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Abstract

The concept of dual vector spaces was first introduced about 100 years
ago by Hahn (1927), Schauder (1930), and Banach (1932). The word
dual itself was first introduced by Bourbaki (1938). When the concept
of a vector space over a field is broadened to a Grassmann algebra of
null vectors over a field, a new concept of local duality arises. This paper
explores the relationships between global and local duality in Grassmann
algebras of null vectors, and the Clifford geometric algebras they become.
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0 Introduction

The concept of dual vector spaces was first introduced about 100 years ago by
Hahn (1927), Schauder (1930), and Banach (1932). The word dual itself was
first introduced by Bourbaki (1938) (from Wikipedia). When the concept of a
vector space over a field is broadened to a Grassmann algebra of null vectors
over a field, a new concept of local duality arises.

Section 1, sets down the basic definitions and results from previous papers
that are needed here, [4, 5, 6, 7]. The spectral basis of a mother geometric algebra
Gn,n of neutral signature, consists of nilpotents and idempotents. Matrices,
with their usual rules of addition and multiplication, become faithful coordinate
matrices of geometric numbers [8]. Whereas the outcome of global duality in
a pair of real Grassmann algebras is called the mother geometric algebra Gn,n,
the outcome of local duality in a single Grassmann algebra might appropriately
be called the father geometric algebra G1,n. The most famous such geometric
algebra is G1,3, isomorphic to Dirac algebra, or spacetime algebra of relativity
and quantum mechanics [1, 3, 7].

Section 2, explores fundamental relationships that exist between the global
and local null vector bases of the real geometric algebras Gn,n and G1,2n−1,
respectively. Whereas the geometric algebra Gn,n is algebraically isomorphic
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to it’s faithful real coordinate matrix algebra, the Lorentz geometric algebra
G1,2n−1 is algebraically isomorphic to its faithful complex coordinate matrix
algebra. The relationship between the global and local dual bases is reflected
in the definition of a new ?-Hermitian transpose of the matrix relating these
different bases.

Section 3, proposes a Program for Future Research developing the ideas that
have been revealed by the concept of local duality. This includes in quantum
mechanics, Fourier and Wavelet transforms, and perhaps even providing new
insight into the nagging problem of the unification of general relativity and
quantum mechanics [12, 19, 20].

1 Basic definitions

A null vector or nilpotent is a vector whose square is zero. Denote by NF the
universal algebra generated by taking all sums and products of null vectors, and
obeying all of the familiar rules of matrix addition and multiplication over a
field F , [9].

A set of n linearly independent null vectors over a field of characteristic 6= 2
generate a 2n-dimensional Grassmann algebra. Two 2n-dimensional Grassmann
algebras An,Bn ⊂ N are globally dual if for every ai ∈ An and bj ∈ Bn,

2ai · bj := aibj + bjai = δij . (1)

It is well-known that 2n null vectors An∪Bn ⊂ N , taken with the inner product
(1), generate a 22n-dimensional geometric algebra Gn,n of neutral signature, [8].

The concept of local duality in a 2n+1-dimensional ∧-Grassmann algebra
Cn+1 ⊂ N , generated by n + 1 null vectors is defined differently. Two null
vectors ci, cj ∈ Cn+1 are said to be locally dual if

2ci · cj := cicj + cjci = 1− δij . (2)

If every pair of null vectors ci, cj ∈ Cn+1 satisfies (2), then the ∧-Grassmann
algebra Cn+1, taken with the inner product (2), generates the geometric algebra
G1,n of Lorentz signature p+ q = 1 + n, [5].

2 Global and local duality

Note that for n = 1, the concepts of global and local duality are identical in
the geometric algebra G1,1. In this case, the Grassmann algebra A1∪B1, where
A1 = {a1}, B1 := {b1}, and C2 := {c1, c2}. Choosing null vectors c1 = a1, and
c2 = b1, it is easily checked that

a1 · b1 = c1 · c2 =
1

2
,

satisfying both conditions (1) and (2).
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For the globally dual Grassmann algebra A2 ∪ B2, where A2 = {a1, a2} and
B2 = {b1, b2}, satisfying the additional property (1),

{A2,B2}T :=


a1
b1
a2
b2


defines the spectral basis of null vectors for the geometric algebra G2,2. In terms
of the spectral basis, the standard basis of the geometric algebra G1,3 is defined
by 

e1
f1
f2
f3

 :=


1 1 0 0
1 −1 0 0
0 0 j j
0 0 1 −1



a1
b1
a2
b2

 =


a1 + b1
a1 − b1
j(a2 + b2)
a2 − b2)

 , (3)

where j :=
√
−1, [7, 11]. Defining

Ω2ρ :=

(
ρ ρ
1 −1

)
and Ω2ρ :=

(
1 1
ρ −ρ

)
,

where ρ ∈ C, equation (3) takes the block matrix form
e1
f1
f2
f3

 =

(
Ω2 [0]2
[0]2 Ω2j

)
a1
b1
a2
b2

 . (4)

Noting(
1 1
1 −1

)−1
=

1

2

(
1 1
1 −1

)
,

(
j j
1 −1

)−1
=

1

2

(
−j 1
−j −1

)
,

it follows that 
a1
b1
a2
b2

 =
1

2


1 1 0 0
1 −1 0 0
0 0 −j 1
0 0 −j −1



e1
f1
f2
f3

 , (5)

or equivalently, 
a1
b1
a2
b2

 =
1

2

(
Ω2 [0]2
[0]2 Ω2j

)?


e1
f1
f2
f3

 , (6)

where the ?-Hermitian transpose is used, [7].
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In the local dual null vector basis C4 =


c1
c2
c3
c4

, the geometric algebra G1,3

is defined by 
e1
f1
f2
f3

 =
1√
2


1√
3

1√
3

1√
3

1√
3

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1



c1
c2
c3
c4

 , (7)

or equivalently, 
e1
f1
f2
f3

 =
1√
2

(
Ω2ρ Ω−2ρ
Ω2 −Ω−2

)
c1
c2
c3
c4

 (8)

for ρ = 1√
3
.

Noting that
1√
3

1√
3

1√
3

1√
3

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1


−1

=
1

4


√

3 1 1 1√
3 −1 1 −1√
3 −1 −1 1√
3 1 −1 −1

 =:
1

4

(
Ω2ρ Ω−2ρ
Ω2 −Ω−2

)?

for ρ =
√

3, it follows that
c1
c2
c3
c4

 =
1

2
√

2

(
Ω2ρ Ω−2ρ
Ω2 −Ω−2

)?


e1
f1
f2
f3

 . (9)

We say that the matrix in (7), relating the standard and local bases of G1,3, is
the local basis ?-Hermitian transpose of the matrix in (9). Thus, by definition,
under the ?-Hermitian transpose in G1,3,

1√
3
←→

√
3.

Clearly, the local basis ?-Hermitian transpose is an involution.
The relations (3) and (8) imply
a1
b1
a2
b2

 =
1

2
√

2

{
1 −1 −1 1
−1 1 1 −1
1 −1 1 −1
−1 1 −1 1

+


1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

1√
3

−j −j j j
−j −j j j


}

c1
c2
c3
c4

 ,

and
c1
c2
c3
c4

 =
1

2
√

2

{
1 −1 −1 1
−1 1 1 −1
1 −1 1 −1
−1 1 −1 1


T

+


√

3
√

3 j j√
3
√

3 j j√
3
√

3 −j −j√
3
√

3 −j −j

}

a1
b1
a2
b2

 ,
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or, equivalently, in the forms
a1
b1
a2
b2

 =
1

2
√

2

(
Ω2 [0]2
[0]2 Ω2j

)?(
Ω2ρ Ω−2ρ
Ω2 −Ω−2

)
c1
c2
c3
c4

 , (10)

where ρ = 1√
3
, and
c1
c2
c3
c4

 =
1

2
√

2

(
Ω2ρ Ω−2ρ
Ω2 −Ω−2

)?(
Ω2 [0]2
[0]2 Ω2j

)
a1
b1
a2
b2

 , (11)

where in this case ρ =
√

3 as we have already seen in (9).
The relationships (10) and (11), between the global spectral basis {a1, b1, a2, b2}

and the local dual basis {c1, c2, c3, c4}, is expressed in terms of the local ?-
Hermitian involution. The global spectral basis in (10) is the ?-Hermitian trans-
pose of the local dual basis (11) because there exists constants α, β ∈ R such
(11) is true. In this case, equation (11) shows that α = 1

2
√
2

and β =
√

3, and

for (10), α = 1
2
√
2

and β = 1√
3
.

The global spectral basis

{a1, b1, a2, b2, a3, b3, a4, b4}

is similarly related to the local dual basis

{c1, c2, c3, c4, c5, c6, c7, c8}.

In this case,

e1
f1
f2
f3
f4
f4
f5
f6
f7


=



1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 j j 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 j j 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 j j
0 0 0 0 0 0 1 −1





a1
b1
a2
b2
a3
b3
a4
b4


,

or in iterated form 
e1
f1
·
·
f7

 =
1

2

(
Ω4j [0]4
[0]4 Ω4j

)

a1
b1
·
·
a4
b4

 . (12)
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Using what we learned in the 4-dimensional case, inverting (12) gives
a1
b1
·
·
a4
b4

 =
1

2

(
Ω4j [0]4
[0]4 Ω4j

)?


e1
f1
·
·
f7

 . (13)

Similarly

e1
f1
f2
f3
f4
f4
f5
f6
f7


=

1

2



1√
7

1√
7

1√
7

1√
7

1√
7

1√
7

1√
7

1√
7

1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1





c1
c2
c3
c4
c5
c6
c7
c8


,

or in iterated form 
e1
f1
·
·
f7

 =
1

2

(
Ω4ρ Ω−4ρ
Ω4 −Ω−4

)
c1
c2
·
·
c8

 , (14)

where ρ = 1√
7
. Inverting this last relation,



c1
c2
c3
c4
c5
c6
c7
c8


=

1

2



√
7 1 1 1 1 1 1 1√
7 −1 −1 1 1 −1 −1 1√
7 −1 1 −1 1 −1 1 −1√
7 1 −1 −1 1 1 −1 −1√
7 −1 −1 −1 −1 1 1 1√
7 1 1 −1 −1 −1 −1 1√
7 1 −1 1 −1 −1 1 −1√
7 −1 1 1 −1 1 −1 −1





e1
f1
f2
f3
f4
f4
f5
f6
f7


,

or in iterated form 
c1
c2
·
·
c8

 =
1

2

(
Ω4ρ Ω−4ρ
Ω4 −Ω−4

)?


e1
f1
·
·
f7

 , (15)
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where ρ =
√

7. Together, (12) and (14) imply the global spectral basis of G1,7

is the ?-Hermitian transpose of the local dual basis of G1,7, with α = 1
4 and

β = 1√
7
.

Using (14) and (15), we can directly relate the global and local bases vectors

of G1,7, getting ( a1 b1 a2 b2 a3 b3 a4 b4 )
T

=

1

4


1 + 1√

7
−1 + 1√

7
−1 + 1√

7
1 + 1√

7
−1 + 1√

7
1 + 1√

7
1 + 1√

7
−1 + 1√

7

−1 + 1√
7

1 + 1√
7

1 + 1√
7

−1 + 1√
7

1 + 1√
7

−1 + 1√
7
−1 + 1√

7
1 + 1√

7
1 − j 1 + j −1 − j −1 + j −1 + j −1 − j 1 + j 1 − j
−1 − j −1 + j 1 − j 1 + j 1 + j 1 − j −1 + j −1 − j
1 − j −1 − j −1 − j 1 − j 1 + j −1 + j −1 + j 1 + j
−1 − j 1 − j 1 − j −1 − j −1 + j 1 + j 1 + j −1 + j
1 − j 1 + j −1 − j −1 + j 1 − j 1 + j −1 − j −1 + j
−1 − j −1 + j 1 − j 1 + j −1 − j −1 + j 1 − j 1 + j




c1
c2
c3
c4
c5
c6
c7
c8

 .

Analogous to (10) and (11), relating spectral basis of G2,2 to local dual basis of
G1,3, for G4,4 and G1,7,

a1
b1
·
·
a4
b4

 =
1

4

(
Ω4 [0]4
[0]4 Ω4j

)?(
Ω4ρ Ω−4ρ
Ω4 −Ω−4

)
c1
·
·
c8

 , (16)

and 
c1
·
·
c8

 =
1

4

(
Ω4ρ Ω−4ρ
Ω4 −Ω−4

)?(
Ω4 [0]4
[0]4 Ω4j

)

a1
b1
·
·
a4
b4

 , (17)

with α = 1
4 and β =

√
7. Block matrices greatly simplify the calculations using

the iterated (2k × 2k)-block matrices Ω2k ,Ω
−
2k

, their inverses and ?-Hermitian
involution.

Because of the periodicity modulo(8) of Clifford geometric algebras, higher
order geometric algebras Gp+1,q+1, for p+q = 8, can be broken down into blocks
of 2 × 2 matrix algebras with entries in Gp,q, [8, p.71]. The power of a 2 × 2
block matrix structure has been richly exploited in the analysis of the Möbius
transformations of the conformal group [9, 10], [16, p.244].

3 Program for Future Research

In [4], I began the study of the Lorentz geometric algebras G1,n and Gn,1 in
terms of what I called in that paper positively and negatively correlated null
vectors. In particular, I was struck by the close relationship to many ideas
in graph theory, and began the development of a geometric calculus on those
algebras, similar to the now more widely known geometric calculus on Euclidean
space. Clearly, there is much left to explore along these lines, [2, 11, 15].
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In a second paper, Calculus of Compatible Nilpotents the vector derivative,
and basic differential formulas for elementary functions, can be developed in the
basis of compatible null vectors of a in geometric algebra with a Lorentz metric
signature, [5].

In the third paper of this series, Itinerant Quantum Integers: The Language
of Quantum Computers, the exploration of basic ideas of quantum mechanics is
begun. In particular, it seems natural to identify a qubit as a pair of compatible
null vectors, the up state being their sum and down state being their difference.
In this paper, two new representations of the symmetric group are given, [6].

The fourth paper in this series, Global and Local nilpotent Bases of Matrices,
gives up the idea of negatively correlated null vectors, and instead considers
positively correlated null vectors over the complex number field. This brings the
idea of local and global duality into much sharper focus. A surprising connection
is exhibited between discrete Fourier and Wavelet transforms by local duality
in a single Grassmann algebra, and perhaps provides a new route on the road
to unification of general relativity and quantum mechanics, [7]. Clearly, further
research can be done on the 2×2 block matrix structure and the Vahlen matrices
of the conformal group, [9].

Since the father geometric algebras G1,n have now been recognized, alongside
the well known mother geometric algebras Gn,n, one may wonder if there are
other unknown siblings to be discovered?

Acknowlegment

The Zbigniew Oziewicz Seminar on Fundamental Problemes in Physics, orga-
nized by Professors Jesus Cruz and William Page has played an important role
in the development of this work, [21, 22].

References

[1] W.E. Baylis, G. Sobczyk, Relativity in Clifford’s Geometic Algebras of
Space and Spacetime, International Journal of Theoretical Physics 43, 10
(Oct.2004), 2061-2079.

[2] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus: A
Unified Language for Mathematics and Physics, 2nd edition, Kluwer 1992.

[3] D. Hestenes, Space-Time Algebra, Gordon and Breach, NY 1966.

[4] G. Sobczyk, Geometric Algebras of Light Cone Projective Graph Geome-
tries, https://arxiv.org/pdf/2303.03452.pdf

[5] G. Sobczyk, Calculus of Compatible Nilpotents, preprint,
https://hal.science/hal-04108375

[6] G. Sobczyk, Itinerant Quantum Integers: The Language of Quantum Com-
puters, http://dx.doi.org/10.13140/RG.2.2.16627.50720

8



[7] G. Sobczyk, Global and Local Nilpotent Bases of Matrices, (Sept 2023)
http://arxiv.org/2309.13084

[8] G. Sobczyk, Matrix Gateway to Geometric Algebra, Spacetime and Spinors,
Independent Publisher November 2019. https://www.garretstar.com

[9] G. Sobczyk, Geometric Algebras of Compatible Null Vectors, Advanced
Computational Applications of Geometric Algebra Springer Volume 13771,
Lecture Notes in Computer Science series, (to appear)

[10] G. Sobczyk, Conformal Mappings in Geometric Algebra, Notices of the
AMS, Volume 59, Number 2, p.264-273, 2012.

[11] G. Sobczyk, New Foundations in Mathematics: The Geometric Concept of
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