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Energy and dissipation spectra of waves propagating in the inner surf zone

The spectral behavior of random sawtooth waves propagating in the inner surf zone is investigated in this study. We show that the elevation energy spectrum exhibit a universal shape with a ω -2 tendency in the inertial subrange and an exponential decay in the diffusive subrange (ω being the angular frequency). A theoretical spectrum is derived based on the similarities between sawtooth waves in the inner surf zone and Burgers wave solutions. A very good agreement is shown between this theoretical spectrum and laboratory experiments covering a large range of incident random wave conditions. Additionally an equation describing the universal shape of the dissipation spectrum is derived. It highlights that the dissipation spectrum is nearly constant in the inertial subrange, consistent with prior laboratory observations. The findings presented in this study can be useful to improve broken wave dissipation parametrizations in stochastic spectral wave models.

Introduction

Understanding the spectral behavior of oceanic waves is crucial for the development of wave forecasting models. Analyzing the shape of wave spectra provides a deeper comprehension of nonlinear and dissipation processes in the wavenumber or frequency domain. Moreover, it aids in identifying the key physical parameters that govern the dynamics of random wave fields. 1 While the spectral characteristics of waves in deep and intermediate water are relatively well understood, this is not the case in the surf zone, where waves are controlled by strongly nonlinear and dissipative processes.

For well-developed seas in deep water, one can identify an equilibrium range in the energy spectrum which results from a constant flux of energy towards high frequencies. [START_REF] Hasselmann | On the nonlinear energy transfer in a gravity wave system. Part 1[END_REF] showed that this energy cascade is due to weakly nonlinear four-wave interactions. [START_REF] Zakharov | Energy spectrum for stochastic oscillations of the surface of a liquid[END_REF] demonstrated theoretically, from the Hasselmann kinetic equation, that the equilibrium range is characterized by a universal power law of the shape ω -4 (ω being the angular frequency). This law was confirmed by [START_REF] Toba | Local balance in the air-sea boundary processes[END_REF] from field observations. It was then shown that two frequency subranges coexist in the energy spectrum (e.g., [START_REF] Forristall | Measurements of a saturated range in ocean wave spectra[END_REF][START_REF] Kitaigorodskii | On the theory of the equilibrium range in the spectrum of wind-generated gravity waves[END_REF][START_REF] Hansen | The dissipation range of wind-wave spectra observed on a lake[END_REF][START_REF] Romero | Numerical modeling of fetch-limited waves in the Gulf of Tehuantepec[END_REF][START_REF] Lenain | Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves[END_REF]: the equilibrium spectrum for ω 1 < ω < ω 2 and a dissipative subrange for high frequencies (ω > ω 2 ), where the frequency bounds are given approximately by ω 1 ≃ 1.3 -1.5 ω p and ω 2 ≃ 3 -3.6 ω p (ω p being the peak frequency). Spectra follow a ω -5 power law in the dissipative subrange, the so-called Phillips spectrum [START_REF] Phillips | The equilibrium range in the spectrum of windgenerated waves[END_REF], which results from a balance between weakly nonlinear four-wave interactions and dissipative processes.

As waves propagate shoreward in decreasing water depth, frequency dispersion decreases and triad interactions approach resonance. This results in 2003), experiment vN03-C3 (see Table 1), wave gauge no 64.

an intense amplification of the harmonics of the spectral peak, over distances of only a few wavelengths [START_REF] Freilich | Nonlinear effects on shoaling surface gravity waves[END_REF][START_REF] Elgar | Observations of bispectra of shoaling surface gravity waves[END_REF].

The spectral shape thus displays strong variability in space. In this context, it is questionable whether these waves can be characterized by an equilibrium spectrum. Kitaigorodskii et al. (1975) and [START_REF] Thornton | Rederivation of the saturation range in the frequency spectrum of wind-generated gravity waves[END_REF], using similarity arguments in line with [START_REF] Phillips | The equilibrium range in the spectrum of windgenerated waves[END_REF], suggested that the high-frequency portion of the spectrum follows a ω -3 power law in the shoaling zone . Although field observations show that the characteristic high-frequency spectral slope (between -3 and -4 approximately) is less steep than in deep water (ω -5 Phillips spectrum), there is no clear evidence of a universal power-law spectrum.

As waves move through the surf zone, the nonlinear interactions tend to redistribute the energy around local peaks in the spectrum. The high-frequency portion of the spectrum thus gradually evolves into a flat, featureless shape [START_REF] Herbers | Nonlinear shoaling of directionally spread waves on a beach[END_REF][START_REF] Kaihatu | Asymptotic behavior of frequency and wave number spectra of nearshore shoaling and breaking waves[END_REF]. [START_REF] Smith | Equilibrium ranges in surf zone wave spectra[END_REF] proposed a parametrization of the high-frequency range based on the analysis of laboratory and field data. Their parametrization, expressed in the wavenumber space, consists of two power laws: k -4/3 for 2.5k p < k < 1/h 0 , and k -5/2 for k > 1/h 0 ; where k is the wavenumber, k p the wavenumber at the spectral peak and h 0 the mean water depth. [START_REF] Smith | Equilibrium ranges in surf zone wave spectra[END_REF] referred to the shallow water theory of [START_REF] Zakharov | Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid[END_REF] for the first law and to the deep water Toba's spectrum (theoretically derived by [START_REF] Zakharov | Energy spectrum for stochastic oscillations of the surface of a liquid[END_REF]) for the second one. This is questionable because waves in the surf zone are strongly nonlinear and beyond the scope of the weakly nonlinear theories by [START_REF] Zakharov | Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid[END_REF] and [START_REF] Zakharov | Energy spectrum for stochastic oscillations of the surface of a liquid[END_REF]. Moreover, [START_REF] Smith | Equilibrium ranges in surf zone wave spectra[END_REF] used a transformation of the observed frequency spectrum E(ω) into a wavenumber spectrum E(k)

based on the linear dispersive relation. In the surf zone, this relation strongly overestimates k for high frequencies [START_REF] Thornton | Energy saturation and phase speeds measured on a natural beach[END_REF]Martins et al., 2021a). The linear transformation thus leads to an artificial stretching of E(k) toward high wavenumbers, making k -5/2 power law highly questionable.

Therefore, until now, there is no clear evidence of universal spectral power laws, in the wavenumber space, for the surf zone. However, several authors have observed a trend toward a ω -2 spectral shape in the inner surf zone (e.g., 1), wave gauge no 64. Cyan line, sawtooth wave regime; grey line, beginning of the surf zone; dashed line, ω -2 power law. [START_REF] Kirby | Structure of frequency domain models for random wave breaking[END_REF][START_REF] Kaihatu | Asymptotic behavior of frequency and wave number spectra of nearshore shoaling and breaking waves[END_REF]. Due to the predominance of nonlinear effects over dispersion effects, the waves tend towards a sawtooth shape with a steep front face and a quasi-linear back slope (see figure 1).

For idealized sawtooth waves, with discontinuities at wave fronts, the entire energy spectrum follows an ω -2 power law. For real sawtooth waves, turbulent motions result in a diffusion-like process at wave fronts. The resulting rounding off of the fronts controls the high-frequency behavior of the surface elevation spectrum. This is illustrated in figure 2 where two frequency subranges can be identified: an inertial subrange where the energy spectrum follows an ω -2 tendency, and a second subrange where E(ω) decreases more rapidly with ω. The latter range will be referred to as the diffusive subrange.

In this paper we analyze the spectral behavior of random sawtooth waves in the inner surf zone. We show that the energy spectrum, made up of the inertial and diffusive subranges, follows a universal shape. Based on analogies between inner surf zone waves and Burgers' turbulence (i.e. "Burgulence"), we derive a theoretical law for the energy spectrum, and assess its validity from laboratory data. Within this theoretical framework we analyze the properties of the dissipation spectrum and propose ways to improve its parametrization in stochastic spectral wave models.

Physical background

As waves propagate shoreward in decreasing water depth, wave height and nonlinearities increase, leading to wave breaking. After the initiation of breaking (spilling or plunging) a rapid change occurs in the wave shape over a relatively short distance. Shoreward of this region, the wave field reorganizes itself into a succession of relatively stable bore-like waves. This region, referred to by [START_REF] Svendsen | Wave characteristics in the surf zone[END_REF] as the inner surf zone (ISZ), covers a significant part of the surf zone for beaches of regular shape and gentle slope.

The ISZ is a self-similar region, where waves are locally depth controlled [START_REF] Thornton | Energy saturation and phase speeds measured on a natural beach[END_REF]. Specifically, the ratio of wave height to water depth remains nearly constant. As ISZ waves propagate, they maintain almost the same shape, consisting of a turbulent wave front and a quasi-linear back slope (e.g., [START_REF] Svendsen | Surf-zone hydrodynamics[END_REF].

Due to the quasi-linear back slope, the non-hydrostatic effects are very small except at wave fronts [START_REF] Martins | Nonhydrostatic, Non-linear Processes in the Surf Zone[END_REF]. It has been shown that ISZ waves are nearly frequency non-dispersive (e.g., [START_REF] Thornton | Energy saturation and phase speeds measured on a natural beach[END_REF], Martins et al. (2021a) and their figures 4 g,h). This explains the presence of sawtooth waves (see figure 1) which are a characteristic feature of nonlinear non-dispersive wave phenomena, such as nonlinear acoustic waves (Gurbatov et al., 2012). A sawtooth wave (SW) is a coherent structure which re-sults from the competition between dissipation and nonlinearities. Another well-known coherent wave structure, occurring in nonlinear weakly dispersive regimes, is the solitary wave which results from the balance between dispersion and nonlinearities. However, stable solitary waves occur only in idealized situations, whereas quasi-stable SW occur in complex natural environments such as the inner surf zone.

Our study aims to comprehend the spectral behavior of random SW fields in the ISZ. Our approach is based on the fact that basic characteristics of energy and dissipation spectra within the inertial frequency subrange can be inferred from the sawtooth wave geometry. For instance, deriving the ω -2 power law for the energy spectrum, from a periodic SW signal with discontinuities at wave fronts, is a straightforward process. Furthermore, [START_REF] Kirby | Structure of frequency domain models for random wave breaking[END_REF] showed an equipartition of the dissipation over the spectrum (i.e., "white spectrum") within the inertial subrange. These authors proposed that this phenomenon arises from the fact that dissipation manifests in the space-time domain as a sequence of isolated spike-like processes. To gain a deeper understanding of ISZ energy and dissipation spectra, particularly in the diffusive frequency subrange, we will use the nonlinear shallow water model, the simplest possible, capable of reproducing the SW shape and localized dissipation at wave fronts. The mathematical simplicity of the model is crucial in order to be able to derive analytical spectral laws. [START_REF] Bonneton | Modelling of periodic wave transformation in the inner surf zone[END_REF] derived a one-way nonlinear shallow water model, wherein wave fronts are represented by discontinuities (i.e., shocks), that correctly describes the dynamics of ISZ waves on gently sloping beaches. This model enables a good description of both the nonlinear wave distortion and the energy dissipation. We simplify the model by neglecting bottom variations, resulting in the following equation

∂ζ ∂t + c 0 ∂ζ ∂x + 3 2 c 0 ζ h 0 ∂ζ ∂x = 0 , ( 1 
)
where ζ is the surface elevation, h 0 the mean water depth, c 0 = √ gh 0 and g the acceleration of gravity. Even though shoaling effects are not considered, wave solutions provided by equation ( 1) bear a strong resemblance to waves in the ISZ, characterized by their sawtooth shape and localized energy dissipation at wave fronts. However, in essence, this shock-wave approach cannot describe the wave front structure, and thus the energy spectrum in the diffusive subrange. In order to overcome this limitation, turbulent processes can be parametrized by including a diffusivity term, ν t ∂ 2 ζ ∂x 2 , on the right-hand side of equation ( 1), with ν t a turbulent diffusion coefficient.

In the frame of reference moving at velocity c 0 , and making the change

of variable v = 3c 0 2h 0 ζ , (2) 
equation ( 1) can be rewritten as

∂v ∂t + v ∂v ∂x = ν t ∂ 2 v ∂x 2 . ( 3 
)
Throughout this article, we will use this idealized one-way nonlinear shallow water model as a toy model to infer the SW spectral behavior.

3 Burgers' turbulence

Burgers' model

To further simplify our wave problem, we consider in this section that the diffusion coefficient ν t is constant (ν t = ν). Equation ( 3) is then the well-known Burgers' equation. It was originally introduced as a simple one-dimensional model to contribute to the study of turbulence [START_REF] Burgers | A mathematical model illustrating the theory of turbulence[END_REF]. A synthesis on Burgers' turbulence, also known as Burgulence, is presented in [START_REF] Frisch | Burgulence[END_REF].

In this section we consider freely decaying random waves v(x, t) which are statistically homogeneous in space with zero mean. The equation for the

mean energy E v = ⟨v 2 ⟩ is ∂E v ∂t = -D v ,
where D v = 2ν⟨ ∂v ∂x 2 ⟩ is the energy dissipation and ⟨.⟩ the spatial mean.

A striking feature of Burgers solutions is the formation of shocks. Due to the nonlinear term, negative v-slopes are steepened in time until they build up into diffusive shocks, where nonlinear and diffusive effects are balanced. For initial random conditions, the wave field tends toward an irregular sawtooth profile, quite similar to that of SW in the ISZ (figure 1).

Two main characteristic scales are involved in the SW regime: λ m the mean distance between adjacent wave fronts and V c the characteristic scale of velocity jumps at wave fronts. The wave field is then controlled by two length scales: a macroscopic one λ m and a small one, the average shock thickness δ ∼ ν Vc . Consequently, the problem is governed by one dimensionless parameter, the Burgers-type Reynolds number R B = Vcλm ν . It is well established that for wavenumbers ranging from k m = 2π/λ m to the diffusive wavenumber k ν (k ν ∼ δ -1 ), the Burgers energy spectrum follows a k -2 power law (e.g., [START_REF] Tatsumi | Nonlinear Wave Expansion for Turbulence in the Burgers' Model of a Fluid[END_REF]. This k -2 subrange is followed at high k by a diffusive subrange where the energy decreases more rapidly.

We will see later that ISZ waves are characterized by moderate Reynolds numbers of about a few hundreds (R B ∼ 100 -500). In this section we analyze the spectral characteristics of Burgers' waves for this R B range. It should be noted that most studies on Burgulence, unlike ours, focus on regimes with very high R B . When referring to a ISZ wave, R B must be distinguished from the classical Reynolds number based on the kinematic viscosity. Before analyzing random waves, we start by studying the nonlinear dynamics of periodic sawtooth waves. This idealized case is very useful, firstly for understanding basic nonlinear and dissipative processes in the spectral space and secondly by serving as a basis for the development of a random SW theory.

Periodic sawtooth waves

In the non-diffusive case (ν = 0), the derivation of the periodic SW Burgers solution, v i (x, t), from the method of characteristics is straightforward and gives

v i = V J (t) 2 2x λ -sgn(x) x ∈ [- λ 2 , λ 2 ] , (4) 
where λ is the wavelength, V J (t) = V 0 1+V 0 t/λ is the velocity jump across the inviscid shock (located in x = 0) and V 0 is the velocity jump at t = 0.

Khokhlov derived an exact SW solution of the diffusive Burgers' equation (see Gurbatov et al. (2012))

v = V J (t) 2 2x λ -tanh V J (t)x 4ν . ( 5 
)
This solution is not periodic, but for large Reynolds numbers it becomes quasi-periodic between x = -λ/2 and x = λ/2, with a diffusive front located in x = 0. The dimensionless velocity jump

δv b = v( λ 2 -) -v( λ 2 + ) /V J = 1 -tanh R B 8 is an exponentially decreasing function of R B . For the R B values
that concern us, we can consider the solution (5) as periodic due to the small value of δv b (δv b < 10 -11 ).

For large R B , an approximate relationship of total dissipation D v can be derived. Using equation ( 5) and retaining only the leading terms in an expansion in powers of R B gives

⟨ ∂v ∂x 2 ⟩ = 1 12 V 3 J νλ
and then

D v = 1 6 V 3 J λ . (6) 
This shows that for R B of interest the total dissipation is virtually independent of ν.

One of the main objectives of this paper is to analyze the spectral behavior of sawtooth waves. In the case of periodic waves, it is possible to derive an expression for the energy spectral density from the Khokhlov solution (5) (see section A.1 in the supplementary material). This expression is written as

E vn = 2ν 2 k 2 p csch 2 k n k ν , (7) 
where

E vn = v 2 n 2 is the energy spectral density, v n the n th Fourier coefficient of v, k p = 2π λ , k n = nk p and k ν = V J 2πν . For k n /k ν ≪ 1, E vn follows a k -2 n power law E vn = 2V 2 J λ 2 k -2 n . (8) 
This last relation is also the exact energy spectral density of the non-diffusive SW solution (4). For k n /k ν ≫ 1, E vn decreases exponentially with k n . In the following, the inertial and diffusive subranges will be defined respectively

as k ∈ [k p , k ν ] and k ∈ [k ν , ∞]. The dimensionless width of the inertial subrange, (k ν -k p )/k p , increases linearly with R B , since k ν /k p = R B /(4π 2 ).
Substituting the Fourier series representation of v into the Burgers' equation, we obtain the spectral energy equation

d dt E vn + T vn = -D vn , (9) 
where D vn = 2νk 2 n E vn is the dissipation spectrum and T vn the nonlinear transfer function. This last can be expressed as

T vn = k n 4 v n n-1 m=1 v m v n-m - k n 2 v n ∞ m=1 v m v n+m ,
where the first term on the right-hand side represents the triad sum interactions of components (m, n -m) and the second term represents the triad difference interactions of components (m, n + m).

In order to better understand the spectral behavior of dissipation and nonlinear interactions, we analyze the different terms in equation ( 9). Substituting (7) into D vn = 2νk 2 n E vn we get the dissipation spectrum

D vn = 4ν 3 k 2 p k 2 n csch 2 k n k ν , (10) 
which is a decreasing function of k n . For k n /k ν ≪ 1, the dissipation spectrum given by

D vn = 4νV 2 J λ 2 (11)
is constant. The nonlinear transfer function can be obtained from T vn = -d dt E vn + D vn which results in

T vn = -2νk n k n -k p coth k n k ν E vn . ( 12 
)
Figure 3 illustrates the contribution of each term in the spectral energy equation ( 9). We consider two SW fields with the same V J and λ but two 

E vn = - D v E v E vn , (13) 
where

E v = V 2 J
12 and D v and E vn are given by equations ( 6) and ( 8 To summarize this part, d dt E vn is not primarily governed by nonlinear interactions, even at low k n , but rather by the competition between D vn and T vn , which are both strongly dependent on diffusion processes at wave fronts.

This conclusion, obtained for periodic SW, cannot be applied directly to ISZ random SW, which are a more complex phenomenon. However, these results may give ideas on how diffusive processes could affect the dissipation and the nonlinear interactions of ISZ sawtooth waves.

Random sawtooth waves

We now consider freely decaying random solutions v(x, t) which are statistically homogeneous in space with zero mean. The power spectral density 

Φ(k, t) = 1 2π ∞ -∞ R(r) exp(-ikr)dr , (14) 
where R(r, t) = ⟨v(x, t)v(x + r, t)⟩. Φ(k, t) being an even function of k, we limit our analysis to k ≥ 0 and denote E v (k, t) = 2Φ(k, t) the power spectral density function. With this notation, the total energy,

E v = ⟨v 2 ⟩ = ∞ -∞ Φ(k)dk, can be expressed as E v = ∞ 0 E v (k)dk .
Throughout the paper E v will denote the energy spectrum. In the spectral space the energy equation is given by

∂E v ∂t + T v = -D v , (15) 
where

D v (k, t) = 2νk 2 E v (k, t) is the spectral energy dissipation, T v (k, t) = -k ∞ -∞ ℑ(B)
dl the nonlinear transfer term and B(k, l, t) the bispectrum.

Saffman (1968) assumed that the periodic solution (5) reproduces the qualitative features of the small-scale behavior of random sawtooth waves.

From this hypothesis he derived an expression for the energy spectrum, which is consistent with equation ( 7) obtained for the energy density function of periodic SW. The equation for the energy spectrum is given by

E v (k, t) = 2ν 2 k m (t)csch 2 k k ν (t) k ∈ [k m , ∞] , (16) 
where k ν = Vc 2πν is the diffusive wavenumber, V c the characteristic scale of from k m to ∞ we obtain

Ẽv = 2ν 2 k m k ν (coth(k m /k ν ) -1) . ( 17 
)
Given k m and Ẽv = ∞ km E v (k)dk, the implicit equation ( 17) yields k ν and then V c . Thus, for a given random SW field characterized by k m and Ẽv , equation ( 16) can predict the energy spectrum.

For

k ≪ k ν , E v (k) follows a k -2 power law independent of the diffusion coefficient ν E v (k) = k m V 2 c 2π 2 k -2 , ( 18 
)
and for k ≫ k ν , E(k) decreases exponentially with k E v (k) = 8ν 2 k m exp -2 k k ν . ( 19 
)
The dissipation spectrum,

D v (k, t) = 2νk 2 E v (k, t), is given by D v (k) = 4ν 3 k m k 2 csch 2 k k ν k ∈ [k m , ∞] , (20) 
and its asymptotic form for small k is

D v (k) = νk m V 2 c π 2 . ( 21 
)
It is worth noting that at large scale the dissipation spectrum is constant, which means that there is equipartition of dissipation over the spectrum.

The exponential decay of E v (k) at large wavenumbers guarantees that the

k-integrated dissipation, Dv = ∞ km D v (k)dk
, is finite. To my knowledge, the theoretical model ( 16) has never been validated. In order to test the validity of this model we have computed numerically random SW solutions of Burgers' equation. It is solved with a spectral method where aliasing is avoided by using the so-called 3/2 rule. The initial random v-field, v 0 (x) = v(x, 0), is specified in the Fourier space, by the following energy spectrum where k p = 2π/λ p is the peak wavenumber and E 0 the energy at k p . The phase of each wavenumber is assigned a random value in the range [0, 2π].

E 0 (k) = E 0 k k p exp - 1 2 ((k/k p ) 2 -1) , ( 22 
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The length of the domain covers 2 8 λ p and is discretized over 2 16 grid points.

The computed spectra E v (k, t) are estimated by an ensemble average over 1000 realizations. 21). The length of the domain covers 2 8 λ p and is discretized over 2 16 grid points. Spectra have been averaged over 1000 realizations.

Then, in the diffusive subrange, the dissipation decreases exponentially. It is worth noting that for Burgers' turbulence the dissipation occurs mainly in the inertial subrange, unlike the classical hydrodynamic turbulence where dissipation occurs at smaller scale.

Analytical energy spectrum for ISZ waves

The above results for Burgers' equation directly apply to the one-way shallow water equation ( 1). Therefore, we can describe the spectral behavior of irregular sawtooth waves, statistically homogeneous in space, freely propagating in a constant water depth at celerity c 0 = √ gh 0 . However, ISZ waves are not statistically homogeneous in space, since they are forced at the offshore limit of the ISZ and propagate over a varying mean water depth h 0 (x).

Subsequently, we will make the strong assumption that, for slowly varying bathymetry, the shape of the energy spectrum in the wavenumber space can be estimated using the corrected-Saffman's equation ( 16). It should also be noted that unlike Burgers-like waves, ISZ waves are asymmetric with respect to the mean water level (i.e., are skewed). In fact, their back slope is not linear but convex. However, the curvature is small enough not to affect the k -2 tendency of the energy spectrum in the inertial subrange.

Laboratory and field experiments [START_REF] Thornton | Energy saturation and phase speeds measured on a natural beach[END_REF]Elgar and Guza, 1985a;Martins et al., 2021a) showed that in the ISZ most wave com- The spectrum E v (ω) can then be written

E v (ω) = 2ν 2 c ω m c 2 0 csch 2 ω ω ν ω ∈ [ω m , ∞] ,
where ν c (x) is a characteristic turbulent diffusion coefficient that varies in space, ω m = 2π/T m with T m the mean time between adjacent wave fronts and ω ν the diffusive angular frequency. For the sake of simplicity, the empirical coefficient α c , which is close to one, does not appear in the spectrum equation.

It has been integrated into the diffusion coefficient, resulting in the actual diffusion coefficient being equal to α c ν c .

Making the change of variable (2) to come back to the physical scale ζ we obtain the following expression for the energy spectrum in the frequency domain E(ω)

E(ω) = 8 9 ν 2 c g ω m csch 2 ω ω ν ω ∈ [ω m , ∞] , (23) 
where ω ν = 3 4π gHc νc and H c is the characteristic scale of elevation jumps at wave fronts. This scale is related to the characteristic scale of v-jumps V c by

H c = 2 3 h 0 c 0 V c .
Contrary to the Burgers case, the turbulent diffusion coefficient ν c is here an unknown of the problem. The total wave energy is defined by

E = gζ 2 = ∞ 0 E(ω)dω
, where (.) is the time average operator. For ω ≪ ω ν , E(ω) follows a ω -2 power law

E(ω) = gω m H 2 c 2π 2 ω -2 , ( 24 
)
and for ω ≫ ω ν , it decreases exponentially with ω

E(ω) = 32 9 ν 2 c g ω m exp -2 ω ω ν . (25) 
The energy spectrum can be expressed in a dimensionless form as follows

E(ω) E m = ω m ω ν 2 csch 2 ω m ω ν ω ω m ,
where The nonlinearities of shallow water waves are usually characterized by the dimensionless parameter ϵ = Hc/2 h 0 , which quantifies the relative importance of nonlinearities over the linear advection. For waves propagating in the ISZ over a regular low slope bottom, the nonlinearity parameter ϵ changes very little and has a value of about 0.2-0.3 (e.g., [START_REF] Svendsen | Wave characteristics in the surf zone[END_REF][START_REF] Thornton | Energy saturation and phase speeds measured on a natural beach[END_REF]. Reynolds number R B , on the other hand, quantifies the relative importance of nonlinearities with respect to turbulent diffusion. We will see in the next section that this second nonlinearity parameter, contrary to ϵ, evolves strongly as waves propagate in the ISZ.

E m =
5 Application to laboratory experiments

Description of data sets

The theoretical approach developed above is now evaluated against laboratory experiments on random wave propagation and breaking on a uniform with ω max , is about 10 cm, a scale much larger than capillary wave scales.

The experimental parameters of the six datasets are given in table 1.

As incoming waves shoal, energy is transferred from the most energetic portion of the energy spectrum (around the spectral peak) to both higher and lower frequencies (figures 6). At the breaking point the spectrum shape strongly depends on the incident wave spectrum. For instance, narrow-band spectra (see figures 6a,b) develop harmonic peaks of the fundamental frequency and infragravity waves (i.e., waves with frequency lower than approximately 0.5f p ) that are both significantly larger than those associated with broad-band incident wave spectra. By contrast, in the ISZ the highfrequency part (ω > ω m ) of the wave spectrum always has a regular shape with an ω -2 tendency in the inertial subrange, whatever the incident wave conditions. The ω -2 tendency of ISZ wave spectra was already noticed by [START_REF] Kirby | Structure of frequency domain models for random wave breaking[END_REF]. While the shape of the high-frequency part of ISZ spectrum is almost independent of the incident wave conditions this is not the case for the frequency bounds of the inertial subrange. The lower bound, ω m , is an increasing function of the frequency peak of the incident wave spectrum ω p . Moreover, the time evolution of ω m is controlled in the surf zone by the wave front merging phenomenon. [START_REF] Tissier | Infragravity waves and bore merging[END_REF] showed that this phenomenon is favored by the presence of infragravity waves whose intensity depends on incident wave conditions.

Assessment of the analytical wave energy spectrum

To apply the theoretical spectrum ( 23 For each dataset, the mean time between adjacent wave fronts T m is obtained from a wave-by-wave analysis which identifies each sawtooth wave front. The energy Ẽ is then calculated by integrating the experimental energy spectrum from ω m = 2π/T m to the Nyquist frequency. The diffusive frequency ω ν is an unknown of the problem. To evaluate this frequency we use a nonlinear least squares method to fit the measured spectrum with the theoretical one, rewritten in the form

E(ω) Ẽ = csch 2 ω ων ω ν (coth(ω m /ω ν ) -1) .
For the whole dataset, the diffusive frequency ω ν ranges from 14.5 to 25.8 rd/s (i.e.

f ν = ω ν /(2π) ∈ [2.3, 4.1] Hz).
Knowing ω ν , we obtain finally ν c from equation ( 26).

Figures 6 show ISZ spectra measured in 5 cm water depth for the 6 contrasting datasets (see Table 1). Whatever the random wave forcing, the ISZ spectral shape is well described by the theoretical spectrum ( 23). The ω -2 tendency is identifiable on all measured spectra. However, this tendency is of course less marked for small inertial subrange, i.e., small R B (e.g., see figure 6b), than for large R B (see figure 6f).

We are now interested in the evolution of the ISZ wave spectrum as waves propagate shoreward in decreasing water depth. The measured wave spectra are very well described by equation ( 23) irrespective of the dataset 

E E a = csch 2 ω ω ν . ( 27 
)
Spectra differ only in their dimensionless inertial range width (ω ν -ω m )/ω ν .

We focus our analysis on two contrasting datasets: BK94-9 (figures 7) and vN03-C3 (figures 8). In both cases we observe a decrease in ω m as waves propagate (i.e., h 0 decreases), which is due to the bore merging phenomenon.

This decrease is much stronger for vN03-C3 (from 3.53 to 1.99 rd/s) because large amplitude infragravity waves favor bore merging [START_REF] Tissier | Infragravity waves and bore merging[END_REF].

However, as for the Burgers case (see figure 4), the shape of the energy spectrum at the SW scales, ω > ω m , is not affected by low frequency waves.

The diffusive frequency ω ν , which marks the transition between inertial and diffusive subranges, increases significantly for BK94-9 (from 18.7 to 24.1 rd/s) and slightly for vN03-C3 (from 14.9 to 16.1 rd/s). For both experiments we observe an increase in the inertial subrange width as waves propagate and thus an increase in the Reynolds number R B . This evolution is observable for all datasets, as can be seen in figure 10. This figure also shows that the Reynolds number is primarily controlled by the peak period T p of the incident wave field and is an increasing function of T p . The increase of R B in decreasing water depth, means that the relative importance of nonlinearities with respect to turbulent diffusion increases as waves propagate and thus as broken wave height decreases. This differs from what we have observed above for Burgers' turbulence, where R B is an increasing function in H c . It means that in the ISZ the characteristic wave height H c decreases less rapidly than ν c as h 0 decreases. Assuming that the turbulent diffusion coefficient is mainly controlled by H c , dimensional analysis leads to the following relationship between ν c and H c where α ν is a dimensionless coefficient. Similar scalings are commonly used to estimated eddy viscosity in the surf zone (e.g., [START_REF] Svendsen | The interaction between the undertow and the boundary layer flow on a beach[END_REF]. Figure 11 shows that the turbulent diffusion coefficient ν c follows a H 3/2 c power law in agreement with equation ( 28). However, the value of the coefficient α ν depends on incident wave conditions. The relation ( 28) implies that R B evolves approximately as

ν c = α ν g 1/2 H 3/2 c , (28) 0 
H -1/2 c
T m and is indeed a decreasing function of h 0 .

It is worth noting that our approach only applies to the ISZ. Indeed, the increase in ν c with H c should not be valid in the vicinity of the onset of wave breaking.

Energy dissipation

Breaking-wave energy dissipation is one of the most important processes in the nearshore. In particular, it controls the mean wave-induced circulation [START_REF] Bühler | Wave-driven currents and vortex dynamics on barred beaches[END_REF][START_REF] Bonneton | Large-scale vorticity generation due to dissipating waves in the surf zone[END_REF]. However, wave dissipation in the surf zone remains poorly understood and is modeled heuristically in stochastic spectral wave models [START_REF] Cavaleri | Wave modelling in coastal and inner seas[END_REF]. The commonly used method in spectral models is in two steps, firstly total dissipation D is estimated using a parametric random wave model (e.g., [START_REF] Battjes | Energy loss and set-up due to breaking of random waves[END_REF][START_REF] Thornton | Transformation of wave height distribution[END_REF] based on an analogy between broken waves given by the parametrization proposed by Eldeberky and Battjes (1996)

Γ(ω) = D E , ( 29 
)
where E is the total energy.

This method implicitly assumes that D is independent of turbulent diffusion processes at wave fronts and thus independent of the Reynolds number

R B .
Even if the dynamics of random SW in the ISZ is more complex than that of periodic SW, it is worth noting that, for the later, the dissipation spectrum is strongly dependent on R B . In the periodic case, it is the sum of D and the nonlinear transfer function T that is nearly independent of R B and can be approximated by T (ω) + D(ω) = ΓE(ω), where Γ = D E (see equation ( 13)), in a form resembling the parametrization (29).

Parametrization ( 29) is also based on the assumption that Γ is independent of ω. However, several studies have shown that Γ is an increasing function of ω [START_REF] Mase | Hybrid frequency-domain KdV equation for random wave transformation[END_REF][START_REF] Kirby | Structure of frequency domain models for random wave breaking[END_REF][START_REF] Elgar | Spectral evolution of shoaling and breaking waves on a barred beach[END_REF][START_REF] Chen | Modeling spectra of breaking surface waves in shallow water[END_REF][START_REF] Herbers | Spectral energy balance of breaking waves within the surf zone[END_REF][START_REF] Kaihatu | Asymptotic behavior of frequency and wave number spectra of nearshore shoaling and breaking waves[END_REF][START_REF] Smit | Non-hydrostatic modeling of surf zone wave dynamics[END_REF]. [START_REF] Mase | Hybrid frequency-domain KdV equation for random wave transformation[END_REF] and [START_REF] Elgar | Spectral evolution of shoaling and breaking waves on a barred beach[END_REF], based on laboratory and field observations respectively, identified a frequency-squared tendency for Γ. [START_REF] Mase | Hybrid frequency-domain KdV equation for random wave transformation[END_REF] noticed that this ω 2 dependence appears simi-lar to that of the viscous damping term of the Burgers' equation. [START_REF] Kirby | Structure of frequency domain models for random wave breaking[END_REF] and [START_REF] Smit | Non-hydrostatic modeling of surf zone wave dynamics[END_REF], by performing numerical simulations with a time-dependent Boussinesq model and a non-hydrostatic model respectively, confirmed the ω 2 dependence for Γ in the ISZ. In this context Γ can be written as

Γ(ω) = α Γ ω 2 , ( 30 
)
where α Γ is given by

α Γ = D ∞ 0 ω 2 E(ω)dω .
Based on laboratory and field data [START_REF] Chen | Modeling spectra of breaking surface waves in shallow water[END_REF] demonstrated that spectral Boussinesq-model predictions of wave skewness and asymmetry are more accurate with the dissipation parametrization given by equation ( 30)

than by frequency-independent parametrization (29).

However, neither parametrization takes into account turbulent diffusion processes at wave fronts. On the other hand, the Burgers-like theory presented in section 4 and validated in section 5 allows us to obtain a relation between D(ω) and E(ω)

D(ω) = 2ν c gh 0 ω 2 E(ω) , (31) 
which takes into account the turbulent diffusion through ν c . The frequencysquared dependence of relation ( 31) is in agreement with observations described just above. We have shown in section 5.2 that the diffusion coef-ficient is mainly controlled by the characteristic wave height (see equation ( 28) and figure 11). However, an accurate parametrization of ν c will require the analysis of a larger dataset including field observations. Relation (31) does not require an ad hoc parametrization of the total dissipation as is the case for previous approaches (cf. equations ( 29) and ( 30)). On the contrary, D is explicitly given by integrating equation ( 31 

If we replace the characteristic wave height H c by the root mean square wave height H rms , this expression is similar to the empirical expression based on an analogy between broken waves and non-diffusive hydraulic jumps [START_REF] Battjes | Energy loss and set-up due to breaking of random waves[END_REF]. The approximate relation ( 32) is not useful in itself, but it is very interesting because it highlights a connection between our approach and the classical non-diffusive one [START_REF] Battjes | Energy loss and set-up due to breaking of random waves[END_REF]. Equation a theoretical law for the dissipation spectrum

D(ω) = 16 9 ν 3 c g 2 h 0 ω m ω 2 csch 2 ω ω ν ω ∈ [ω m , ∞] . (33) 
The asymptotic form of (33) for ω ≪ ω ν is given by

D(ω) = ν c ω m H 2 c π 2 h 0 . ( 34 
)
We now analyze the main characteristics of D(ω), but without direct experimental validation of theoretical dissipation spectra. A dissipation spec-trum computed by applying equation ( 31) to a measured energy spectrum is presented in figure 12. This dissipation spectrum compares well with the theoretical one (33). We can see that D(ω) is not proportional to E(ω) but is nearly constant in the inertial subrange [ω m , ω ν ], with a value in agreement with equation ( 34). In other words there is an equipartition of energy dissipation over the inertial subrange. This result is in agreement with observations by [START_REF] Kirby | Structure of frequency domain models for random wave breaking[END_REF] and [START_REF] Kaihatu | Asymptotic behavior of frequency and wave number spectra of nearshore shoaling and breaking waves[END_REF]. [START_REF] Kirby | Structure of frequency domain models for random wave breaking[END_REF] proposed that this phenomenon arises from the fact that dissipation manifests in the space-time domain as a sequence of isolated spike-like processes. Contrary to energy, dissipation D(ω) is large up to high frequencies of about ω ν . For example, at large Reynolds numbers (R B ∼ 400), the dissipation D(ω ν ) is about 0.72 times the maximum dissipation D(ω m ), while the energy ratio E(ω ν )/E(ω m ) is about 10 -2 . In our datasets ω ν can reach values up to 17ω p (see figure 7f). This means that a proper modeling of dissipation needs to consider a much larger frequency range than the one sufficient to properly estimate total energy. This is an important result in the context of spectral wave model development.

Conclusion

The spectral behavior of random sawtooth waves propagating in the inner surf zone has been analyzed. We show that the elevation spectrum exhibits on a Fourier spectral method. We consider the transformation of an initially sinusoidal wave field into a SW field. Figure 1 shows that there is no distinguishable difference between theoretical and numerical SW solutions. We will now derive an expression for the SW energy spectrum based on the Khokhlov solution (2). Since v given by this equation is an odd function of x we can expand v as a sine series

v(x, t) = ∞ n=1 v n (t) sin(nk p x) ,
where k p = 2π λ and v n is the n th Fourier coefficient

v n (t) = 4 λ λ/2 0 v(x, t) sin(nk p x)dx .
By decomposing the velocity field into v = v i -C, with C the diffusive correction given by C = V J 2 -sgn(x) + tanh V J x 4ν , the Fourier coefficients of the Khokhlov solution (2) can be rewritten as

v n (t) = 4 λ λ/2 0 V J (x, t) sin(nk p x)dx - λ/2 0 C sin(nk p x)dx .
As illustrated in figure 1, the diffusive correction C rapidly decreases to zero as x increases. The upper bound of the second integral can therefore be replaced by ∞. The approximate integral can then be solved by using tables of Fourier transforms (e.g., [START_REF] Oberhettinger | Tabellen zur Fourier transformation[END_REF]. Finally, the Fourier coefficients can be expressed as

v n (t) = -2νk p csch 2πν V J nk p ,
and the energy spectral density, E vn = v 2 n 2 , as

E vn = 2ν 2 k 2 p csch 2 k n k ν , (3) 
where

k n = nk p and k ν = V J 2πν . For k n /k ν ≪ 1, E vn follows a k -2 n power law E vn = 2V 2 J λ 2 k -2 n . (4) 
This last relation is also the exact energy spectral density of the non-diffusive SW solution (1). In the following, the inertial and diffusive subranges will 

k ν /k p = R B /(4π 2 ).
We now present a comparison between the theoretical spectrum (3) and spectra obtained from numerical solutions of the Burgers' equation. We consider the transformation of an initially sinusoidal wave field into a SW field.

As a sawtooth wave evolves, its velocity jump, and consequently, its Reynolds number decrease. Energy spectra for two Reynolds numbers (R B = 200 and 400) representative of those in the ISZ are presented in figure 2. We can see that there is no distinguishable difference between the theoretical solution

(3) and the numerical one. In the inertial subrange the energy spectrum tends to follow the k -2 n power law given by equation (4). The decrease with time in the inertial subrange width, associated with the decrease in R B , is illustrated in figure 2. 4)); +, numerical solutions of the Burgers' equation at dimensionless times V 0 t/λ = 2.17 (R B = 400) and V 0 t/λ = 4.67 (R B = 200), for a sinusoidal initial condition v(x, t = 0) = 0.5V 0 sin (2π/λ) with R B (t = 0) = 1000; dotted lines, positions of k ν /k p . For the sake of clarity we use continuous lines to represent the discrete energy spectra (3) and (4).

A.2 Random sawtooth waves

We now consider freely decaying random solutions v(x, t) which are statistically homogeneous in space with zero mean. The power spectral density Φ(k, t) is the Fourier transform of the auto-correlation function R(r)

Φ(k, t) = 1 2π ∞ -∞ R(r) exp(-ikr)dr , (5) 
where R(r, t) = ⟨v(x, t)v(x + r, t)⟩. Φ(k, t) being an even function of k, we limit our analysis to k ≥ 0 and denote E v (k, t) = 2Φ(k, t) the power spectral density function. With this notation, the total energy, E v = ⟨v 2 ⟩ = ∞ -∞ Φ(k)dk, can be expressed as

E v = ∞ 0 E v (k)dk .
The assumption of isotropy implies R(-r) = R(r) and then

E v (k, t) = 2 π ∞ 0 R(r) cos(kr)dr . (6) 
After two integrations by parts equation ( 6) can be rewritten as

E v (k, t) = 2 πk 2 ∞ 0 d 2 Q dr 2 cos(kr)dr , (7) 
where Q(x, t) = 1 2 ⟨(v(x + r, t) -v(x, t)) 2 ⟩ and R(r, t) = ⟨v(x, t) 2 ⟩ -Q(x, t). In order to estimate E v (k, t) in the SW regime, Saffman (1968) assumed that the periodic solution (2) reproduces the qualitative features of the smallscale behavior of random sawtooth waves. He then found that, for r ≪ λ m , Q(r, t) can be estimated by

Q(r, t) = V c (t) 2 2λ m (t) r coth V c (t) 4ν r - 4ν V c (t) , (8) 
where λ m is the mean distance between adjacent wave fronts and V c the characteristic scale of velocity jumps at wave fronts.

By substituing (8) into (7) we obtain where ξ(r) = r(coth(αr) -1) and α = Vc 4ν . After two integrations by parts

E v (k, t) = V 2 c πλ m k 2
E v (k, t) = V 2 c πλ m k 2 F (k) ,
where

F (k) = 1 -k 2 ∞ 0
ξ(r) cos(kr)dr .

F (k) can be written

F (k) = 1 -k 2 dG dk ,
where G(k) = ∞ 0 (coth(αr) -1) sin(kr)dr. By using tables of Fourier transforms (e.g., [START_REF] Oberhettinger | Tabellen zur Fourier transformation[END_REF] we have

G(k) = -k -1 + π 2α coth(πk/(2α))
then

F (k) = k 2 π 2 4α 2 csch 2 (πk/(2α))
and finally

E v (k) = 2ν 2 k m csch 2 (2πνk/V c ) .
This spectrum law differs slightly from the Saffman (1968) law

E S (k) = 2πν 2 L csch 2 (πνk/(2V c )) ,
where Saffman defined L as the averaged distance between wave fronts (i.e., λ m ). We have shown that in fact L = λ m /2. We have also corrected a typo in the csch-term.

B Additional ISZ energy spectra 

Figure 1 :

 1 Figure 1: Example of a random sawtooth wave elevation signal in the inner surf zone. ζ denotes the surface elevation. Laboratory data from van Noorloos (2003), experiment vN03-C3 (seeTable 1), wave gauge no 64.

Figure 2 :

 2 Figure 2: Example of a random sawtooth wave elevation spectrum in the inner surf zone. Laboratory data from van Noorloos (2003), experiment vN03-C3 (see Table1), wave gauge no 64. Cyan line, sawtooth wave regime; grey line, beginning of the surf zone; dashed line, ω -2 power law.

contrasting

  Reynolds numbers R B = 100 and R B = 500 (respectively minimum and maximum R B values observed in the ISZ experiments discussed in section 5). This means that we analyze two similar wave fields that have almost the same shape except at the wave front. Figure 3 shows that the temporal rate of change of the energy spectrum, d dt E vn , is virtually independent of R B . This temporal rate of change follows the approximate relation for large R B d dt

  ) respectively. This explains why the energy spectrum shape is practically preserved as sawtooth waves evolve with time. Contrary to d dt E vn , the dissipation spectrum D vn and the nonlinear transfer function T vn are strongly dependent on R B . For the highest R B (R B = 500), figure 3 shows that T v 1 ≫ D v 1 , meaning that for the first wave mode (the most energetic) the rate of change of the energy spectrum is mainly controlled by energy transfer to higher wavenum-bers. By contrast, for the lower R B (R B = 100), T v 1 is of the same order of magnitude as D v 1 and thus the nonlinear energy transfer and the energy dissipation contribute nearly equally to the energy decrease with time. We can see in figure 3 that D vn is nearly constant in the inertial subrange following relation (11) and strongly decreases in the high wavenumber tail of the spectrum (i.e., the diffusive subrange). In the diffusive subrange | d dt E vn | is much smaller than D vn and |T vn |. This means that for high wavenumbers there is a balance between the dissipation and the nonlinear energy transfer from low wavenumbers. This result seems in line with surf zone field observations by Herbers et al. (2000).

Figure 3 :

 3 Figure 3: Dissipation spectrum and nonlinear transfer function for 2 SW solutions with the same V J and λ but distinct Reynolds numbers: R B equal to 100 (continuous lines) and 500 (dash-dotted lines). Red lines, D vn equation (10); black lines, T vn equation (12); blue lines, d dt E vn = -(D vn + T vn ); dotted lines, positions of k ν /k p . For the sake of clarity we use lines (continuous or dash-dotted) to represent the discrete spectra.

  v-jumps at wave fronts, k m = 2π/λ m and λ m is the mean distance between adjacent wave fronts. The Reynolds number R B = Vcλm ν can be expressed as R B = 4π 2 kν km . The derivation of Saffman (1968) equation is presented in section A2 of the supplementary material, where we have both clarified the definition of the characteristic horizontal length scale and corrected an error in the hyperbolic cosecant term. This theory applies to short waves (i.e., SW scale) and not to wavenumbers smaller than approximately k m . For the sake of clarity, explicit reference to time has been omitted in the following equations. For periodic SW the definition of the characteristic scale of v-jumps, V J , is straightforward. It is the non-diffusive v-jump associated with the diffusive SW solution (5). The characteristic v-scale, V c , in random SW fields is not explicit. It can be obtained implicitly from Ẽv = ∞ km E v (k)dk the total energy over the wavenumber range [k m , ∞]. By integrating equation (16)

Figure 4

 4 Figure4illustrates the time evolution of the energy spectrum. The cas-

Figure 5 :

 5 Figure 5: Time evolution of the dissipation spectrum for an initial condition given by equation (22). Cyan lines, numerical simulations at dimensionless times t/t * =1.45, 2.90 and 4.85 (corresponding Reynolds numbers, R B =443, 380 and 363), where t * = 1 kp √ E T 0 ; black line, theoretical model (20) starting from k = k m ; red line, equation (21). The length of the domain covers 2 8 λ p and is discretized over 2 16 grid points. Spectra have been averaged over 1000 realizations.

  ponents of the spectrum are bounded and propagate to the same celerity c m close to the non-dispersive celerity in shallow water c 0 . From laboratory experiments analyzed in section 5, we have verified that this spectral behaviour also holds for high frequencies in the diffusive subrange. The ISZ celerity can be estimated by the relation c m = α c c 0 , where α c ≃ 1.1 -1.2[START_REF] Tissier | Field measurements and non-linear prediction of wave celerity in the surf zone[END_REF] Martins et al., 2021a). Using the dispersion relation, ω = c m k, we can estimate the energy spectrum in the frequency domain, E v (ω), from the one in the wavenumber domain.

gH 2 c

 2 2π 2 ωm . The shape of the energy spectrum is thus entirely controlled by the dimensionless number ω m /ω ν or equivalently by the Reynolds number R B = 4π 2 ων ωm = 3 2 gHcTm νc . In the following the inertial and diffusive subranges will be defined respectively as ω ∈ [ω m , ω ν ] and ω ∈ [ω ν , ∞]. The dimensionless width of the inertial subrange, (ω ν -ω m )/ω m , increases linearly with R B .

  slope. Six laboratory datasets are used: one from Mase and[START_REF] Mase | Hybrid frequency-domain KdV equation for random wave transformation[END_REF] (hereafter MK93), three from Bowen and Kirby (1994) (BK94) and two from vanNoorloos (2003) (vN03). These experiments cover a large variety of incident random wave conditions in terms of frequency peak f p , wave height H i and spectral shape. The random waves were generated at the wave paddle using random realizations of analytical single-peaked spectra.[START_REF] Mase | Hybrid frequency-domain KdV equation for random wave transformation[END_REF] chose a Pierson-Moskowitz spectrum that can be seen in figure 6c (blue line). van Noorloos (2003) used a Jonswap spectrum with a peak-enhancement factor γ = 3.3 which provides a much sharper frequency peak than that of the Pierson-Moskowitz spectrum (see figures 6a,b; blue lines).[START_REF] Bowen | Shoaling and breaking random waves on a 1: 35 laboratory beach[END_REF] chose a TMA spectrum which is an extension of the Jonswap spectrum describing waves in finite depth. In shallow water the TMA spectrum follows a ω -3 power law which results in a broader spectrum than the Jonswap spectrum (see figures 6d,e,f; blue lines). In all these experiments the wave gauges are sampled at a frequency of 25 Hz. For our spectral analysis we will consider frequency lower than half the Nyquist frequency, i.e. ω < ω max = 40 rd/s. The smallest wavelength, associated

  Figure 6: Energy spectra for: a, vN03-C3; b, vN03-D3; c, MK93; d, BK94-7; e, BK94-8; f, BK94-9. Blue line, incident wave spectrum; grey line, spectrum at the breaking point; cyan line, ISZ spectrum in a mean water depth h 0 of 5.5 cm; black line, equation (23); red line, equation (24). Blue cross, position of ω m ; red cross, position of ω ν .

Figure 7 :Figure 8 :Figure 9 :

 789 Figure7: Energy spectra at different locations in the ISZ for the BK94-9 experiment. a, x = 24.50 m, h 0 = 7.6 cm; b, x = 24.72 m, h 0 = 6.8 cm; c, x = 24.97 m, h 0 = 6.2 cm; d, x = 25.22 m, h 0 = 5.5 cm; e, x = 25.50 m, h 0 = 4.9 cm; f, x = 25.76 m, h 0 = 4.0 cm. Grey line, spectrum at the breaking point; cyan line, ISZ spectrum at water depth h 0 ; black line, equation (23); red line, equation (24). Blue dashed line, position of ω m ; red dashed line, position of ω ν . 32

Figure 10 :

 10 Figure 10: Evolution of the Reynolds number R B as a function of water depth h 0 .

Figure 11 :

 11 Figure 11: Evolution of the diffusion coefficient as a function of g 1/2 H 3/2 c .

  ) over frequencies, i.e., D = 2νc gh 0 ∞ 0 ω 2 E(ω)dω. By substituting the energy spectrum equation (23) into the last integral we can obtain an approximate relation of the total dissipation for large R B

( 31 )Figure 12 :

 3112 Figure 12: Dissipation spectrum in the ISZ. Cyan line, dissipation computed from a measured energy spectrum (see figure 8g) and equation (31), vN03-C3 experiment, gauge 66; black line, theoretical dissipation law (33) for ω ∈ [ω m , ∞]; large dashed line: theoretical law (33) for ω ∈ [0, ω m ], outside of its range of applicability; black dashed line, equation (34); blue dashed line, position of ω m ; red dashed line, position of ω ν .
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  universal shape. A theoretical spectrum has been derived based on the similarities between SW in the ISZ and Burgers SW solutions. A very good agreement between this theoretical model and laboratory experiments covering a large range of incident random wave conditions is shown. The energy spectrum shape is determined by three parameters: ω m = 2π/T m , ω ν the diffusive frequency and ν c the turbulent diffusion coefficient. It is thus controlled by one dimensionless number defined as R B = 4π 2 ων ωm , or equivalently as R B = 3 2 gHcTm νc , where H c is the characteristic wave height. This Reynolds number quantifies the relative importance of nonlinearities with respect to turbulent diffusion. In the inertial frequency subrange, defined as ω ∈ [ω m , ω ν ], the energy spectrum follows a ω -2 tendency. An exponential decay of E with ω is observed in the high-frequency diffusive subrange ω ∈ [ω ν , ∞]. We have shown that the turbulent diffusion coefficient is mainly controlled by the characteristic wave height, following relation (28). Consequently, the Reynolds number evolves approximately as H -1/2 cT m . The nonlinearities thus increase as waves propagate in decreasing water depth. This explains why the inertial subrange and its ω -2 tendency are more marked at the end of the ISZ than at the beginning. It is worth noting that information on turbulent processes in the ISZ can be indirectly provided by applying our theoretical model to high-frequency wave elevation measurements.In stochastic spectral wave models it is crucial to have a good parametriza-tion of the dissipation spectrum D(ω). Within the framework of our theoretical approach we have derived an explicit relation between D and E (see equation (31)), showing a frequency-squared dependence in agreement with previous laboratory and field studies. Contrary to usual dissipation parametrizations, our relation does not require an empirical estimation of total dissipation D. We must keep in mind that our approach has been developed for the SW regime in the ISZ and not for the entire surf zone.However, our model (31) could nevertheless be useful for developing new parametrizations of the dissipation spectrum for the entire surf zone.An equation has been derived for describing the universal shape of the dissipation spectrum in the ISZ. It highlights that D remains nearly constant within the inertial subrange and decreases exponentially within the diffusive subrange. The equipartition of dissipation over the inertial subrange is in agreement with previous observations. Contrary to energy, dissipation D(ω)is large up to high frequencies of about ω ν . Consequently, a proper modeling of the dissipation needs to consider a much larger frequency range than the one containing most of the energy. Therefore, to characterize the spectral behavior of surf-zone waves in the field, it is crucial to be able to accurately quantified the surface elevation spectrum at high frequencies, up to approximately 1-2 Hz. Developments on both nonlinear reconstruction of wave elevation from pressure measurements[START_REF] Bonneton | Recovering water wave elevation from pressure measurements[END_REF] 

Figure 1 :

 1 Figure 1: Profile of a periodic Burgers SW at R B = 200. Red line, diffusive solution (equation 2); black line, non-diffusive solution (equation 1); green line, diffusive correction C = V J2 -sgn(x) + tanh V J x 4ν ; +, discrete form (every 10 points) of the numerical solution (Fourier spectral model) of the Burgers' equation at dimensionless time U 0 t/λ = 4.67 (R B = 200), for a sinusoidal initial condition v(x, t = 0) = 0.5U 0 sin (2π/λ) with R B (t = 0) = 1000.

  be defined respectively as k ∈ [k p , k ν ] and k ∈ [k ν , ∞]. The dimensionless width of the inertial subrange, (k ν -k p )/k p , increases linearly with R B , since

Figure 2 :

 2 Figure 2: Energy spectral density of periodic Burgers SW at R B = 400 and 200. Red line, diffusive solution (equation (3)); green line, non-diffusive solution (equation (4)); +, numerical solutions of the Burgers' equation at dimensionless times V 0 t/λ = 2.17 (R B = 400) and V 0 t/λ = 4.67 (R B = 200), for a sinusoidal initial condition v(x, t = 0) = 0.5V 0 sin (2π/λ) with R B (t = 0) = 1000; dotted lines, positions of k ν /k p . For the sake of clarity we use continuous lines to represent the discrete energy spectra (3) and (4).

  2 (r coth(αr)) cos(kr)dr ,

Figure 3 :Figure 4 :

 34 Figure3: Energy spectra at different locations in the ISZ for the vN03-D3 experiment. a, gauge 62, h 0 = 6.8 cm; b, gauge 63, h 0 = 6.0 cm; c, gauge 64, h 0 = 5.2 cm; d, gauge 65, h 0 = 4.4 cm; e, gauge 66, h 0 = 3.6 cm; f, gauge 67, h 0 = 2.9 cm. Grey line, spectrum at the breaking point; cyan line, ISZ spectrum at water depth h 0 ; black line, equation (4.2); red line, equation (4.3). Blue dashed line, position of ω m ; red dashed line, position of ω ν . 7

Figure 5 :

 5 Figure5: Energy spectra at different locations in the ISZ for the BK94-8 experiment. a, x = 24.50 m, h 0 = 7.5 cm; b, x = 24.72 m, h 0 = 6.8 cm; c, x = 24.97 m, h 0 = 6.1 cm; d, x = 25.22 m, h 0 = 5.5 cm; e, x = 25.50 m, h 0 = 4.8 cm; f, x = 25.76 m, h 0 = 3.9 cm. Grey line, spectrum at the breaking point; cyan line, ISZ spectrum at water depth h 0 ; black line, equation (4.2); red line, equation (4.3). Blue dashed line, position of ω m ; red dashed line, position of ω ν .

  

  

  

Table 1 :

 1 Experimental parameters. H i , incident wave height; h i , water depth; f p , peak frequency; γ, peak-enhancement factor; s, bottom slope; f s , sampling rate.

		H i (cm)	h i (cm)	f p (Hz)	spectrum	γ	s	f s (Hz)
	vN03-C3 H m0 = 10	70	0.5	Jonswap	3.3	1/35	25
	vN03-D3 H m0 = 10	70	0.65	Jonswap	3.3	1/35	25
	MK93	H rms = 4	47	0.6	Pierson-Moskowitz	1	1/20	25
	BK94-7	H rms = 7	44	0.5	TMA	3.3	1/35	25
	BK94-8	H rms = 8	44	0.225	TMA	3.3	1/35	25
	BK94-9	H rms = 9	44	0.225	TMA	3.3	1/35	25
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A Burgers' spectra

A.1 Periodic sawtooth waves

In the non-diffusive case (ν = 0), the periodic SW Burgers solution, v i (x, t), is given by

where λ is the wavelength, V J (t) = V 0 1+V 0 t/λ is the velocity jump across the inviscid shock (located in x = 0) and V 0 is the velocity jump at t = 0.

Khokhlov derived an exact SW solution of the diffusive Burgers' equation

This solution is not periodic, but for large Reynolds numbers it becomes quasi-periodic between x = -λ/2 and x = λ/2, with a diffusive front located in x = 0.

In figure 1 we present a comparison between the quasi-periodic theoretical solution (2) and the numerical solution of the Burgers' equation based