
HAL Id: hal-04278090
https://hal.science/hal-04278090

Submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Implementing the Principle of Least Privilege Using
Linux Capabilities: Challenges and Perspectives

Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Yves Rütschlé,
Abdelmalek Benzekri

To cite this version:
Eddie Billoir, Romain Laborde, Ahmad Samer Wazan, Yves Rütschlé, Abdelmalek Benzekri. Imple-
menting the Principle of Least Privilege Using Linux Capabilities: Challenges and Perspectives. 7th
Cyber Security in Networking Conference (CSNet 2023), IEEE Communications Society, Oct 2023,
Montréal, Canada. pp.130–136, �10.1109/CSNet59123.2023.10339753�. �hal-04278090�

https://hal.science/hal-04278090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Implementing the Principle of Least Privilege using
Linux Capabilities: Challenges and Perspectives

Eddie Billoir
Airbus Protect, IRIT

Toulouse, France
eddie.billoir@airbus.com

Romain Laborde
IRIT, Université Toulouse III Paul Sabatier

Toulouse, France
romain.laborde@irit.fr

Ahmad Samer Wazan
Zayed University

Abu Dhabi
ahmad.wazan@zu.ac.ae

Yves Rütschlé
Airbus Protect

Toulouse, France
yves.rutschle@airbus.com

Abdelmalek Benzekri
IRIT, Université Toulouse III Paul Sabatier

Toulouse, France
abdelmalek.benzekri@irit.fr

Abstract—Historically and by default, Linux does not respect
the principle of least privilege because it grants all the privileges
to administrators to execute their tasks. With the new personal
data protection or export control regulations, the principle of
least privilege is mandatory and must be applied even for system
administrators. The Linux operating system, since version 2.2,
divides the privileges associated with the superuser into distinct
units called capabilities. Linux capabilities allow coarse-grained
access control to restricted system features. The “RootAsRole”
project is introduced as a solution for delegating administrative
tasks while matching the necessary capabilities. However, limita-
tions in user experience and the mapping of Linux capabilities
pose significant obstacles. This paper proposes enhancements to
balance usability and the principle of least privilege, emphasizing
the need for precise capability definitions. Future work involves
enhancing the RootAsRole access control model and addressing
the administration access control framework for managing Linux
capabilities effectively.

Index Terms—Access Control, Least privilege principle, Linux
kernel, Capabilities

I. INTRODUCTION

The Principle of Least Privilege (POLP) is an engineering
process that involves understanding users’ responsibilities to
grant them the absolute minimum permissions required for
accomplishing their tasks using computer systems [1]. This
principle applies to all users, especially those responsible
for system administration, who often possess comprehensive
privileges directly or indirectly.

On the one hand, POLP is essential from a security point
of view to minimize the potential attack surface and reduce
the potential damage in case of a security breach. In addition,
it is the cornerstone of modern security models such as the
zero-trust security strategy [2], which sets the least privilege
as one of its core principles. On the other hand, POLP is
also mandatory to comply with regulations related to personal
data (e.g., GDPR [3]) or export control [4]. New hybrid usage
of IT devices, either Personally Owned/Company Enabled
or Corporate-Owned/Personally Enabled, requires fine-grained
administrative privileges to prevent unlawful access to personal
data. Co-administration of devices within the organization or
outsourcing to third parties is another illustration of this need.

POLP can be implemented on Linux at different levels
using different mechanisms provided by the operating system
(e.g., the POSIX discretionary access control mechanisms,
setuid/sudo, Linux capabilities or mandatory access control
mechanisms provided by Linux Security Modules). Neverthe-
less, we demonstrated that implementing POLP correctly at
the OS level is still challenging [5].

This paper focuses on Linux capabilities that allow coarse-
grained access control to specific kernel tasks [6]. Indeed,
Linux divides the privileges associated with the superuser into
distinct units called capabilities. Unlike traditional POSIX per-
missions tied to file access control, these specific permissions
are assigned to programs or processes. They enable privileges
to be assigned to individual applications or tasks without the
need for them to run with root, the superuser account. We
explore different approaches to uphold POLP through OS
Hardening and at the user level using our RootAsRole project.
We present the limitations and how we have designed new
solutions to resolve them. Although our investigations focus
on specific tools, they pertain to generic issues regarding using
Linux capabilities.

The rest of the article is structured as follows. Section
II provides an introduction to Linux capabilities. Section III
analyses the pros and cons of implementing POLP by hard-
ening the OS. Section IV describes the RootAsRole project
and the difficulties of implementing POLP while considering
the users’ experience. Section V discusses the limitations re-
garding implementing the least privilege principle with Linux
capabilities. Finally, we conclude and present future works.

II. LINUX CAPABILITIES

Linux Capabilities were initially introduced in the Linux
kernel version 2.1 in 1998, with implementation occurring
in version 2.2 and offering 32 permission slots. As system
scaling has progressed, the implementation has been enhanced
to manage 64 permissions and enable complex security pol-
icy. In the current version (v6.3), 41 capabilities have been
implemented [7]. This mechanism can grant access to kernel
features or enable bypassing some security policies. As an

example, CAP_NET_BIND_SERVICE is a capability that is
needed to bind a socket on TCP/UDP ports between 1 and
1024, and CAP_DAC_OVERRIDE allows bypassing the DAC
file-system access control. Due to the current implementation
slot limit, Linux decided that CAP_SYS_ADMIN is an over-
ridden capability that doesn’t define any scope; this decision
offers flexibility for kernel designers to manage capability
definitions.

The kernel maintains for each process 5 sets of capabil-
ities in memory to define the state of the discretionary and
mandatory privilege policy. These sets is the mechanism to
manipulate privileges for a time-of-use criterion and distribute
them across the child processes (discretionary policy). If a
program executes another binary, the system authority defines
which privileges will be inherited (mandatory policy). By
default on Linux, a single mandatory policy is applied, which
is intrinsic to the kernel. In the kernel implementation of
capability sets and associated behaviours, Linux adopts a
vocabulary and employs mechanisms akin to the capability-
based access control model mechanisms. While Linux’s model
is not explicitly described as respecting this model, it shares
common elements such as Ambient authority. This suggests
that Linux adapts the capability-based security model to fit
specific OS needs [8], [9].

Linux Capabilities are primarily used to confine applications
in Linux namespaces, such as Docker/Podman or other LXC
solutions. The Linux namespaces isolate processes by giving
them independent and limited views of system resources,
such as process IDs, network interfaces, and file systems,
providing a form of process-level virtualization. LXC, Docker
and Podman are three solutions for creating and managing iso-
lated environments, mainly using Linux namespaces. Although
these products allow you to manipulate Linux capabilities, they
do not offer better usability or understanding.

III. THE OS HARDENING APPROACH

Generally, an OS offers multiple generic features that may
not be needed for a specific system usage. Implementing POLP
may be needed to inhibit the useless features of the entire
OS. This process, also known as OS Hardening, involves
modifying or configuring an operating system to minimize its
features, and hence the impact of potential vulnerability on
the entire system. For instance, when the file-system access
control is correctly configured, the person in charge of config-
uring the system may want to prevent the superuser from by-
passing this control by removing CAP_DAC_OVERRIDE and
CAP_DAC_READ_SEARCH capabilities. OS hardening should
be carefully implemented because it could lead to safety risks
due to the discretionary access control properties [16].

Different approaches can be followed to implement this
goal. First, this could be achieved by using BPF LSM (Linux
Security Modules [14]), which is a framework that allows
developers to write security systems on top of the Linux kernel
using eBPF (extended Berkeley Packet Filter) programs. eBPF
is a technology that enables sandboxed programs to run in
the Linux kernel without modifying the kernel source code

or loading a kernel module. These programs can be loaded
and unloaded at any time by any user with the CAP_BPF
capability. It is possible to deny any CAP_DAC_OVERRIDE
capability request using such technology. However, any priv-
ileged session could unload the eBPF program and regain its
privileges because it has them in its privilege sets. We’ve initi-
ated a repository with a proof-of-concept of this example [15].

Another approach consists in creating a new Linux kernel
module (LKM) to remove the CAP_DAC_OVERRIDE capabil-
ity from every process credential created on the system. This
can be done by manipulating the capabilities credentials struc-
ture during the ‘execve()’ process. This prevents processes
from retrieving their capabilities without unloading the module
with the CAP_SYS_MODULE capability. The advantage of
this strategy is that most of the processes will have their
capabilities permanently removed. Indeed, modules are loaded
by the “(systemd-)udev” process, which is initialized by the
init or systemd programs. These program processes do not lose
their capabilities and can still be used. We’ve also created an
example of such a kernel module on the same repository as
eBPF [15].

Fig. 1: Lines to patch to remove capabilities in kernel v6.3

Finally, the administrator can also patch the current Linux
kernel to change the initial set of capabilities permanently. In
this way, the capability doesn’t exist on the running kernel
system. The main disadvantage of this solution is the need to
recompile the patch each time the Linux kernel is updated.
Also, the Linux kernel is governed by GPLv2 licensing,
so these modifications must comply with the license terms.
To perform this concretely, the definitions of pre-processor
instruction on file “include/linux/capability.h” needs to be
edited. We described these changes in Figure 1.

By hardening the OS, the capabilities of Linux allow the
person in charge to configure the system to eliminate security
risks but also to increase the safety risks if misconfigured.
This person could use more or less permanent approaches
to simplify recovery. Nevertheless, this measure does not
respect POLP enough. As said earlier, the least privilege is
based on understanding users’ task needs. OS hardening can
only apply the same configuration to all users, i.e., removing
Linux capabilities not required by all users. Therefore, another
mechanism is needed to apply POLP at the user’s level,
including administrators.

IV. ROOTASROLE

We present in this section RootAsRole, a new security
mechanism we developed for controlling Linux capabilities
at the user level. We describe our goal and the latest im-
provements we introduced to provide a useful tool that allows
fine-grained implementations of POLP. We also highlight open
questions.

Task

Actor

Purpose

Command

 explains
1,1

0,1

Capability
requires

0,n 0,n

User

Role

 assign
0,n

0.n

Groups

 has rights to
0,n

0,n

Fig. 2: Design of role configuration model

Today, most Linux distributions propose the sudo command
to elevate privileges. sudo is a tool that allows a system
administrator to delegate commands with potentially all root
privileges to users [10]. sudo includes many other security
features, but we will not elaborate on them. However, sudo
does not handle Linux Capabilities. Since no sophisticated and
easy-to-use mechanisms were available to manage capabilities,
we developed RootAsRole [12], [13] a new security module
to control the Linux capabilities given to applications. In
addition, unlike sudo, which does not include any access
control model, We choose to implement the Role-Based Ac-
cess Control model (RBAC) that consists in granting (and
restricting) access permissions to roles, and then these roles
are assigned to users [16]. The RBAC model allows grouping
administrative privileges and tasks by roles. We chose this
model because it impels the implementation of the POLP since
tasks and duties must be explicitly analyzed to identify roles.

To implement least privilege more precisely with RootAs-
Role, we took a lot of initiatives to resolve design, usability
and reliability issues for both users and administrators. To
illustrate these conceptual issues, we introduce a tiny web
business example. Let’s consider user Alice who is in charge of
managing an apache2 web server installed on a Linux machine.
Consequently, she should be allowed different tasks such as
starting/stopping the web server, modifying the web server
configuration files, etc. In addition, Alice is a web developer.
So, she should be able to add her code to the web server but
also use the command tcpdump to debug the new web protocol
she is implementing. We will develop this example in the rest

of this article to exhibit the issues when implementing POPL
and how we partially handle them.

1 <role name="web_admin">
2 <actors>
3 <user name="alice"/>
4 </actors>
5 <task capabilities="cap_net_bind_service"
6 setuser="apache"
7 setgroups="apache">
8 <command>/usr/local/sbin/apache2ctl start</command>
9 <command>/usr/local/sbin/apache2ctl restart</command>

10 <command>/usr/local/sbin/apache2ctl reload </command>
11 <purpose>Manage the apache2 service</purpose>
12 </task>
13 ...
14 </role>
15 <role name="web_dev">
16 <actors>
17 <user name="alice"/>
18 <group names="softteam"/>
19 </actors>
20 <task capabilities="cap_net_raw,cap_net_admin">
21 <command>/usr/bin/tcpdump</command>
22 <purpose>Debug HTTP responses</purpose>
23 </task>
24 ...
25 </role>
26 ...

Fig. 3: A Sample RootAsRole policy for our webserver
example

A. Administrative issues

1) Making Linux capabilities and POSIX DAC policies
consistent: We developed a language that allows the admin-
istrators to specify which users can use which command with
which capabilities. This language extends the RBAC model to
include capabilities in the permissions assigned to roles. The
implementation of our model is described in Figure 2. In this
model, actors which can be Linux users and/or Linux groups
are assigned to roles. Roles are assigned to permissions to
perform tasks which are sets of commands and allowed Linux
capabilities. We also require the administrator to explicitly
state the purpose of the permission assignment in a human-
readable format to enhance the maintainability of the policies.
This new model improves the initial one.

Figure 3 is the RootAsRole policy of the use case described
in the project presentation section. This policy includes two
roles: web_admin and web_dev. The <actors> element
inside the role definition represents the user assignment rela-
tion. Here, Alice has been assigned to both roles (see lines
3 and 15). It is also possible to assign a Linux group to
a role like in line 16. Administrators can specify the tasks
assigned roles by including them in <task> elements. Each
task lists a set of commands and the associated permitted
Linux capabilities. For instance, role web_admin can use
CAP_NET_BIND_SERVICE (i.e., bind a port less than 1024)
for starting, restarting and reloading the apache2 web server.
This task is related to managing the apache2 service as
described in line 11.

In order to assign tasks to their users, administrators need
to manipulate the entire credentials context and environment
variable sessions. For example, Alice may need to change her
effective user to a dedicated system user (e.g., user apache)
when configuring the apache2 web server to be consistent with
the DAC policy applied on the file system. In the previous

version of our tool, RootAsRole managed the Linux capabil-
ities feature exclusively, resulting in inconsistencies between
RootAsRole policies and DAC policies. So we implemented
the effective user/groups change for a task. The tool also man-
ages an environment variable policy that applies a whitelist,
a filter list (remove if unsafe) and a define/replace list. Other
variables are removed from the created session. The “remove if
unsafe” notion is arbitrary according to various vulnerabilities
found on shells. This policy is similar to the sudo tool. We
noticed that sudo enables an administrator to choose different
algorithms for managing the environment variable. But most
of them are not recommended to use because of their potential
vulnerabilities e.g. CVE-2014-9680, CVE-2014-10070, CVE-
2014-0106, to name but a few. This explains why we chose
to implement only the default one that is currently considered
safe.

2) Capabilities are unknown by administrators:

alice@webserver:˜$ capable -c "/usr/sbin/tcpdump"
tcpdump: enp1s0: You don’t have permission to capture on that
device
(socket: Operation not permitted)

Here are all the capabilities intercepted for this program :
cap_net_admin, cap_net_raw
WARNING: These capabilities aren’t mandatory, but they can
change the behavior of tested program.
WARNING: CAP_SYS_ADMIN is rarely needed and can be very
dangerous to grant

Fig. 4: Capable command output for tcpdump command

We noticed that Linux capabilities are poorly understood,
except for kernel developers [2]. Indeed, the Linux usage
manual describes capabilities at high level but it does not
explain their precise scope, nor their exact purpose for each
system calls. Therefore, it was extremely complicated to
configure a policy. To help administrators in this task, we
developed a tool called capable that detects the requested
capabilities for a specific command. For example, Alice can
use capable to determine which capability is needed for the
tcpdump tool. Here tcpdump requires network capabilities,
which are identified by our tool and displayed in figure 4.

Capable uses eBPF technology to hook into the capability
verification method of the kernel to collect what capability is
requested for all processes. It then sets up an unprivileged
namespace for the analyzed application before running it.
When filtering with the namespace identifier, eBPF can iden-
tify the privileges requested for the program. Any requested
privileges are printed to the console when the program exits.

In the previous version of RootAsRole, during our ex-
periments, we observed a recurring occurrence of the
CAP_SYS_ADMIN capability (this capability grants many
privileges) being requested. This was attributed to the system-
atic and repeated call of the cap_vm_enough_memory()
hook during the memory allocation and process creation
stages; one such call stack trace is detailed in Figure 5 using
the bcc tool [18]. Fortunately, the above problem has since
been fixed in the Linux kernel. Nevertheless, this problem

TIME UID PID TID COMM CAP NAME
22:58:49 1000 27408 27408 capable 21 CAP_SYS_ADMIN

cap_capable+0x1 [kernel]
cap_vm_enough_memory+0x2b [kernel]
security_vm_enough_memory_mm+0x34 [kernel]
mmap_region+0x147 [kernel]
do_mmap+0x38d [kernel]
vm_mmap_pgoff+0xd2 [kernel]
elf_map+0x58 [kernel]
load_elf_binary+0x4cd [kernel]
search_binary_handler+0x90 [kernel]
__do_execve_file.isra.36+0x5b1 [kernel]
__x64_sys_execve+0x34 [kernel]

Fig. 5: bcc Kernel stack trace describing the problematic
capacity demand when using capable tool in kernel version
v4.x

highlighted the possibility that certain capabilities might not
be requested at the appropriate stage in the kernel algorithm.
To ensure the reliability of our tool and identify any misplaced
capabilities within the kernel, we developed a straightforward
Clang plugin that utilizes Abstract Syntax Tree (AST) analysis.
The Clang AST represents the structure and semantics of
C/C++ code, serving the purpose of analysis, transformation,
and code generation. Our plugin operates on the assumption
that capabilities should be the final condition checked, i.e.,
practically function capable() which is called to check
capabilities should be placed at the end of the condition of
the if statement that implements the access control mechanism.
This is a common best practice followed by kernel developers.
Indeed, the function capable() verifies namespaces capa-
bilities and checks the security_capable() LSM hook
that could potentially affect the performance of the kernel. This
approach enables us to know when a capability is required
because function capable() is called when all other access
control systems deny access. During our analysis on kernel
v6.3, our plugin detected 8 occurrences not complying with
the best practice . The plugin source code can be found in
a GitHub repository [19]. However, some calls do not exist
within a conditional statement, so this work only covers 91%
of the total calls (993 calls in kernel v6.3).

B. User usability issue

One of the success factors of command sudo is its ease of
use for final users who are only required to add sudo before the
command they want to execute. Command sudo allows users
to run a command as a specific user other than the default
target user. But this feature is rarely used.

sr -r web_dev -c /usr/bin/tcpdump

Fig. 6: The user command to execute tcpdump in the V1/V2
of RootAsRole

In the previous version, we imposed users to explicitly
express the role they want to activate to execute a given
command (see Figure 6). If users are assigned to multiple

alice@webserver:˜$ sr /usr/bin/tcpdump

Fig. 7: New version of RootAsRole: Alice doesn’t need to
specify the role to activate

roles, this requirement impacts the users’ experience making
our security mechanism hard to use for day-to-day tasks.

Consequently, we improved our tool to make the explicit
role specification optional as in Figure 7. However, this raises
new questions, for instance, when a user is associated with
more than one role allowing to execute the same command
but with different capabilities. There are multiple algorithms
to find out the matching role for a user and a command
input. This issue has been thoroughly studied in the context of
firewall rules analysis [21] to resolve shadowing, correlation
and redundancy anomalies.

We applied the following criteria for order comparison:
1) Find all the roles that match the user id assignment or

the group id, and the command input
2) Within the matching roles, select the one that is the most

precise and least privileged such as:
a) user assignment is more precise than the combination

of group assignment
b) the combination of group assignment is more precise

than single group assignment
c) exact command is more precise than exact command

with regular expression
d) A role granting no capability is less privileged than

one granting at least one capability
e) A role without setuid is less privileged than one has

setuid.
f) if no root is disabled, a role without ‘root’ setuid is

less privileged than a role with ‘root’ setuid
g) A role without setgid is less privileged than one with

setgid.
h) A role with a single setgid is less privileged than one

with multiple setgid.
i) if no root is disabled, a role with multiple setgid is less

privileged than one with set root gid
j) if no root is disabled, a role with root setgid is less

privileged than one with multiple set gid, particularly
using root group

If this algorithm doesn’t resolve the conflict, roles are
considered equal (i.e., the only difference is environment
variables). In such cases, the user must specify the role to
be used with the ‘-r’ option. Regarding point (d), the choice
of least privilege is somewhat arbitrary. In fact, in our search
for a partial order operator for our tool, we tried to find a
partial order between Linux capabilities but could not find it
(see Section V).

V. LIMITS AND DISCUSSIONS

Our tool called “capable”, can be used to obtain the Linux
capabilities needed to execute a given command in a safe

mode. However, it does not guarantee that the granted capa-
bilities are the strict minimum required by the program. This
is because different capabilities can provide the same kernel
feature. For example, both CAP_BPF and CAP_SYS_ADMIN
can grant privileges to load/unload a BPF module (refer to
Figure 8). The question arises: which Linux capability should
be assigned? From the principle of the POLP perspective, the
answer is the capability that grants the least privileges.

static inline bool bpf_capable(void)
{

return capable(CAP_BPF) || capable(CAP_SYS_ADMIN);
}

Fig. 8: Sample of the kernel code in file include/linux/capa-
bility.h

To address this issue, we attempted to establish a partial
order between capabilities regarding the least privileges. In
other words, we aimed to identify the less privileged capability
compared to others. Our approach involved examining the
restricted sections of the kernel source code and determining
the specific capability required for each section.

Detecting a restricted feature that may require one or
more capabilities and identifying the least privileged capability
among them presented a challenge. By identifying the accessed
source code, we could determine if one capability is a subset
of another and prove that one capability is less privileged.
We explored various approaches to automate this analysis,
considering that the output of the analysis may change with
each kernel version.

A. The theoretical approach

Theoretically, we could adopt a brute-force approach, ex-
haustively checking the combinations of privileges in the
system. This approach can uncover numerous vulnerabilities in
manipulating the Linux kernel. However, the number of com-
binations grows exponentially with the number of capabilities,
resulting in an impossible number of possibilities. Considering
that there are 41 capabilities, testing all combinations from 1
individual capability to 41 combined capabilities would require
evaluating 41! = 3.34549 possibilities, which is impractical.
Even assuming that some privileges are unrelated and reduc-
ing the number of combinations, such an analysis remains
infeasible due to the scale of the Linux kernel system calls
variety. Each combination attempt involves numerous complex
operations on the system, such as a system reboot, which can
take several seconds and complicate the implementation of any
solution.

B. The pragmatic approach

An alternative approach involves analyzing the kernel
source code and identifying all system conditions that require
privileges. Within the kernel, a function called ‘capable()’
exists, enabling testing if any current calling process is granted
for a capability. By analyzing the Linux kernel code, we could
establish direct connections between privileges, allowing us to

establish an ordering relationship among them. This ordering
relationship could help to determine which privilege provides
access to a greater range of functionalities than others. Initially,
we considered utilizing the yacc and lex tools and using the
ANSI C standard for source code analysis. However, these
standards do not specify the preprocessor. So we faced an
error from these tools.

if\s*(\((?>[ˆ()]+|(?1))*\))\s*
({(?>[ˆ{}]+|(?2))*}|(?R)|[ˆ{};]*;)(?:\s|\n)*
(?:else\s*({(?>[ˆ{}]+|(?2))*}|(?R)|[ˆ;]*;))?

Fig. 9: PRCE2 expression match if C language statement

To overcome yacc and lex limit efficiently, we explored the
use of a PCRE2 regular expression to identify “if” conditions
in the source code (see Figure 9). PCRE2 (Perl Compatible
Regular Expressions 2) is a versatile library that enables
advanced pattern matching using regular expressions. The
regular expression provided in Figure 9 captures three groups:
the “condition,” the “then” block, and the “else” block if
present. We can recursively apply this expression to each
group to identify nested conditions within “if” statements. This
approach is advantageous because the parser does not crash
when encountering preprocessor syntax. Using this method,
we could identify most of the ‘capable()’ usage functions
(903 out of 993). However, there remain 90 capability requests
that were not matched by our plugin. These unmatched calls
indicate a limitation in our approach, but these few calls make
it possible to identify them manually. Another challenge with
this method is still the preprocessor. We found some calls to
‘capable()’ are done within preprocessor functions. These
preprocessor functions define and replicate the definition of
functions only after precompilation. Thus, we are unable to
identify a large number of calls due to this technical issue.

Another envisioned approach was utilizing the compiler to
perform Abstract Syntax Tree (AST) analysis. This approach
would enable us to create a call graph and determine the
capabilities implied by the kernel. However, due to time
constraints, we have yet to explore and implement this ap-
proach. This research is ongoing, and the initial AST plugin
is available on GitHub [19].

C. The reverse engineering approach

We also explored the possibility of finding compiled sym-
bols in the kernel binary. Specifically, we aimed to locate
the symbol for ‘capable()’. Although we were able to
manually identify the symbol using the Ghidra tool, finding the
symbol automatically is more complex than other automated
methods. The binary search for the symbol would differ for
each kernel version, making it challenging to automate this
process.

In conclusion, we have yet to discover a straightforward
method for mapping Linux capabilities within the kernel. Con-
sequently, a more practical approach would be implementing
a development process for kernel developers to document the

kernel precisely. We acknowledge that this process is arduous
and requires meticulous development, demanding significant
time for verification.

VI. RELATED WORK

In 2005, Krohn and team [25] presented “Asnix”, an
imaginary operating system with an object-capability security
model [26]. However, their analysis did not explore Linux
Capabilities due to challenges faced by Linux for years.
Subsequent developments in Linux have resolved these issues,
enabling further exploration of Linux capabilities in subse-
quent research.

Hallyn et al. [27] presented the use of Linux Capabilities as
a working solution for addressing POLP challenges. While this
work demonstrated the effectiveness of the Linux capability
model, it also highlighted the ongoing difficulties in its prac-
tical implementation. Consequently, Linux capabilities have
primarily been utilized for enhancing container isolation and
fixing vulnerabilities.

In our previous works [12], [13], we introduced a novel
software that utilizes Linux Capabilities to implement Role-
Based Access Control. These papers proved the potential of
Linux Capabilities for daily use but still need to be improved
with security and usability efforts.

VII. CONCLUSION

POLP is a well-known and established security principle.
We studied different approaches to implement the POLP using
Linux capabilities and demonstrated this is actually a tricky
problem. OS hardening applies to each user, so it cannot
be considered a fine-grained approach. We developed the
“RootAsRole” project that enables administrators to delegate
administrative tasks and grant the matching needed capability.
However, we highlighted limitations, especially regarding the
user experience of both administrators and final users. Finding
a good tradeoff between usability and POLP is complex. We
proposed in this article enhancements in this perspective.

One of the main challenges is defining precisely the re-
lations between capabilities. Indeed, how can administrators
apply POLP when the privileges associated with Linux ca-
pabilities are not precisely defined? We haven’t found any
automatic way to map Linux capabilities into a partial order
set by analysing the kernel. This work is still ongoing. We
believe the best solution is by using the map created by

For future work, we are working on improving the RootAs-
Role access control model to allow dynamic security to be
enforced, like in [24]. Indeed, many Linux capabilities enable
bypassing permission checks. Thus, Linux capabilities require
a proper administration access control model to manage ad-
ministrative privileges.

VIII. AKNOWLEDGEMENTS

We are grateful to Raoul Guiazon for his assistance and
feedback.

REFERENCES

[1] “Least Privilege — CISA.” https://www.cisa.gov/uscert/bsi/articles/
knowledge/principles/least-privilege.

[2] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Archi-
tecture” National Institute of Standards and Technology, Aug. 2020. doi:
10.6028/NIST.SP.800-207.

[3] Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance), vol. 119. 2016. http://data.europa.eu/eli/reg/
2016/679/oj/eng

[4] Regulation (EU) 2021/821 of the European Parliament and of the Coun-
cil of May 2021 setting up a Union regime for the control of exports,
brokering, technical assistance, transit and transfer of dual-use items
(recast). 2022. http://data.europa.eu/eli/reg/2021/821/2022-01-07/eng

[5] E. Billoir, R. Laborde, A. S. Wazan, Y. Rütschlé, and A. Benzekri, ‘Est-
il difficile de respecter le principe de moindre privilège sur Linux?’,
presented at the Rendez-Vous de la Recherche et de l’Enseignement de
la Sécurité des Systèmes d’Information, May 2023. https://hal.science/
hal-04103463

[6] “capabilities(7) - Linux manual page.” https://man7.org/linux/
man-pages/man7/capabilities.7.html.

[7] “linux/capability.h at v6.3 — torvalds/linux — GitHub.” https://GitHub.
com/torvalds/linux/blob/v6.3/include/uapi/linux/capability.h

[8] K. Leffew, “What is Capability-based Security?”
Medium, Nov. 07, 2019. https://medium.com/@kleffew/
what-is-capability-based-security-227c6e5483a5.

[9] Miller, Mark & Yee, Ka-ping & Shapiro, Jonathan. “Capability Myths
Demolished”, 2003.

[10] “Sudo,” sudo. https://www.sudo.ws/.
[11] SamerW, “RootAsRole : a secure alternative to sudo/su on Linux

systems”. May 21, 2023. https://github.com/SamerW/RootAsRole
[12] A. S. Wazan et al., “RootAsRole: a security module to manage the

administrative privileges for Linux,” Computers & Security, p. 102983,
2022, doi: https://doi.org/10.1016/j.cose.2022.102983.

[13] A. S. Wazan, D. W. Chadwick, R. Venant, R. Laborde, and A. Benzekri,
“RootAsRole: Towards a Secure Alternative to sudo/su Commands for
Home Users and SME Administrators,” in ICT Systems Security and
Privacy Protection, Cham, 2021, pp. 196–209.

[14] “Linux Security Module Usage — The Linux Kernel documentation.”
https://www.kernel.org/doc/html/v5.0/admin-guide/LSM/index.html.

[15] Eddie BILLOIR, “drop-dac-override.” Apr. 19, 2023. https://GitHub.
com/LeChatP/drop-dac-override

[16] P. Samarati and S. C. de Vimercati, “Access Control: Policies, Models,
and Mechanisms,” in Foundations of Security Analysis and Design,
Berlin, Heidelberg, 2001, pp. 137–196.

[17] “Home — TCPDUMP & LIBPCAP.” https://www.tcpdump.org/
[18] ‘BPF Compiler Collection (BCC)’. IO Visor Project, May 28, 2023.

https://github.com/iovisor/bcc
[19] Eddie BILLOIR, “kapable-clang-sast.” Apr. 17, 2023. https://GitHub.

com/LeChatP/kapable-clang-sast
[20] ”sudo-project/sudo.c” sudo Project, May 21, 2023. https://GitHub.com/

sudo-project/sudo
[21] M. Abedin, S. Nessa, L. Khan, and B. Thuraisingham, “Detection

and Resolution of Anomalies in Firewall Policy Rules” in Data and
Applications Security XX, E. Damiani and P. Liu, Eds., in Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, doi:
10.1007/11805588 2.

[22] “Rust Programming Language.” https://www.rust-lang.org/.
[23] “Abstract syntax tree” Wikipedia. Jan. 27, 2023. https://en.wikipedia.

org/w/index.php?title=Abstract syntax tree&oldid=1135931906
[24] R. Laborde, A. Oglaza, A. S. Wazan, F. Barrère, and A. Benzekri, “A

situation-driven framework for dynamic security management”, Annals
of Telecommunications, vol. 74, pp. 185-196, 2019.

[25] M. Krohn et al., “Make Least Privilege a Right (Not a Privilege)”.
[26] M. S. Miller, “Towards a Unified Approach to Access Control and

Concurrency Control”.
[27] Hallyn, Serge E and Morgan, Andrew G, “Linux capabilities: making

them work”

