] with constant term ψ d (0) > 0.This constant term evaluates to ψ d (0) = d|n n d µ(d) (see entry A014963 in [OEI23].) Here φ(d) denotes the Euler totient function and µ(d) the Möbius µ-function. If p ≥ 5 is a prime then ψ p (1) = (-1) φ(p)/2 .

  x) x 4 -x (3 -x) 2 (2 -x) 2

  j 2 -i+1 . The 0th row does not yet fit into the

	pattern.				
			i\j	0 1 2 3	4	5	• • • Entry in OEIS
		1th row 1 3 5 7	9	11 • • •	A005408
		2nd row 1 4 9 16 25 36	A000290
		3rd row 1 5 14 30 55 91	A000330
		4th row 1 6 20 50 105 196	A002415
		5th row 1 7 27 77 182 378	A005585
			• • •			• • •
	The number sequence p	[i] j	j≥0		

  The first row is comprised of the central binomial coefficients and the second row of doubled Catalan numbers. The lower triangular part of M appears in the OEIS as entry https://oeis.org/A182411. Let us mention other empirical observations about the entries of M . It appears that M kl = (2k)!(2l)! k!l!(k+l)! and the textbook [UH39] asks in Exercise 4. on p.103 to show that this is an integer. Nowadays these numbers are called super Catalan numbers (see [Ges92, Bor08]) 4 . That our M kl are the super Catalan numbers can be easily verified

	2	6	20 70 252 924 • • •	
	2 6 20 10 12 20 40 90 220 2 4 10 28 84 264 4 6 12 28 72 198 70 28 28 40 70 140 308 252 84 72 90 140 252 504 924 264 198 220 308 504 924	          	.
	• • •		• • •

This is almost the generating function of the Lucas numbers L(z) = n≥0 Lnz n = 2-tz 1-tz-t 2 .

In the words of Fields medalist Edward Witten, M stands for Magical, Mystery or Membrane.

In[START_REF] Limanta | Super Catalan numbers and Fourier summation over finite fields[END_REF] the rational numbers in Theorem 10.1 have been named circular super Catalan numbers.

That is, they come straight from the almighty.

From ( * * ) n-1 and ( * * ) n-2 we now obtain

Corollary 11.2 (M. Hirschhorn). The bivariate generating function of the spread polynomials is given by

Corollary 11.3. For each integer n ≥ 0 we have S n (sin 2 (θ)) = sin 2 (nθ).

Proof. From the Addition Theorem cos(2z) = 1 -2 sin 2 (z) and Proposition 11.1 we deduce

The spread matrix S = (S mn ) m,n≥1 is then defined such that S 1 (x) S 2 (x) S 3 (x) . . . = x x 2 x 3 . . . S.

Corollary 11.4. For each integer n ≥ 1 we have 2 2n-2 sin 2n (θ) = n k=1 (-1) k-1 2n n-k sin 2 (kθ). Proof. We use Theorem 7.1(3) to deduce from Proposition 11.1

The first two terms cancel each other. In fact, we have (-1) j 2n j = 1 2 (-1) n (1 -1) 2n = 0,