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Abstract

Frisch-Parisi conjecture claims the existence of Baire function spaces in which Baire typical func-
tions share the same multifractal behavior, prescribed in advance, and obey a multifractal formal-
ism. In this paper, we introduce a family B of heterogeneous Besov spaces, which generalize the
standard Besov spaces - they are obtained by replacing the Lebesgue measure (which plays a key
role in the definition of the standard Besov spaces) by multifractal Radon measures belonging to
some class constructed in the companion paper [1]. We find a characterization of the elements
of B in terms of wavelet coefficients, and then describe the multifractal properties (singularity
spectrum, validity of the multifractal formalism) of their Baire typical functions. This allows us
to fully solve the Frisch-Parisi conjecture inside B.

Résumé.

La conjecture de Frisch-Parisi affirme ’existence d’espaces fonctionnels de Baire dans lesquels les
fonctions génériques partagent le méme comportement multifractal, prescrit a I’avance, et satisfont
un formalisme multifractal. Dans cet article, nous introduisons une famille B d’espaces de Besov
hétérogénes, qui généralisent les espaces de Besov standard - ils sont obtenus en remplacant la
mesure de Lebesgue (qui joue un réle clé dans la définition des espaces de Besov standard) par les
éléments d’une classe de mesures de Radon multifractales construite dans larticle associé [1]. Nous
trouvons une caractérisation des élements de B en termes de coefficients d’ondelettes, puis nous
décrivons les propriétés multifractales (spectre de singularité, validité du formalisme multifractal)
de leurs fonctions génériques. Ceci nous permet de résoudre complétement la conjecture de Frisch-
Parisi dans B.

Keywords: Hausdorff dimension, multifractal formalism, Besov spaces, Fréchet spaces, wavelets.
2020 MSC: 28A78, 28A80, 30H25, 42C40, 46A04

1. Introduction

The so-called Frisch-Parisi conjecture is the inverse problem, raised by S. Jaffard, consisting in
seeking for Baire function spaces in which typical elements share the same prescribed multifractal
behavior and obey a multifractal formalism. To be more specific, recall that for a real valued
function f € LS (R?), the pointwise Holder exponent function h is defined as follows. Given zq €

R? and H € R,, f is said to belong to ¢ (x¢) if there exist a polynomial P of degree at most
| H], a constant C' > 0, and a neighborhood V' of xy such that

VzeV, |f(z)—Plz—x0)| <Claz—zol".
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The pointwise Hélder exponent of f € L (R?) at xg is

loc
hy(zo) =sup{H € Ry : fe ()}, (1.1)

and f is said to have a Holder singularity of order hy(zo) at zo.
Then the multifractal spectrum, or singularity spectrum of f is the mapping

R — [0,d] U {—occ}
H — dim By (H),

where
E;(H) = {2z € R?: hy(zx) = HY,

dim stands for the Hausdorff dimension, and dim £ = —oo if and only if £ = .

Conjecture 1 (Frisch-Parisi conjecture). Let .74 be the set of functions o : R — [0,d] U {—o0}
such that o is concave, continuous, with compact support included in (0, +00) and whose mazimum
equals d. For every o € %y, there exists a Baire functional space of functions defined on R? in
which any typical element f obeys some multifractal formalism and satisfies oy = 0.

We refer to the companion paper [1] for an introduction to multifractals and this conjecture.
In [1], we constructed a set M, of Z%-invariant Radon measures on R?, exhausting the possible
multifractal behaviors of fully supported measures obeying a multifractal formalism, and with a
prescribed singularity spectrum compactly supported in (0, 00). Considering the set of capacities
&y ={v®: v e Mg, s> 0}, the prescription part of the conjecture followed thanks to a family
of Baire spaces { B*(R%)},cg, extending naturally the Hélder-Zygmund spaces and defined using
wavelet expansion of uniformly bounded Hoélder fonctions (see [1, Theorems 2 and 7]); in particular
typical elements in B*(R9) inherit the singularity spectrum of p. In this paper, we introduce
heterogeneous Besov spaces denoted by B! (R%) (depending on a capacity p and two indices
p,q € (0,400]), which generalise in a natural direction the standard Besov spaces defined through
LP moduli of smoothness. In particular, one will see that B> (R?) = B*(R%). Roughly speaking,
the central role played by the Lebesgue measure in the structure of Besov spaces is now played
by (possibly) multifractal measures and more generally capacities. We first characterize these new
spaces using wavelet coefficients. Then, we consider the family B = {BLP(RY)} e, (p.0)el1 4002
of such spaces where u belongs to set of capacities &;. Through a delicate study we identify the
multifractal behavior of the typical elements in any function space BY"” (R%); this behavior depends
in a non trivial way on that of x and on p. Then, we show that these typical functions obey a
multifractal formalism. Finally, we solve the inverse problem exhaustively inside B.

Sections 1.1 and 1.2 respectively introduce the heterogeneous Besov spaces (called Besov spaces
in multifractal environment) considered in this paper, and provide the characterisation of these
spaces using wavelets (Theorem 2). Then, basic multifractal properties of the elements of &; are
gathered in Section 1.3 (Theorem 3). The typical multifractal behavior in BY*P(R?) when p € &
is presented in Section 1.4 (Theorem 4), while the multifractal formalism used in this paper and
its typical validity in B4P(R?) are the subject of Section 1.5 (Theorem 5). The full solution to
the conjecture is given in Section 1.6 (Theorems 6 and 7).

1.1. Definitions of heterogeneous Besov spaces

Standard Besov spaces can be defined by using LP moduli of smoothness, and are characterized
using decay rate of wavelet coefficients. To define Besov spaces in multifractal environment, the
classical definition of LP moduli of smoothness is extended using Hélder capacities. For z € R,
r € Ry, B(x,r) denotes the closed Euclidean ball with center = and radius 7.

Definition 1.1. The set of Hélder set functions on B(R?) is defined as

H(RY) = {p: BRY) - Ry U{oc}: 3C,s >0, VE CRY u(E) < C|E|*}. (1.2)
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Then, the set of Hélder capacities is defined as
CRY ={peHRY): VE,FeBR"), ECF = pu(E) < pu(F)}. (1.3)

The topological support supp(p) of u € H(R?) is the set of points x € R? for which u(B(z,r)) >0
for every r > 0. A capacity p is fully supported when supp(u) = R?.

Similarly, H([0,1]%) and C([0,1]%) are defined by replacing above R by [0,1]%.

Definition 1.2. For h € R? and f : R* — R, consider the finite difference operator Anf : x €
R? s f(x+ h) — f(z). Then, forn > 2, set AP f = Ap(A7f).
For every fully supported set function u € H(R?), for every n € N*, h € R%\ {0} and z € RY,

set

Ay f ()
u(Blz, + nhl)’
where Blx,y] stands for the Euclidean ball of diameter [z, y].

For p € [1,400], the p-adapted n-th order LP modulus of smoothness of f is defined at any
t>0 by

A" f(x) =

Wh(ft,RY), = sup AR fllo(ga)- (1.4)
t/2<|h|<t

Observe that when u(E) = 1 for every set E, then w!(f,t,R%),, is a modification of the standard
n-th order LP modulus of smoothness of f defined by

wn(fvthd)p: sup HAZf”LT’(]Rd) (15)
0<|h|<t

Recall that when s > 0, and p,q € [1,+400], the Besov space Bg*p(Rd) is the set of those
functions f : R? — R such that

£l Bs 2 wey = [ fllr®ay + [ flBsw®ay < 00, (1.6)

where 4 '
flBs v @ay = 127% (wn (£, 277, RY)p) jenlles ) < 400,

Bz P (ray 1s voluntarily omitted. Indeed, the

and n is an integer > s. The dependence on n in |f
norm || || gsr(re) makes ByP (R9) a Banach space, and different values of n > s yield equivalent
norms (see [2, Remark 3.2.2]).

Let us recall some notations used in [1]. For every j € Z, let D; stand for the collection of
(closed) dyadic cubes of generation j, i.e. Ajx = 279k +277[0,1]¢, where k € Z9. Let us also set
D= U]EZ’D]-, and if A\ =\, € D; we set x) = 277k.

For z € RY, \;() is the closure of the unique dyadic cube of generation j, product of semi-open
to the right dyadic intervals, which contains x.

For j € Z, A € Dj, and N € N*, N denotes the cube with same center as A and radius equal
to N 27971 in (R || ||oo). For instance, 3\ is the union of those X € D; such that X NN # ()
(OA stands for the frontier of the cube \).

The capacities considered in this paper and in [1] satisfy additional properties.

Definition 1.3. Let ® be the set of non decreasing functions ¢ : N — R such that lim;_, %]) =
0. A capacity u € C(RY) is almost doubling when there exists ¢ € ® such that

for all x € supp(p) and j € N, u(3X;(z)) < D pu();(z)). (1.7)

Definition 1.4. A set function u € H(R?) satisfies property (P) if there exist C,s1,52 > 0 and
¢ € ® such that:
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(P1) for all j € N and X € D;, ' '
C~1279%2 < y(\) < 027751, (1.8)

(P3) for all j, 7" € N with j' > j, for all M€ D; such that OAN ON#D, and N € Djs such that
N CA:
0*12*¢(j)2(j/*j)51'u()\/) < M(X) < 02¢(j)2(j'*j)52'u()\/). (1.9)
In particular, p is almost-doubling, and doubling if ¢ = 0.

Definition 1.5. For s > 0, a set function p € H(R?) is s-Hélder when there exists C > 0 such
that u(E) < C|E|* for all E € B(RY).
Then, for p € H(RY), s >0, and E € R?, define

p(E) = w(E)® and pt(E) = w(E) B,
and if p is so-Hélder, then for all s € (0,s¢), define

0 if |[E| =0,
WCE) = p(B)EI= i 0 < |B| < +oo,
00 otherwise.

Starting from p € H(RY), p*, u+) and (=% as defined above still belong to H(R?) (with s
small enough in the case of u(=*)).
We are now ready to introduce heterogenous Besov spaces in p-environment.

Definition 1.6 (Besov spaces in p-environment). Let i € H(R?) satisfy property (P1) of Defini-
tion 1.4 with exponents 0 < s1 < s9, and consider an integer n > |sq + %J + 1.
For1<p,q<o0, let
ByP(RY) = {f € LP(R?) : || py»(may < +o0},

where

e = 277 @h(7,277 R, )jen (1.10)

fa(N)
Also, let
(=)
B!P(RY) = (| By “r®Y. (1.11)
0<e<min(sy,1)

Note that By?(R?) C BYP(R?). The spaces BEP(R?) and BYP(RY) will be referred to as Besov
spaces in p-environment.

At this stage, both Bg’p(Rd) and Bg”’(Rd) depend a priori on the choice of n. However, the
dependence inn > |so+ %j +1 can be dropped for BJ"P (Rd) when p is a doubling capacity, and also
for Bg’p(]Rd), under the (rather weak) extra property (Ps) of Definition 1.4 (see Theorem 2 for a
precise statement). Moreover, endowed with the norm || || Lrre) + [ [prr gay, BYP (R9) is a Banach
space. Hence, By™” (R9) is naturally endowed with a Fréchet space structure, as the intersection of
a nested family of such spaces. The Fréchet spaces Bl'F(R?) will be used to solve the Frisch-Parisi
conjecture.

Let £¢ stand for the d-dimensional Lebesgue measure. For y = (Ld)%fi, it is quite direct to see
that B:P(R?) = B5P(R?) when s > d/p. When p € H(R?) is multifractal (typically u = v* where
v is a multifractal measure and s > 0) the heterogeneity associated to the distribution of the values
of pu at small scales makes natural to see such a capacity as defining an heterogeneous environment
imposing local distorsions in the computation of the moduli of smoothness in comparison to positive
powers of £¢, which are homogeneous in space. Like for By? (R%), to study the typical multifractal
behavior in B4P(R?) and BYP(R?), it is essential to establish a wavelet characterization of these
spaces. Such a characterization exists for BSP(R?) when p is almost doubling, and for B4-? (R%)
when p is doubling (see Theorem 2).
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1.2. Wawelet characterization of Besov spaces in almost doubling environments

It is standard that classical Besov spaces are characterized in terms of wavelet coefficients decay.
We investigate the situation for the spaces BP(R?) and B4P(R?).

Let {¢,{¢W},_1 24 1} be a family of wavelets defining a multi-resolution analysis with re-
construction in L2(R?) (see [3, Ch. 2 and 3] for a general construction).

Let A =J;cz Aj, where for j € Z

Aj={(i,j,k):ie{l,...,29— 1}, k€ 2.
For every A = (i,4,k) € A, denote by v the function z + (272 — k). The functions 2%/21)y,

j € Z, A € A;, form an orthonormal basis of L?(R%), and every f € L?(R?) can be expanded, in
two equivalent manners, as

F=Y Bk —k)+D 3 awn=>"Y aws,

kezd JENXEA; JEZ NEA;

where
B(k) = f(x)p(x —k)dz and cy\ = / 24y (z) f(z)dz (k€ Z, X eA). (1.12)
R4 Rd

Recall that a mapping ¢ : R? — R has 7 vanishing moments when for every multi-index o € N¢
of length smaller than or equal to 7, fRd it agip(x)de = 0.

Definition 1.7. For every r € N, call F,. the set of those {¢, {1/1(1')}1-:17”_72(1_1} which define a

multi-resolution analysis with reconstruction in L*(RY), and such that ¢ and the ¥ are compactly
supported, r times continuously differentiable functions, and every v? has r vanishing moments.

The set F,. is not empty for all » € N (see [3, Prop. 4, section 3.7]).

Fix r € N* and ¥ € F,. For any f € LP(R?), 1 < p < oo, define the sequences (3(k))zeza and
(ca)aea asin (1.12). Besov spaces are characterized by their wavelet coefficients as follows (see |3,
Ch. 6], [4], or [2, Corollary 3.6.2]): For r > s > d/p,

B e r(z),

s,p d .
f e B RY) = (€j)jen € L4(N), where ¢; = H(ZJ(S_d/p)cA)

(1.13)

AeA; ller(ay)’

and the decomposition f =37 74 B(k)d(- — k) + ey ZAGA], ey holds. Moreover, ||B][¢»(z4) +
pe#(ra) defined in (1.6). Note that /() € B3P(R?),
_%74’_0@

and B;P(R?) — Bioo (RY) = %ng(Rd), where for all a > 0, €%(R?) = B%L>®(RY) is the
Holder-Zygmund space of order a.

[[(5) |y is a norm equivalent to the norm || f|

Definition 1.8. Let u € H(R?) satisfy property (P1) of Definition 1.4 with exponents 0 < s1 < 8o,
and consider an integer n > |sg + %J + 1.

Fiz a wavelet ¥ € F,,, and consider for a function f € LP(RY) the quantity

(M?A))A% (1.14)

| flupaw = 1) jenllaqw), where € = | :
P (Ay)

Then define

BEP(RY) = {f € LP(RY) : | f|upgw < +00}. (1.15)



105

110

115

The space (BE5(RY), || [|Lo@a) + | [p.p.qv) is complete.

Theorem 2. Let i € C(R?) be an almost doubling capacity. Let 0 < s1 < sy and r = |53+ %j +1.

Suppose that property (P) holds for p with the exponents (s1,s2) and that Bg“p(Rd) has been
constructed by using the p-adapted n-th order LP moduli of smoothness, for some integer n > r.
Let ¥ € F,.

For every € € (0,1), there exists a constant Cey > 1 such that for all f € LP(R?),

171y + F i < ot (o) + 100 1 ) (1.16)
11l o ey + \f|Bg~”(Rd) S Cou([IfllLeay + | fl e pgw)- (1.17)

(=) e
In particular, if 0 < ¢ < min(1,s1), BEP(RY) — B~ P(RY) and BS(RY) — Bi~2(RY).
Moreover, if u is doubling and satisfies property (P) with ¢ = 0, then Bg’p(Rd) = B;’g (RY) and

the norms || |» + | |pp.qw and || |e + | |prr(way are equivalent.

Thus, when p is doubling and satisfies (P) with ¢ = 0, the space B:P(R?) coincides with
By (RY) and possesses two equivalent definitions based either on LP moduli of smoothness or
on wavelet coefficients, and this definition is independent of the choice of n > r and ¥ € F,.
Moreover, when y satisfies property (P), combining (1.16) and (1.17) shows that f € B}?(R)

if and only if f € Bé‘;e)’p(Rd) for every ¢ € (0,min(1,s;1)), hence one also gets a wavelet

characterization of B4P(R?). And since by construction the family of Banach spaces {B. :=
(-
1" p md
BqAI’ (R )}0<s<min(sl,1)
way to see that the space Bj"” (R?) can be endowed with a Fréchet space structure, of which a
countable basis of neighborhoods of the origin is given by

satisfies B, — B for all 0 < ¢ < &’ < min(sy, 1), one obtains another

1
W= {r € BEP @Y Wl + e <} e 9
m>max(1,s7 ")

) s2t+Sp 4 d si+d.p
Remark 1.9. (1) The embeddings By "~ (R?) — BYP(RY) — By " (

BE-P(R?) hold under (Py).

(2) It is direct from the proof of Theorem 2 that under the weaker assumption that (P) holds for
all (s}, sh) such that 0 < 8§ < s1 < s9 < 85, the statement remains true.

R?) and BE"7 P (RY)

(3) Fundamental examples of doubling capacities satisfying property (P) with ¢ = 0, namely Gibbs
capacities, will be given in Remark 1.15.

1.3. Recalls about the class of multifractal environments constructed in [1]

In this section, we resume some of the results proved in the companion paper [1], concerning the
construction of capacities p € ([0, 1]%) having a prescribed multifractal spectrum and satisfying
a multifractal formalism.

Definition 1.10. Let u € H([0,1]%). For x € supp(u), the lower and upper pointwise Hélder
exponents of u at x are respectively defined by

1 A
h,(x) = liminf 082 MANL)) 1 (=)

h log, No\j(fﬂ)).

- and h,(x) = limsu
oo —j u( ) jﬁoop —;

Whenever h,,(x) = hy(x), the common limit is called h,(x). Then, for o € R,

E, (o) = {33 € supp(p) : b, (7) = a} E,(a)= {m € supp(p) : hy(z) = a},
and E,(a) = E, (o) N E,(a).
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The singularity (or multifractal) spectrum of u is then the mapping
oy a €ERr—dimE (o).

Definition 1.11. The L?-spectrum of u € H([0,1]%) with supp(p) # 0 is defined by

1
7,: ¢ € R+~ liminf —=lo A9,
R gl 82 Z , ()
A€D;, AC[0,1]%,
©n(X)>0

Recall the definition of the Legendre transform ¢g* of a mapping g : R — R: for every a € R,
g* (o) = infyer g — g(g). One always has (see [5, 6])

oula) < 75(a) = grel]gqa — 7.(q). (1.19)

Definition 1.12. A set function u € H([0,1]%) with supp(u) # 0 is said to obey the multifractal
formalism (MF) over an interval I C R when for all a € I,

ou(a) =1,(a). (1.20)

It is said to obey the strong multifractal formalism (SMF) over I if for all o € I, in addition to

(1.20) one as dim E,(a) = 7;;(a).

When I =R, one simply says that the MF or the SMF holds for p.
The following result is proved in [1] (. is defined in Conjecture 1).

Theorem 3 ([1], Corollary 5). There exists a family of environments &; C C(R?) such that :

1. Bvery p € &y is Z%-invariant, fully supported on R?, almost doubling and satisfies property
(P), and the SMF holds for pujo 1)a-
2. For every o € 4y, there exists u € & such that o = o,

By Remark 1.9 (2), when p € &y, since property (P) holds with any (si, s2) such that 0 < 51 <
lell(—l—oo) < 7/, (—00) < 52, BiP(RY) is well defined by (1.11) independently of the integer n > s,
where

d
Sy = {TL(—OO) + EJ +1, (1.21)
and the wavelet characterization of Bf?(R?) holds with any ¥ € F,,,.

1.4. Typical singularity spectrum in Besov spaces in multifractal environment

Our result on the multifractal nature of the elements of B{” (R%) when p € & is the following.
The multifractal formalism’s validity is dealt with in the next section.

Theorem 4. Let p € &, let p,q € [1,400], and consider the mapping

Pt (]%t) ift € (~o0,p)

Cup(t) = p (1.22)
7, (+00)t if t € [p, +00).
L. For all f € BYP(R?),
np(H) if H <G ,(0%)
op(H) < { o - <Z,:(0+)~ (1.23)
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2. For typical functions f € B’;’p(Rd), one has o5 = ..

The possible shapes of oy when f is typical in BfP(R?) are investigated in detail in Section 4
(see Proposition 4.2): depending on the values of p and o7;(@min), various phenomena may occur.
See for instance Figures 1 and 3 for a representation of typical singularity spectrum in B4 (RY),
according to whether o,,(amin) = 0 or 0, (amin) > 0. Next remark gathers key information, proved
in Proposition 4.2.

Remark 1.13. 1. The map Cup is always concave. Also, it is immediate that Cu 400 = Ty, SO
typical functions in Bf;’+°° (RY) satisfy op = oy

2. The support of ; , is the compact subinterval [(, ,(+00), (), ,(—00)] C (0,+00). Moreover,

since Cup(0) = 7,(0) = —d, the mazimum of (; , is d, and it is reached at H if and only if

H e [Cft,p(0+):<u7p(07)]~
3. One has ¢, ,(—o0) < 7,,(—00) + % (see the first item of Section 4.2).

Two examples of capacities are given in the next remarks: the first ones are the Lebesgue
measure and its powers, this case is included both in Jaffard’s results and as a particular case of
capacities belonging to &;. The second ones are the Gibbs capacities: although they do not belong
to &y, they share the same multifractal properties as the capacities of &, and the conclusions of
Theorems 4 and 5 remain true with them.

Remark 1.14. The set of environments &y includes all the positive powers of the Lebesque measure
L% (see [1]). Takings > d/p and p = (L£L4)3/=1/? Theorem 4 coincides with the celebrated Jaffard’s
theorem [7], which can be stated as follows:

1. Forall f € Bs,p(Rd) O'f(H) < {min {p(H* (s — %))7(1} if H>s—d/p,
1 ’ T |- if H<s—d/p.

p(H—(s—2) ifHels—d/p,s),

2. Typical f € B;’p(Rd) satisfy op(H) = {—oo otherwise

In this case, T,(t) = (s —d/p)t —d so 7/ (—00) = 7/ (+o0) = s —d/p, 7;;(H) =d if H = s —d/p
and —oo otherwise. Hence, (,p(t) = st —d fort < p and (,,(t) = (s — d/p)t for t > p, whose
Legendre transform is the typical spectrum in Bgy? (R%).

Remark 1.15. Gibbs capacities are a fundamental class of multifractal doubling capacities obeying
property (P) with ¢ = 0, and for which Theorem 4, as well as Theorem & below, hold not only for
Bg’p(Rd), but also for Bg"p(Rd). Such a capacity is of the form pu = v®, where s > 0 and v is a
Gibbs measure defined as follows: let ¢ : R* — R be a Z-invariant real valued Hélder continuous
function. The sequence of Radon measures

n—1

v, (dz) = exp (Snp(7)) d(dx where T) = "x
() = e (Sup(t)) £ £ (4 where Sap(a) ;}m )

converges vaguely to a Z%-invariant Radon measure v fully supported on R?, called Gibbs measure
associated with .

Also, the so-called topologival pressure of ¢, P(¢) = lim,_, o + log f[o 1ja 2" exp (Spe(z)) £4(dx)
\[0,1]d(t) =tP(¢) — P(tp). Moreover, Ty gya 15 analytic (see [8, 9]).

One can check that when p = 400, or T:I[O e (T,j‘[o e (+00)) = 0, or the potential ¢ reaches its

minimum at 0, the proofs of Theorems 4 and 5 when p € &; remain true (up to slight modifications)
for p =v*. The general case requires additional efforts.

exists, and T,
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Figure 1: Left: Upper bound for the singularity spectrum of every f € Bf;’l(]Rd). Right: Singularity spectrum of
a typical f € Bﬁ;’l(Rd). The dashed graph represents the (initial) singularity spectrum of p. When p = +oo and f
T A g _

is typical in By (R?), 0 = op.

1.5. Multifractal formalism for functions in Bg’p(Rd)

The formalism used in this paper is based on the one developed by Jaffard in [10]. Let us begin
with the definition of wavelet leaders.

Definition 1.16 (Wavelet leaders). Given ¥ € {J, .y Fr and f € LY (R?) for p € [1,+00],
denoting the wavelet coefficients of f associates with U by (cx)xen, the wavelet leader of f associated

with X € D is defined as:
L{ = sup{lex| : X' = (i,4.k) € A, X}, € 3A}. (1.24)

Pointwise Holder exponents of Holder continuous functions (recall (1.1)) are related to the
wavelet leaders as follows (see [10, Corollary 1]).

Proposition 1.17. Let r € N* and ¥ € F,.. If f € €°(R%) for some ¢ > 0, then for every

log Lf‘ ©
zo € R4, hy(zo) <7 if and only liminf,_, Wxi;)') < r, and in this case

log Lfv N
hy(w0) = lim inf ——2&)
j—o0o 10g(2_])

(1.25)
In order to estimate from above the singularity spectrum oy of f € B{” (R9), it is then natural

to consider, exactly as it was done for the elements of ([0, 1]¢), the L9-spectrum of f relative to
U defined as follows: For any N € N*, set

1
C}{V"I’ - lglgﬁgof (}\;’.\I’, where C}VJ‘I’ tER— - log, ( Z (Lf\)t) (1.26)
AED;, ACN[0,1]4, L] >0

Recall that (N[0,1]4)yen- is the increasing sequence of boxes [—(N — 1)/2, (N + 1)/2]¢, whose
union covers RZ.

Definition 1.18. The Li-spectrum of f relative to W is the concave function

v . N,¥ ” . N, ¥
= inf TN = lim i 1.2
(5 =inf{C; € N*} N—1>+oon (1.27)

The concavity of C}I' follows from the fact that (C;V‘I') ~>1 is a non-increasing sequence of
functions,
It is remarkable that C}l’lR does not depend on ¥ [10, Th. 3]. This would be the case over R
+

if ¥ belonged to the Schwarz class [10, Th. 4]. However, the wavelet characterization of B4 (R¢)
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makes it necessary to use compactly supported wavelets, which never belong to > (R%) [11]. For
simplicity, C}I"R is simply denoted by ( IR, -
+

Let us now define the multifractal formalism for functions. First, recall that by [10], when
H < r, the Legendre transform of C}I’ at H (recall formula (1.19) of the Legendre transform)
provides an upper bound for dim Ef(H), i.e. one has

op(H) < (¢F)*(H). (1.28)

The formalism we use will combines Jaffard’s formalism (based on wavelet leaders) with a variant
of it (used to control the decreasing part of o). This variant is necessary since when p € &y,
q < 400 and the elements of ¥ are smooth, it is generic in B4P(RY) that C}I"R* equals —oo

(see Theorem 5(3)). Hence, for H > (¢;)'(0%), (¢§)*(H) only provides the trivial upper bound
of (H) <d.

Definition 1.19. Let r € N* and f € J,.,€*(R?). Suppose that oy has a compact domain
included in (0,7). Let I C dom(os) be a compact interval.

1. The wavelet leaders multifractal formalism (WMF) holds for f on I when there exists T > r
such that for all H € I and all ¥ € F5, , of(H) = (C}I’)*(H)

2. The weak wavelet leaders multifractal formalism (WWMF) holds for f on I relatively to

U € F,. when the following property holds: there exists an increasing sequence (jx)ren Such
that for all N € N, limg_, C}Vj‘:’ = C)(CAVL)’\P exists, and setting C}Ifw =limy— 400 C}]XV)’\P, one

has oy (H) = (C}%W)*(H) forall H € I.

Remark 1.20. Contrarily to (1.28), in general, even if there exists such a subsequence (ji)ken,
one cannot get the a priori inequality oy < (C}%W)*. This justifies the terminology “weak”. Never-
theless, the existence of C}I”W emphasizes that the sequences ((}Vj\lj (t))jen converge along the same

subsequence for all N and t. This property is typical in B’q"p(Rd), and holds simultaneously for
countably many ¥’s.

Theorem 4 can now be completed by the following result on the validity of the multifractal
formalism. Recall (1.22) and (1.21) for the definitions of (,, and s, respectively, as well as
Remarks 1.9 (2) and 1.13.

Theorem 5 (Validity of the multifractal formalism). Let p € &.
1. Forall f € Bg’p(]Rd), one has Cf|R+ > C‘“plﬂh'
2. Typical functions f € BYP(R?) satisfy the WMF on [(], ,(+00), (), ,(0T)] (i.e. in the increas-
ing part of oy), and (i = Cuppg, -
3. (i) Let ¥ € F,,. Typical functions f € Bf;’p(Rd) satisfy the WWMF on dom(oy) =
(¢}, p(+00), ¢, ,(—00)] relatively to W, with (¥, = 0} = Cup. Moreover, if ¢ < +oo, the
property C}I"R* = —00 s typical as well.

(ii) Given a countable subset F of F;,, typical functions f € Bg’p(Rd) satisfy the WWMF
on the interval dom(o ) relatively to any ¥ € F, with C}Ifw =0} = Cu,p, and CJ\},IR* =
—o0 if ¢ < 4o00.

Let us mention that, although typical functions in B}” (R?) are multifractal and satisfy a
multifractal formalism, they do not possess any self-similar structure, consolidating the idea that
being multifractal is far from being exceptional.

10
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1.6. Solutions to the Frisch-Parisi conjecture

It is worth recalling the results obtained by Jaffard in [7]. Consider an increasing continuous
and concave function 1 : Ry — R™, with positive slope n/(+00) at oo, such that 7(0) € [0, d], and
n* takes values in [—d, 0] over its domain. Setting ( = n—d, Jaffard seeks for a Baire space in which
the increasing part of the typical singularity spectrum is given by ¢*. He works with the so-called
homogeneous Besov spaces Bg’p(Rd), introduced the Baire space V = (.. ;>0 B("(t)_e)/t’t(Rd)

t,loc

[7] and proved that for typical functions f € V, oy = ¢* , where

S fdt/te—1) ift<t.
(0 = {g(t) ift>t,’

t. being the unique solution of {(¢.) = 0. In particular, o is necessarily increasing, with domain
[¢'(+00),d/t.], and with an affine part over the interval [('(t.+),d/t.]. Also, os coincides with ¢*
over [¢'(-roc), &(te+)]

In addition, in the multifractal formalism used in [7], the scaling function (f(t) is defined as
sup{s >0: f € B/t (R%)} — d for t > 0, and with this definition typical functions in V satisfy

o00,loc

¢y = ¢. Thus the associated multifractal formalism holds on [¢’(400), ' (t.+)] only. However, it
can be checked that the WMF does hold for f with (5 = C on [¢'(400), d/t,].

Hence, although this approach was a substantial progress, it allowed to reach only increasing
singularity spectra, necessarily composed by an affine part followed by a concave part. Up to now,
no better solution to Conjecture 1 has been proposed.

Combining the previously stated results (Theorems 3, 4 and 5), we can now state our main
theorems. The first one is a direct corollary of Theorems 4 and 5.

Theorem 6. The Frisch-Parisi conjecture 1 is true. Given o € %5 and u € & such that o, = o,
the associated inverse problem is solved by sz"+°°(Rd), for any q € [1,+00].

Our second statement provides solutions of the form B}” (R?) with 1 < p < +o0. Its proof is
given in Section 8.

Theorem 7 (Solutions of the form Bg’p(Rd) with p < 4+00). Let 0 € %4 and denote its
domain by [Hmin, Hmax)-

1. If o is the typical singularity spectrum in Bg’p(Rd) for some 1 < p < 400, q € [1,+00] and
€ &y, then o(Huyin) = 0 and a’(H]Ln) <np.

2. Suppose 0(Huin) = 0 and o' (H, ) < +00. For allp € [max(1,0'(H,,)),+00), there exists
W € &y such that for all g € [1,+00], o is the singularity spectrum of the typical elements of
B’;’p(Rd); also, typical functions in Bg’p(Rd) satisfy the WMF in the increasing part of o
and the WWMEF over [Hpin, Hmax| relatively to any U in a countable family of elements of

]_‘

Spt

Let us make a final remark. Like for Besov spaces, one can let p or ¢ take values in (0, +oc]
in the definition of Besov spaces in multifractal environment, and all our results remain valid, the
only change to make being to take p € [0’(H$in), +oo) in Theorem 7(2). This provides a larger
set of solutions to the inverse problem 1.

1.7. Organization of the rest of the paper

In Section 2, the wavelet characterization of the space B*"”(R?) is established when p is an
almost doubling capacity satisfying property (P) (Theorem 2).

In Section 3 are gathered the main properties proved in [1] to be satisfied by the capacities
uwe &y.

11
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The various shapes of ¢, and (j , are investigated in Section 4, where (; , is explicitly ex-
pressed in terms of 7;; this expression turns out to be very useful in the proof of the WMF’s
validity for typical functions.

Next, in section 5, the upper bound for the singularity spectrum of all functions in B}* (RY) is
obtained (part (1) of Theorem 4), as a consequence of part (1) of Theorem 5 which is also proved
there. Part (2) of Theorem 4 is shown in Section 6. It consists first in building a specific function
whose singularity spectrum is typical, and then in building a dense Gs-set included in B’q“p (Rd)
in which all functions share the same multifractal spectrum. Parts (2) and (3) of Theorem 5 are
established in Section 7. Finally, the proof of Theorem 7 is given in Section 8.

2. Wavelet characterization of B}"? (R)

After some definitions and two basic lemmas in Section 2.1, Theorem 2 is proved when p €
[1,+00) in Section 2.2. The much simpler case p = 400 is left to the reader who can easily adapt
the lines used to treat the case p < +o0.

2.1. Preliminary definitions and observations

We start by extending the definition of the moduli of smoothness (1.4) and (1.5) to all Borel
sets 0 C R4,

Definition 2.1. Let Q ¢ R?. For h € R, let
Qn={rxeQ:x+kheQ, k=1,...,n}. (2.1)

Then, for f : R4 =R, p € H(R?), ¢t >0 and n > 1 set

wx(f’t’ﬂ)p = Sup ||Az7anL"(Qh,n) (2'2)
t/2<|h|<t

and  wn(f,t,Q)py = sup A} fllLe(a,,.)- (2.3)
0<|h|<t

Let 4 € C(RY) be an almost doubling capacity such that property (P) holds with exponents
0<s1<sp. Let n>7r=[so+ 4]+ 1and U= {¢, {¢"};_y 51} € F, (see Definition 1.7).

Also, recall that for A\ = (i, j, k) € A;, ¥ (x) = ¥ (272 — k). It follows from the construction
of ¥ (see [3, Section 3.8]) that there exists an integer Ny € N* such that supp(¢) and supp(1)(?)
are included in Ng[0,1]%. Our proofs will use some estimates established in [2]. These estimates

require to associate with each A = (¢, j, k) € A; alarger cube X described in the following definition.

Definition 2.2. For each A = (4,5, k) € A;, set

X = Ak + 277 (supp(@) — supp(¢)).

Note that A; ; C supp(¢y) C X C 3Ny Ajk, the second embedding coming from the construction
of compactly supported wavelets (see [3, Section 3.8]).

For every j € N, the cubes (A)xca; do not overlap too much, in the sense that

Ky :=sup sup #{N € A; : AN N # 0} < +oc. (2.4)
JEN A€A;

Lemma 2.3. Let p € [1,4+00) and n € N*. There exists a constant Cg r p (depending on p, n, and
d only) such that for all f € LY (RY), t >0 and \ € A, the following inequality holds:

loc

W, N2 < Cappt / [ A £ ()P dady.

t<ly|<4nt J A\+B(0,2nt)

12
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Proof. The approach follows the lines of the proof of [2, inequality (3.3.17)], where a similar
inequality is proved.

Fix f, t and X as in the statement. For any h,y € R?, recall the following equality (see (3.3.19)
in [2]):

;ﬁ@ﬁ=§3emkcg[;@ﬂz+mo—Aawf@n

k=1

Integrating |A} f|P over )\h n (recall definition (2.1)), one sees that for some constant C,, , > 0,
when |h| < ¢,

||A f”p n) S Cn,pkz HAZy -+ kh)”Lp(A + ||AZ+kyf||zl)/p(th)
=1

P n
< Chp 231 1A% f” »(A+B(0,2nt)) + ||Ah+knyLP()\+B(O ont))”

Then, defining Cy = £4(B(0,3) \ B(0,2)), an integration with respect to y over B(0,3t)\ B(0,2t)
yields

Cat*|ATF|IP - < Cy, / / AT F() P+ AT, f(2) [P dady.
AR HLP(Mn) p; S X+Bozm)l ryf (@) + | ARy [ (@)

Further, operating the change of variable ¢y = ky in each term of the sum yields

Ny ¢\, ./ /
Le(An, ) npz 2kt<|y|<3kt J A +B(0,2nt)

<2nC;'Cyp / / |A7 f(2)|P dady.
t<|y|<4nt JA+B(0,2nt)

where one used that ¢ < |h 4 y| < 4nt when |h| < t and |y| > 2¢t. The previous upper bound being
independent of h € B(0,t), one concludes that

Ay (@) + Ak, f(2)]” dedy

an*lcn,p

an(ft V= swp AR, <2 [ ] A £ ()P dady,
0<|h|<t t<|y|<4nt JX+B(0,2nt)

as desired. O

Lemma 2.4. Let e > 0 and p € C(RY) that satisfies Property (P) with exponents si and ss.
There exists a constant C = C(e,n,u) > 1 such that for every j € N and X\ € A;, for every

TEN+ B(0,2n277) and y € R? such that 277 < |h| < 4n277, for every f : X — R, one has

|ALf ()] AL f(2)]
/I;(A) = Cu(“)(B}Ew,  + nh])’

Proof. Observe first that under the assumptions of the Lemma, the inequality

u(Bla,z +ny)) .
= < Cnly))"",
o (nly)
follows easily from the definition of the almost doubling property (1.7). Then, Lemma 2.4 is
deduced from last inequality and the definition of p(+e). O

13



as 2.2. Proof of Theorem 2 when 1 < p < 400
Let us now explain our approach to get Theorem 2 when p € [1,+0c). Recall that BYP (R%)
is defined via LP moduli of smoothness of order n > r = |sy + d/p + 1], and that ¥ belongs to
Fr. The purpose of this theorem is to establish relations between this definition (1.10) and the
wavelet-based one (1.14).

280 In Section 2.2.1, it is shown that, for any ¢ € (0,1), when Bq”(JrE)’p(Rd) is defined via the LP
modulus of smoothness of order n, then (1.16) holds for any ¥ € F,,. It is only a partial proof of
the statement, since one wants to obtain (1.16) for any ¥ € F,.
Then, in Section 2.2.2, (1.17) is completely proved to hold for any € € (0,1) and any ¥ € F,
when B4P(R?) is defined via the L modulus of smoothness of order exactly equal to 7. Since
25 JFp C JF,., the statement also holds for ¥ € F,,.
Finally, from the two preceding observations, we conclude that (1.16) holds for any € € (0, 1)
and any ¥ € F,., by applying:

e first (1.16) with the environment p, the n-th order difference operator, £/3 and any wavelet
U e Fy,

290 e then (1.17) with the environment u(+e/3) the r-th order difference operator, €/3 and the

same ¥ € F,,,

e finally (1.16) with the environment u(+2¢/3)) the r-th order difference operator, £/3 and
Ve F,..

2.2.1. Proof of inequality (1.16) in Theorem 2
205 Assume that ¥ € F,, C F,.. Fix e >0, f € LP(R?) and j € N.
For every A = (4,7,k) € A;, since 9 is orthogonal to any polynomial P of degree < n, the
wavelet coefficient ¢y can be written

or=2" [ (f(a) = Pla)ura)de.

Due to the local approximation of f by polynomials (equation (3.3.13) in [2]), there exists a
polynomial Py of degree < n such that

”f - P/\HLP(X) < Cwn(f72_j7x)p7

where C' depends on n and p only. Recall that supp(y) C A
The last inequalities, together with Holder’s inequality, yield

lea] < 2jd||1/b\HLp/(Rd)||f — P,\||Lp(',{) < CdeQ_jd/p/||¢(i)||Lp'(Rd)wn(f,2‘j,X)p
p(A) ~ () - ()
Wn(f727jvx)p

p) 7

where C' = C'sup {||1/)(i)||Lp’(Rd) p1<i<2d— 1}.
Then, Lemma 2.3 gives

lexl \P po2dj |AZf(x)‘p
(u(/\)) < CunpCP2 / [ Pyl T Gzdy,

2-i<lyl<dn2-i Ja+B(0,2n2-7)  HA)P

< 52]'(1/1)

14



and by Lemma 2.4, there exists C’ depending on (g,n,p, ¥) such that

c p : G
(1) < cunpterr | / AL ()P dady
ey 2-i<|y|<4n2—7 JA+B(0,2n2-7)
Jn

< Cd,n,p(cl)p Z 22dj /

k=0 2

1+ g

/ AL ()P dady,
—tk <yl <-4l S 34 B(0,2n2-9)

where j, = [logy(4n)]. By (2.4), there exists a constant Ky , > 0 depending on (¥, n) only such
that any A\ € A; is covered by at most Ky, sets of the form X + B(0,2n277) with X € A;. It
follows that

jn

5 () < rocunier o0
€A

j'=0 2*j+j,§|y|§2*j+j,+1

/Rd AL £ ()P dedy.

Recalling the definition (1.4) of w“HE) (f,t,R%), for every j' the double integral above is bounded

by 247+ (f 2=+ RAP . Since 290°+) < 240+ < (8n)%, one has
|C)\| p D I dj U«H—E) —j+j'+1 d\p
> (G5r) <erds2er (s RO,

)\EAJ‘ M( ) 3'=0

where C7 = ((8n)qu,’nCd,n’p)1/pC” does not depend on f or j.

Suppose now that ¢ € [1,400) (the case ¢ = 400 is obvious). The previous estimates together
with the subadditivity of t > 0 — t'/? and the convexity of ¢ > 0+ ¢4 yield

1Goy)sen,

Summing the last inequality over j € N gives

1),

Jn
q . e Y
< OY (G + 1)1 (/P (f, 279+ RY), ),
§'=0

oAy

q (+€) 4
L, <t 5 Rt g2,
J J =1

ZJ/JQ]J"H 214'/P when j > —1
S 20/ when — i —1<j < =2

Cy = Ca(n, q,d) such that C{(j, + 1)7 'K, < C5219/P g0

515

Observe that there is C's > 1 depending on n such that for —j,—1 < j <0, 2dj/pwﬁ(+s) (f,277,R9), <
w0 O3] f[|Lr(ray- This follows from the fact that for such a j:

where K; = { It is easily seen that there is a constant

q

+oo
< O Z (de/p ulte )(f, 2_j,Rd)p)q.

Jj=—Jn—1

£r(Ay)

o 2di/P < 1;

e by periodicity of i, u(Blx,z +n277]) > u([0,1]%) = 1, so 2y (f)\(w | < |A} f(x)], and thus for

some constant C"’

(+6)

(f,277,RY), < 2%w, (f,277,RY), < (wn(f,8n,RY), < Cs|f]l Lo (ra)-

15



Consequently, for some constant C' independent of f,
A di/p,, M(+€) i R4y \?
ZH( T ren oy < OO My +Z (2 (f,279,R%),)7),

which implies that || f|| Lrra) +|flup,q.0 < CUfllLr@e) +1f]
Ve F,.

(A, )

Bg(ﬁ»a)’p(Rd)). Hence, (1.16) holds when

2.2.2. Proof of inequality (1.17) in Theorem 2
305 Fixe>0and f € LP(Rd)
Define the partial sums f; = ZAGAJ_ APy, for all j > 0.
The following lemma is needed.

Lemma 2.5. Let s € (52+ %,52 + % +1). There exist a constant C > 0 and a sequence
(Em)men € L1(N) bounded by 1, independent of f, such that for all j,J > 0,

1/p

— —J : j—J)(s—s |C)\‘ b
wh(f;,2 ‘],Rd)p < C277%/P min (1,2(3 I)( 2)€J J) Z <M(+€)()\) ) (2.6)
)\EAJ'

with the convention that €, = 1 when m < 0.
Proof. Inspired by the proof of [2, Theorem 3.4.3], two cases are separated:
Case 1: J < j. In order to prove (2.6), let us begin by writing that

[, 2 Ajiia(a)
u(Ba,z+ b))

p

dz. (2.7)

wﬁ(fj,Q_J,Rd)g = sup Z /
>\/

2-7=1<|n|<2=7 NeEDy
310 Consider A € A;, x € R?, and h € R such that 2771 < |h] < 2=7. Then:

(i) If z & Ujp_osupp(¥n) — kh, then Ay (z) = 0;
(ii) Let X = Aj(z) the unique cube of generation J that contains x.

There exists an integer N = N (n, ¥) such that if z € {J;_, supp(¢n) — kh, then necessarily
AC NN,

(iii) By the almost doubling property of yu, there exists a constant C = C(u,n, ¥, ) such that for
every x € | J,_osupp(¢n) — kh,

p (N = 2795 u(\) < 2795 (N X)) < Cu(B(z, z 4 nh)). (2.8)

From the equality A7¢y = Y7o (=1)*(})¥a(- + (n — k)h), the three items (i)-(iii) and (2.7),
one obtains that

9jep P
wh(f;, 27, RYP<CP  sup - / ( Y aAms(a)| do
2-J-1<|h|<2- 1)\, N/\ N erTeny
9Jep
Sc’p Z (NA/) _7.])\ A0
NeDy

where

Tjox A = sup /Rd Z(—l)k (:) Z exta(z+ (n—k)h) ! dz.
k=0

2-J-1<|h|<L2-Y AEA;, ACNN
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The convexity inequality (3", _ |z1])? < (n+1)P~E3°0 2] and (}) < 2™ give

n

p
Tjgxnag < 2" (n+1)P1 sup Z/ ’ Z extalz+ (n—k)h)| dz.
2777 <IR[<277 T TR N en A NN

Observe that the property (ii) above allows to bound each integral in the above sum by the same

P
Z,\eAJ,,\cN,\/ cx z/u(:r)‘ dz. Moreover, according to [3, Ch. 6, Prop. 7], there exists

term [,
C" > 0 depending on ¥ only such that

P .
/ ‘ Z e 1/))\(I)‘ dz < C'P2i4 Z leal?.
Rd
AEA;, ACNN AEA;, ACNN
Consequently, using the first inequality of (2.8),
: P
W2 R < (O e Y 2t (Al

+
MNED, AEA;, ACNN M( 5)()\)

Finally, the number of dyadic cubes A’ € D; such that N\ intersects a given A € A; is bounded
uniformly with respect of 7 and J, so

1/p

- - el *
A2 R, < Ca (57 (A
)\EA]‘

for some constant C' that depends on n, p and other constants. This yields (2.6).

Case 2: J > j. Let us start with a few observations. First, by assumption, 1) e B;;’p(]Rd), hence
i) oj—J md i~ J)s~(7)
Wn(¢( ) 277 R )p < 9(G—=J) €7l

where (Z5))m>1 € €7(N*) and [|E® |[paey < [[9)]

psw. Consequently, for all A € A;

wn (5,277 R), < 20=Dsg=id/pz; (2.9)
where £;_; = sup; é{j)_]
Next, observe the following facts:

(i) There exists an integer N independent of j and J such that for all z € R? and h € R? such
that 2771 < |n| < 277, Blz,z +nh] C NXj(z). Also, Ay(z) # 0 only if X C N);(z)
(recall that A\ = (¢,7,k) C E means \;, C E).

(ii) There exist two dyadic cubes A € Dji3 and X’ € D; such that X C B(z,z + nh) and
N C X' C NXj(z). By construction, for all A; 5 A C NA;(z), one has

p(Ble, 4 n)) ™ < p(x) 7 = L HOL )

Hence, using property (P2) to get :((/\)),)) =0(2N"?0) and #/:((il’/)) = 0(200)2(1=3)52) " as well

as the fact that 26()W'+1) < |A|7¢ since ¢ € P, there exists a constant C' depending on
(s, m, €) only such that

u(Bla, x4+ nh]) ™" < €20 D% (4 (),

17



325

The two previous observations yield
N P
[Sren, o3 A ()]

WBaat by

A . T |
)\/

—J-1 —J
2 S‘h‘§2 XNeEDy

< Pro(J—j)sz2p ﬂ n p '
< CP2 sup /]Rd ( Z M(+E)()\)|Ah1/z)\(x)|) dzx

2-7-ig|h|<277 AEA;ACNA; ()
Since #{\ € A; : A C NX;j(z)} < (2Nd)?, for each x € R? one has
leal | An v - Al \P An
> Wmh%(ﬂf)\) < @Na)'e=h Y- (WO\)) [ AR AP
AGAJ',ACNAJ'(I) H AEA; ACNA; (z) H
Also, each A € D; intersects at most (2N)? cubes N\ with X’ € D;, so
2N )P d leal P
—oans ) 1Ak P dr < @ Y (<1 55) [ 1A @) de.
/R’l ,\eAj,%v,\j(z) (MHE)()‘) " Ag,;j PN Jra TN
Finally, taking the supremum over h € [27/71,277] in the last inequalities gives
wh(fi, 277 RYE < CP(QN)dPQ(J*j)S%D Z (ﬂ)pw (1,277 RY)P
n\JJ» ) p = = /JJ(+E)()\) n\¥X, ’ p?

hence the conclusion by (2.9).
By changing the constant C' in (2.9) into C||(€});>o0||e, one gets &; < 1. O

We are now in position to prove (1.17). Fix ¢ € (0,1). Setting f=f- Z;io fj, the triangle
inequality yields

Wi (.27 RY), Swh(F,277 R, + D wh(f5,.277 RY),, (2.10)
§=0
and our goal is to control the ¢, norms of the sequences (u; := 27d/pyi(f, 27/ RY),) jen and

('UJ = 2Jd/p Z;O:() wﬁ(fj7 2_JﬂRd)p)J€N‘

e The terms (uy)s>1 correspond to low frequencies, and can be controlled as follows. Using
property (P), one has pu(B(z,27)) > 27729 for every z € R?, and so

uy < 2/C2tetd/n)y, (f 277 RY) (2.11)

Observe that, since fis obtained by removing from f the high frequency terms, f € Bg/’p (R9) for all
s' € (d/p,r) and q € [1,+00], as can be checked using (1.13). In addition, |f] v crap | =
(£d)y a Ppq¥
lf] siderasn 1 = 0 since the wavelet coefficients cx(f) of f vanish for all A € A;, j > 1.
L£dy" d

?.,p,q, ¥
Recalling the decomposition (1.12), one notes that the wavelet coefficients (8(k))geza in the

wavelet expansions of f and f are identical. Hence, using the equivalence of norms recalled after
(1.13), there is a constant C' depending on (d, €, i, p, ¢, ¥) (that may change from line to line) such
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that

I(ws)senlleaqny < 1] prateri/rn gay < CUIFN o ey + |ﬂ(£d)wi )

P.,p,q, ¥

= Zi;(HJIE'HLP(]Rd) + |‘ﬂ(£d)w7%7pquqj)

< CUBI ey @y + 1 evtars 5 )

?,p,q, ¥

< Cl oy + 111 evsegars 5 )

?,p,q,¥
< C(Hf”LP(Rd) + |f|u<+5>,p,q’\1’)’
where the last inequality is a consequence of property (P1) (which implies that pu(\) < C277% =
CLAN) 21/ for all j € N and A € D;).

e Next the £ norm of (vy)s>1 is controlled. Set A; = ‘

( [eal )
TARIEP Y (.

By Lemma 2.5, when j < J one has w/(f;,277,R%), < C2794/P2U=))(s=s2)p A, " while when
j > J, one has wﬁf(fj,2*‘]7]Rd)p < C’2*jd/ij. Consequently,

J oo
vy < c2’d/p ngjd/pHJ*J)(S*Sz)Aj + C2ldp Z Q*jd/ij,
=0 j=J+1

which implies that [[(v.s)>olleavy < C(l[(ar)s>0lleay + 1(Br)7>0lleay)), where

J 0o
ay = 27d/P Z 9 Id/p+G=)s=s2) 4. and By = 27U/P Z 279/P A,
=0 j=J+1

Recall now the two following Hardy’s inequalities (see, e.g. (3.5.27) and (3.5.36) in [2]): let
q € [1,400] as well as 0 < v < §. There exists a constant K > 0 such that :

e if (a;)jen is a non negative sequence and for J € N one sets by = 279/ Z;-I:O 29%;, then
1(227b1) sz1llesy < KN ag)solleam)-
e if (aj)jen is a non negative sequence and for J € N one defines by = 3,5 ;a;, then
1277bs) senllesqyy < K127 ag)so0lleaqny-
Let § = s — so and v = d/p. The first Hardy’s inequality with a; = 2*jd/ij yields
() jenlleay < KII(A5)jenlleacny,
while the second one with a; = 277%/PA; and v = d/p gives
1(Br)senlleaqy < KII(Aj)senlleamy-
Since ||(As)senllesqy = |fl+9) pq,w, One concludes that
[(v)s=1lleaqy < 2CK (|| fllzomay + 1 flucter pogw)s
which, together with the control of ||(u.)s>1|les(), implies (1.17).

Although we do not elaborate on this in this paper, it is certainly worth investigating the
relationship between the Besov spaces in multifractal environment and the following analog of
Sobolev space in multifractal environment.

Definition 2.6. Let u be a probability measure on R%, s > 0, p > 1. A function f belongs to
Wﬁ’s(Rd) if and only if || fllwps mey < +00, where || f|lwps ey = | fllr®a) + [flwps ®ay and

o F(@) — F@)IP
v 3= //aow W(Bla. g e — g T T
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3. Main properties of the capacities u € &,

In this section, we gather the main geometric, statistical and approximation properties proved
to be associated with the capacities y € &4 in [1]. This completes Theorem 3.

3.1. Geometric and statistical properties

Let us introduce the notations for ¢ > 0, « € R, and I = [a,b] an interval:
ate=Ja—ca+e and Ifte=[a—e,b+e]. (3.1)

Definition 3.1. Let p € C([0,1]%) with supp(p) # 0. For I C R and j € N* define

logy (X
DG, 1) = {)\C 0,17, \ e D, : 282N eI}.

345 Define the lower and upper large deviations spectra of u respectively as
1 D,(j, o £
QED ca€R +— limliminf 08 # “.(LO‘ €)
e—=0 j—oo j
1 D,(j,a £
and P :a€R + limlimsup 08y # M'(j704 5).

w e—0 j——4oo j

Also, define

E5(a) = {z € supp() : b, (¢) <o} and By (a) = {z € supp(p) : y(2) > a}.

Proposition 3.2. Let u € &;. Then :

1. the concave function T is continuous over its domain

dom(7;) = [T;L(—l—oo),Tl'L(—oo)] ={aeR: 7, () > 0} C (0, +00).

2. For every o € dom(};), there exists a Borel probability measure p, defined on [0, 1]¢ and

supported on a set So C [0,1)% such that for every x € o, hu(z) = a and by, (z) = 7;(a).

3. For every a € R, one has

ou(a) = 7': (o) =dimE,(a) = dimﬂu(a) = dimEH(a) = QED(Q) = ELD(a).

In particular the SMF holds for p.

350 4. For every o < 1,,(07), dim EE () = 71 (a).

5. For every a > 7,,(0%), dim Ff () = 7 ().

6. For every n > 0 and every interval I C dom(q’f), there exists eg > 0 and Jy € N such that
for every e € (0,e0) and j > Jo, for I € {I,I+¢},
1 D,(j, T
ng# .#(.77 ) —supT;(a) S n.
J acl

7. There exists a positive decreasing sequence (€;);>0 tending to 0 when j — 400, such that for
all 7 € N and A € D;,

logs 11(M)

7, (+00) — g5 < ;

< T;L(—OO) +e;.
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Proposition 3.3. Let i € &,.

1. For every € > 0, there exists jo € N such that for all j' > § > j., for all )\,X € D; such that
OXNOX#D, and all X € Djr such that N C X, one has

ﬂ:()\/) § u(X)2j527(j’f.j)(aminfg)' (32)

2. For all integers j,j' > 0 and A € D;, one has
H - 10,277)) = (a2 oS et D, (3.3)

where:
355 o )\ [O,Q’jl]d is the concatenation of A and [O,Z’j/]d, meaning that \ - [O,27j']d is the
image of [0,277°]% by the canonical similarity which maps [0,1]% onto X,

e o) €R and (;3)\ € O are uniform o(j) in the sense that

lim 511p{|¢/\| A e Dy }: lim sup |¢’\ NS UD =0. (3.4)

j——+oo Jj'—+oo
jEN

These inequalities are key to prove the optimal upper bound for the singularity spectrum of
typical functions in Bj P (R?).

3.2. Some approximation properties

w0 Definition 3.4. A dyadic vector 277k, j € N, k € Z¢, is irreducible when k € Z% \ (2Z)%.
The irreducible representation of a dyadic vector 279k with j € N and k € Z¢ is the unique
irreducible dyadic vector 27k such that 2~7k = 277k, B
If A =279(k+[0,1]%) € Dj, then its associated irreducible cube is X = 277 (k + [0,1]¢) € D5,

where 277k is the irreducible representation of 277 k.

The following definition invokes an increasing mapping v : N — N which is defined in the
construction of & in [1]. The precise definition of v(N) is not needed here. The only interesting
point to mention here is that the integer (j)s defined below is such that

()6 ~j—s+o0 J/0. (3.5)

s Definition 3.5. Let p € &y.
For§ > 1 and j>1, let (j)s be the largest integer in v(N) N [0,5/4].
For any positive sequence 1 = (1n;);>1, define the set

ke z\ 27,
Xj((s’ 77) = 2_(j)ak € [07 l]d : ( (s k + 071 d) Z 2- (s am"‘+77(7)5)
(2 (J)zik +27700,1]%) > 2 9—J(omin+1;)

Then, for any increasing sequence of integers (jn)n>1, set

S&n, Gn)nz1) =) U U (2=Un)s | 4 27900, 1]%).

N>1 n>N 9-(n)s keX;, (0,m)

Recall that the lower Hausdorff dimension of a Borel probability measure v on R is the infimum
of the Hausdorff dimension of the Borel sets of positive v-measure (see [12] for instance).
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Proposition 3.6. Let u € &;. Suppose that 0, (atmin) > 0.

There is a positive sequence 1 = (n;)j>1 converging to 0 when j — +o0o such that for any § > 1,
for any increasing sequence of integers (jn)n>1, there exists a Borel probability measure v on R? of
lower Hausdorff dimension larger than or equal to o,,(amin)/0, and such that v(S(0,1, (jn)n>1)) =
1. In particular, dim S(6,7, (jn)n>1)) = 0u(Qmin)/0.

Proposition 3.7. Let p € &;. For every z € [0,1]%, call \j(x) € Dy the irreducible represen-
tation of )\j(x). For every a € [aumin, Qmax| Such that T; (a) > 0, for py-almost every x, one has

j’;.(") =1, where u, is as in Proposition 3.2(2).

limn—>+oo

4. Main features of the typical singularity spectrum in B}"? (R9)

Given p € &y, Theorem 4(2) claims that the singularity spectrum of typical functions in
BYP (R?) equals the Legendre transform C.p Of Cup, which is explicitly given by (1.22) in terms

of 7,,. In this section, we find an explicit formula for ¢} , in terms of 7 (= 0,,) (Proposition 4.2),

and we discuss the possible shapes and features of (; , and (,,, (Sections 4.2 and 4.3).

We will need the basic properties listed in the following remark.

Remark 4.1. The Legendre pair {7,,, 7':} has the following properties:

e 7 is increasing over [1/,(400)),7,,(07)).

Also,

o iftee = () () (+00)*) < 400, then too = inf{t : 7/,(t) = 7/,(+00)},
e forallt >ty one has 1,(t) = 7/, (+00)t — 7, (7/,(+00)),
e if 7, is linear over the interval [p,+00), then to < p.

Similarly,

o ift o= (1) (7/(-00)7) > —o00, then t_, = sup{t: 7/ (t) = 7, (—00)},

e forallt <t o one has 7,(t) = 7, (—00)t — 7(7,,(—00)),

o if 7, is linear over the interval (—oo,p), then t_o > p.

4.1. Preliminaries and statements

To express (; ,, in terms of 7;, the following continuous and concave mapping 6, is introduced:

T (a
Op : a € [1,,(+00),7,,(=00)] > o + L, (4.1)
p
see Figure 2. Notice that 6., is just the identity map.

The concave sub-differential of a continuous concave function g whose domain is a non trivial
interval is well defined as the opposite —9(—g) of the sub-differential 9(—g) of the convex function

—g, and is denoted by 59.
Let us briefly describe the variations of 8, see Figure 2 for an illustration.

If 7/, (+00) = 7/,(—0c), then 6, is constant and we set a;, = 7/,(—00).
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Figure 2: The mapping 0p when o, (7),(+00)) = o, (7, (—00)) = 0.

If [7/,(+00), 7,,(—00)] is non trivial, using the concavity of 7;, it is easily seen that the mapping
0, is concave and reaches is maximum at «a,, where

7/ (—00) otherwise

o = {min{a € [7!(+00), T4 (=o0)] : —p € D()(@)} if —pe DY)

(when 7 is differentiable and strictly concave, a, is the unique exponent a at which (7;;)' (o) = —p
whenever it exists). Moreover, 0, is increasing over [7/,(+00), ;] and if a;, < 7/,(—00), then 0, is

constant over [a, ;] and decreasing over [a,, 7/, (—o0)], where o, = max{« € [7/,(+00), 7/ (—00)] :
-pe€ 5(7':)(01)} Also, one has o, > 7/,(0%) since 7,7 is increasing over the interval [r,(+00), 7/,(07)),

and by Legendre duality, if —p € 5(7';), then 7,(—p) = (7,)"(—=p) = —app — 7,1 (ap) = —pb(ap).

Thus, in any case, the range of 6, restricted to the interval [7/(+00),q;] is the interval
[ep(T;L("‘OO))v Op(ap)], where

L(_;p) if —pe 5(7#"‘)7
Op(ap) = - (i (— .
7,(—00) + otherwise.

Note that according to Remark 4.1, if —p ¢ 5(7';), then (77) (7, (—00)~) > —oco so that 7, is
linear near —oo. This is also the case for ¢, ;,, with the formula ¢, ,(t) = (7,,(—00) + W)t—
T (T (=00)).

Let 6, ' be the inverse branch of 6, over [0,(7/,(+00)),0,(cy)], see Figure 2. The Legendre
transform of (,, , can be written as follows.

Proposition 4.2. Let i € &;. One has

p(H —7,(+00)) ifHE€ [T;L(+oo),9p(7';b(+oo)))

Cup(H) = 70,1 (H)) if H € [0p(7),(+00)), Op ()] (4.2)
—00 if H¢ [TZL(+OO)79p(C“p)]-

The case p = +o0 is trivial, since as noticed in Remark 1.13, {,, 4o = 7, and 0 is the identity
map.
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4-2. Main features of ;. p and

These properties of ¢, , and (}; , follow from Proposition 4.2, whose proof is given in Section 4.3,
or from the definition of ¢, .

e As an immediate consequence of Proposition 4.2, 7, (+00) = (j, ,(+00) and 6, () = ¢, ,(—00),

although these equalities can be directly checked. Also, by definition of 0, ¢}, ,(—00) < 7/,(—00)+ %.

e When p = +00, (y 400 = Tu-

e When 7;(7/,(+00)) = 0 (i.e. when 0),(7/,(+00)) = 7, (+00)), the function (; , reduces to the
map H +— 7,:(6, " (H)) on the interval [0, (7/,(+00)), 0,(ctp)], see Figure 1.

e When 7;;(7;,(4+00)) > 0 and p € [1,+o0), (equivalently, when 6,(7/,(+00)) > 7/ (+00)),
is linear over [7,(+00), 0,(7/,(+00))). This occurs when (, , is not differentiable at p, and in this
case (;, ,(p") = 7/, (4+00) and (], ,(p™) = 0, (7, (+00)).

Note that this affine part in the singularity spectrum (}; , of typical functions f € B}"” (R%)
follows from the heterogeneous ubiquity property stated in Proposition 3.6.

e When [0, (7;,(+00)), 0,(cy)] is non trivial, ¢ , is concave on this interval.

Moreover, using the notations of Remark 4.1, ¢} , is differentiable at 6, (7, (+0c0)) if and only

if too = (1) (1),(+00)*) = +o0. Otherwise, one has (¢} ) (0,(7),(+00))") = t;‘j_pp <p=

(¢: p) (Op(1,,(+00))7). This implies that (,, is affine over the interval [t;ﬁpp,p], with slope

0, (7 (+x)).
See Figures 1 and 3 for some examples of the shape of the spectrum of typical functions
feBy? (R%).

e When —p ¢ 5(7‘:), one has t_o, > —00, so both 7, and (, , are affine near —oo.

4.8. Proof of Proposition 4.2

The case p = +oo is trivial. Assume p € [1,+00).

Let x be the mapping defined by the right hand side of (4.2). We are going to prove that
X" = Cu,p (which is defined by (1.22)). Next, the continuity and concavity of x is shown. This and
the Legendre duality imply that ¢ , = x.

Denote [7,(4+00),7,,(—00)] by [min, ¥max]. It is convenient to write x* = min((y,(2) where,
for t € R,

Cl (t) = lnf{tH _p(H - O[min) : He [amina ep(amin))}
Co(t) = inf{tH — 7,;(6, " (H)) : H € [6p(tmin), Op(0p)]}-
When t # p, set
_
P — E

Then, whenever it exists, let &, be the minimum of those real numbers « such that

Otherwise, set &, = amin.
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4.8.1. Proof of the equality x* = (up
Recall that ¢, , is given by formula (1.22), ie. (,,(t) = Zt7, (%t) when ¢ < p, and
Cu,p(t) = toumin when ¢t > p.
Case t > p. In this case, t, < —p (as shows a simple verification). Moreover, the mapping
ws H v tH — p(H — aupin) is increasing, hence (i (t) = t@min-
Setting a = 0,1 (H) for H € [0,(tmin), 0p(cxp)], one has
Gt)= inf  Xa(e) where Xa(a) =tby(ar) — 75(c). (4.3)

a€lamin,p]

Suppose that amin < a,p. Differentiating (formally) Yo gives

Xo(a) =t + T(TM)/(OC) = T((Tﬂ)'(@) —1p)- (4.4)
Recall that 77 is concave, non-decreasing over [oumin, 7,(07)] and non-increasing over [7,(0%), umax)-
Hence, by definition of ay,, (7)'(a”) and (7;;)’(a™) are both greater than —p when o € [ouin, ap).

So formula (4.4) and the fact that ¢t — p > 0 imply that the concave mapping X2 is non-decreasing
over [Qmin;@p]. Thus, the infimum defining (s is reached at auin, where it equals toumin +
450 FTPT; (amin) Z tOémin.
If &y = Qin, then (o(t) = t0,(Amin) — T (min) = tQmin-

In both cases, (2(t) > taumin, and so x*(t) = min(¢1(t), (2(t)) = taumin, and (1.22) holds true.
The case t = p follows by continuity.

Case t < p. The mapping H — tH —p(H — aumin) is non increasing, so ¢1(t) = (t —p)0p(tmin) +

455  PDOlmin = tamin + t_TpT; (amin)-
Next we determine (5(¢). Since t, > —p, using (4.4) and the fact that ¢t — p < 0 now shows
that the convex mapping X2 reaches its minimum at o, , which necessarily belongs to [omin, o).

Consequently,
G(t) = t0p(an,) — 7 (a,)-

Two subcases are distinguished:
e Suppose that t, < (77)'(ah;,)-

In this case, &, > Qmin, and one has 7': (ay,) = tpay, — 7u(tp) (even if &y, = amin, because in
this case t, = (77:)'(ah;,) = too, hence to, < 0o and we can use Remark 4.1). After simplification
one gets

Q) =t (atp + W) - T:(atp) P tTu(tp)-

p p

If &y, = amin, then (2(t) = t0,(amin) — 7 (Qmin) = tmin + (¢ — p)7; (Qmin)/p = C1(t). And a
quick computation shows that tami, + (£ — p)T; (min)/p = pTTtT,L (ﬁt).
If a¢, > Qumin, then let us show that (2(f) > (i(t). Indeed, this inequality reads tamin +
t_TpT;(O[min) > pTTtT# (tp) = tayg, — PT#T;(atp). The previous inequality is equivalent to t(ay, —
P * *

Qmin) < %(Tu(&tp) - (Qmin)), 1.e.

T;(&tp) — 71 (Omin) S
atp — Qmin -
w0 The concavity of 7; entails that this last inequality holds true.

Hence, in all cases x*(t) = min(¢; (¢), (2(t)) = pTTtT# <ﬁt>, so (1.22) holds.
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e Suppose that ¢, > (77)(ah;,). In this case, to = (77)(a;,) < +00, which implies that

min I

Tu(t) = Qmint — T;(Ozmin) for all ¢ > to (see Remark 4.1).

00). 1
Qlt
“7(

Also, since t, > (TZ)/(O(mm) > 0, a¢, = Qmin and the image of Jx> is included in (0
particular the convex mapping Xo reaches its minimum at cui,. Consequently, (o(t)
tQmin + = p :(amm) Since t, > to and 7, is affine on [ts, +00), it follows that x*(¢) =
as stated by (1.22).

Note that the previous case corresponds to

) =
tp)a

7
pP—
p

too
too+D
Cj; p» it is convenient to rewrite Cup(t) = Op(amin)t — T;(amin).

p < t < p. In regard to the form taken by

4.3.2. Concavity of x

First, observe that x is affine on the interval [min, @p(¥min)]-

Let us explain Why X is also concave over [0, (@min), Op(cp)]-

Assume first that 7;; is differentiable over (aumin, 0, Y(a,)). Then this is also the case for 0, L over
(0p(min), Op(ep)). For H € (6,(tmin), Op(ayp)), denoting o = 6,71 (H) and t = ()’ (cx), one gets
X' (H) = ﬁ, which is increasing as a function of ¢. Since H = 0, () is an increasing function of
a and « is a decreasing function of ¢, it follows that x' is decreasing over (0, (cimin), 8p(cp)). Hence
X is concave over [0, (amin), Op(cvp)]. If 7, has non differentiability points over (Qmin, 0, Hayp)), we
get the same conclusion by approx1mat1ng » by the differentiable Li-spectra associated with the
Bernoulli product generated by the probablhty vectors used to construct u.

Thus, one knows that x is concave on the two intervals [aumin, Op (Qmin )] and on [0, (min ), Op (ap)].
If 0,(cmin) = Op(cp), or if 0,(min) = Qmin, the conclusion is immediate. Otherwise, to get
that x is concave, one must check that x'(6,(a;. ) < p = X'(6,(,)). With the notations
used above, a direct computation then yields x'(6,(a. ) = p if (T/f)’(oz"’. ) = too = 400 and

min min
X (0p(ahin)) = 2 g 00 < 400. Hence the conclusion that y is concave.

5. Lower bound for the L?-spectrum, and upper bound for the singularity spectrum
in Bg"p(Rd), when p € &4

This section uses the wavelet leaders and L7-spectrum of a function introduced in Section 1.5.
Ttem (1) of Theorem 4 is proved by establishing a general lower bound for the Li-spectrum of all
f € BiP(R?) when p € & (Theorem 5(1)).

The main result of this section is the following. Recall the definition (1.21) of s,,.

Theorem 8. Let pn € & and p,q € [1,+00]. Let ¥ € F,,. For all f € LP(RY) such that
| fupgw| < +oo, one has (g, = Cupyg, -

It is implicit in Theorem 8 that the semi-norm |f, 4 w| defined in (1.14) is computed using
the wavelet U € Fg, fixed by the statement.
Theorem 8 yields the following corollary.

Corollary 9. Let p € & and p,q € [1,+00]. For all f € Bg’p(Rd), one has:

1. §f‘R+ > C“’”URW i.e. the claim of Theorem 5(1) holds true.
2. For all H € R,

G ) if H < ¢, (0%)
7= { U H>L00,

i.e. part (1) of Theorem 4 holds true.

Proof. Part (1) follows from the definition of Bg’p(Rd) and the continuity of CH<7E>,I,‘R+ as a

function of €. Part (2) is then a consequence of (1.28).
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The wavelets W € F,  are fixed for the rest of this section.

To obtain Theorem 8, one needs to estimate, for any f € LP(R?) such that | f, , 4v| < +00 and
any N € N, the upper large deviations spectrum of the wavelet leaders (Li) ACN][0,1)¢ associated with
U, defined as follows. Recall the notations H + ¢ introduced in (3.1), and N in the introduction.

Definition 5.1. Let f € L. _(R?) and N € N*, with wavelet coefficients and leaders computed

loc
with the wavelet . For any compact subinterval I of R, set

log, |L{
DN (j, 1) = {)\GDj:)\CN[O,l]d, Og?_'jkl EI},

The upper wavelet leaders large deviation spectrum of f associated with ¥ and N[0,1]? is

lo DN(j,H ¢
ELD’N(H) = lim lim sup & #D; U )

f e—0 j—4oo j

Proposition 5.2. Let u € &; and p,q € [1,+00]. For all f € LP(RY) such that |fypqw| < +00,
and all N € N, one has

FLON (1) < { s o(H)  if H<(, ,(07) (5.1)

f ; +) -
d if H > ¢, ,(07)
Assuming that Proposition 5.2 is proved, let us explain how Theorem 8 follows.

Proof of Theorem 8. Note that by large deviations theory [13], C}V‘Ij defined in (1.26) is the Leg-

endre transform of the concave hull of EIJ?D’N. By Proposition 5.2, this concave hull is dominated

by the right hand-side of (5.1). It is easily seen that this right-hand side, as a function of H, is

concave, and that its Legendre transform is equal to C“’pIR+ over Ry and equal to —oo over R .
N,¥

Consequently, ¢ 5 R, R, does

not depend on W. O

> CH,p‘RJr, which allows to conclude since (}P‘RJr = limy_— 400 C}V’q’l

The rest of this section is devoted to the proof of Proposition 5.2. It requires large deviations
estimates on the distribution of the wavelet coefficients of f under the constraint |f, , +o0| < 400,
which holds automatically if | f, p q,v| < +00.

5.1. Large deviations estimates for wavelet coefficients

Definition 5.3. Let u € C(R?), Iy and I, be two compact subintervals of R, and f € Li (RY)
with wavelet coefficients(cx)ren- Then, define

log, [cx] ely

Af,M(ja IH7LX) = A= (Zvjak) € A >\j,k C 3[07 1]d7 1 —J . . (52)
Og2 I’L(Ajyk) c Ia

-J

In other words, Af (4, Ia, ) contains those cubes A of generation j such that p(X) ~ |A|*
with o € I, and |cy| ~ 279" with h € Ig. The cube 3[0,1]¢ is considered, rather than [0, 1]%
because the computation of wavelet leaders on [0, 1] requires some knowledge of y and f in this
neighborhood of [0, 1]¢.

The cardinality of Ay, (j, Ir, o) is estimated to get a control of the wavelets leaders large
deviations spectrum under the assumptions of Proposition 5.2.

In the next lemma, the convention oo x & = 400 for x > 0 is adopted.

Lemma 5.4. Let p € &; and p € [1,+00]. Let amin = TL(—FOO) and Omax = TL(—OO). Let
f € LP(RY) be such that |fluptoo,w < 00 and let I, I, be two compact subintervals of R.
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1. If max Iy < minl,, then Ay, (4, g, 1) =0 for j large enough.
2. If I, C [@min, ®max] and min I, < min g, then for every n > 0, there exists &g > 0 and
Jo € N such that for every e € [0,&0] and j > Jo:

logy %A (G, Iy eI, +
082 #As.(7, £l & ) < max min(p(max Iy — 8),7,(8)) + n. (5.3)
7 BeEI,N[0,max [f]

Proof. We treat the case p < +o0o and leave the simpler case p = 400 to the reader.

< 4o00. There is C¢ > 1 such that

(1) Recall that by definition sup,cy H (ﬁ) e

AEA;
|Gay)
sup
jen 1\ p(A)/ xen,

It follows that item (1) holds true, for otherwise (5.4) would be contradicted.

Cy. (5.4)

<
£p(Ay5)

(2) Fix n,e > 0 and set H= max([yr). Since I, is compact and 77 is continuous over its compact
domain, there are finitely many numbers ag < ... < a,, such that I, = UZ;BI [ag, py1] and for
every €, ags1 — ag < n/p and |7(8) — 7(8)| < n for all 8, ' € ag, aus1].

Let j € N. Consider the subset Ay, (j, Iu, [ae, avq1] £€) of Ay, (4, In £ ¢,1, £ ). With each
cube A € Af (4, Ig £ €, [ap, apy1] £ €) is associated a wavelet coefficient ¢y whose absolute value

is at least equal to 277(#+¢)_ Thus, for each £ € {0,...,m — 1},

e \P 9—i(H+e) \ ¥
o=y () 5 (2()) . (55)

)\EA]‘ )\GAfYH(j,IH:te,[az,az+1]:‘:€)

Remark 5.5. Recall that for A = (1,7, k) € A;, we make a slight abuse of notation by identifying
A with A\j € D; and writing p(A) for p(A\jx) and X C E for \j C E.

It follows from (5.5) that
#Ay (G L [, cugr] £ €) < C?ij(H*aeJr%).

On the other hand, observe that for each j > 0, one has
MG I &, [, in] £2) © {A = (6.7, k) € A A 3[0,1]%, k’gz’_’;w er},
where I = [ay, apq1] N0, H+ e]. Applying Proposition 3.2(6) to each interval [ay, ayq1] N
[0, H + €], one finds €9 > 0 and Jy € N such that for all ¢ € (0,60}, 0 < £ <m —1and j > Jy,
#Du(j. lae ] £ N[0, H +€]) < #D,(J, (e, 2] N[0, H]) £ 26) < 2000,

where v, = max{7;(8) : B € [ap, p41] N [O,ﬁ}} Then, taking into account the fact that p is
Z%-invariant, as well as the fact that with each dyadic cube A, are associated 2¢ — 1 wavelet
coefficients, one obtains

#A 1., T £ e, g, apn] £2) < 3927 — 1)2700 ),

Combining the previous estimates, one gets for € € (0,¢0] and j > Jy

m—1

#App T T £2) <Y #0705, T o, ] £ )

¥
- O

3

min (C})ij(ﬁ—az-i-%), 3d(2d —-1)- 2]’('sz+n))

(]

0

diod — 1)C})mmax {2j min(p(H—ae+2¢)ye+m) . g — 0,1,...,m— 1}.

IN
W ~
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Also, the constraints imposed to the exponents ay and the continuity of 7,; imply that

max{min(p(ﬁ— ap+2),v+n):£=0,1,....m— 1}
< max { min(p(H — B),7:(8)) : 8 € Lo, N[0, H]} + 2pe + 3.

Taking 9 < n/p and Jy so large that 2707 > 34(2¢ — 1)C§Zm, we finally get the desired upper
bound (5.3) (with 67 instead of 7). O

We are now ready to get an upper bound for the wavelet leaders upper large deviations spectrum
of f.

5.2. Proof of Proposition 5.2
Note that since y is Z?-invariant, and by definition of | | 1,p,q, @, any general upper bound for
EIJ?‘][D 1] holds for EIJ:D N Thus, without loss of generality we prove that EIJ:D !

the right hand side of (5.1).

is upper bounded by

This proof is rather involved because all the possible interactions between the values p(\) and
the corresponding wavelet coefficients ¢, must be taken care of.

Note that the inequality E?D’l < d obviously holds. So it is enough to deal with the case

Fix H < (;A7p(0+). For ¢ > 0 small enough, #D} (j, H +¢) is going to be estimated from above
(recall Definition 5.1). We are going to prove that there exist C,c > 0 such that for any n > 0, if
g0 € (0,7] is chosen small enough, then for j large enough, for all € € (0, ),

ADH(j, H + €) < Cj2/ GunH)en), (5.6)

It is immediate to check that (5.6) implies (5.1), hence Proposition 5.2.
Since | f|y,p,+00 < 400, there exists C' > 0 such that [cx| < Cpu(A) for every A € [J;50 A (recall

Remark 5.5). Without loss of generality, suppose that the above constant is equal to 1 and so

lea] < () for every A € U Aj. (5.7)
3=0
Recall the definition (1.24) of wavelet leaders: L{ =sup{|ex| : N = (4,5,k) € A, N C 3A}. The

following observations are key.

Lemma 5.6. A dyadic cube \ belongs to D}(j, H +¢) if and only if:

e )\ C[0,1]¢;

e There exists a dyadic cube N C 3\ of genemtwn j > j as well asi € {1,- — 1} and

K € Z% such that N = Ny v, and |cg jo | =277 H' with H' € j—[H—a H+5]

e when j is large enough, j' < 2j(H + €)/aumin-
Proof. The first item is trivial, and the second one follows from the definition (1.24) of the wavelet
leaders and the fact that log2 ‘L ¢ H+eif and only if there exists some X' C 3\ of generation
j'>jandie {1,---2¢ -1} suchthat %W €H+e.

For the third item, Lemma 5.4(2) implies that |cg jr p| < 9=4'amin/2 when j (and so j') is
large. Hence H' > aumin/2 and the fact that j' < j(H + ¢)/H’ implies the claim. O
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The second item of Lemma 5.6 is used repeatedly in the forthcoming pages.
Three cases are separated.

Case 1 : H < ampin-
Note that §Z7P(H) = —o00. Suppose that € > 0 is so small that amin — € > H + . Due to
Proposition 3.2(6) and the observation made just above, for j large enough

#Dj(j, H ¢) < > #A7u(3, [0, H + €], 1),
J<j'<2j(H+e)/amin

with Ty = [Gmin — €, Qmax + €]. However, H 4+ € < aumin — €, so by Lemma 5.4, D}(j,H +e)=0.

.. . . _LD,1 _
This implies (5.1), i.e. Ufuo,ud(H) = —00.

To deal with the other cases, we discretize the interval [amin, H].

Fix n > 0, g9 € (0,min(1/2, amin/2,7n)), and split the interval [cmin, H] into finitely many
contiguous closed intervals I, ..., I, (m = m(gp)) such that

o |I;| < g for every ¢ € {1,...,m},

e Writing Iy = [h¢, hey1], one has 1 < hyy1/hy <14 ¢ for every 1 < £ < m.

In particular, H/h, > 1 for every /.

By Lemma 5.6, if j > Jo and A € Dy(j, H + ¢), there exist j' > j and X' = (3,5, k') € Ay
such that A € 3\ and |ey| = 279'H with H' e ]J—,[H +e]. By (5.7), ex| < u(N), so there exist
1 <?¢ <t¢<msuchthat N € Aj,(j', o £e, Iy ) (recall (5.2)).

In addition, H' € Iy +¢ C I, +eq, j' € 7[H +¢] C [jp=fe-, jH4] and heyy < H.

Consequently,
Di(H+e)c |J DY (i H=*e), (5.8)

1< <0<m

where (recall Remark 5.5)

' IN eAp (5 I, £e, Iy +
,nge (U, HEe)= U /\GDjﬂ[O,l]d: €Al Lo e o e) .
such that X' C 3\

H—¢gg H+eg ]

o
7€ [’Lz+1+fo’hz*50

Next, the cardinality of D?’Lﬂ (j, H £ ¢) (and thus of D}- (j, H £ ¢)) is going to be bounded from
above using different estimates.
To do so, Lemma 5.4(2) is applied to each pair {I, I,/ }: there exist € € (0,g9) and Jy € N such
that for all 3/ > Jy, for all 1 < ¢/ < ¢ < m,
logo #A¢ (3 Lo e, Ip ¢)
j/

<d,¢")+n (5.9)

where
d(£,0") = max {min(p(hes1 — B), 7,;(8)) : B € I} . (5.10)
Case 2: amin < H < 0p(Amin) = Qmin + 7 (Cmin)
Let j > Jo. For every 1 < ¢ < ¢ <m, one has p(he1 —he) < p(H —amin) < 75 (Qmin) < 7,(8),
for every 8 € Ipy. So, from (5.10) one deduces that d(¢,¢) < p(hey1 — amin). Thus, if j/ €
[j hi:j_(’eo,]gfzg} , then j'd(¢,¢') < jp(HJreo)hZ;lz_%. Then observing that supyeq, ny h“lh;[o‘m“
Hotmin 4 O(gg), one has

7(d(e, ) +n) < j(p(H = omin) + O(20) + ) = j (G ,(H) + O(0) + n).

. This case occurs only when 7 (amin) > 0.
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Consequently, since (5.8) implies

#Di(,HEe) < ) > #Np (5 I ke, Iy +e),

1< <e< . . H— . H+
= ,e[] W+11050 J hr?z}

the inequality (5.9) combined with the previous remarks yields

4DLGH £ ) < m? jLﬂ;Qﬂcz,pmeemn) — (216 (H)+O0(0)+n)
Qmin — €0

o (5.6) holds true.
Case 3: 0,(amin) < H < (), ,(0%) = 0,(7/,(07)).
This case is divided into four subcases in order to estimate #Dfp’[ (j,H Le).
The term d(¢, ¢') can easily be expressed in terms of the mappings 6, defined in (4.1) and 7;;.

The mapping 6, is an increasing map over [min, &) and oy, > TL(O*), so using that hy < H, one
deduces that

T (her1) if herpr <0, (heya),
d(g, é’) = p(hg+1 — hel) if hy > 051(@“), (5.11)
T (9;1(hz+1)) = (i p(hey1)  otherwise.

Moreover, the maximum of the three possible values is always C;m(h“l).

Subcase (3a): #ﬂd(& ¢') < ¢, ,(H). Using the definition of ch’zl (4, H £ ¢) and inequality (5.9),
for j > Jo

#,Df;e (.]7H:|:€) S Z #Afju(j/,lg:l:e’:‘,fgl :|:€)
ity it
< S o (a(e) ) < H T €0 58 @ty m).
B . . H-—¢ . H4« N h[ - 60
el ]

By our assumption, ,Zfsg de, o) < (% + O(aﬂ)d(ﬁ,é’) < (up(H) + O(ego), this O(go) being

€
uniform with respect to £. So

#DLY (j,H +¢) < O GpHHOC0 ),

Subcase (3b): %d(é,@’) > ¢, (H) and hygy < 0, (heya).
Recall the definition (4.1) of 6,. A technical lemma is needed.

Lemma 5.7. For every j large enough,

! H
ch,f (.73 H+ 6) - Dlt (.73 |:amin7 Oimin + h@j_l (h2/+1 - amin):| + 0(60)) s

where O(eg) is independent of (£,¢').

Proof. Take \ € D%* j,H £ ¢) and applying Lemma 5.6, consider j' € |j2==0_, jHte0 | guch
f het1+€o0 hy—eo
that there exists A = (4,7, k') € As ,(j', I, £ &, I +¢) for which X' C 3\.
J fon

Denote by X the unique dyadic cube of D; containing A’. Then, note that:

31



e The two cubes A and \ are either equal or neighbors. Hence, by property (P3) of p, pu(X\) >
590 27720 (\) when j is large enough.

. M(X) = pu(XN), ((3‘)), and by construction of y (see (3.2)), #((5,)) > 277020 ~5)(@min—co)

o Since N € As,(j/, I £, Iy £ &), p(N) > 277 (hersateo),

Consequently,
log 11(A) log 1(N) 5! j
oV <« —= L 9D L (h 1- L i —
—jlog(2) — =0 —jlog(2) — €0+ j (her41 +e0) + ( ; ) (o €0)

-/

S Qmin + %(hE’Jrl - (amin - 450)) < Qmin + — (hE’Jrl - O5min) + O(EO)v

by
where O(gg) is independent of (¢,¢'). This yields the result. O

Let us now bound oy, + #H(hgurl — Qmin) from above. Thanks to (5.11), hy4q1 < ep_l(h[+1)
implies that d(¢,¢') = 77 (he11). Using that 6, (hey1) < 0,'(H) < 7/,(0%) and that 7,7 is non
decreasing over [amin, 7/,(07)], one has

H H H
—— 70 (h > —71(he = —d,0)> ¢ (H) =707 (H)),
hZJrl u( p ( Z-l—l)) = hz+1 ;1,( 4 +1> h£+1 ( ) CIMP( ) ( ( ))

from which one deduces that

72 (0" (het1)) - 70y (H))

5.12
i > (5.12)
Observe that the definition (4.1) of 6,, implies that
0,1 (B) +p 50,1 (B) = B (5.13)
for all 3 € [min; ), ,(07)]. Applying (5.13) to both sides of (5.12) yields
0, (hevr) 0, (H)
2 <-2 , 5.14
heta H (5.14)
and since h— > 1, the following series of inequalities holds:
H H H
Ohpin + —— (h£’+1 - amin) >~ h2’+1 < 0 1(h2+1) S Hgl(H) (515)
h 041 h h€+l
Consequently, Lemma 5.7 yields
DY (j, H £ €) € Dy (j, [amin, 0, 1 (H)] £ O(c0)) - (5.16)

The function 7, is continuous and non-decreasing over [(min, 051 (H)]. Hence, choosing initially

P
€p small enough yields for j large enough that

#D?el (]; H + 5) < 21'(7';(9;1(1'1))"!‘77) — 2j(<;,p(H)+n). (517)

Subcase (3c¢): hild(f,ﬂ) > ¢, (H) and hy < 0, (heyr) < hergre
505 Here one has he 1 < (14 e0)her < (1+€0)0;, " (hes), so

H H H
Qmin + 77— (hé/+1 - Oémin) S (1 + 50)79 (hf+1) + Qmin (1 - >
heya heta he 11

H
< (1+ so)megl(hgﬂ). (5.18)
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Also, (5.11) gives d(¢, ') = (0, (hes1)), so hH d(¢,t') > ¢, ,(H) is equivalent to (5.12), and it
implies (5.14). Finally, arguing as in the subcase (3b) and using (5.18), one sees that
Gup(H)

H
Omin + 7 (her 41 — Omin) < H — 25 + O(g0) = 0, ' (H) + O(eo). (5.19)
heyt D

Applying Lemma 5.7, one deduces that (5.17) holds once again.
Subcase (3d): 77— ey A 0) > ¢ (H) and hy > 0, (heyr)-

dBy (5.11), (f, e’) = p(he1 — he). Consequently, hy = hy — X550 <y g — Mree (1) /p,
an

H het1 C;,p(H)) . Hhe+1 - he.

H
min h / — Ymin h ’ < — <h
Omin + 77— (her41 — Qmin) < 041 hoos 1T T » Tt

h 0+1 hZJrl

Thus, (5.19) and then (5.17) hold in this subcase as well.

Collecting the estimates obtained along the cases considered above, (5.6) is proved, and so is
Proposition 5.2.

6. Typical singularity spectrum in Bg’p(]Rd)

In this section, the singularity spectrum of typical functions in B’ (RY) when pu € & is
computed, proving item (2) of Theorem 4.

The strategy is similar to the one used to derive the generic multifractal behavior in classical
Besov spaces. First, a saturation function is built, whose multifractal structure is the one claimed
be generic in B}’ (R4). Then, this particular function is used to perturb a countable family of
dense sets in BYP(R?), in order to obtain a countable family of dense open sets on the intersection
of which the desired multifractal behavior holds. However, the construction of the saturation
function and the multifractal analysis of typical functions are much more delicate in B}"” (R%)
than in B5P(RY).

The environment p € & is fixed for the rest of this section, as well as (p,q) € [1,+00]? and
U eFs,

6.1. A saturation function

In this section, a saturation function g, 4 € B4P(R?) is built via its wavelet coefficients, which
are as large as possible in BY"P (R9), and its wavelet leaders are estimated.

The definition of g,, ,  demands some preparation.

When appin = Qmax, we set (My := N?)yen and I = {ami} for all 1 <i < My.

When apin < amax, for every N € N* it is possible to find an integer M such that the interval
[min; Omax] = [7],(+00),7;,(—00)] can be split into My non-trivial contiguous closed intervals
N IY, .., IA]\/;N Satlsfymg for every i € {1,..., My},

| <1/N and max{|r;(a) - 7/(a’)|: a0 € IV} < 1/N. (6.1)

Without loss of generality, we assume that the sequence (My)n>1 is increasing.

In any case, item (6) of Proposition 3.2 yields a decreasing sequence (ny)nen+ converging
to 0 as N — oo, and for all N € N*, My integers Jn 1, Jn2, ..., JN, My, such that for every
i e{L,.., My}, for every j > Jn,

logy #D,(j, IN £ 1/N
ogy #D, (]jv i /N) max 77 (a)| < . (6.2)
a€l;
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Without loss of generality, we assume that ny > 1/N.

Then, define inductively the non-decreasing sequences of integers (Jn)nen+ and (N;);>1 such
that:

VN > 1, Jy > maX{JMi NS {1,...,MN}}
VN >2, My <27vmv-1,

(6.3)
VN >3, Jn—1nv—2 < Innn_1,
for every Jny < j < Jn41, weset Nj = N.

Moreover, Proposition 3.2(7) makes it possible to impose that for every j > Jy and X € D;,

27]-(O‘max+1/N) < /“‘L()\) < 27j(amin71/N)'

620 Finally, let us introduce some coefficients depending on the elements A € A;:

e IfLeZ% j>Jyand A€ Af ={X=(i,j,k) € Aj: \jx € L+[0,1]%}, set

3_7'an_1

2= P
WA= grTa(L+ LI
Ja if p = +o0,

s if p<+4o0 (6.4)

with the convention % =0.

1 pV
o 1§ > J and A= (i, ) € Ay, set oy = 282P0E) g

—J
a5k if Qj L € [amina amax]a
A\ = § Omin if A5k < Qlmin,

Omax i 0 > Qmax.

Remark 6.1. Note that €\ = % — ay tends to 0 uniformly in A € Dj as j — +o00. In other

words, there exists ¢ € ® (recall Definition 1.83) such that |% —ayl < @

Recall the Definition 3.4 of the irreducible dyadic cube X := A E

o5 Definition 6.2. The saturation function g, 4 : R — R is defined by its wavelet coefficients in
the wavelet basis associated with U, denoted by (c\"%)xea, as follows:

o APT=01ifXe Uj<,]2 A;.
o Ifj>Jy and A= (i,4,k) € A, set
wx - (Aj k) ifp= oo,

_ET,T(ax) (6.5)
wy - p(Ajk) 2 p if p < +oo.

HDq
Cy ==

Remark 6.3. 1. Note that c\"™? does not depend on i if X = (i, ], k)

. Consequently, c\'"? is
defined without ambiguity by the same formula for A € D;.
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630 2. The choice of j and X in the exponent 27j¥ in (6.5) implies that at a given generation
J, the wavelet coefficients of g, pq display several order of magnitudes, which are influenced
by the values of u along the j first generations of dyadic cubes. One can also guess from this
choice that approximation by dyadic vectors plays an important role in our analysis, since
the local behavior of g,.p,q around a point x depends on how close x is to the dyadic vectors.

ws  Lemma 6.4. The function g, pq belongs to BEP(R?) and BYP(R?).

Proof. Suppose that p < +o00.
Forj € Nand L € Z4, set DF = {\ € D; : A C L+[0,1]?} and A} = {(i,j,k) € A; : \j» € DF}.
Recall that for A = (¢, 4, k), n(X) stands for p(A; g).
u-,p,q|

Let us define, for j > J, and L € Z¢, A = ZAGA; <|CA
J

P
W) . To prove that g, 4 €

1/p
wo  BEP(RY) € BYP(R?), it is enough to show that A; := (ZLGZd Aj,L) € (1(N).
For j € [Jn,JJN+1), by (6.5) and (6.4), one has

—3j71N7»71/P —ET:(:X) P d _ —3j"7Nj71 _
AL :Z 2 - : p(A)2 _ (22l 1)2 Z 27]"1':(&7)7 (6.6)
S\ L) ) T E e

where the factor 2¢—1 comes from the fact that ci™9, X\ = (i, j, k), is independent of i € {1,...,29—
1}. The periodicity of y, i.e. p0,11¢ = H|p4[0,1)¢ 18 also used.

Recalling the notations in Proposition (3.3), if A € D; and X is the cube associated with its
irreducible representation, then one can write A = X - [0, 2-0—J )]d.

Then, after regrouping in (6.6) the terms according to the generation of their irreducible rep-
resentation, one has

2—3j77N~—1 J *
s = () (14X 3z
(1 + ||L|| (d+1) J=1XeDI\(DY_,-[0,2-1]4)
<2d (1+ 27T
FET L@ Y TS
L (YUY S ) s ) e
—9d ( ) 9=JITil@)  (6.7)
FTTAH LN \ S N AS S J=In, ) xeDY

For each Jy < J < Jn41, using (6.1) and then (6.2), we obtain

My,
Z 9—J7 (o) < Z Z 27J(max{7';(a):aeliNJ}71/N,,)
AED; =1 XeD,(j, I} £1/N)
Mn
Z 2J(max{‘r (a):a€l; J}+nNJ)2 J(max{7;(a): aEIN‘]} 1/Ny)
i=1

— MNJQJ(WNJ+1/NJ) < MNJQQJTINJ.
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Consequently, by (6.3),

Nj—1Jni1—1 j

(Y3 )y | pome
N=1 J=Jn J=Jn; /. XeD§
Nj—1Jn41—1 j
< YD My 3 My 22
N=1 J=Jn J:JN].
N;—1
< Z (Ing1 — IN)MN22IN 0N (5 — Ty, + 1) My, 227
N=1

< jMNj 924NN ;-1 ,

since all terms My22/Nv+1v  for N < N;_1, are less than MNj22j”Nj—1.
Setting C,, = ;1:—01 Z/\epg 2777 by (6.3) and My, 22NN -1 < 1 one has

My 2~ InnN -1 2d () 1
A <2t Cpt1) < —2CutD
g (L [IL])e+y g (L [[L])e+y)
Finally, y pa
p P,
(2 40) " =Gy ) = 007
WO ey
P . o p (Tod
hence (H( ey )/\eAj p)jeN belongs to ¢?(N). This implies that g, , , € B{"P(R?).

When p = +00, the estimate is much simpler and left to the reader. O

Next lemma shows that the wavelet leader (recall (1.24)) L™ of g, , 4 at A € D; is essentially

comparable to the wavelet coefficients c};”? indexed by the cubes A" of generation j which are

neighbors of A\. This property is key to estimate the L%-spectrum of g#P-? relative to V.

Lemma 6.5. Fiz L € Z%. For every ¢ > 0, there exists J° € N such that if j > J¢, for every
A e Df,
E’}/\hpvfl S Liu,p,q S 2j€’5)l\hpvq,

where ¢{""" = max{cS""? : A € Dj, A C 3}

Proof. Tt is enough to prove the result for L = 0. Let €,¢’ € (0,1). Let j > 1 and X € D). Let us
begin with some remarks:

e in (6.5), the term w)y depends only on j, and is decreasing with j.
o if \ C A p(N) < p(N) since € C(RY).
e by Remark 6.3(1) ¢\"”? does not depend on the index i of A = (4, j, k).

Next, observe that if X’ C A, the irreducible cubes M € Dj—, and \ € D5 respectively associated

with ) and ), are such that j < j’.
Then one controls the wavelet coefficients as follows:

(i) By the property (Pi) of u, there exists M € N* such that for every X € Dy, one has
p(N) < 273(d/pH20maxtl) G y(N)27 o > 27 (@maxt1)=3d/p > 1) (\), which implies that
for j' > My, ;P9 < AP
Hence, the only wavelet coefficients ¢y, to consider to compute Li]\” 9 for A € D; are those
of generations j’ such that j < j' < Mj.
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— =7a(ex) : . )
(ii) if j* < Mj and j < jpe/(2d), then 27/ T > 9ipe/d)d/p > 2795, 50 AP > wap(N)277¢
and by the remarks of the beginning of the proof,

cg\b;p,q < wXM(X) < wyp(N) < 01;7177‘121'8.

s (ili) It is possible to choose &’ small enough so that if j'—7 < ¢€'j’, then since p is almost doubling,
las7 — a5l is so small that |57 (a57) — 7 (ax)| < jpe.

(iv) If 5/ < M3, j > jpe/(2d) and j' — j < &’j, then by (iii) one has (for j is large enough)
C/)f;m < C/;,p,qﬁe < cx;,p,q2js.
(v) If ' < Mj, j > jpe/(2d) and j — j > €'j’, then

Jax = jax + (7' = je (6.8)

for some a € [Qmin — €, Omax + €]. The concavity of 7 then implies that for some &”

/
independent of j and j’,

a when @ € [amin, max),
J'ilas) = gri(ax) + (57 = ) (i (a”) —€”),  where & = { amax When & > amax,

Qmin When a < agpin.
In particular, j'77(ary7) > j7ii(ax) — (57 — j)e”, hence
2—_7’72(0!;/)/;0 < 2—37':(‘17)/172(?_3)5”/17 < 2—37': (ay)/p2j7’5”/p < 2—;T;(a7)/p2Mj5”/p'

One checks that " can be chosen as small as necessary when j tends to infinity, in particular
so that one has for large j that Me”/p < e. Finally, with this choice of &, ;79 < cj"P727¢,
Putting together all the previous information yields that when j is large enough, for all \ € D?
a0 and all X' € Djs such that A’ C X, one has ;"7 < P 927¢.
The same property holds true for all A € D; such that A C 3[0,1] and X' € Djs such that
X C . This yields the desired property. O

6.2. The singularity spectrum of the saturation function g, . and some of its perturbations
We now determine the singularity spectrum of g, ,, 4, and more generally of any function whose
ss  wavelet coefficients are “comparable” to those of g, , 4 over infinitely many generations.

Proposition 6.6. Let f € Bf;’p (RY) such that for any L € Z2, there exists an increasing sequence
of integers (jn)nen, and a positive sequence (£,)nen converging to 0 such that for allm > 1 and
A = (i,jn, k) € Aj, such that \j, x C L+ 3[0,1]¢ the inequality 27InenchP? < |c§| holds. Then
J— J— *
Of = 0gupa = Sup-
680 Only the case p < 400 is treated, the case p = +oo is simpler and deduced from arguments
similar to those developed below. Fix (j,)nen and (e,)nen as in the statement.

It is enough to prove that dim E;(H) N (L + [0,1]¢) = ¢ p(H) for all H € R and L € 74
Without loss of generality we work with L = 0 and show that dim E¢(H) N [0,1]¢ = ¢ (H) for
all H € R.

Note that the characterization (1.25) and the assumptions on (j,)nen imply that for all = €
[0,1]4, for the \;, = (i, jn, k) such that z € ), , one has

log &P 4 log el | log L (z
lim inf — 9% > lim inf Nn > Jim inf gij"() > hy(z). (6.9)
n—+4oo log27In T n—+4oo log27In j—+oo log2=Jn
ws Recall that the value of ¢\’™? does not depend on the index i of A;, = (i, jn, k).
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6.2.1. The upper bound oy < C}, .

Theorem 4(1) gives oy(H) < (; ,(H) for all H < (], ,(0%). Note also that ¢ ,(H) = d for all
H e [¢,,(07),¢, ,(07)]. Hence it remains us to treat the case H > (;, (0~), which corresponds
to the decreasing part of the spectrum of f.

690 Fix H > ¢/, ,(07) and z € [0,1]? such that hy(z) > H.
By (6.9), denoting A;, any A = (¢,4,,k) € Aj, such that « € A;,, one has

log ¢\ P
liminf —Z2» > H. (6.10)
n—+oc log27In

Recall that \;, € D+ is the irreducible representation of A;, . Using the concatenation of cubes

introduced after Deﬁnltlon 3.4, one writes \j, = ;. - [0,27Un=7n)]4 and

logc w,p,q logyw 1 s T (ax—)
_ logywa, | logy jn)) 4 TN (6.11)

10g2 i Jn —Jn Jn D

Recall (3.3) and the fact that for j, j/ € Nand A € D}, one has p(A-[0,277]%) = p(A)2- 2273 @min+éx ("),

where by (3.4) |¢] and | (j’)| are uniformly bounded by a o(j) and a o(j') respectively. So,

logy () _ Jn 1082 0T . v LT, G55 (in = Jn)
_jn ]n *]n jn .]n ]n

which combined with (6.11) yields

H,P,q - -

log ¢ j
Jn n
710g2_jn 7;0”(04/\1’7») (1 ]n)amm+rn( x), (6.12)

where

logy wy,;, n E(bgz ,U()‘JT) B 7) ¢ ¢ Jn( Jn)
Jn Jn Jn Jn .

Tn(@ =

PR

The dependence of r,(x) on x is explicit, to remember it. But it does not play any role in the

bounds above, which are uniform in j, and j, — 7.
Lemma 6.7. One has lim,,_ o, m,(z) = 0.

Proof. The first term in r,(x) tends to zero when n — 400, by definition (6.4) of wj.
For the other terms in r,(z), let us define

C = max | sup M , Sup {|¢,\| )\E’D} sup |¢)‘ )\EUD
i1 | J a>1 J 3’21 JEN

ss By (3.3) and Remark 6.1, one has C' < +o0.
Now fix 7 € (0,1) and let us treat the second term. Remark 6.1 again gives that i—n (

) < 3
In

logy p(A5)
j7L

as . When j,, is large, one sees that:

in
o if i:Z > 1, then j, is large and l‘%@| < \%7"” <n,

o if ;; <1, then %|$(ﬁ)\ < Cn.
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In any case, for n large enough %@(RH < (CH+1)n.

The same argument applies to the third term ;ZQST
Finally, for the fourth term, one has: /

~>\jn (‘.7'n —Jn) < &m(jr:jin)

o if J”]i > 1, then j, — j, is also large and <~ <mn,
T 55— (Gn—dn)l &5 —(n—dn)l j 5
In—Jn Jn — Jn In—Jn
o if . <17, then . = = . < Cn.
This concludes the proof of the Lemma. O

Note now that 6,(a) > qumin for all @ € [Amin, Amax]- Since min < Cﬁ’%p(()*) < H, (6.10) and
(6.12) together imply that necessarily, for every € > 0, QP(QT) > H —e¢ for infinitely many integers

n. Hence, on one hand H < 6,(cy) and in particular Ef (H)n: 0 if H > 6,(ay), and on the other
hand

— 1 Y
(@) > limsup 1222 (@)
Jj—4o0

> limsupa/\j > Q;I(H),

n—-+oo

where the same notations as above are used, i.e. );, is here the unique cube of generation j, that

contains x. This implies that z € Ei (0, (H)).
As a conclusion, H < 6,(a,) and Ef(H) C Ei(@;l(H)) Since 0, '(H) > 7,,(07) lies in
the decreasing part of the singularity spectrum of p, Proposition 3.2(5) yields that dim E¢(H) <

> o - .
dim E, (6, ' (H)) = 7;:(6, " (H)). This is the desired upper bound.

6.2.2. The lower bound oy > (; , over the range [amin, Op(cp)] = [(}, ,(+00), (}, ,(—00)].
Two cases must be separated.
Case 1: H € [0,(aumin), 0p(rp)].
Let a € [aumin, p] such that H = 0,(a)(= a + 7;(a)/p). Our goal is to show that o;(H) =

dim Ey(H) > (; ,(H) = 7, (). To achieve this, we prove that i, (Ef(H)) > 0, where p, is the

measure described in Proposition 3.2(2). Since p, is exact dimensional with exponent 7;;(«), this
yields the claim.

For any H' > 0 set
<
EF(H') :={y € [0,1]": hy(y) < H'}.

Let us start with one technical lemma.
Lemma 6.8. For everyn >0, uqo(Eu(a)N EfS(H —n)) =0.

Proof. Fixn >0, Jy € N, and set

VJ > Jy, VA€ Dy such that A C 3\ ;(z),
Eyp.g,(a) = {xe [Oal]di { =0 J 7(7) }

2-J(at+d) < () < 9—J(a—3%)

and for 5 > J > Jy

AN E, (@) NES(H —n)#0 and

Dy.sj(@) =<NEDy: Hot 2o ! ; . 6.13
nhi() { ! {3 N =(i,4,k) € Aj, N C 3N, || > 27 =) (6.13)
Recall the following fact stated along the proof of Lemma 6.5: there exists a constant M such
that the only wavelet coefficients cy/ to consider to compute Li”””“ for A € D; are the j’ such that

j<j < Mj.
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Lemma 6.9. There exists C > 0 such that for Jo < J < j< MJ,
#D, 7 (o) < co—G—J)p

m

3 9.J (7 () —pd)

and when j > MJ, D, 5 ;(a) is empty.

Proof. The case j > M J follows from the remark just before the Lemma.

Let x € E, 5 0,(c) N E]%(H —n). By (1.25), there are infinitely many integers J > J; for
which Lf;(x) > 27J(H=n/2) " For such a generation .J, the definition of the wavelet leader as a
supremum implies that there exist MJ > j > J and A = (4, , k) € Aj with A C 3\ () such that
|c£| > 27J(H=n/2) This means that \;(z) € D,z ;().

Recalling (3.2), assume that Jy is so large that u(\) < p(\y(x))277/82= 0= )amin/2,

Then, the definition of £y, ; j,(a) and the fact that a + 7;(a)/p = H give

! ra
1Al o =89 28 g 3(H-3) 90 (a—n/8) ~ oli—T)2in ot (T2 1) (6.14)
m(A) — -
Si B (R BT p(RY) and g-ish 141)" = ¢ Th
ince f € BY""(R?), f € Bl (R), and s0 3-ycy s -3y ) = C <oo. Thus,
Cz ) (279 1)’ 1
> — . (o .
AEA; A %ZQ(F‘” nzjmzf"( p )*TTLL)

The number of cubes A € A; such that the above indicator function is 1 is by (6.13) larger than
the cardinality of D,, j;(«). It follows that

(i S (T
C = #Dy,j(a)277P50 (2(J—J>727J(*ng))p.

Noting that j < M.J implies 2/Psi7 < 2/P% | the last inequality yields the result. O

In particular, D, j; = 0 for j > J(p2gi + 7 (Qmin))-

Note that
<
Eyp.ao(a) N Ef(H —1) C m U U A
J>Jo j>J XeDy,y,;(a)

For any 0 > 0, denote by #¢;° the pre-s-Hausdorff measure on R? associated with coverings by sets

. . . <
of diameter less than or equal to 6. Using ;> ; Uyep A as covering of E, 5, () NE7 (H—n),

one deduces that for every J > Jy,
H s (Bue,o(@) NEF(H — 1)) < > (#Dp.s) (@) (Vd - 277)°

J<G<T (p2gin 47 (Amin )

n,J,5 ()

< (Va)*C ngmp% 97 (i(e)=pg—s)

m>0

which tends to zero as soon as s > 7, (a) — pg. It follows that
dim (E,, .5, (@) N E? (H—-n)) <7i(a) —ps

and thus po (Ep p, 5, () N E? (H —n)) =0, because p, may give a positive mass to a set F only if
dim E > T;(oz).
To conclude, observe that the almost doubling property of u yields

Eua)= () U Eursl.

m>1 JoeN

This, combined with the previous estimate on pa gives pa(Epu (o) N Ef (H —n)) = 0. O
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o (@min) > 04

o ], (+00) = ¢/, 1 (+00) +/,(—o0) ¢, 1 (=00

Figure 3: Case where oy (omin) > 0 and p = 1: the dashed graph represents the spectrum of u, the plain graph
represents the multifractal spectrum o of typical functions f € BY ’1(Rd). An affine segment (in red) with slope
p = 1 appears in the spectrum oy.

We are now equipped to prove the lower bound dim Ey(H) > 7;(c).

, log X _ Tn(@ @),
First, (6.12) states that — 355 T Op (e (o (w)) 1— Qmin + 70 ().

By Proposition 3.2(2), for u,-almost every z, limjﬂﬁ)o ay;(z) = «. By Proposition 3.7, for

Lo-almost every x, lim, 4o J_"Eig =1.

One deduces that hy(z) < 0,(c) = H for p,-almost every z, i.e. [La(EfS (H)) =1 (the equality
hy(x) = H does not hold in general, since (6.12) is true only for a subsequence of integers (j,)n>1).
Combining all the above results, one concludes that

pa(Ef(H)) = pra(Byu(a) N Ef(H))
> pio(E, () N =Y tta(Bu(a) NEF(H - 1/m)) =

m>1
This proves that necessarily dim Ey(H) > 7;(«), as expected.

Case 2: H € [amin,0p(min)): this corresponds to the affine part of the spectrum, which occurs
only when o, (min) = 7, (min) > 0, see Figure 3.

If H € [amin, Op(amin)), write H = aumin + M
to the sequence (j,)nen given by Proposition 6.6, the set S(8, (nj)jen+, (Jn)nen) supports a Borel
probability measure v of lower Hausdorff dimension at least equal to T;(amin) /0 =p(H — amin) =
* »(H). Note that (1;);jen+ depends only on p.

1,p
For x € S(6, (nj)jen+, (jn)nen), one checks that

, where § > 1. By Proposition 3.6 applied

log 74
hy(z) < liminf 8 @)

75 (Qmin)
n—+oo log2=Jn

<« -+ K
min 5p

=H.

In addition, {y € [0,1]?: h¢(y) < H} =U,,>; E? (H — 1/m), and each set E?(H — 1/m) has
a v-measure equal to 0, since due to Proposition 3.2(2) applied to the capacity provided by the
lgaders of f, diinEfg(H —1/m) < (C}I’)*(H —1/m) < (; ,(H). Consequently, v(E¢(H)) =1 and
dim By (H) > ¢, ().

Finally, if H = aujn, the set F = ﬂpeN S(p, (M;)j>1, (Jn)nen) is easily seen to be non empty
(by taking 6 = p at step p of the construction in the proof of proposition 3.6) and to be included
in Eg(amm) by using the previous estimates. However we know that Efg(h) = for all h < omin

by Theorem 4. Consequently, E (Qmin) = E?(amin) # 0, s0 0(min) = dim Ef(omin) > 0.
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6.3. Typical multifractal behavior in Bj* (R9)

We finally prove item (2) of Theorem 4, hence obtaining the multifractal behavior of typical
functions in Bg”’(Rd).

Recall the definition (1.18) of the basis {No,}men of neighborhoods of the origin in B4F(R?).
For every integer m > mg = [max(1,s;')] + 1, set

f
V,, = {f € BIP(RY) 1 Vj > Ja, VA € Ay, C',fj,L em M1,... ,m2}} )
A

Then let
G = limsup(V,;, + Nyrmtog(m)1 )- (6.15)
m—00
Each U, Ve, m > mo, is dense in B!"P(R?), so G contains a dense Gy set.
When f € G, there exists an increasing sequence (j,)n>0 such that f € V;, + Nofin tosin) for
all n > 0.
Fix L € Z%. Looking at the particular generation j,, for all A € A, such that A C L+3[0, 1]%, by

n

definition of V;, and ﬁern log(im)1 , the lower bound |c{\ > jatehPd — 2~ [dn1og ()T 1y(X)27n
holds. By construction of the coefficients ¢y*?, this implies that for n large enough one has

9—in 10g(in)

|cf\c| > o tehP? /2, hence there exists a positive sequence (¢,,)nen converging to 0 such that |c§| >
27 Inen|cAP| for all A € Aj, such that A C L + 3[0,1]. Consequently, Proposition 6.6 yields
*

9f = 99up.a = Spp:

Remark 6.10. In fact, the definitions of V;,, Noyim o8ty s and AP imply that if (jn)n>1 is an
increasing sequence of integers and f € ﬂn21 Vi, + Notin st then for all N, K € N*, for all

n > 1 large enough and A € UJKZJ;TL A; such that X C N[0,1], one has

1 .
: C&L,p,q < |C{| < 2‘7”6;/\%1741.
2jn

These bounds will be useful to estime the L1-spectrum of f.

7. Validity of the WMF and the WWMF in B%P(R)

Recall that the multifractal formalisms for functions were defined in Section 1.5. In this last
section, we first discuss the validity of the WMF for the saturation function g, , 4. This helps in
establishing part (3) of Theorem 5 in Section 7.3, while Section 7.2 provides the proof of part (2)
of Theorem 5.

7.1. WMF and WWMF for the saturation function g, p.q

Recall that the wavelet ¥ is fixed, and that g, , , is built via its wavelet coefficients in the

wavelet basis generated by W. Also, recall (1.26) for the definition of Cx’\y

s and the various
@
notations concerning L%-spectra for functions.

Proposition 7.1. The WMF holds for g,. p.q on the interval [¢], ,(+00),;, ,(07)], and the WWMF
holds for g,.p.q on the interval [(], ,(4+00),(], ,(—=00)].

* : N
Moreover, for all N € N*, one has lim;, oo Gy~ = Cup-

The second part of the statement shows that the convergence of the sequence (Cﬁfg j)j>1

stronger than what is required for the WWMF to hold (only the convergence over a subsequence
is needed).

is
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Proof. Suppose that it is established that for all N € N*, one has lim;_,; C;V”’\:qyj = Cup.- In

particular Cgl\i’g’q = (up for all N € N*, so (;I; I Cu,p- Since it was shown in the previous section

that og, , . = (; ,, one concludes that g, ; satisfies the WMF.

Now, fix V € N*. Let us prove that lim;_,, C;i’jmj = Cup-

The Z%-invariance of y1 and the definition of g, , , show that if is enough to work on [0,1]¢ and
to prove that lim;_, o0 571 log > cpo (L7 1)F = (up(t).

Fix ¢ € R. Recall Remark 6.3(1) ;]md Lemma 6.5. The reader can check that due to these two

facts,
L e
lim j7 log ——4.5-7 =0.
Jmree Z)\ED?(cg\ )t
Moreover, by definition of the coefficients ¢j*”?, and since log(wy) = o(log(x(\))) uniformly in
A€ Ajas j— +oo,
t
L Taem(dery | ey
lim j7 log ——————— =0, where B(j,t) = Z w(A)2 p
J—00 B(],t) xeD0
Thus, one must prove that
dim 5" logy B(j,t) = Cup(t). (7.1)
J—+oo

When p = +o00, this was established in Section 3 of [1], but in the general case where y is a positive
power of such a measure the result holds as well by a direct calculation.

Assume now that p < +00. Fix t € R*, the case t = 0 being obvious.
Fix ¢ > 0. Using the same decomposition as that used in the proof of Lemma 6.4,
g . t *
B(j,t) =" > p( - 0,27 6Dy T,

J=0XeDY\(DY_,-[0,2-1])

Then, from (3.3) we deduce that there exists a positive sequence (C;);>1 depending on ¢ and p

such that lim;_,4 log(yi.cj) =0 and for all j > 1,

j—J (amin"" ) -1 ,U/ )\) . j —J) (Qmin—
2T I < T 2oy < G2

Observe that when A and X are neighbors in A ;, the two numbers ,u()\)t27%h; (@) and M(X)t27%‘”:(a*’)
differ by a factor at most 2”¢. This follows from the almost doubling property (P3) of x4 and the
continuity of 7.

These considerations prove that there exists another positive sequence (@) j>1 depending on ¢

and p such that lim;_, 4 loggi,cj) =0 and

O_j_lB(.]7 ta Qmin, S(t)E) S B(.]’ t) S C]B(]a t7 Qmin, _S(t)€)7 (72)
where s(t) is the sign of ¢ and
J

B(j,t,8,7) = y_ 2707 M=y Ny yram s Imalen), (7.3)
J=0 AEDY
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The quantity Z/\GD(} u()\)t27%h;(°‘*) is now controlled. Using Proposition 3.2(6), the interval

[@min, @max] can be split into M contiguous intervals I; = [y, a;11], i = 1,..., M, of length less
than e such that for every i € {1,..., M},

1 D, (5, I;
sup 7, (a) — logy #Du(d, 1i) ,”(‘7’ ) <e and  sup |7i(a) —Ti(e)| <e.
a€l; J a,a’€l;

Define the mapping x3 : @ € [Qmin, @max| = t0p(a) —7;; () (in (4.3) its restriction X2 to the interval
[Qtmin, ap] Was considered). Without loss of generality, suppose that there exists 1 < iy < M such
that t0,(i,) — 75 (cv,) = min{xs(a) : @ € [min, Vmax]} = (3(t).

Also, by Remark 6.1, there exists C' > 1 such that for all j € N and A € D% one has
C—12-ileate) < yy(N) < 027 7(ar—e),

If follows from the previous information that

M
< ot Z 9J (7 (ai)+e) 9= Jt(ai=2s(t)e) g — 3 T (7] (i) =s5(t)e)
Z H()\)t2—%JT:((X>\) i:]lw
AeDY > O~ It Z QJ(T;(ai)—a)2—Jt(az:+28(t)€)2*%=I(T,f(ai)+8(t)€),
=1

which implies that

M
9Js(t)e Z M()\)t27%J7—;(a>\) _ mj(t,ff> ZQ—JX3(ai) (7.4)
AeDY i=1

where |log(my(t,€))| < |t|log(C) + (2 + 2J¢] + %)Js.
Then, incorporating (7.4) in (7.3) and using that the infimum of x3(«;) is reached at i, i.e.
xs(aiy) = Cs(t), one gets
B(j,t, B, %e) = Y 270D (1, )27 /60, (7.5)
J=0

1l
)

where |log(m(t,¢))| < log(M) + |t|log(C) + (2 + 2|t| +
implies

)Je. Incorporating (7.5) in (7.2) then

J
B; = mmj(t,e)277 i N " (¢, )i (t,e) 2 (o0 Ttomin) (7.6)
J=0
where max(| log (7t (t,€)), | log(i; ¢, £))) < jltle + log(C).
It follows from (7.6) and the fact that € is arbitrary, that:

e (3(t) — tamin > 0 implies lim —5~'logy, B(j,t) = tamin,

Jj—+oo

e (3(t) — tamin < 0 implies lim —5 log, B(j,t) = (3(t).

Jj—+oo

hence, to prove (7.1) and Proposition 7.1, the value of (3(¢) and the sign of (5(t) — t@min must be
investigated. According to the previous observations, this will give the desired conclusion.
The two cases dmin = max and Qmin < Qmax are split.

Suppose first that amin = @max. Then, 7,(t) = amint — d for all t € R, and

(Qmin + %)t —d whent < p,
Cu,p(t) =
Qmint  when t > p.
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A straightforward computation gives (3(t) = tamin+ (% —1)d. Thus when t < p, (3(t) = Cup(1).

Moreover, (3(t) —tomin = (% — 1)T;(O¢min) is non negative if and only if t > p, i.e. (up(t) = Amint;

and when p > ¢ one has (, ,(t) = (3(t), hence the result.
Assume next that [min, Qmax] 1S non trivial.

When t > p, the mapping ys rewrites x3(a) = ta+ (% - 1)7‘;(0() so it is concave, and it reaches
its minimum (3(t) either at apin or at amax. In either case, (3(t) — tamin > 0. Moreover, in this

range (p,p(t) = tamin, so (7.1) holds true.

When t < p, recall the notations introduced and the fact established in the proof of Proposi-

tion 4.2.
Ift, = pp—_tt <teo = (1) (ajh: ), the convex function y3 reaches its minimum %Tu(ﬁt) =

Cup(t) at ay, ie. G3(t) = Cup(t).

If t, > to, then x3 is increasing and reaches at oupn its minimum equal to tomin + (7 —

l)Tu(amin) = Cu,p(t) (here (3(t) = (. p(t) as well). In both cases, (3(t) —tamin < (3(t) —x3(Amin) <
0 and (7.1) holds true. O

p

7.2. Proof of Theorem 5(2)

As recalled in the introduction, it is known [10] that for any smooth function f, one has
oy < (}. Since it was shown in Section 6.3 that oy = (Cu,p)* for typical functions in Bg"p(]Rd)7
for such functions one necessarily has (y < ¢, by inverse Legendre transform. Simultaneously,
Theorem 8 states that CfIR = (}I' > Cu,pg, » Which yields the desired result.

+ R+ IR+

7.8. Proof of Theorem 5(3)

It is enough to get part (i). Then part (ii) follows from the fact that the class of residual sets
is stable by countable intersection.

Let f € G, where G is the Gs set defined by (6.15), and consider asequence (jy)n>1 such that f €

Vi, +Narmiosemy for allm > 1. Fix N € N*. We prove that Q Fo converges pointwise to (,,, asn —
—|—oo which is enough to show that the WWMF holds relatively to ¥ over [¢/ 1p(109), ¢ p(—00)]s

since it was established that o¢ = ;71)

Since a function f € G necessarily belongs to € *mi»~¢(R?) (for every ¢ > 0), one has |c§| <
2-7(amin—2) for every large j and \ € A; such that A C (N +1)[0, 1]¢.

Fix € = amin/2. By construction, when j is large and A € A;, A'"? > 27%%max Hence, from
the previous fact and Remark 6.10 applied with K = |[4amax/@min] + 1, one sees that when n
becomes large, for all j > j, and A € A; such that A C (N +1)[0,1]%:

o cither j € {jn,...,Kj,} and the wavelet coefficient ¢} of f satisfies T c’;pq < || <
2jn, P, item or j > Kj, and |c)\| < P9 This implies that for all A € D;, such that
A C NJ0,1]¢, the wavelets leader L{ of f satisfies

iLqupq <Lf<2jnL9upq
2Jn

v,N

Consequently, lim,, | j,, ! log, (Zf ]”) = 0, and by Proposition 7.1, C Foin N indeed converges to

9:In

Cu,p 88 M — 00.
Finally, when ¢ < 400, to establish that for a typical f € Bf;’p(Rd) one has g}l"R* = —o0,

consider for all m € N* the set

Vi = {f € BEP(RY) : ¥ m < j < mlog(m), ¥A € Ay, ¢f =0}
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The set limsup,,,_, ., V, is dense in Bf;’p(Rd) and

G = GNlim sup(vm + Normiog(m)1)-

m— o0

is a dense Gs-set. When f € 5, there exists an increasing sequence of integers (my,),en such that
f € Vi, + Notmntos(ma)1 for all n € N. It is easily checked that for any A > 0 and N € N, for n
large enough, if A € D,,, and A C N0, 1]¢, one has Lf\c < 2=Amn_ This implies that for ¢t < 0,

> 1L§>O(L{)t > #{\eD,,,, A N[0,1]?: L > 0} . 27Atmn,
AE€Dp,,, ACN[0,1]¢

hence C}II’N(t) < At. Thus, A being arbitrary and ¢ < 0, the desired conclusion holds.

8. Proof of Theorem 7

Part (1) follows from the fact that for o € .7 to be the typical singularity spectrum in B}* (R%)
with p < +o00, by Theorem 4 and Proposition 4.2 it is necessary that o(Hmin) = 0, and by
Theorem 4 the function o* is linear over [p, +o0] so o’/ (H.. ) < p by Remark 4.1.

To prove part (2), the cases p & 50((Hmin, Hipnax)) and p € 50((Hmin,Hmax]) are separated.
Case p ¢ 50((Hmin, H,,.x]): Define the mapping

H
A H € [Hugns Hoa] 13 H — 20D,
p
It is a continuous increasing bijection onto its image, that we denote by I = [aumin, ¥max]|- For

a € I, denote A~1(a) by H(«a). It is easily checked that the mapping
cg:a€l—pH(a)—a)

belongs to 4 as well, and that if p € & is chosen such that o, = o, the study achieved in
Section 4 implies that o is the singularity spectrum of the typical functions in B}"” (R%), for all
q € [1,+00] (the function A is then the inverse of the function 6, defined in (4.1)).

Suppose, moreover, that o’/ (H,,,.) = —00 and 0(Hpax) > 0. This is equivalent to suppose that
' (apax) = —p and 0 (aumax) > 0. Again, the study achieved in Section 4 shows that for any element
o of .#; whose domain takes the form [min, Qppay] With o, > Qmax and Gj(a,. ,ama.] = 0 for any
v € &y such that 0, = 7, o is still the singularity spectrum of the typical functions in B;* (RY),
for all ¢ € [1,+00]. Note that there are infinitely many ways to consider such an extension. On
the contrary, if o/(H,,,.) > —00 or 0(Hmax) = 0, p is the unique element of &; such that typical
elements of B{"” (R?) do have a singularity spectrum equal to o.

Case p € 50((Hmin,HmaX}): this means that there is a non-trivial maximal subinterval
[Hunins Humin] of [Hinin, Himax] such that for all H € [Hupin, Huin] one has o(H) = p(H — Hyin).

If ﬁmin = Hynax, one chooses 0 =d -1y, , so that p = (Ed)% is such that o, = ¢ and o is
the singularity spectrum of the typical functions in Bg"p(Rd), for all ¢ € [1, +o0].

If ﬁmin < Hphax, the same approach as in the case p & O((Hpmin, Hmax]) works, except that o
is rAe/placed by its restriction to [ﬁmin, Hnax), and with the difference that now one necessarily has

O'(Hmin) > 0.
The claim about the validity of the WMF and WWMEF follows from Theorem 5.
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