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The concept of dual vector spaces was first introduced about 100 years ago by Hahn (1927), Schauder (1930), and Banach (1932). The word dual itself was first introduced by Bourbaki (1938). When the concept of a vector space over a field is broadened to a Grassmann algebra of null vectors over a field, a new concept of local duality arises. This paper explores the relationships between global and local duality in Grassmann algebras of null vectors, and the Clifford geometric algebras they become.

Introduction

The concept of dual vector spaces was first introduced about 100 years ago by Hahn (1927), Schauder (1930), and Banach (1932). The word dual itself was first introduced by Bourbaki (1938) (from Wikipedia). When the concept of a vector space over a field is broadened to a Grassmann algebra of null vectors over a field, a new concept of local duality arises.

Section 1, sets down the basic definitions and results from previous papers that are needed here, [START_REF] Sobczyk | Geometric Algebras of Light Cone Projective Graph Geometries[END_REF][START_REF] Sobczyk | Calculus of Compatible Nilpotents[END_REF][START_REF] Sobczyk | Itinerant Quantum Integers: The Language of Quantum Computers[END_REF][START_REF] Sobczyk | Global and Local Nilpotent Bases of Matrices[END_REF]. The spectral basis of a mother geometric algebra G n,n of neutral signature, consists of nilpotents and idempotents. Matrices, with their usual rules of addition and multiplication, become faithful coordinate matrices of geometric numbers [START_REF] Sobczyk | Matrix Gateway to Geometric Algebra, Spacetime and Spinors[END_REF]. Whereas the outcome of global duality in a pair of real Grassmann algebras is called the mother geometric algebra G n,n , the outcome of local duality in a single Grassmann algebra might appropriately be called the father geometric algebra G 1,n . The most famous such geometric algebra is G 1,3 , isomorphic to Dirac algebra, or spacetime algebra of relativity and quantum mechanics [START_REF] Baylis | Relativity in Clifford's Geometic Algebras of Space and Spacetime[END_REF][START_REF] Hestenes | Space-Time Algebra[END_REF][START_REF] Sobczyk | Global and Local Nilpotent Bases of Matrices[END_REF].

Section 2, explores fundamental relationships that exist between the global and local null vector bases of the real geometric algebras G n,n and G 1,2n-1 , respectively. Whereas the geometric algebra G n,n is algebraically isomorphic to it's faithful real coordinate matrix algebra, the Lorentz geometric algebra G 1,2n-1 is algebraically isomorphic to its faithful complex coordinate matrix algebra. The relationship between the global and local dual bases is reflected in the definition of a new -Hermitian transpose of the matrix relating these different bases.

Section 3, proposes a Program for Future Research developing the ideas that have been revealed by the concept of local duality. This includes in quantum mechanics, Fourier and Wavelet transforms, and perhaps even providing new insight into the nagging problem of the unification of general relativity and quantum mechanics [START_REF] Sobczyk | Unification of space-timematter-energy[END_REF][START_REF]Discrete fourier transform -Wikipedia en[END_REF][START_REF]Discrete wavelet transform -Wikipedia en[END_REF].

Basic definitions

A null vector or nilpotent is a vector whose square is zero. Denote by N F the universal algebra generated by taking all sums and products of null vectors, and obeying all of the familiar rules of matrix addition and multiplication over a field F, [START_REF] Sobczyk | Geometric Algebras of Compatible Null Vectors[END_REF].

A set of n linearly independent null vectors over a field of characteristic = 2 generate a 2 n -dimensional Grassmann algebra. Two 2 n -dimensional Grassmann algebras A n , B n ⊂ N are globally dual if for every a i ∈ A n and b j ∈ B n ,

2a i • b j := a i b j + b j a i = δ ij . (1) 
It is well-known that 2n null vectors A n ∪B n ⊂ N , taken with the inner product (1), generate a 2 2n -dimensional geometric algebra G n,n of neutral signature, [START_REF] Sobczyk | Matrix Gateway to Geometric Algebra, Spacetime and Spinors[END_REF].

The concept of local duality in a 2 n+1 -dimensional ∧-Grassmann algebra C n+1 ⊂ N , generated by n + 1 null vectors is defined differently. Two null vectors c i , c j ∈ C n+1 are said to be locally dual if

2c i • c j := c i c j + c j c i = 1 -δ ij . (2) 
If every pair of null vectors c i , c j ∈ C n+1 satisfies (2), then the ∧-Grassmann algebra C n+1 , taken with the inner product (2), generates the geometric algebra G 1,n of Lorentz signature p + q = 1 + n, [START_REF] Sobczyk | Calculus of Compatible Nilpotents[END_REF].

Global and local duality

Note that for n = 1, the concepts of global and local duality are identical in the geometric algebra G 1,1 . In this case, the Grassmann algebra A 1 ∪ B 1 , where

A 1 = {a 1 }, B 1 := {b 1 }, and 
C 2 := {c 1 , c 2 }. Choosing null vectors c 1 = a 1 , and c 2 = b 1 , it is easily checked that a 1 • b 1 = c 1 • c 2 = 1 2 ,
satisfying both conditions (1) and (2).

For the globally dual Grassmann algebra A 2 ∪ B 2 , where

A 2 = {a 1 , a 2 } and B 2 = {b 1 , b 2 }, satisfying the additional property (1), {A 2 , B 2 } T :=    a 1 b 1 a 2 b 2   
defines the spectral basis of null vectors for the geometric algebra G 2,2 . In terms of the spectral basis, the standard basis of the geometric algebra G 1,3 is defined by

   e 1 f 1 f 2 f 3    :=    1 1 0 0 1 -1 0 0 0 0 j j 0 0 1 -1       a 1 b 1 a 2 b 2    =    a 1 + b 1 a 1 -b 1 j(a 2 + b 2 ) a 2 -b 2 )    , (3) 
where j := √ -1, [START_REF] Sobczyk | Global and Local Nilpotent Bases of Matrices[END_REF][START_REF] Sobczyk | New Foundations in Mathematics: The Geometric Concept of Number[END_REF]. Defining

Ω 2 ρ := ρ ρ 1 -1 and Ω 2ρ := 1 1 ρ -ρ ,
where ρ ∈ C, equation ( 3) takes the block matrix form

   e 1 f 1 f 2 f 3    = Ω 2 [0] 2 [0] 2 Ω 2 j    a 1 b 1 a 2 b 2    . (4) 
Noting

1 1 1 -1 -1 = 1 2 1 1 1 -1 , j j 1 -1 -1 = 1 2 -j 1 -j -1 , it follows that    a 1 b 1 a 2 b 2    = 1 2    1 1 0 0 1 -1 0 0 0 0 -j 1 0 0 -j -1       e 1 f 1 f 2 f 3    , (5) 
or equivalently,

   a 1 b 1 a 2 b 2    = 1 2 Ω 2 [0] 2 [0] 2 Ω 2 j    e 1 f 1 f 2 f 3    , (6) 
where the -Hermitian transpose is used, [START_REF] Sobczyk | Global and Local Nilpotent Bases of Matrices[END_REF].

In the local dual null vector basis

C 4 =    c 1 c 2 c 3 c 4   , the geometric algebra G 1,3
is defined by

   e 1 f 1 f 2 f 3    = 1 √ 2    1 √ 3 1 √ 3 1 √ 3 1 √ 3 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1       c 1 c 2 c 3 c 4    , (7) 
or equivalently,

   e 1 f 1 f 2 f 3    = 1 √ 2 Ω 2 ρ Ω - 2 ρ Ω 2 -Ω - 2    c 1 c 2 c 3 c 4    (8) 
for ρ = 1 √ 3 . Noting that    1 √ 3 1 √ 3 1 √ 3 1 √ 3 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1    -1 = 1 4    √ 3 1 1 1 √ 3 -1 1 -1 √ 3 -1 -1 1 √ 3 1 -1 -1    =: 1 4 Ω 2 ρ Ω - 2 ρ Ω 2 -Ω - 2 for ρ = √ 3, it follows that    c 1 c 2 c 3 c 4    = 1 2 √ 2 Ω 2 ρ Ω - 2 ρ Ω 2 -Ω - 2    e 1 f 1 f 2 f 3    . (9) 
We say that the matrix in [START_REF] Sobczyk | Global and Local Nilpotent Bases of Matrices[END_REF], relating the standard and local bases of G 1,3 , is the local basis -Hermitian transpose of the matrix in [START_REF] Sobczyk | Geometric Algebras of Compatible Null Vectors[END_REF]. Thus, by definition, under the -Hermitian transpose in G 1,3 ,

1 √ 3 ←→ √ 3.
Clearly, the local basis -Hermitian transpose is an involution. The relations (3) and ( 8) imply

   a 1 b 1 a 2 b 2    = 1 2 √ 2    1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1    +     1 √ 3 1 √ 3 1 √ 3 1 √ 3 1 √ 3 1 √ 3 1 √ 3 1 √ 3 -j -j j j -j -j j j        c 1 c 2 c 3 c 4    , and 
   c 1 c 2 c 3 c 4    = 1 2 √ 2    1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1    T +    √ 3 √ 3 j j √ 3 √ 3 j j √ 3 √ 3 -j -j √ 3 √ 3 -j -j       a 1 b 1 a 2 b 2    ,
or, equivalently, in the forms

   a 1 b 1 a 2 b 2    = 1 2 √ 2 Ω 2 [0] 2 [0] 2 Ω 2 j Ω 2 ρ Ω - 2 ρ Ω 2 -Ω - 2    c 1 c 2 c 3 c 4    , (10) 
where ρ = 1 √ 3 , and

   c 1 c 2 c 3 c 4    = 1 2 √ 2 Ω 2 ρ Ω - 2 ρ Ω 2 -Ω - 2 Ω 2 [0] 2 [0] 2 Ω 2 j    a 1 b 1 a 2 b 2    , (11) 
where in this case ρ = √ 3 as we have already seen in ( 9). The relationships [START_REF] Sobczyk | Conformal Mappings in Geometric Algebra[END_REF] and [START_REF] Sobczyk | New Foundations in Mathematics: The Geometric Concept of Number[END_REF], between the global spectral basis {a In this case,

             e 1 f 1 f 2 f 3 f 4 f 4 f 5 f 6 f 7              =           
1 1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 j j 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 j j 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 j j 0 0 0 0 0 0 1 -1

                      a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4            , or in iterated form      e 1 f 1 • • f 7      = 1 2 Ω 4 j [0] 4 [0] 4 Ω 4 j        a 1 b 1 • • a 4 b 4        . ( 12 
)
Using what we learned in the 4-dimensional case, inverting [START_REF] Sobczyk | Unification of space-timematter-energy[END_REF] gives

       a 1 b 1 • • a 4 b 4        = 1 2 Ω 4 j [0] 4 [0] 4 Ω 4 j      e 1 f 1 • • f 7      . ( 13 
)
Similarly

             e 1 f 1 f 2 f 3 f 4 f 4 f 5 f 6 f 7              = 1 2            1 √ 7 1 √ 7 1 √ 7 1 √ 7 1 √ 7 1 √ 7 1 √ 7 1 √ 7 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1                       c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8            , or in iterated form      e 1 f 1 • • f 7      = 1 2 Ω 4 ρ Ω - 4 ρ Ω 4 -Ω - 4      c 1 c 2 • • c 8      , (14) 
where ρ = 1 √ 7 . Inverting this last relation,

           c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8            = 1 2            √ 7 1 1 1 1 1 1 1 √ 7 -1 -1 1 1 -1 -1 1 √ 7 -1 1 -1 1 -1 1 -1 √ 7 1 -1 -1 1 1 -1 -1 √ 7 -1 -1 -1 -1 1 1 1 √ 7 1 1 -1 -1 -1 -1 1 √ 7 1 -1 1 -1 -1 1 -1 √ 7 -1 1 1 -1 1 -1 -1                         e 1 f 1 f 2 f 3 f 4 f 4 f 5 f 6 f 7              , or in iterated form      c 1 c 2 • • c 8      = 1 2 Ω 4 ρ Ω - 4 ρ Ω 4 -Ω - 4      e 1 f 1 • • f 7      , (15) 
where ρ = √ 7. Together, ( 12) and ( 14) imply the global spectral basis of G 1,7 is the -Hermitian transpose of the local dual basis of G 1,7 , with α = 1 4 and β = 1 √ 7 . Using ( 14) and ( 15), we can directly relate the global and local bases vectors of G 1,7 , getting ( a

1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 ) T = 1 4      1 + 1 √ 7 -1 + 1 √ 7 -1 + 1 √ 7 1 + 1 √ 7 -1 + 1 √ 7 1 + 1 √ 7 1 + 1 √ 7 -1 + 1 √ 7 -1 + 1 √ 7 1 + 1 √ 7 1 + 1 √ 7 -1 + 1 √ 7 1 + 1 √ 7 -1 + 1 √ 7 -1 + 1 √ 7 1 + 1 √ 7 1 -j 1 + j -1 -j -1 + j -1 + j -1 -j 1 + j 1 -j -1 -j -1 + j 1 -j 1 + j 1 + j 1 -j -1 + j -1 -j 1 -j -1 -j -1 -j 1 -j 1 + j -1 + j -1 + j 1 + j -1 -j 1 -j 1 -j -1 -j -1 + j 1 + j 1 + j -1 + j 1 -j 1 + j -1 -j -1 + j 1 -j 1 + j -1 -j -1 + j -1 -j -1 + j 1 -j 1 + j -1 -j -1 + j 1 -j 1 + j          c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8     .
Analogous to [START_REF] Sobczyk | Conformal Mappings in Geometric Algebra[END_REF] and [START_REF] Sobczyk | New Foundations in Mathematics: The Geometric Concept of Number[END_REF], relating spectral basis of G 2,2 to local dual basis of G 1,3 , for G 4,4 and G 1,7 ,

       a 1 b 1 • • a 4 b 4        = 1 4 Ω 4 [0] 4 [0] 4 Ω 4 j Ω 4 ρ Ω - 4 ρ Ω 4 -Ω - 4    c 1 • • c 8    , (16) 
and

   c 1 • • c 8    = 1 4 Ω 4 ρ Ω - 4 ρ Ω 4 -Ω - 4 Ω 4 [0] 4 [0] 4 Ω 4 j        a 1 b 1 • • a 4 b 4        , (17) 
with α = 1 4 and β = √ 7. Block matrices greatly simplify the calculations using the iterated (2 k × 2 k )-block matrices Ω 2 k , Ω - 2 k , their inverses and -Hermitian involution.

Because of the periodicity modulo(8) of Clifford geometric algebras, higher order geometric algebras G p+1,q+1 , for p+q = 8, can be broken down into blocks of 2 × 2 matrix algebras with entries in G p,q , [8, p.71]. The power of a 2 × 2 block matrix structure has been richly exploited in the analysis of the Möbius transformations of the conformal group [START_REF] Sobczyk | Geometric Algebras of Compatible Null Vectors[END_REF][START_REF] Sobczyk | Conformal Mappings in Geometric Algebra[END_REF], [16, p.244].

Program for Future Research

In [START_REF] Sobczyk | Geometric Algebras of Light Cone Projective Graph Geometries[END_REF], I began the study of the Lorentz geometric algebras G 1,n and G n,1 in terms of what I called in that paper positively and negatively correlated null vectors. In particular, I was struck by the close relationship to many ideas in graph theory, and began the development of a geometric calculus on those algebras, similar to the now more widely known geometric calculus on Euclidean space. Clearly, there is much left to explore along these lines, [START_REF] Hestenes | Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics[END_REF][START_REF] Sobczyk | New Foundations in Mathematics: The Geometric Concept of Number[END_REF][START_REF] Khovanova | Clifford Algebras and Graphs[END_REF].

In a second paper, Calculus of Compatible Nilpotents the vector derivative, and basic differential formulas for elementary functions, can be developed in the basis of compatible null vectors of a in geometric algebra with a Lorentz metric signature, [START_REF] Sobczyk | Calculus of Compatible Nilpotents[END_REF].

In the third paper of this series, Itinerant Quantum Integers: The Language of Quantum Computers, the exploration of basic ideas of quantum mechanics is begun. In particular, it seems natural to identify a qubit as a pair of compatible null vectors, the up state being their sum and down state being their difference. In this paper, two new representations of the symmetric group are given, [START_REF] Sobczyk | Itinerant Quantum Integers: The Language of Quantum Computers[END_REF].

The fourth paper in this series, Global and Local nilpotent Bases of Matrices, gives up the idea of negatively correlated null vectors, and instead considers positively correlated null vectors over the complex number field. This brings the idea of local and global duality into much sharper focus. A surprising connection is exhibited between discrete Fourier and Wavelet transforms by local duality in a single Grassmann algebra, and perhaps provides a new route on the road to unification of general relativity and quantum mechanics, [START_REF] Sobczyk | Global and Local Nilpotent Bases of Matrices[END_REF]. Clearly, further research can be done on the 2×2 block matrix structure and the Vahlen matrices of the conformal group, [START_REF] Sobczyk | Geometric Algebras of Compatible Null Vectors[END_REF].

Since the father geometric algebras G 1,n have now been recognized, alongside the well known mother geometric algebras G n,n , one may wonder if there are other unknown siblings to be discovered?

2 √ 2 and β = 1 √ 3 .

 2213 1 , b 1 , a 2 , b 2 } and the local dual basis {c 1 , c 2 , c 3 , c 4 }, is expressed in terms of the local -Hermitian involution. The global spectral basis in (10) is the -Hermitian transpose of the local dual basis (11) because there exists constants α, β ∈ R such (11) is true. In this case, equation (11) shows that α = 1 2 √ 2 and β = √ 3, and for (10), α = 1 The global spectral basis {a 1 , b 1 , a 2 , b 2 , a 3 , b 3 , a 4 , b 4 } is similarly related to the local dual basis {c 1 , c 2 , c 3 , c 4 , c 5 , c 6 , c 7 , c 8 }.
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