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We derive the classic Yerkes-Dodson effect of applied stress on real-world performance in a highly natural manner from fundamental assumptions on cognition and its dynamics, as constrained by the asymptotic limit theorems of information and control theories. We further examine how differences in an underlying cognitive probability model might associate with different expressions of psychopathology. Vulnerability to psychopathology is framed as a ratio of toxic stress in the context of 'noise' and uncertainty to resilience. A 'thin tailed' underlying distribution appears to characterize expression of 'ordinary' situational depression/anxiety symptoms induced by stress, while a 'fat tailed' underlying distribution appears to be associated with brain structure and function abnormalities leading to serious mental illness where symptoms are not only emerging in the setting of severe stress but may emerge in a highly punctuated manner at relatively lower levels of stress. A simple hierarchical optimization model explores the effects of environmental 'shadow price' constraints in buffering or aggravating the effects of stress. Extension of the underlying theory to other patterns of pathology, like immune disorders and premature aging, seems apt. Ultimately, the probability models studied here can be converted to new statistical tools for the analysis of observational and experimental data.

Introduction

The concept of embodied cognition (Shapiro 2007(Shapiro , 2011;;[START_REF] Wilson | Six views of embodied cognition[END_REF] enhances our understanding of the process of cognition by incorporating the internal environment of the body and the surrounding external environment as key variables in how we produce thought and feeling. This area of inquiry examines the interplay between sensorimotor function and cognitive and affective analysis-effector neurological circuits. It stems from the evolutionary theory that all living entities share four operations in that they sense their environments, analyze incoming data, and effect a motor avoidance or approach response. This model is an extension of the argument put forth by Cairns-Smith (1996, p94) and others that unicellular life exhibits primordial intelligence: "...because it has more information to handle than just wires between sensors and effectors.... There are judgments to be made on the basis of this information from several sensory inputs and available for optimizing behavior." Brains evolved as separate organs that provided survival advantage when charged with the capacity to specialize in these four essential life functions. Recent studies support the significance of the sensorimotor system in cognitive and emotional functioning [START_REF] Guell | Embodied cognition and the cerebellum: Perspectives from the Dysmetria of Thought and the Universal Cerebellar Transform theories[END_REF].

Recent studies of human cognition instantiate an increasingly sophisticated bio-psycho-social conception of considerable depth, often focusing on Yerkes-Dodson inverted-U signal transduction models of response to 'arousal', in a large sense, illustrated in figure 1. See a recent review by one of us [START_REF] Fricchione | Mind body medicine: a modern bio-psychosocial model forty-five years after Engel[END_REF]. Here, we approach similar matters from a specific embodiment perspective in which cognition does not stand alone but is very much embedded-in-action, interacting with, and indeed part of, an enfolding human ecosystem.

The approach is informed by the perspective of [START_REF] Atlan | Immune information, self-organization, and meaning[END_REF], who viewed the immune system as cog- nitive, in the sense that it receives a kind of sensory information, compares that information with a learned or inherited picture of the world -innate or acquired immunity -and, on that comparison, chooses an action from the larger repertoire of those available to it -e.g., the various forms and targets of inflammation.

'Choice' in this context implies a reduction of uncertainty has taken place permitting -and directly instantiated by -a decision, and reduction of uncertainty implies the existence of an information source 'dual' to the cognitive process studied. Earlier work [START_REF] Wallace | Information theory, scaling laws, and the thermodynamics of evolution[END_REF] identified source uncertainty as a free energy. Here, we iterate the argument to a higher order via a standard approach from statistical physics. The underlying assertion -that choice reduces uncertainty and implies a background information source -is nonetheless direct, and places cognition firmly under the constraint of the asymptotic limit theorems of information theory, as explained in detail some thirty years ago by [START_REF] Dretske | The explanatory role of information[END_REF].

To reiterate, the cognition so characteristic of the living state at every scale and level of organization [START_REF] Maturana | Autopoiesis and Cognition: The Realization of the Living[END_REF], is not simply in-and-of itself. It is embodied, and attempts to control its trajectory in the real world, bringing itself within the constraints of control theory as well (e.g., [START_REF] Nair | Feedback control under data rate constraints: an overview[END_REF]).

Here, we formally finesse these matters via arguments based on the Rate Distortion Theorem (RDT) [START_REF] Cover | Elements of Information Theory[END_REF] that can be given a control theory interpretation.

The Rate Distortion Theorem

The RDT states that, for a given acceptable scalar measure of distortion D between a sequence of signals that has been 'sent' and the sequence that has actually been 'received' in message transmission -the gap between what was wanted and what was obtained -there is a minimum necessary channel capacity R(D) in the classic information theory sense that is determined by the rate at which essential resources, indexed by some particular scalar measure Z, are provided to the system 'sending the message' in the presence of 'noise'.

Figure 2a displays the basic model, as we will apply it here. A sequence of intent signals from a cognitive entity is transmitted on the timescale of interest into a 'selection environment' represented by the rectangle. A scalarized measure of resource delivery rate, Z, is opposed by a 'noise' compounded of uncertainties, instabilities, imprecision-inaction, and sometimes active opposition. The actual effect is compared with the intent via the dotted line, and a 'distortion measure' D is taken as a scalar index of failure. In general, the 'noise' vector will be two-headed, also affecting the 'comparison and control' feedback loop. That is, 'noise' will degrade the underlying components of the scalar measure Z.

The Rate Distortion Function R(D) is always convex in the scalar distortion measure D, so that d 2 R/dD 2 ≥ 0 [START_REF] Cover | Elements of Information Theory[END_REF][START_REF] Effros | Variable-rate source coding theorems for stationary nonergodic sources[END_REF]. Following [START_REF] Effros | Variable-rate source coding theorems for stationary nonergodic sources[END_REF] and [START_REF] Shields | The Distortion-Rate function for nonergodic sources[END_REF], for a nonergodic process, where the cross-sectional mean is not the same as timeseries mean, the Rate Distortion Function can be calculated as an average across the RDF's of the ergodic components of that process, and can thus be expected to remain convex in the distortion measure D.

The relation between the minimum necessary channel capacity R(D) and Z can be quite subtle.

The underlying approach is not new. Figure 2b, adapted from [START_REF] Karunamuni | Pathways to well-being: Untangling the causal relationships among biopsychosocial variables[END_REF], displays the fundamental feedback loops of the bio-psycho-social (BPS) pathways model, depicting the pathways among biological, psychological and social factors in health and illness. As Karunamuni et al. remark, Engel's (1977[START_REF] Engel | The clinical application of the biopsychosocial model[END_REF]) 'BPS' model has roots in general systems theory, "[A] conceptual framework within which both organized wholes and component parts can be studied".

In many respects, we will be reconsidering these matters from a new formal perspective, with the intent of providing probability models that can be converted to new statistical tools for the analysis of real-world observational and experimental data.

The resource rate index

The resource rate index Z will always be a composite of at least three -often interacting -components, 1. The rate at which subcomponents of the organism (or social entity) can communicate with each other, a channel capacity C.

2. The rate at which intelligence, surveillance and reconnaissance 'sensory' information is provided, a channel capacity H. A scalarized measure of resource delivery rate, Z, is opposed by a 'noise' compounded of uncertainties, instabilities, imprecision-in-action, and sometimes active opposition. The actual effect is compared with the intent via the dotted line, and a 'distortion measure' D is taken as a scalar index of failure. In general, the 'noise' vector will be two-headed, also affecting the 'comparison and control' feedback loop. That is, 'noise' will degrade the underlying components of the scalar measure Z. This control loop recapitulates the sensory-motor analyzer-effector model of [START_REF] Cairns-Smith | Evolving the mind: On the matter and origin of consciousness[END_REF]. b. Adapted from [START_REF] Karunamuni | Pathways to well-being: Untangling the causal relationships among biopsychosocial variables[END_REF]. The fundamental feedback loops of the bio-psycho-social (BPS) pathways model, depicting the pathways among biological, psychological and social factors in health and illness. As Karunamuni et al. remark, Engel's (1977[START_REF] Engel | The clinical application of the biopsychosocial model[END_REF]) 'BPS' model has roots in general systems theory, "[A] conceptual framework within which both organized wholes and component parts can be studied."

3. The rate M at which material resources can be provided, e.g. metabolic free energy to a cellular subsystem or an entire organism.

These are envisioned as compounded into a scalar measure Z(C, H, M).

It is necessary to more fully characterize the scalar rate index Z, constructed from the rates C, H, M. These are likely to interact, resulting in a three-by-three matrix Z analogous to, but different from, a correlation matrix.

An n-dimensional square matrix X will have scalar invariants r 1 , ..., r n under some set of transformations as given by the characteristic equation

p(γ) = det[X -γI] = (-1) n γ n + (-1) n-1 r 1 γ n-1 + (-1) n-2 r 2 γ n-2 -... -r n-1 γ + r n (1) 
I is the n-dimensional identity matrix, det the determinant, and γ a real-valued parameter. The first invariant, r 1 , is the matrix trace, and the last, r n , the matrix determinant.

Using these scalar invariants, it becomes possible to project the full matrix down onto a single scalar index Z = Z(r 1 , ..., r n ) retaining -under some circumstances -much of the basic structure, analogous to conducting a principal component analysis, which does much the same thing for a correlation matrix. [START_REF] Wallace | How AI founders on adversarial landscapes of fog and friction[END_REF] provides an example in which two such indices are necessary. This can be very complicated indeed.

The simplest index might just be Z = C × H × M. There are, however, likely to be important cross-interactions between different resource streams requiring a fuller analysis based on Eq.( 1), taking crossterms into account.

4 The basic model [START_REF] Feynman | Lectures on computation[END_REF] -following [START_REF] Bennett | The thermodynamics of computation[END_REF] -argues that information should be viewed as a form of free energy, and we will -in a first approximation -impose the usual formalisms of statistical mechanics -modulo a proper definition of 'temperature' -for a cognitive, as opposed to a physical, system.

We examine an ensemble of possible developmental trajectories Y j , j = 1, 2, ..., each having a Rate Distortion Functiondefined minimum needed channel capacity R j . Then, given some 'basic underlying probability model' (BPM) having distribution ρ(c, x), where c represents a parameter set, we write a pseudoprobability for a meaningful 'message' Y j sent into the selection environment of figure 1 -a message consistent with the grammar and syntax of the underlying dual information source -as

P j = ρ(c, R j /g(Z)) ∑ k ρ(c, R k /g(Z)) ≡ ρ(c, R j /g(Z)) h(g(Z)) (2) 
Again, Y j is an individual high probability trajectory, and the sum is over all possible high probability paths of the system, those consistent with the underlying 'grammar' and 'syntax' of the dual information source. This assumption imposes a version of the Shannon-McMillan Source Coding Theorem which states that system trajectories can be divided into two sets, a large one of measure zero -vanishingly low probability -that is not consistent with doctrine, and a much smaller consistent set [START_REF] Khinchin | The Mathematical Foundations of Information Theory[END_REF]).

R j is the RDT channel capacity that keeps the average distortion less than the limit D for 'message' Y j , g(Z) is the as-yet-to-be determined 'temperature' analog depending on the resource rate Z. ρ(c, x), for physical systems, is usually taken as the Boltzmann distribution: ρ(c, x) = c exp[-x/c]. We suggest it will be necessary move beyond physical system analogs, exploring the influence of probability distribution 'fat tails' on cognitive dynamics and stability.

Following standard methodology [START_REF] Landau | [END_REF], we define the denominator of Eq.(2) as a partition function, and derive an (iterated) free energy-analog F as

ρ(c, F/g(Z)) ≡ ∑ k ρ(c, R k /g(Z)) = h(g(Z)) g(Z) = RootO f [h(X) -ρ(c, F/X)] (3) 
RootOf represents setting the equation equal to zero and solving for X.

The RootOf construction directly places matters into very deep waters, since g(Z), as the solution of a complicated equation, may well have imaginary-valued components. Such occurrences represent 'Fisher-Zero' phase transition in physical systems, and should be considered as such in cognitive systems as well. See [START_REF] Dolan | Thin Fisher zeros[END_REF], [START_REF] Fisher | [END_REF], and Ruelle (1964, Ch.5) for details of the physical models.

For a continuous system, where the probability density function ρ(c, x) is defined on the interval 0 → ∞,

ρ(c, F/g(Z)) = ∞ 0 ρ(c, R/g(Z))dR = g(Z) (4) 
Abducting a standard argument from chemical physics, we define a 'cognition rate' for the system as a reaction rate analog [START_REF] Laidler | Chemical Kinetics, Third Edition[END_REF] as

L ≡ ∑ R j >R 0 ρ(c, R j /g(Z)) ∑ k ρ(c, R k /g(Z)) = 1 g(Z) ∞ R 0 ρ(c, R/g(Z))dR (5)
where R 0 is the 'activation level' channel capacity needed by the cognitive process, and, for continuous systems, the sum is replaced by an appropriate integral.

Similarly abducting a canonical approach from nonequilibrium thermodynamics (de Groot and Mazur 1984), it becomes possible to define an entropy from the iterated free energy F as the usual Legendre Transform expression (Landau and Lifshitz 2007)

S ≡ -F + ZdF/dZ (6)
and to impose the first-order Onsager approximation of nonequilibrium thermodynamics as

∂ Z/∂t ≈∝ dS/dZ = ZdF 2 /dZ 2 (7)
We are particularly interested in how such a system responds to 'noise' imposed upon 'normal' excitation defined by Z. To do this we introduce a stochastic differential equation [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF][START_REF] Cyganowski | From Elementary Probability to Stochastic Differential Equations with MAPLE[END_REF])) extension of Eq.( 7) as

dZ t = Z t d 2 F/dZ 2 dt + σ Q(Z t )dB t dZ t = Z t d 2 F/dZ 2 dt + σ Z t dB t (8)
where the terms in the Brownian white noise dB t characterize 'volatility' in the sense of financial engineering [START_REF] Derman | The Volatility Smile[END_REF]Taleb 2020). The second relation refers to 'ordinary' volatility.

Consonant with the work of [START_REF] Adler | Logarithmic and power law inputoutput relations in sensory systems with fold-change detection[END_REF]. we assume that sensory perception is according to a logarithmic dependence on Z, so that the stability of cognition depends depends on the stability of ln(Z) under Eq.( 8). Thus cognition is particularly affected by an analog to the 'decibels' of the incoming composite rate Z.

When, then, is ln(Z) stable? This can be determined via application of the Ito Chain Rule [START_REF] Protter | Stochastic Integration and Differential Equations[END_REF][START_REF] Cyganowski | From Elementary Probability to Stochastic Differential Equations with MAPLE[END_REF] to ln(Z), then imposing the nonequilibrium steady state condition < d ln(Z t ) >= 0, obtaining the surprisingly simple results for general Q(Z) and Q(Z) = Z in Eq.( 8) as

d 2 dZ 2 F(Z) - σ 2 Q(Z) 2 2Z 2 = 0 F(Z) = σ 2 Q(Z) 2 2Z 2 dZ dZ +C 1 Z +C 2 d 2 F/dZ 2 - σ 2 2 = 0 F = 1 4 σ 2 Z 2 +C 1 Z +C 2 (9)
It is important to recognize that the BPM of Eq.( 2), via Eqs.( 7) and ( 8), is seen as driving system dynamics not system structure and is not necessarily in a one-to-one correspondence with any particular brain network distribution, although they are almost certain to be related [START_REF] Watts | Collective dynamics of 'small world' networks[END_REF]Barabassi and Albert 1999). In particular, a spectrum of different structures may be associated with any given dynamic behavior (e.g., [START_REF] Harush | Dynamic patterns of information flow in complex networks[END_REF]. Here, in contrast to much contemporary work, we specifically focus on dynamics rather than network topology.

The Boltzmann example

We first consider a 'thin-tailed' -kurtosis = 6 -model abducted from physical theory, i.e., the Boltzmann distribution, so that exp

[-F/g(Z)] = ∞ 0 exp[= R/g(Z)]dR = g(Z) g(Z) = -F(Z) W (n, -F(Z)) (10) 
and cognition rate W (n, x) is the Lambert W-function of order n, real-valued only for n = 0, -1 and

L L = ∞ R0 exp[-R/g(Z)]dR ∞ 0 exp[-R/g(Z)]dR = exp[-R 0 /g(Z)] (11) 
x ≥ -exp[-1]. The function is de- fined by the relation W (n, x) exp[W (n, x)] = x.
We next impose Eq.( 9) for Q(Z) = Z, defining the free energy analog F, giving the cognition rate L in Eq.( 11) as a function of 'arousal' Z, 3 shows the result.

with n = 0, α = 1, C 1 = -1, C 2 = 3, R 0 = 1, setting σ = 0, 1/2. Figure
Figure 3a, for zero 'noise' σ , replicates the expected Yerkes-Dodson pattern for a 'simple task' (e.g., Fricchione 2023, figure 1b;[START_REF] Diamond | The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law[END_REF][START_REF] Welford | Stress and performance[END_REF][START_REF] Nash | US Marine Corps and Navy combat and operational stress continuum model: a tool for leaders[END_REF], bracketed on the left, at very low Z, by a nonzero imaginary component we characterize as hallucination or dreaming as a -possibly coherent and convincing -failure of cognition in the sense used to describe hallucination in large language model artificial intelligence, i.e., 'made up' conclusions not grounded in the 'prompting information' which may be insufficient in the context of available data [START_REF] Ji | Survey of hallucination in natural language generation[END_REF]. The nonzero component represents a 'Fisher Zero' phase transition in the temperature analog g, via Eq.( 10). The analog is with electrical engineering where oscillatory 'alternating current' systems are described using a formalism with nonzero imaginary components (e.g., [START_REF] Johnson | Using complex numbers in circuit analysis[END_REF]). Here, nonzero imaginary components imply temporal thrashing and instability.

We are proposing that, under conditions of very low Z -a scalarized resource rate relatively uncluttered by noise (uncertainties, etc.) but limited in the amount of available information about the outside world, puts people 'at risk' of simply letting their minds wander when they should be paying particular attention for threat/affordance signals from the outside world. Lack-of-signal can be a very serious threat to survival. There are a multitude of clinical conditions like apathy/abulia and bradyphrenic and bradykinetic hypoactive conditions that could be associated with a limited resource delivery rate. One might argue further that delirium, characterized by a generalized slowing on EEG, could represent very low Z.

Setting σ = 1/2, in figure 3b, produces the classic Yerkes-Dodson inverted-U signal transduction -again Fricchione (2023, figure 1b) and [START_REF] Diamond | The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law[END_REF] and our figure 1 -here bracketed by nonzero imaginary components in on the left and right as 'hallucination/dreaming' and 'panic/paralysis'. Again, these represent Fisher Zero phase transitions in the temperature analog g.

The right-hand nonzero imaginary component, we suppose, basically means going from neurotic worry → anxiety → panic in a classic fight/flight/freeze toxic stress response. It might also occur in psychotic disorders, not usually associated with EEG slowing, that could be connected to very high Z.

The restriction on the Lambert W-function means that there is no stable state beyond σ ≈ 0.6164, where -F < exp[-1] for all Z.

In the Mathematical Appendix, we repeat this calculation for the Gamma distribution, which can have an even thinner tail than the Boltzmann distribution.

The Levy example

Fat-tailed distributions, having large kurtosis -fat tails -are another world.

We explore the cognition dynamics of the last section for the Levy distribution, often used in financial engineering as a model for jump diffusion phenomena that violate the 'infinitely' small-jump assumption of Brownian motion (e.g., [START_REF] Derman | The Volatility Smile[END_REF]Taleb 2020). The probability density function is

ρ(c, x) = c 2π exp[-c/2x] x 3/2 (12)
having infinite mean and undefined kurtosis.

The relations corresponding to Eqs.( 10) and ( 11) are easily found to be

g = -F c W (n, -2F 2 π) L = er f cg 2R 0 (13)
where 'erf' represents the standard error function and W is again the Lambert W-function.

Taking n = 0, c = 1, R 0 = 1, and F as in the previous section -imposing the nonequilibrium steady state < d ln(Z t ) >= 0 via the Ito Chain Rule -and again taking Q(Z) = Z, gives the cognition rate Y/D relations as in figure 4. Without noise, the cognition rate, after an initial 'hallucination/dreaming' having a nonzero imaginary component, stabilizes at a maximum with increasing rates of information Z. With sufficient noise, however, the imaginary component remains nonzero, and cognition remains poor, never never stabilizing even as the real-valued component undergoes something like the Yerkes-Dodson pattern.

One might be tempted to characterize the complete collapse of the Levy model under relatively low levels of imposed noise as akin to triggering of psychosis-like symptoms under sufficient stress/distraction as seen in severe mental illnesses such as schizophrenia, bipolar illness, psychotic depression and some cases of autism.

The Mathematical Appendix repeats both long and shorttail calculations using the Lognormal distribution characterizing a system that interacts multiplicatively rather than additively across a hierarchy. The examples have kurtosis -the tail-length index -≈ 110.9 and ≈ 0.336 respectively, and encompass both patterns above under the same base distribution. Tail-length counts.

These models have all been predicated on the integral expressions of Eqs.( 4) and (5) representing 'whole embodied animal' cognitive responses within a complex embedding environment. It is of interest to replicate these calculations for simple 'on/off' binary systems, typically neural, machine, or institutional. This is not of central interest in what we do here, but is briefly explored in the Mathematical Appendix, essentially recovering figure 3 for Boltzmann systems and -perhaps counterintuitively -stochastic resonance stabilization and amplification for fat-tail 'burst' systems characterized by the Levy distribution.

Extending the model

Here we adapt methods from [START_REF] Wallace | Essays on the Extended Evolutionary Synthesis: Formalizations and expansions[END_REF] to this specific circumstance.

Inherent instability and regulatory hierarchy

The Data Rate Theorem of control theory (e.g., [START_REF] Nair | Feedback control under data rate constraints: an overview[END_REF]) holds that externally-imposed control information must be imposed on an inherently unstable system at a rate greater than that system generates itself generates it's own 'topological information'. A standard example involves a vehicle driven at high speed along a twisting roadway. The driver must impose steering, braking, and other control information at a rate greater than the roadway is imposing it's own 'twistiness' information on the vehicle at the vehicle's given speed. For biological systems, examples might include stabilization of blood pressure, prevention of immune self-attack, suppression of malignancies, and restriction of the stream of consciousness to 'riverbanks' useful to individual higher animals and their social groupings [START_REF] Wallace | Consciousness, Cognition and Crosstalk: The evolutionary exaptation of nonergodic groupoid symmetry-breaking[END_REF].

Then Eq.( 8) becomes

dZ t = Z t d 2 F/dZ 2 -M(Z t ) dt + σ Q(Z t )dB t (14) 
where M(Z) is the rate at which external regulatory control free energy must be imposed by an embedding agent hierarchy to stabilize the inherently unstable system in first order, i.e., to provide the noise-free stable state

dZ/dt = Zd 2 F/dZ 2 -M(Z) = 0
The stochastic nonequilibrium steady state in Z -defined by < d ln(Z t ) >= 0 -by the Ito Chain Rule, is then

Z d 2 dZ 2 F (Z) -M (Z) Z - σ 2 (Q (Z)) 2 2 Z 2 = 0 F (Z) = σ 2 (Q (Z)) 2 + 2 M (Z) Z 2 Z 2 dZ dZ +C 1 Z +C 2 (15)
For example, taking

Q(Z) = Z, M(Z) = MZ, F(Z) = M + σ 2 2 Z 2 2 +C 1 Z +C 2 (16)
which should be compared with Eq.( 9). Too much inherent instability, measured by M in Eq.( 16), can be as damaging as too much impinging 'noise' σ 2 /2 for the Boltzmann and Levy models. This is an interesting observation.

Environmental shadow price as burden or affordance Cognition, it can perhaps be supposed, like the evolutionary process, operates on a fitness landscape constrained by, among other things, both circumstance and the 'riverbanks' of culture and path-dependent historical trajectories that confine and circumscribe individual consciousness (again, Wallace 2022). We further suppose that the organism -or person -attempts to maximize some scalar index of critical function across a multi-component system restricted by resource rates and by the need to respond collectively to environmental signals within both time and 'energy' constraints. As above, we take the rate at which essential resources indexed by Z can be delivered as

∂ Z i /∂t = Zd 2 F i /dZ 2 i -M i (Z i ) ≡ f i (Z i ) (17) 
The full system is seen as made up of i = 1, 2, ..., m cooperating units that must be individually supplied with resources at rates Z i under overall constraints on resources and time as Z = ∑ i Z i and T = ∑ i T i . This may be thought of as a scalar function active across systems in the holarchy of the human organism. We then attempt to optimize a critical scalar index of function -like cognition rates (L = cognition rate in these equations) -across the full system, under these constraints.

Although more general approaches are possible (e.g., [START_REF] Nocedal | Numerical Optimization[END_REF], a simple Lagrangian optimization suffices to demonstrate principle:

L ≡ ∑ i L i + λ Z -∑ i Z i + µ T -∑ i T i ∂ L /∂ Z = λ , ∂ L i /∂ Z i = λ , ∂ L i /∂ T i = µ (18)
under the condition that ∂ Z i /∂ T i = f i (Z i ) from Eq.( 17).

In economic theory, λ and µ are envisioned as 'shadow prices' imposed on a system by environmental constraints [START_REF] Jin | A convex stochastic optimization problem arising from portfolio selection[END_REF][START_REF] Robinson | Shadow prices for measures of effectiveness II: General model[END_REF].

Simple algebraic manipulation gives

f i (Z i ) = Z i d 2 F i /dZ 2 i -M i (Z i ) = µ λ F i (Z i ) = M i (Z i ) µ + λ Z i µ dZ dZ i +C 1 Z i +C 2 (19)
which can be plugged in to expressions for the g i and the cognition rates L i .

Taking M(Z) = MZ finds

F i (Z i ) = M i Z 2 i 2 + λ µ Z i (ln(Z i ) -1) +C 1 Z i +C 2 (20)
We can finesse the matter further by reconsidering the SDE arguments of Eq.( 8) and ( 9), setting dZ i /dt = µ/λ , so that, under shadow price constraint or affordance,

dZ i t = µ λ dt + σ i Q i (Z i t )dB t (21) 
Using the Ito Chain Rule to calculate the nonequilibrium steady state condition < d ln(Z i t ) >= 0 gives the general relation

µ λ - σ 2 i 2 Q i (Z i ) 2 Z i = 0 (22)
For simple volatility, Q(Z) = Z, and

Z i nss = µ λ 2 σ 2 i ( 23 
)
If Z i nss falls below a critical value, component i fails. Increasing 'noise' at local level i, σ i , can become synergistic with the global environmental shadow price ratio µ/λ where the numerator represents the time constraint and the denominator represents the resource rate constant. This will determine the nonequilibrium steady state resource rate available to level i -the rate Z i nss . The shadow price ratio can either buffer against, or amplify, the effects of 'noise' in determining the rate of resources available at level i. There appears to be a relationship here to the ratio of stress resilience as it impacts one's vulnerability to stress related non-communicable diseases [START_REF] Fricchione | Mind body medicine: a modern bio-psychosocial model forty-five years after Engel[END_REF].

In sum, the embedding, environmental shadow price ratio -selection pressure or affordance -can profoundly affect the regulation of individual component cognition across an entire interlinked holarchic system.

This does indeed suggest a full biopsychosocial model for the positive and negative effects embedding environment on hierarchical levels of a cognitive enterprise under the stress vulnerability associated with 'noise' in the system.

More complicated models can, of course, be explored.

Multidimensional considerations

Here we follow Wallace (2023) fairly closely. The formalism has thus far assumed systems can be fully characterized by the single scalar parameter Z, mixing material resource/energy supply with internal and external flows of information. There may, however, be more than one independent irreducible composite entity determining system dynamics. That is, it may sometimes be necessary to replace the scalar Z with (at least) an n-dimensional vector Z. The dynamic equations are then something like

F(Z) = -log (H (g(Z))) g(Z) S = -F + Z • ∇ Z F ∂ Z/∂t ≈ μ • ∇ Z S = f (Z) -∇ Z F + ∇ Z (Z • ∇ Z F) = μ-1 • f (Z) ≡ f * (Z) ∂ 2 F/∂ z i ∂ z j • Z = f * (Z) ∂ 2 F/∂ z i ∂ z j | Z nss • Z nss = 0 (24)
Typically, F, g, H , and S are scalar functions, while μ is an n-dimensional square matrix of diffusion coefficient analogs.

The expression ((∂ F/∂ z i ∂ z j )) is an n-dimensional square matrix of second partial derivatives, and f (Z) is a vector function. The last relation imposes the deterministic nonequilibrium steady state condition f * (Z nss ) = 0. This is not necessarily inherently stable.

Most simply, H (g(Z)) → g(Z), with Z(t) → Z nss . This is an overdetermined system of partial differential equations if n ≥ 2. Indeed, for a general f * (Z), the system is inconsistent, resulting in as many as n different expressions for F(Z), and hence the same number of temperature-analog measures -again, a multi-component system. This inference is not surprising. The fifth expression in Eq.( 24) -f * (Z) = 0 -represents a multi-component, crossinteracting, cross-talking, system that, if acting in real time, will usually be far removed from any steady state, equilibrium or nonequilibrium.

Such systems will almost always be inherently unstable, requiring constant input of control information that will necessarily lag perturbation. These structures should not be represented by a single cognitive temperature-analog g. Each cognitive component -particularly if the system is far from a steady state -should be expected to have its own g-value, in addition to structure imposed by the multidimensional nature of Z.

The vector function f (Z) becomes the basis for extension of Eq.( 8) as a multidimensional SDE having the form

dZ t = f (Z t )dt + ρ(Z t )dB t ( 25 
)
where dB t represents n-dimensional Brownian noise. This development, where the dimension is n ≥ 2, invokes the world of [START_REF] Appleby | Stabilization and destabilization of nonlinear differential equations by noise[END_REF], in which it is almost always possible to find a functional form ρ(Z) that destabilizes an inherently stable function f (Z), or -by contraststabilizes an inherently unstable one.

In addition, as Wallace (2021) shows, higher dimensional systems suffer the burdens of Lie Group methods in the study of their deterministic dynamics.

Expanding the formal perspective Eqs.( 6) and ( 7) are only the beginning of a large class of possible 'regression models.' Dimensionally-consistent extensions without cross-terms can be written as

S ≡ -F(Z) + ZdF/dZ + ∞ ∑ n=2 ε n Z n d n F/dZ n ∂ Z/∂t = µdS/dZ + ∞ ∑ n=2 µ n-1 n d n S/dZ n (26)
Such expansions are characterized by [START_REF] Jackson | A robust generalization of the Legendre transform for QFT[END_REF] in this way,

[T]he Legendre transform can be viewed as mapping the coefficients of one formal power series into the coefficients of another formal power series. Here, the term 'formal' does not express 'mathematically nonrigorous', as it often does in the physics literature. Instead, the term 'formal power series' is here a technical mathematical term, meaning a power series in indeterminates. Formal power series are not functions. A priori, formal power series merely obey the axioms of a ring and questions of convergence do not arise.

In some contrast to bare-bones physics, the ε and µ spectra -and possible series crossterms -will express the usual empirical questions associated with all statistical models, analogous to fitting regression equations to observational or experimental data.

Discussion

In Information Theory, the Legendre transform has been important in suggesting a dual relationship between Shannon's source uncertainty and and the concept of free energy density [START_REF] Wallace | Information theory, scaling laws, and the thermodynamics of evolution[END_REF], although here we iterate the basic model in terms of the Rate Distortion channel capacities associated with embodiment that lead to a redefinition of 'entropy' for an Onsager entropy-gradient model of system dynamics.

A different approach, the 'free energy principle' (Friston and Stephan 2007; Friston 2010) suggests that all biological systems are based through natural selection toward minimizing a theoretical information systems quality we can call Friston Free Energy (FFE) that is distinguishable from the usual thermodynamic free energy, although the two can be mathematically aligned via the Legendre transform. FFE, thus defined, bounds surprise when surprise is conceptualized as the delta between an organism's predictions about its sensory inputs and the sensory inputs it is experiencing in real time evaluated under the comparison and control of embodied cognition [START_REF] Friston | The free energy principle: a unified brain theory[END_REF]. Here, we envision that quantity as the 'average distortion' D in the rate distortion function R(D) defining the minimal necessary channel capacity R in Eqs.(2-6).

As stated above, the brain evolved as an organ that specializes in the four operations of any living entity. It senses its environment, analyzes the incoming information using Bayesian active inference and predictive error in order to effect a motor response when tis motivational analysis suggests it is warranted with a probability of success [START_REF] Cairns-Smith | Evolving the mind: On the matter and origin of consciousness[END_REF][START_REF] Friston | The free energy principle: a unified brain theory[END_REF].

In order to make the decision to avoid or approach something, we need to know where that something is with regard to us and also what it is. These questions are processed through the confluence of two ancient brain moieties [START_REF] Mesulam | Principles of behavioral and cognitive neurology[END_REF]. The dorsal 'where' hippocampocentric pathway and the ventral 'what' olfactocentric pathway converge primarily in the parolfactory anterior cingulate cortex (ACC) in the paralimbic medial prefrontal cortical (mPFC) region. The ACC is charged with making response selections, with the assistance of the dorsolateral prefontal cortex (dlPFC), frontopolar cortex, anterior insula, and orbitofrontal cortex (OFC), to avoid and separate or approach and attach [START_REF] Devinsky | Contributions of anterior cingulate cortex to behavior[END_REF]. It does so after assessing 'priors' in the form of 'where' and information along with physical and psychosocial pan signals and stored memory to which it has access. The ACC is also a central node essential for the mammalian behavioral triad of maternal nurturance, the infant's separation cry, and social play [START_REF] Maclean | The triune brain in evolution: role in paleocerebral functions[END_REF]. These affiliative factors play an enormous role influencing our motivational states because of the importance evolution has placed on social attachment behavior in mammals, primates and especially on altricial human beings [START_REF] Fricchione | Mind body medicine: a modern bio-psychosocial model forty-five years after Engel[END_REF].

This general state is reflected in the key roles the ACC and the midcingulate (MCC) play in the cortico-striato-thalamocortical (CSTC) brain reward and motivation circuitry [START_REF] Haber | Corticostriatal circuitry[END_REF]. The ACC has a primary mission of motivating action selection while the MCC provides cognitive control and hierarchical reinforcement learning (HRL) [START_REF] Holroyd | Motivation of extended behaviors by anterior cingulate cortex[END_REF]. These regions select and maintain behavioral repertoires called policies. These policies are contextualized goal-directed behaviors learned through the process of HRL [START_REF] Holroyd | Motivation of extended behaviors by anterior cingulate cortex[END_REF]. In other words, the ACC/MCC inferentially selects and maintains coherent actions in the service of successful avoidance and approach. This particular ACC/MCC CTS¡ circuit mediates our basic attachments to metabolic energy in the form of food, sexual objects, parental and social objects and to future object goals [START_REF] Fricchione | Mind body medicine: a modern bio-psychosocial model forty-five years after Engel[END_REF].

Evolutionary (phylogenetic) stress and developmental (ontogenetic) stress both involve surprising and sometimes anomalous separation challenges to these four attachments. It is the threat stress of separation from any one of these four attachments that activates the 'aversive lens' of the fear conditioning amygdala in attachment uncertainty [START_REF] Arnsten | The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion[END_REF]. This can lead to the stress response and neuroinflammation with eventual intolerance of this uncertainty and the descent out of the normal and tolerable hormetic stress zones into the toxic stress zone [START_REF] Epel | The geroscience agenda: Toxic stress, hormetic stress, and the rate of aging[END_REF]. The Yerkes-Dodson curve is hormetic in the sense that it is a bi-phasic inverted-U probability distribution in which normal and tolerable stress improves performance and health.

Resilience in essence involves a bolstering of the mPFC's capacity to emotionally regulate amygdalar activation in the face of anomalies and uncertainties, especially when characterized by imaginary valued components, that portend the pain of separation. It is here that the effectiveness and pliancy of one's ACC/MCC in making good response selections that maintain health promoting attachments comes into play. And based on stress-related effects at the mitochondrial, endoplasmic reticular, cellular and organismic levels, we see a self-similar biphasic Yerkes-Dodson like inverted U-shaped curve illustrating that, in a nested fashion, hormetic stress levels will maintain real valued components and aid fitness, performance and functioning. However high uncertainty from persistent imaginary valued components will produce psychosocial toxic stress that can lead to a pathogenic reduction in fitness and function [START_REF] Fricchione | Mind body medicine: a modern bio-psychosocial model forty-five years after Engel[END_REF]).

If we focus our attention on the ACC, we can appreciate the importance of the active inference and strategic prediction-based decision-making that takes place in the mPFC [START_REF] Peters | Uncertainty and stress: Why it causes diseases and how it is mastered by the brain[END_REF]. See figure 5. Mathys and colleagues (2014) show how the Hierarchical Gaussian Filter (HGF) offers a useful mathematical way to approach several forms of perception-based uncertainty. The HGF is derived from Bayesian principles that rely on a hierarchical generative model of a stable or unstable environment. It explicates the extension of the HGF's hierarchical model to any number of levels and suggests how various forms of uncertainty are accommodated by (Friston) free energy minimization as encoded in several thin-tailed equations (Nelder-Mead simplex algorithm, Gaussian processbased global optimization, variational Bayes and Markov chain Monte Carlo sampling). All these probability equations, especially the variational Bayes, performed well despite considerable noise. Also included in a portfolio of probability distributions potentially useful for modeling surprise are Gamma, Multinomial and Drichlet distributions (Parr et al. 20220).

Here we present the thin-tailed low kurtosis versions of probability distributions -the Boltzmann and Gamma versions, and the low-s form of the Lognormal. But we also present the fat-tailed high kurtosis Levy and high-s Lognormal probability curves for consideration given their possible application in the context of the human organism's nonrandom, habit-driven, association-related fat-tailed distribution. This may prove crucial in assessing true predictive risk for neuropsychiatric disorders, which emerge in the setting of the noisy uncertainty and high free energy density produced by high toxic stress and low resilience (DeKloet et al. A During stress, the ACC assesses the gap between the probability distributions of 'attainable states' and 'goal states' in a search for plausible strategies or 'policies' that constitute a menu of options in these thin-tailed Gaussian models. Such a gap or divergence is called a Kullback-Leibler divergence (DKL). The greater the relative risk of Bayesian surprise represented by the divergence, the greater the uncertainty about which policy to choose leading to greater activation of the amydala. B Each policy represents a different relative risk (DKL). C Based upon the risk probability distribution, the ACC analyzes each strategy i (i = 1, 2, ..., n) for the probability that it will reduce negative prediction error and effect an attachment solution to the separation challenge under consideration and thus ensure wellbeing. In this graphic, all probabilities are relatively low. Thus, uncertainty persists about the answer to the potential separation challenge. This can lead to a separation threat-based stress response due to a high level of uncertainty and the intolerance that ensues causing the strain of increased free energy density. This would produce metabolic wear and tear (allostatic load) and create vulnerability in the system. From: [START_REF] Peters | Uncertainty and stress: Why it causes diseases and how it is mastered by the brain[END_REF] 2019). Such a scenario is rife with reduced emotion regulation due to mPFC challenges with an overwrought amygdala left to deal with sensory overflow through a widened thalamic filter uncontrolled due to reduction in mPFC capacity to do sensory attenuation. The result is the transdiagnostic impairment in active inference decision-making in the ACC that is common in major psychiatric disorders [START_REF] Goodkind | Identification of a common neurobiological substrate for mental illness[END_REF].

We have, then, presented a canonical model of the dynamics of embodied cognition under stress and explored examples reflecting two different forms of 'fundamental distribution', thin tailed, and fat-tailed (Taleb 2020;[START_REF] Derman | The Volatility Smile[END_REF]. The Boltzmann, Gamma, and low-s Lognor-mal distribution models of figures 2, 5, and 8 show classic Yerkes-Dodson behaviors with arousal Z, bracketed by a kind of free-wheeling daydream 'hallucination' at low imposed 'noise' σ -characterizing a simple task [START_REF] Diamond | The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law[END_REF]) -and by both such 'hallucination' and 'panic/overload' at sufficiently high imposed noise representing a difficult task. Our essential shift in perspective is to focus on underlying dynamics rather than underling network structure, since many different topologies can map down on to a particular given dynamic pattern (e.g., [START_REF] Harush | Dynamic patterns of information flow in complex networks[END_REF].

Cognitive systems marked by Levy and high-s Lognormal distributions, on the other hand, with their fat-tail jump diffusion character, while also capable of displaying a moreor-less nominal simple-task Yerkes-Dodson pattern under zero σ , were particularly driven to cognitive collapse -nonzero imaginary component in cognition rate at all levels of arousal Z -by relatively low levels of impinging 'noise' σ .

One possible inference is that 'thin tailed' underlying distribution may characterize 'ordinary' depression/anxiety symptomatology induced by stress in the presence of a 'noise' representing the difficulty of a task, while a 'fat tailed' underlying distribution might be associated with brain structure abnormalities leading to psychotic, schizophreniform and autism spectrum disorders, whose symptoms may possibly be expressed at lower levels of 'noise' stressors.

Indeed, something of this is reflected in the current literature. Fricchione (2023) writes ...[T]he Gaussian Bell-shaped curve is best reserved for entities that are characterized by independent, random, and uncorrelated variables. In living organisms there may be many more rare events ('Black Swans') than would be expected from the randomness of independent variables described by the normal Gaussian distribution... [W]hen information flows in from an organism's non-random association-related fat-tailed distribution, relying on a normal distribution curve might underestimate true predictive risk.

Further -at some nontrivial formal cost -we have expanded the model to explore the regulation of inherently unstable cognitive phenomena at both the individual and hierarchical levels. This work finds, for the hierarchical model in particular, that embedding shadow price environmental constraints/affordances that act on resource rates and time available for response can synergistically aggravate -or buffer against -regulatory failure at and across a variety of scales and levels of organization within a cognitive entity. This would seem to provide at least a basic model of the full biopsychosocial cascade.

Although ρ(c, R j /g(Z)) in Eqs.( 2)-( 5) -the 'basic underlying probability model' -characterizes the dynamics of embodiment under stress, and not the static topology of brain connectivity, there is some rough parallel to be found See figure 6, adapted from their work. It is not difficult to similarly infer that an analogous 'fattail' randomization of the 'basic underlying probability model' ρ(c, R j /g(Z)) driving system dynamics via the Onsager approximations of Eqs.( 6), ( 7) and (26) would also be associated with abnormalities in embodied cognition rate.

Formal extension of the basic theory, and applications to other patterns of pathology, like immune disorders and premature aging, as well as applications to institutional dynamics, seem direct.

Yet, as the theoretical ecologist E.C. Pielou (1977, p. 102) argues, mathematical models, like those presented here, are best suited for raising questions for experimental and empirical examination, not for answering questions.

In that direction, however, it is likely that the probability models introduced here, founded on the asymptotic limit theorems of information and control theories, can be converted into statistical tools for data analysis, much as the Central Limit Theorem and friends enable conventional parametric and nonparmetric statistical inference, with its many benefits and severe limitations. In the end, mathematical models and statistical reasoning are not, of themselves, science, but sometimes rather fragile tools for the conduct of science based on understanding patterns consistently found in observational and experimental data.

Mathematical Appendix

The Gamma model

The Gamma distribution is defined as

ρ(k, θ , x) = 1 Γ (k)θ k x k-1 exp[-x/θ ] (27) 
where Γ (x) is the Gamma function and the distribution has mean value = kθ and mode = (k -1)θ for k ≥ 1. The kurtosis is simply 6/k. Here, we restrict ourselves to k = 3, θ = 1. Some calculation finds

g = - F 3W 1 3(-1 2F ) 1 3 L = 2g 2 + 2gR 0 + R 2 0 e -R 0 g 2g 2 (28) 
where W (x) is the zero-order Lambert W function, and F is again given as in Eq.( 9), with

C 1 = -1, C 2 = 3, R 0 = 1, Q(Z) = Z.
Figure 7 shows the analog to figures 3 and 4. As for the Boltzmann model, in figure 5a at σ = 0, the imaginary component drops to zero after the hallucination/day dream Fisher Zero transition in the temperature analog g(Z). For figure 7b, as in figure 3b, for σ = 1/2, the imaginary component is zero between the hallucination and panic phase transitions -again driven by Fisher Zero phase transitions in the temperature analog g(Z) via the first expression in Eq.( 28).

The Lognormal model

The Lognormal distribution is defined as

ρ(s, x) = √ 2 e - ln(x) 2 2s 2 2xs √ π (29) 
having kurtosis exp[4s 2 ] + 2 exp[3s 2 ] + 3 exp[2s 2 ] -6. For s = 1, 1/7, as used here, the values are, respectively, 110.9 and 0.3363. See figure 8. Then Fig. 8 The lognormal distributions for s = 1, 1/7, long and shorttailed.

Figure 9 shows the analog to figures 3, 4, and 7 for the same expression in F, again taking R 0 = 1 and so on as previously, including setting Q(Z) = Z. In figure 9a, as with the Levy distribution, the imaginary component approaches zero at σ = 0, while in figure 9b, at σ = 1/2, the imaginary component remains significant over most of the range, indicating gross instability.

For the lognormal distribution, setting s = 1/7, so that the kurtosis is 0.336, produces, in figure 10, a short-tailed model having dynamics like figures 3 and 7. 'On/off' binary systems

We next consider a two-state threshold system -binary on/off -according to the condition R ± = R 0 ±δ for δ R 0 , where, again, R 0 is the threshold condition.

Boltzmann distribution

We first take the underlying distribution as an exponential, according to physical analog. Then ρ(m, x) ≡ m exp[-mx], with mean 1/m, fixed skewness 2, and kurtosis 6.

After some manipulation, where the second-to-last expression for g represents a secondorder expansion in small δ .

F is again given in terms of Eq.( 9), again taking C 1 = -1, C 2 = 3. In addition, we set R 0 = 1, δ = 1/20 and calculate the cognition rates L for σ = 0, 0.6 in figure 10.

Unsurprisingly, the results essentially replicate figure 3.

The Levy distribution

Here, matters become more complicated. For the twolevel Levy distribution the free energy relation becomes For very small δ , after some work,

ρ(c, F/g) = √ 2 c π e -cg
g ≈ 2F ln 2F 2 √ FR 0 R 0 R 0 c (F -R 0 ) (33) 
and, more exactly in δ ,

L = (R 0 -δ ) 3 g 3 e -cg 2R 0 +2δ g R 0 -δ g (R 0 -δ ) e -cg 2R 0 +2δ + R 0 +δ g e -cg 2R 0 -2δ (R 0 + δ ) (34) 
Figure 12 shows the analog to figure 11. Here we again set c = 1 in Eq.( 12). Again, C 1 = -1, C 2 = 3, R 0 = 1, δ = 1/20. The binary jump-diffusion system is unstable in the absence of noise. σ = 0.71 provides a kind of stochastic stabilization/resonance in Z, suggesting a special role for 'noise' in simple binary systems dominated by 'fat-tail' underlying cognitive distributions. 

Declarations Ethical Approval

Not applicable.

Funding

Not applicable.

Fig. 1

 1 Fig. 1 The Yerkes Dodson Curve. Under the curve Green = Normal Stress; Yellow= Tolerable Stress; Orange to Red = Toxic Stress Reproduced from: Welford (1973), Stress and performance,Ergonomics, 16:567-580, p 568.

Fig

  Fig.2a. The control loop as an RDT example. A sequence of intent signals from a cognitive entity is transmitted on the timescale of interest into a 'selection environment' represented by the rectangle. A scalarized measure of resource delivery rate, Z, is opposed by a 'noise' compounded of uncertainties, instabilities, imprecision-in-action, and sometimes active opposition. The actual effect is compared with the intent via the dotted line, and a 'distortion measure' D is taken as a scalar index of failure. In general, the 'noise' vector will be two-headed, also affecting the 'comparison and control' feedback loop. That is, 'noise' will degrade the underlying components of the scalar measure Z. This control loop recapitulates the sensory-motor analyzer-effector model of[START_REF] Cairns-Smith | Evolving the mind: On the matter and origin of consciousness[END_REF]. b. Adapted from[START_REF] Karunamuni | Pathways to well-being: Untangling the causal relationships among biopsychosocial variables[END_REF]. The fundamental feedback loops of the bio-psycho-social (BPS) pathways model, depicting the pathways among biological, psychological and social factors in health and illness. AsKarunamuni et al. remark, Engel's (1977[START_REF] Engel | The clinical application of the biopsychosocial model[END_REF]) 'BPS' model has roots in general systems theory, "[A] conceptual framework within which both organized wholes and component parts can be studied."

Fig. 3

 3 Fig. 3 Changes in cognition rate L as Z increases as an 'arousal' for different 'noise' levels, imposing the nonequilibrium steady state < d ln(Z t >= 0 via the Ito Chain Rule based on Eq.(8). a. σ = 0 provides a close analog to a Yerkes-Dodson relation for a 'simple' task, bracketed on the left by hallucination/dreaming. b. By σ = 1/2, the system has shifted to an inverted-U Yerkes-Dodson signal transduction bracketed by nonzero imaginary components representing hallucination/dreaming on the left and paralysis/panic on the right. Beyond the critical value of σ ≈ 0.616378, where -F <exp[-1] for all Z, there are no stable zones. Again, the occurrence of imaginary components represents Fisher Zero phase transitions in the temperature analog g(Z).

Fig. 4

 4 Fig. 4 Cognition rate of Eq.(13) for the Levy distribution under the nonequilibrium steady state condition < d log(Z t ) >= 0. a. σ = 0. b.σ = 1/2. Here, c = R 0 = 1, C 1 = -1, C 2 = 3.Without noise, the cognition rate, after an initial 'hallucination/dreaming' having a nonzero imaginary component, stabilizes at a maximum with increasing rates of information Z. With sufficient noise, however, the imaginary component remains nonzero, and cognition never stabilizes even as the real-valued component undergoes something like the Yerkes-Dodson pattern.

Fig. 5

 5 Fig.5The ACC and its analyzer-effector decision-making function.A During stress, the ACC assesses the gap between the probability distributions of 'attainable states' and 'goal states' in a search for plausible strategies or 'policies' that constitute a menu of options in these thin-tailed Gaussian models. Such a gap or divergence is called a Kullback-Leibler divergence (DKL). The greater the relative risk of Bayesian surprise represented by the divergence, the greater the uncertainty about which policy to choose leading to greater activation of the amydala. B Each policy represents a different relative risk (DKL). C Based upon the risk probability distribution, the ACC analyzes each strategy i (i = 1, 2, ..., n) for the probability that it will reduce negative prediction error and effect an attachment solution to the separation challenge under consideration and thus ensure wellbeing. In this graphic, all probabilities are relatively low. Thus, uncertainty persists about the answer to the potential separation challenge. This can lead to a separation threat-based stress response due to a high level of uncertainty and the intolerance that ensues causing the strain of increased free energy density. This would produce metabolic wear and tear (allostatic load) and create vulnerability in the system. From:[START_REF] Peters | Uncertainty and stress: Why it causes diseases and how it is mastered by the brain[END_REF] 

Fig. 6

 6 Fig.6Adapted from[START_REF] Lynall | Functional connectivity and brain networks in schizophrenia[END_REF]. Hypothetical schematic of group differences in functional connectivity. People with schizophrenia show both higher [static network] diversity at each region and lower variance in connectivity strength across the brain. This can be conceptualized as a randomization or de-differentiation of functional connectivity.

Fig. 7

 7 Fig. 7 Analog to figures 3 and 4 for the Gamma distribution with k = 3, θ = 1, kurtosis 6/k, the same F-expression, and R 0 = 1. a. As with the Boltzmann model, for σ = 0, the imaginary component drops to zero after the hallucination/day dream Fisher Zero phase transition point in g(Z). b. As in figure 3b, at σ = 1/2, the imaginary component is zero between the 'hallucination' and 'panic' phase transitions. Again, Q(Z) = Z.

Fig. 9

 9 Fig. 9 Analog to figures 3, 4, and 7 for the Lognormal distribution with s = 1, kurtosis 110.9. F, R 0 as previously, and Q(Z) = Z. a. At σ = 0, the system eventually stabilizes after the hallucination mode. b. For σ = 1/2, the system has a significant nonzero imaginary component over most of the range.

Fig. 10

 10 Fig. 10 Analog to figure 9, setting s = 1/7, with kurtosis 0.3363. a. σ = 0. b. σ = 3/10. The responses to arousal are similar to figures 3 and 7, driven by Fisher Zero phase transitions in the temperature analog g(Z).

  exp[-F/g] = exp[-(R 0 + δ )/g] + exp[-(R 0δ )/g] = 2 exp[-R 0 /g] cosh(δ /g) F ≈ln(2)g + R 0 -R 0 + -2 ln(2) δ 2 + (F -R 0 ) 2 2 ln(2) L = exp[-(R 0 + δ )/g] exp[-(R 0 + δ )/g] + exp[-(R 0δ )/g] = 1 1 + exp[2δ /g](31)

Fig. 11

 11 Fig. 11 Analog to figure 3 for a Boltzmann distribution in a binary on/off system. Here C 1 = -1, C 2 = 3, R 0 = 1, δ = 1/20. a. σ = 0 produces an analog to figure 3a. b. Setting σ = 0.6 reproduces the Yerkes-Dodson pattern of figure 3b.

Fig. 12

 12 Fig.12Here c = 1 in the Levy distribution of Eq.(12). a. Analog to figure11afor σ = 0. The binary jump-diffusion system is unstable in the absence of noise. b. With σ = 0.71, we see onset of a kind of stochastic stabilization/resonance in Z, suggesting a special role for 'noise' in simple binary systems.
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