
HAL Id: hal-04278110
https://hal.science/hal-04278110

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A SLAHP in the face of DLL Search Order Hijacking
Antonin Verdier, Romain Laborde, Mohamed Ali Kandi, Abdelmalek Benzekri

To cite this version:
Antonin Verdier, Romain Laborde, Mohamed Ali Kandi, Abdelmalek Benzekri. A SLAHP in the face
of DLL Search Order Hijacking. 3rd International Conference on Ubiquitous Security (UbiSec 2023),
Nov 2023, Exeter, United Kingdom. pp.177–190, �10.1007/978-981-97-1274-8_12�. �hal-04278110�

https://hal.science/hal-04278110
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

A SLAHP in the face of DLL Search Order
Hijacking

Antonin Verdier, Romain Laborde, Mohamed-Ali Kandi, and Abdelmalek
Benzekri

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France
{antonin.verdier, romain.laborde, Mohamed-Ali.Kandi,

abdelmalek.benzekri}@irit.fr

Abstract. DLL Search Order Hijacking (also known as DLL Hijack-
ing or DLL planting) is a problem that is generally overlooked by soft-
ware developers even though its existence has been known for over a
decade. While Microsoft has designed and implemented mitigations to
reduce the feasibility and the impact of DLL Search Order Hijacking,
this issue is worth being brought back up due to the recent adoption of
user-writable directories as potential, and sometimes default, software in-
stallation paths (in lieu of directories like “Program Files” which require
administration privileges by default) in order to improve installation suc-
cess rates. We conducted a study on 48 different software programs (Top
software on Sourceforge across 4 different categories and the 4 major
web browsers) and found that more than 88% of them were vulnerable
to some form of DLL Search Order Hijacking. To alleviate this issue, we
propose SLAHP, a novel way of preventing DLL Search Order Hijack-
ing exploitation in the form of a proof-of-concept implementation that is
both easy to integrate with new and existing products by software devel-
opers and users. It is invisible to end users while still allowing the usage
of previously insecure installation locations. To further demonstrate the
usability of our solution, we conducted performance tests and found that
its impact is mostly negligible.

Keywords: DLL hijacking · DLL sideloading · Shared libraries

1 Introduction

The principle of DLL Search Order Hijacking (DSOH) is to confuse the Windows
OS into loading a malicious DLL (Dynamic-Link Library) file instead of a genuine
one by taking advantage of the way Windows locates DLL files. This attack
enables attackers to hide malicious behaviour behind genuine applications by
making trusted processes execute their code. While its existence has been known
for over a decade [17, 18] and is well documented by reputable sources [15], it
still is regularly used by threat actors [3, 6] as a mean to obtain persistence or
to perform privilege escalation. Indeed, up to 20% of criminal and APT attacks
in 2019 [2] used DSOH. In addition, as of 2021, no EDR was able to detect the

attack mechanism itself [9]. Back in 2003, Microsoft added a mitigation that
fixed most DSOH vulnerabilities, this mitigation was effective mainly because
most software programs were installed in the C:\Program Files directory, which
requires administrative privileges to be written into. However, this hypothesis
does not hold anymore and the past decade has seen more and more software
developers choosing different installation directories like AppData to facilitate
the installation process. This directory, being located in the user directory, is
writable by an unprivileged user. This enhances the user experience and the
installation success rate. However, it also simplifies the task of attackers to place
their malicious DLL in the targeted software installation directory. Furthermore,
DSOH’s underlying issue can also be exploited by attackers in order to gain initial
access to a system: this is known as DLL Sideloading [11,16], which is sometimes
considered to be a technique of its own. While DLL Sideloading isn’t the main
topic of this research, its similarity with DSOH makes it a secondary target.

In this article, we present SLAHP (for Shared Library Anti Hijack Protector),
a solution against DSOH and similar techniques that is easy to integrate with
new and already existing software as well as unnoticeable by end-users. These
characteristics should facilitate the adoption of our solution by both developers
and end-users, as well as allow advanced users to protect programs without any
intervention from the original software developer. Our solution can be added as
a static library during development or in the form of a custom launcher after
compilation and/or distribution.

This paper is organised as follows. In section II, we explain how the way the
Windows operating system performs DLL loading can be exploited by threat
actors. Section III contains the results of a vulnerability survey we conducted on
how widespread the issue of DSOH is. Then, we present our solution and evaluate
its performance in concordance with our objectives. Next, we discuss related
works before finally providing a summary of our contributions and discussing
ideas to overcome our solution’s limits in future works.

2 What is DLL Search Order Hijacking?

In this section, we introduce the Windows DLL loading process exploitation and
the current mitigations available.

2.1 Exploitation

DLLs are Windows shared libraries that can be referenced by name only. To ac-
complish this, the Windows OS employs a search order that specifies the list of
directories it should sequentially inspect for libraries. It starts with the libraries
listed in the KnownDLLs registry key, followed by the Application Installation di-
rectory, the System directories (e.g., C:\Windows\System32), the current work-
ing directory (CWD) and finally the directories listed in the PATH variable.

However, the simplicity of the DLL search order mechanism has its flaws.
If we consider the hypothetical case where a threat actor is able to place an

arbitrary file in an application’s installation directory, the application could end
up loading and executing malicious code against its will. This is because the
Windows OS only looks at file names to locate DLLs. Thus, a malicious DLL
file with the same name as the genuine system file could be loaded in lieu of the
real one. This exploitation process is illustrated in Figure 1.

Fig. 1. Diagram of a search-order-hijacked DLL loading

However, such an attack requires two conditions: i) the threat actor must be
able to write to the application’s installation directory and ii) the malicious DLL
must either be optional to the target program or be able to emulate the features
of the usurped DLL, which is known as a proxy DLL. As mentioned earlier,
the first condition is becoming more and more prevalent as applications seek
out ease of installation by choosing directories that can be written to without
administrative privileges as their installation location; while some software such
as Google Chrome or Mozilla Firefox use these directories as a failsafe, more
and more software — mostly observed amongst software using the Electron and
Chromium Embedded Framework (CEF) — use these directories as their de-
fault installation location, sometimes without user consent. As for the second
condition, it is only a matter of time and expertise for the threat actor to meet
it.

2.2 Mitigations proposed by the Windows OS

DllSearchMode Windows 2000 SP3 [13] introduced an optional feature called
DllSearchMode that moved the CWD further down the DLL search order (it
was initially inspected before the system directories). This mitigation has been
enabled by default since Windows XP SP2 in August 2004 and reduced the
potential of DSOH exploitation, as software programs were generally installed
in the C:\Program Files directory, which requires administrative privileges to
write to.

PreferSystem32 As part of the 2017 Windows 10 Creators Update, Microsoft
introduced a similar mitigation called PreferSystem32. This mitigation works
by inverting the application installation directory and the system directories in
the DLL search order. While this approach can prevent attacks such as the one
described in section 2.1, it also prevents by design a developer from loading a
custom DLL that shares its name with a DLL present in the system directo-
ries. Surprisingly, the amount of documentation surrounding this mitigation is
very poor and sometimes incorrect. Indeed, the Powershell documentation [21]
describes the existence of a Powershell command that can be used to enable
that mitigation on an executable, or system-wide. While that command exists,
we found that an executable that is supposed to be protected is still vulnerable
to the exploitation of DSOH vulnerabilities. The most complete piece of docu-
mentation we could find [4] is 4 sentences long. Nonetheless, we found out that
the Mozilla Firefox browser uses PreferSystem32 in order to protect itself from
DSOH vulnerabilities. By reading Firefox’s source code and experimenting with
the OS-provided APIs, we observed that the only way we could make the miti-
gation work was by having a process acting as a launcher enable the mitigation,
then start the program that we want to protect. In conclusion, PreferSystem32
is just a partial mechanism to mitigate DSOH vulnerabilities. We believe that
the complexity brought by its implementation is the main reason behind its
observable absence in software development.

3 Survey of software currently vulnerable to DLL Search
Order Hijacking

In order to better understand how widedespread the issue of DSOH is, we de-
veloped a tool that allowed us to look for DSOH vulnerabilities in applications
with as little human interaction as possible. We used a sample of 48 different pro-
grams, including programs from the top education, text editors and file-sharing
software on Sourceforge, as well as the four major web browsers (Google Chrome,
Mozilla Firefox, Microsoft Edge & Opera).

In order to detect DSOH vulnerabilities, our tool enumerates the depen-
dencies of the program we are analysing and tries to usurp the name of each
dependency, one by one. The detected vulnerabilities can be qualified as low-
hanging, as our tool is not designed to mimic any of the features of the original
DLLs. It only contains code that is executed on loading and creates a temporary
file whose existence constitutes proof of successful exploitation.

We have observed that some programs refuse to start when some of their
dependencies at start-up do not contain the expected DLL function exports; thus,
the amount of vulnerable programs we have detected may be underestimated.
Another consequence is that our tests induced apparent misbehaviour (e.g. black
screen) from the programs we analysed. However, we do not believe that this
would be a problem for an actual threat actor, as the creation of a malicious
proxy DLL is a task that can be accomplished with open-source tools [12].

The results of the vulnerability tests we conducted are summarised in Table.
1. We categorised the analyzed software according to their default installation
directory. The motivation behind this partition is the fact that these installa-
tion directories largely represent the main difficulty of DSOH-based persistence
attacks. Indeed, directories such as C:\Program Files can only be written to
with administrative privileges making the task of a threat actor harder, while the
C:\%USERNAME%\AppData directory can be written to by its owner, %USERNAME%.
Portable applications were assigned their own category because the choice of
their installation directory is up to the user. However, we can speculate that the
users are more likely to install them in directories that do not require adminis-
trative privileges as it is the easiest solution.

Table 1. DSOH vulnerability survey results

Location Vulnerable Non-vulnerable Total

AppData 15 3 18

Portable 6 1 7

Program Files 21 1 22

Total 42 5 47

We can see that most of the software we have tested is vulnerable to DSOH,
regardless of the category. However, the programs installed into Program Files

directory seem to exhibit the highest vulnerability proportion. It should be noted
that the relatively small amount of programs we analyzed may not accurately
represent the totality of computer software programs, and consequently our esti-
mated total proportion of 89% vulnerable programs is only intended to highlight
that this security issue is common for some of the most popular programs. There-
fore, this justifies research in mitigating DSOH attacks.

We hypothesise that there are two reason explaining the amount of programs
currently vulnerable to DSOH. We believe the first one is the general ignorance
of its existence [19] by software developers and the lack of easily integrable
mitigation mechanisms. The second possible reason is the nonchalant attitude
adopted by some major software editors, such as Google [1] ignoring this security
issue, arguing the fact that the exploitation of DSOH largely depends on a threat
actor having had prior access to the targeted computer. Their reasoning is that
Chrome cannot do anything against a threat actor having access to the computer.
We know this rationale is not entirely correct, as Mozilla Firefox implements
security features that are specifically designed to combat DSOH.

4 The Shared Library Anti Hijack Protector

4.1 General principle

Our objective is to protect software programs against DSOH. Considering the
problems of DSOH unawareness and lack of attention, we have tried to make

our solution as easy to implement as possible to facilitate general adoption by
developers. Furthermore, our solution is intended to be used by advanced users to
protect vulnerable programs when the software editor is not interested in fixing
vulnerabilities in its own software, for instance. The source code of SLAHP is
available on Github1.

Our solution is designed to filter DLL loading attempts based on a security
policy. Thus, the first step consists of loading the security policy, either from
a remote HTTP server or from a cached file. To prevent threat actors from
tampering with the security policy configuration file, either by using man-in-
the-middle network attacks or simply by modifying it during initial access, we
provide the option of digitally signing it. Once the authenticity and integrity
of the security policy has been verified, SLAHP will intercept every attempt to
load a DLL, i.e. every absolute path from which Windows tries to load a DLL,
and allow or deny it based on whether or not the DLL complies with the security
policy. An overall framework is illustrated in Fig. 2.

We used the Microsoft Detours library [8] to intercept DLL loading attempts.
SLAHP specifically hooks the NtQueryAttributesFile function, a general-purpose
semi-documented function of the Windows API used to retrieve information
about files; this function also allows the DLL loading system to determine
whether or not a DLL file with the desired name exists at each location of
the search order. While using this unspecialised function as a way to intercept
DLL loading attempts is not ideal, it gives us the ability to pretend the file
does not exist by modifying the return value of the function. This way, our solu-
tion ”blocks” DLL loading attempts that do not conform to the defined security
policy. This approach allows potentially under-attack programs to continue op-
erating normally: if the DLL does not exist from the program’s point of view, the
rest of the search order is inspected until a compliant DLL is found and loaded.

When SLAHP denies the loading of a DLL, it can either automatically at-
tempt to fetch a potentially newer security policy from the software developer’s
remote server or simply prompt the end-user for the action they want to take,
while informing them of the potentially dangerous situation: they can ignore the
issue, abort execution or try to update the security policy in case a DLL got
updated to a version that was not allowed by the cached security policy. An
important aspect of this choice is that none of the provided options can have
a negative security impact. Hence, an inattentive or frustrated user cannot be
used as a vector for acquiring higher attack capabilities.

Finally, SLAHP has been designed to be able to protect programs that employ
a multi-process architecture; this is often the case with web browsers and software
using the Electron Framework or the Chromium Embedded Framework. This is
accomplished by using inter-process communication operating system features
such as events, shared memory and mutexes.

1 https://github.com/lacaulac/SLAHP

Fig. 2. Overall framework

4.2 Security policy

The security policy for a given SLAHP-protected program is specified in a con-
figuration file named policy.cfg. Its optional digital signature is contained by
the policy.cfg.sig in base64 form. An example of such a configuration file is
shown in figure 3. A configuration file is divided into two parts : the protection
options and a list of allowed DLLs.

Every line of the allow-list defines a mapping between the name of an allowed
DLL and one or more of its versions, each represented by a hash. In the example
depicted in figure 3, two versions of test dll.dll are allowed while only one
version of other dll.dll is permitted. By default any DLL not included in this
list is denied.

In addition to the list of hashes of the allowed DLL, the current version of
SLAHP provides three different protection options to change the default be-
havior to make it easier to write SLAHP configuration files. The first option
is called allowunspecified and allows DLLs that are not explicitly listed in
the list of allowed hashes to be accepted. In the case of figure 3, test dll.dll

and other dll.dll should still match with the specified hashes. However, if
the program requires unspecified dll.dll, no constraint will apply to it. This
option is interesting when the hash of a DLL is not known in advance which
is the case for plugins or optional third-party dependencies. The potential vul-
nerability introduced by enabling this option can be mitigated by using the
unspecifiedcantbeinlocaldirectory, which prevents unknown DLLs to be
loaded from the installation directory of the program, enforcing DLLs to be
loaded only from files listed in the KnownDLLs registry key and files within the
system directories, PATH directories and current working directory. Finally, the
signatureallowsbypass configuration option can allow any DLL to be loaded
regardless of the security policy as long as the DLL is signed using a valid code
signing certificate. In the extreme case where an application and all of its de-

pendencies are signed with a valid certificate, using this option would negate the
need to define DLL hashes; however, this is far from the norm.

Fig. 3. Example config file
Fig. 4. Calling InitProtector

4.3 Configuration options

SLAHP also provides configuration options regarding how the security policy is
obtained and the usage of certain specific behaviour options.

The first configuration options are the domain name and path to the security
policy configuration file on the remote HTTP server and the desired user agent.
Then, the developer / user can choose if they want SLAHP to communicate
with the server using HTTPS and whether or not SLAHP should ignore HTTPS
security errors (e.g. invalid X.509 chain of trust). If the security policy is signed,
the issuer’s public key must also be provided so that the integrity of the security
policy configuration file can be verified. In order to avoid systematically relying
on a remote server to obtain the security policy, which could lead to increased
start-up delays as well as denial-of-service if the remote server can’t be reached,
the configuration file and its digital signature can optionally be stored locally.

Finally, the developer / user can also set whether or not the prompting for
human decisions and the support for software using a multi-process architecture
that are described in section 4.1 should be enabled.

4.4 Integration possibilities

SLAHP can integrate with new programs as a static library that can be added to
the project during development (static integration) and with applications that
are already compiled as a custom launcher (dynamic integration).

Static integration SLAHP is available as a static library (see Figure 5) that
can be added to any C/C++ project. Once this static library has been added
to the project, SLAHP can be easily initialised by calling the InitProtector

function, which takes as parameters the configuration options detailed in sec-
tion 4.3 as can be seen in Fig. 4. We recommend calling InitProtector as
early as possible, as the filtering of DLL loading attempts only happens once
SLAHP is initialised. If the developer is using the Microsoft Visual Studio com-
piler toolchain, using the delayed-loading [22] linking option wherever possible
will help prevent DLLs from being loaded before SLAHP is initialised.

Fig. 5. Static library integration

Dynamic integration Our solution can also be used when the source code
of the program is not available. We call this approach the dynamic integration,
allowing virtually anyone to protect the software installed on their computer.
This is also useful when the project is written in a language that does not
provide any Foreign Function Interface that can work with our static library
integration, or when SLAHP cannot be initialised before potentially vulnerable
DLLs are loaded (e.g. packaged python software, Electron applications, etc.).

To accomplish this, the dynamic integration is separated in two components,
as shown in Fig. 6. The first component is a SLAHP-protected launcher appli-
cation that starts the target program in a suspended state (i.e. the program
gets loaded into memory but no code execution takes place since all threads are
suspended) and performs DLL Injection [20] on the target process, causing it
to load the ProtectorAgent. Upon loading, the DLL will initialise SLAHP and
resume the execution of the targeted process’s thread(s).

We provide a secured launcher creator program whose task is to create a
Launcher.exe & ProtectorAgent.dll file pair based on the configuration op-
tions described in section 4.3. We decided to make the launcher creator work by
patching the desired configuration options into pre-compiled binaries, making the
presence of a compiler toolchain unnecessary to create a Launcher and a Pro-
tector Agent. This strategy makes our solution easier to use by non-developers.

A video demonstrating the dynamic integration of SLAHP with Microsoft
Teams is available for watching2.

4.5 Solution evaluation

Security analysis Once it is initialised, SLAHP is able to successfully block
any attempts of loading unauthorised DLLs. If we refer to the example described
in section 2.1, simply disallowing the loading of unspecified files in the security

2 https://youtu.be/sb-lZN37tCg

Fig. 6. Dynamic launcher-based integration

policy would mean the malicious file located in the installation folder does not
comply with the policy. The DLL loading algorithm would thus ignore it and
continue to inspect the next directories in the search order, where the genuine
DLL should be found and loaded from.

As our solution aims at protecting software against DSOH attacks, we paid
particular attention to minimise the attack surface of SLAHP. Since SLAHP
depends on several libraries, we have built in security measures against DSOH.
Firstly, the DLLs used by SLAHP are only loaded from system directories. We
chose to trust the contents of these directories, because we are convinced that
if an attacker were to gain the privileges to modify these directories, he would
have access to much more advanced persistence capabilities. We also chose to
load its dependencies using the delayed-loading [22] method to ensure the DLL
origin restriction has been applied before any DLL can be loaded.

The integrity of the security policy is paramount, as its content dictates what
DLLs can and cannot be loaded. An attacker may try to make SLAHP load an
ineffective policy through Man-in-the-middle attacks when using HTTP(S) or by
modifying the cached policy. However, our implementation provides an option
to digitally sign the security policy and check its integrity before loading it.

Finally, regarding the integrity of SLAHP’s code (i.e. the initialisation func-
tion or the launcher & protector agent library), our solution does not provide any
protection against the modification of its compiled code by itself. Nonetheless,
Code signature using Windows code sign certificates can overcome this issue.

Performance evaluation To assess the overall impact our solution can have on
the performance of a protected software product, we considered the time taken
by SLAHP to initialize and the overhead caused by the filtering of DLL loading
attempts. For the initialisation time evaluation, we decided to consider only the
cache-based loading, as retrieving a file from a remote server could introduce

Table 2. Performance impact - Startup time

Unsigned security policy Signed security policy

Time 1.01 ms 1.39 ms

Table 3. Performance impact - DLL load time

Policy DLLs, by implicit dependencies
situation 0 6

Unprotected (a) 0.16 ms 0.99 ms

Allow (hash-based) (b) 3.04 ms 3.4 ms

Disallow (hash-based) (c) 60.04 ms 59.32 ms

Allow (digital signature-based) (d) 11.88 ms 14.55 ms

Disallow (digital signature-based) (e) 67.58 ms 71.13 ms

delays through no fault of SLAHP. As detailed in Table. 2, the average added
delay is less than 2ms, with little impact from verifying the digital signature of
the security policy.

Regarding the evaluation of the efficiency of the DLL filtering mechanism, we
decided to evaluate how fast DLLs were loaded in 5 different cases: (a) Without
the protector, (b) Loading allowed if the DLL was compliant with the security
policy because of its hash - no digital signature checks, (c) Loading blocked if
the DLL was non-compliant with the security policy because of its hash - no
digital signature checks, (d) Loading allowed if the DLL was compliant with the
security policy because of its valid digital signature, but with an invalid hash, (e)
Loading blocked if the DLL was non-compliant with the security policy because
of both its hash and invalid digital signature.

An important aspect to consider in DLL loading is that any DLL can option-
ally depend on one or more DLL(s). In our performance tests, we only validate
implicit (loaded before start) dependencies. Indeed, if a DLL needs to load other
DLLs in order to complete its own loading, a higher number of dependencies
will result in a longer overall load time. This is especially the case here, as each
of these dependencies have to be verified by SLAHP; note that our tests always
made the dependencies have a valid hash, so as not to skew the ”block” results.

Table. 3 shows the average load time for each of the 5 cases applied to two
DLLs: one with no implicit dependencies and one with 6 implicit dependencies.
Each test case was run 500 times for each DLL. Because the DLLs used to test
the performance of our solution were written specifically for this task, they’re
only present in the installation directory of the performance test binary. Thus
if a loading is blocked, looking for the file further down the search order will
not yield any conclusive results but will still take a significant amount of time.
This would generally not be the case when dealing with real-world DLLs, as
most of the dependencies we’ve observed are already either in the application
installation directory or in the system directories.

While the overhead introduced by our solution is proportionally significant,
we can observe that during normal operation (i.e. no DLL gets blocked) the load
time is always well under 50ms, which would not be noticeable by the end-user.

5 Related works

Min and Varadharajan [14] proposed a cross-verification mechanism which can be
described as a bi-directional trust relationship between a caller and a callee (e.g.
an executable and a DLL). The identity of a file is based on its digital signature,
more precisely on the entity that signed the program. However, establishing
mutual trust relationship at scale “may be hard”, as per the author’s own words.

Gates et al. [5] suggested adding an installation mode to Windows that re-
quires a system reboot to be enabled. Only the binary files (e.g. .exe, .dll, etc.)
that were created in the installation mode would be allowed to have their code
executed. Nonetheless, it ultimately places the burden on users to avoid introduc-
ing malware on their computer. This is not a reasonable expectation, as social-
engineering attacks are the easiest way for an APT to establish a foothold [10].

Wu and Yap [23] introduced the concept of ”domains” for identifying binary
files, with rules making domain-less binary files non-executable and to prevent
files from different domains to tamper with each other. Their solution also em-
ployed an ”install mode” mechanism that when enabled marked newly created
files with the domain of the program that wrote them (as well as a special
”temporary trusted” mode designed for software development and packed bi-
nary execution). The prerequisite for enabling the install mode is user authen-
tication, with the same implications of potential social-engineering described
before. However, correctly signed executables can be exempted which reduces
the frequency of authentication, thus making users less tempted to authenticate
without thinking about the implications.

Finally, Halim et al. [7] introduced a system-wide list of trusted software
that covers all the file types containing executable code. This approach assigns
identifiers to all binary files based on information such as their cryptographic
hash, location, existing digital signature, etc. However, this system ultimately
requires a qualified individual or entity to maintain the global allow list, which
makes this approach incompatible with consumer use.

Conversely, our solution is easy to integrate, scalable thanks to per-program
security policies (no administrator needed) and prevents social-engineering at-
tacks, as user interactions cannot result in dangerous behaviour.

6 Conclusion & Future work

We proposed SLAHP, a security solution against DLL Search Order Hijacking
which can be easily and quickly integrated with both new and already existing
software products. We conducted a survey on widely used programs that showed
many of them are still vulnerable to DSOH. SLAHP provides Windows develop-
ers with a complete framework to protect their software products against DSOH.

Additionally, they can continue choosing unsecure installation directories such as
AppData to facilitate the installation process of their program without introduc-
ing new security issues. In addition, advanced users can also protect themselves
should the editors of vulnerable software be indifferent. We assess the security
as well as the performance, proving the feasibility of our solution.

There still are areas of our solution that could greatly benefit from further
development and research. Indeed, we have observed that in certain cases, DLL
loading attempts were made before SLAHP’s initialisation which results in po-
tential vulnerability; we believe the use of the PreferSystem32 mitigation in
SLAHP could solve this issue. As SLAHP is a proof-of-concept, some features
are not currently as secure (e.g. IPC communications) or as configurable (i.e.
No fine-grained configuration of signatureallowsbypass) as one would expect
from a commercial software product.

In terms of long term research, we will extend the DLL Search Order Hijack-
ing topic to low footprint attacks, in that they hide their malicious behaviour
on infected systems behind the execution of trusted software, resulting in a very
limited amount of indicators (e.g. dropped files). This is also the case of Living-
off-the-Land (LotL) attacks, where threat actors abuse the features of trusted
software components, chaining them together to accomplish their malicious ac-
tivities without having to introduce new software components that could be
subject to detection. In our ongoing research, we are delving deeper into the
matter of LotL attacks and how we could detect them.

Acknowledgments

This work was partially supported by the European research projects H2020
CyberSec4Europe (GA 830929), Horizon Europe DUCA (GA 101086308), and
CNRS EU-CHECK.

References

1. Chromium Docs - Chrome Security FAQ, https://chromium.googlesource.com/
chromium/src/+/master/docs/security/faq.md

2. CrowdStrike: 2020 Global threat report (Mar 2020), https://go.crowdstrike.
com/rs/281-OBQ-266/images/Report2020CrowdStrikeGlobalThreatReport.pdf

3. Faou, M.: Turla Crutch: Keeping the “back door” open (Dec 2020), https://www.
welivesecurity.com/2020/12/02/turla-crutch-keeping-back-door-open/

4. Galvan, A., Nagaraju, S.S.: Triaging a DLL planting vulnerability | MSRC blog |
microsoft security response center, https://msrc.microsoft.com/blog/2018/04/
triaging-a-dll-planting-vulnerability/

5. Gates, C., Li, N., Chen, J., Proctor, R.: CodeShield: towards personalized appli-
cation whitelisting. In: Proceedings of the 28th Annual Computer Security Appli-
cations Conference on - ACSAC ’12. p. 279. ACM Press, Orlando, Florida (2012)

6. Gatlan, S.: Realtek Fixes DLL Hijacking Flaw in HD Audio Driver
for Windows (Feb 2020), https://www.bleepingcomputer.com/news/security/
realtek-fixes-dll-hijacking-flaw-in-hd-audio-driver-for-windows/

7. Halim, F., Ramnath, R., Sufatrio, Wu, Y., Yap, R.H.C.: A Lightweight Binary
Authentication System for Windows. In: Karabulut, Y., Mitchell, J., Herrmann,
P., Jensen, C.D. (eds.) Trust Management II, vol. 263, pp. 295–310. Springer US,
Boston, MA (2008)

8. Hunt, G., Brubacher, D.: Detours: Binary interception of win32 func-
tions. In: Third USENIX windows NT symposium. p. 8. USENIX
(Jul 1999), https://www.microsoft.com/en-us/research/publication/

detours-binary-interception-of-win32-functions/

9. Karantzas, G., Patsakis, C.: An Empirical Assessment of Endpoint Detection and
Response Systems against Advanced Persistent Threats Attack Vectors. Journal
of Cybersecurity and Privacy 1(3), 387–421 (Jul 2021)

10. Krombholz, K., Hobel, H., Huber, M., Weippl, E.: Advanced social engineering
attacks 22, 113–122

11. Lechtik, M., Rascagnères, P., Kayal, A.: LuminousMoth APT: Sweeping attacks
for the chosen few, https://securelist.com/apt-luminousmoth/103332/

12. Malura, M.: Dll proxy generator, https://github.com/maluramichael/

dll-proxy-generator, original-date: 2018-09-29T20:51:52Z
13. Microsoft: Windows 2000 security hardening guide: Security configuration,

https://web.archive.org/web/20080323071041/https://www.microsoft.com/

technet/security/prodtech/windows2000/win2khg/05sconfg.mspx\#E6JBG

14. Min, B., Varadharajan, V.: Rethinking Software Component Security: Software
Component Level Integrity and Cross Verification. The Computer Journal 59(11),
1735–1748 (Nov 2016)

15. MITRE: Hijack Execution Flow: DLL Search Order Hijacking, Sub-technique
T1574.001 - Enterprise | MITRE ATT&CK®, https://attack.mitre.org/

techniques/T1574/001/

16. MITRE: Hijack Execution Flow: DLL Side-Loading, Sub-technique T1574.002
- Enterprise | MITRE ATT&CK®, https://attack.mitre.org/techniques/

T1574/002/

17. National Vulnerability Database: NVD - CVE-2010-3129, https://nvd.nist.gov/
vuln/detail/CVE-2010-3129

18. National Vulnerability Database: NVD - CVE-2010-3139, https://nvd.nist.gov/
vuln/detail/CVE-2010-3139

19. Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.C., Cappos, J., Zhuang, Y.: It’s
the psychology stupid: how heuristics explain software vulnerabilities and how
priming can illuminate developer’s blind spots. In: Proceedings of the 30th Annual
Computer Security Applications Conference. pp. 296–305. ACM

20. Richter, J.: Load your 32 bit dll into another process’s address space using injlib.
Microsoft Systems Journal-US Edition pp. 13–40 (1994)

21. Wheeler, S., Sherer, T.: Set-ProcessMitigation (ProcessMitigations), https:

//learn.microsoft.com/en-us/powershell/module/processmitigations/

set-processmitigation

22. Whitney, T., Robertson, C., Sharkey, K., nxtn, MSDN.WhiteKnight,
Jones, M., Blome, M., Hogenson, G., Cai, S.: Linker support for delay-
loaded DLLs, https://learn.microsoft.com/en-us/cpp/build/reference/

linker-support-for-delay-loaded-dlls

23. Wu, Y., Yap, R.H.C.: Simple and Practical Integrity Models for Binaries and Files.
In: Damsgaard Jensen, C., Marsh, S., Dimitrakos, T., Murayama, Y. (eds.) Trust
Management IX, vol. 454, pp. 30–46. Springer International Publishing, Cham
(2015)

