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Abstract

Frisch-Parisi conjecture claims the existence of Baire function spaces in which Baire typical func-
tions share the same multifractal behavior, prescribed in advance, and obey a multifractal formal-
ism. In this paper, we introduce a family B of heterogeneous Besov spaces, which generalize the
standard Besov spaces - they are obtained by replacing the Lebesgue measure (which plays a key
role in the definition of the standard Besov spaces) by multifractal Radon measures belonging to
some class constructed in the companion paper [1]. We find a characterization of the elements
of B in terms of wavelet coefficients, and then describe the multifractal properties (singularity
spectrum, validity of the multifractal formalism) of their Baire typical functions. This allows us
to fully solve the Frisch-Parisi conjecture inside B.

Résumé.

La conjecture de Frisch-Parisi affirme l’existence d’espaces fonctionnels de Baire dans lesquels les
fonctions génériques partagent le même comportement multifractal, prescrit à l’avance, et satisfont
un formalisme multifractal. Dans cet article, nous introduisons une famille B d’espaces de Besov
hétérogènes, qui généralisent les espaces de Besov standard - ils sont obtenus en remplaçant la
mesure de Lebesgue (qui joue un rôle clé dans la définition des espaces de Besov standard) par les
éléments d’une classe de mesures de Radon multifractales construite dans l’article associé [1]. Nous
trouvons une caractérisation des élements de B en termes de coefficients d’ondelettes, puis nous
décrivons les propriétés multifractales (spectre de singularité, validité du formalisme multifractal)
de leurs fonctions génériques. Ceci nous permet de résoudre complètement la conjecture de Frisch-
Parisi dans B.

Keywords: Hausdorff dimension, multifractal formalism, Besov spaces, Fréchet spaces, wavelets.
2020 MSC: 28A78, 28A80, 30H25, 42C40, 46A04

1. Introduction

The so-called Frisch-Parisi conjecture is the inverse problem, raised by S. Jaffard, consisting in
seeking for Baire function spaces in which typical elements share the same prescribed multifractal
behavior and obey a multifractal formalism. To be more specific, recall that for a real valued
function f ∈ L∞

loc(Rd), the pointwise Hölder exponent function hf is defined as follows. Given x0 ∈
Rd, and H ∈ R+, f is said to belong to CH(x0) if there exist a polynomial P of degree at most
⌊H⌋, a constant C > 0, and a neighborhood V of x0 such that

∀x ∈ V, |f(x)− P (x− x0)| ≤ C|x− x0|H .

∗Corresponding author
Email addresses: barral@math.univ-paris13.fr (Julien Barral), seuret@u-pec.fr (Stéphane Seuret)
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The pointwise Hölder exponent of f ∈ L∞
loc(Rd) at x0 is

hf (x0) = sup
{
H ∈ R+ : f ∈ CH(x0)

}
, (1.1)

and f is said to have a Hölder singularity of order hf (x0) at x0.
Then the multifractal spectrum, or singularity spectrum of f is the mapping

σf :

®
R → [0, d] ∪ {−∞}
H 7→ dimEf (H),

where
Ef (H) = {x ∈ Rd : hf (x) = H},

dim stands for the Hausdorff dimension, and dimE = −∞ if and only if E = ∅.

Conjecture 1 (Frisch-Parisi conjecture). Let Sd be the set of functions σ : R → [0, d] ∪ {−∞}
such that σ is concave, continuous, with compact support included in (0,+∞) and whose maximum5

equals d. For every σ ∈ Sd, there exists a Baire functional space of functions defined on Rd in
which any typical element f obeys some multifractal formalism and satisfies σf = σ.

We refer to the companion paper [1] for an introduction to multifractals and this conjecture.
In [1], we constructed a set Md of Zd-invariant Radon measures on Rd, exhausting the possible
multifractal behaviors of fully supported measures obeying a multifractal formalism, and with a10

prescribed singularity spectrum compactly supported in (0,∞). Considering the set of capacities
Ed = {νs : ν ∈ Md, s > 0}, the prescription part of the conjecture followed thanks to a family
of Baire spaces {Bµ(Rd)}µ∈Ed

extending naturally the Hölder-Zygmund spaces and defined using
wavelet expansion of uniformly bounded Hölder fonctions (see [1, Theorems 2 and 7]); in particular
typical elements in Bµ(Rd) inherit the singularity spectrum of µ. In this paper, we introduce15

heterogeneous Besov spaces denoted by Bµ,p
q (Rd) (depending on a capacity µ and two indices

p, q ∈ (0,+∞]), which generalise in a natural direction the standard Besov spaces defined through
Lp moduli of smoothness. In particular, one will see that Bµ,∞

∞ (Rd) = Bµ(Rd). Roughly speaking,
the central role played by the Lebesgue measure in the structure of Besov spaces is now played
by (possibly) multifractal measures and more generally capacities. We first characterize these new20

spaces using wavelet coefficients. Then, we consider the family B = {Bµ,p
q (Rd)}µ∈Ed,(p,q)∈[1,+∞]2

of such spaces where µ belongs to set of capacities Ed. Through a delicate study we identify the
multifractal behavior of the typical elements in any function space Bµ,p

q (Rd); this behavior depends
in a non trivial way on that of µ and on p. Then, we show that these typical functions obey a
multifractal formalism. Finally, we solve the inverse problem exhaustively inside B.25

Sections 1.1 and 1.2 respectively introduce the heterogeneous Besov spaces (called Besov spaces
in multifractal environment) considered in this paper, and provide the characterisation of these
spaces using wavelets (Theorem 2). Then, basic multifractal properties of the elements of Ed are
gathered in Section 1.3 (Theorem 3). The typical multifractal behavior in Bµ,p

q (Rd) when µ ∈ Ed
is presented in Section 1.4 (Theorem 4), while the multifractal formalism used in this paper and30

its typical validity in Bµ,p
q (Rd) are the subject of Section 1.5 (Theorem 5). The full solution to

the conjecture is given in Section 1.6 (Theorems 6 and 7).

1.1. Definitions of heterogeneous Besov spaces

Standard Besov spaces can be defined by using Lp moduli of smoothness, and are characterized
using decay rate of wavelet coefficients. To define Besov spaces in multifractal environment, the35

classical definition of Lp moduli of smoothness is extended using Hölder capacities. For x ∈ Rd,
r ∈ R+, B(x, r) denotes the closed Euclidean ball with center x and radius r.

Definition 1.1. The set of Hölder set functions on B(Rd) is defined as

H(Rd) =
{
µ : B(Rd) → R+ ∪ {∞} : ∃C, s > 0, ∀E ⊂ Rd, µ(E) ≤ C|E|s

}
. (1.2)

2



Then, the set of Hölder capacities is defined as

C(Rd) =
{
µ ∈ H(Rd) : ∀E,F ∈ B(Rd), E ⊂ F ⇒ µ(E) ≤ µ(F )

}
. (1.3)

The topological support supp(µ) of µ ∈ H(Rd) is the set of points x ∈ Rd for which µ(B(x, r)) > 0
for every r > 0. A capacity µ is fully supported when supp(µ) = Rd.

Similarly, H([0, 1]d) and C([0, 1]d) are defined by replacing above Rd by [0, 1]d.40

Definition 1.2. For h ∈ Rd and f : Rd → R, consider the finite difference operator ∆hf : x ∈
Rd 7→ f(x+ h)− f(x). Then, for n ≥ 2, set ∆n

hf = ∆h(∆
n−1
h f).

For every fully supported set function µ ∈ H(Rd), for every n ∈ N∗, h ∈ Rd \ {0} and x ∈ Rd,
set

∆µ,n
h f(x) =

∆n
hf(x)

µ(B[x, x+ nh])
,

where B[x, y] stands for the Euclidean ball of diameter [x, y].
For p ∈ [1,+∞], the µ-adapted n-th order Lp modulus of smoothness of f is defined at any

t > 0 by

ωµn(f, t,Rd)p = sup
t/2≤|h|≤t

∥∆µ,n
h f∥Lp(Rd). (1.4)

Observe that when µ(E) = 1 for every set E, then ωµn(f, t,Rd)p is a modification of the standard
n-th order Lp modulus of smoothness of f defined by

ωn(f, t,Rd)p = sup
0≤|h|≤t

∥∆n
hf∥Lp(Rd). (1.5)

Recall that when s > 0, and p, q ∈ [1,+∞], the Besov space Bs,pq (Rd) is the set of those

functions f : Rd → R such that

∥f∥Bs,p
q (Rd) = ∥f∥Lp(Rd) + |f |Bs,p

q (Rd) <∞, (1.6)

where
|f |Bs,p

q (Rd) = ∥(2js(ωn(f, 2−j ,Rd)p)j∈N∥ℓq(N) < +∞,

and n is an integer ≥ s. The dependence on n in |f |Bs,p
q (Rd) is voluntarily omitted. Indeed, the

norm ∥ ∥Bs,p
q (Rd) makes Bs,pq (Rd) a Banach space, and different values of n > s yield equivalent45

norms (see [2, Remark 3.2.2]).
Let us recall some notations used in [1]. For every j ∈ Z, let Dj stand for the collection of

(closed) dyadic cubes of generation j, i.e. λj,k = 2−jk + 2−j [0, 1]d, where k ∈ Zd. Let us also set
D =

⋃
j∈Z Dj , and if λ = λj,k ∈ Dj we set xλ = 2−jk.

For x ∈ Rd, λj(x) is the closure of the unique dyadic cube of generation j, product of semi-open50

to the right dyadic intervals, which contains x.

For j ∈ Z, λ ∈ Dj , and N ∈ N∗, Nλ denotes the cube with same center as λ and radius equal
to N · 2−j−1 in (Rd, ∥ ∥∞). For instance, 3λ is the union of those λ′ ∈ Dj such that ∂λ ∩ ∂λ′ ̸= ∅
(∂λ stands for the frontier of the cube λ).

The capacities considered in this paper and in [1] satisfy additional properties.55

Definition 1.3. Let Φ be the set of non decreasing functions ϕ : N → R+ such that limj→+∞
ϕ(j)
j =

0. A capacity µ ∈ C(Rd) is almost doubling when there exists ϕ ∈ Φ such that

for all x ∈ supp(µ) and j ∈ N, µ(3λj(x)) ≤ eϕ(j)µ(λj(x)). (1.7)

Definition 1.4. A set function µ ∈ H(Rd) satisfies property (P) if there exist C, s1, s2 > 0 and
ϕ ∈ Φ such that:
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(P1) for all j ∈ N and λ ∈ Dj,
C−12−js2 ≤ µ(λ) ≤ C2−js1 . (1.8)

(P2) for all j, j′ ∈ N with j′ ≥ j, for all λ, λ̃ ∈ Dj such that ∂λ ∩ ∂λ̃ ̸= ∅, and λ′ ∈ Dj′ such that
λ′ ⊂ λ:

C−12−ϕ(j)2(j
′−j)s1µ(λ′) ≤ µ(λ̃) ≤ C2ϕ(j)2(j

′−j)s2µ(λ′). (1.9)

In particular, µ is almost-doubling, and doubling if ϕ = 0.

Definition 1.5. For s > 0, a set function µ ∈ H(Rd) is s-Hölder when there exists C > 0 such
that µ(E) ≤ C|E|s for all E ∈ B(Rd).60

Then, for µ ∈ H(Rd), s > 0, and E ∈ Rd, define

µs(E) = µ(E)s and µ(+s)(E) = µ(E)|E|s,

and if µ is s0-Hölder, then for all s ∈ (0, s0), define

µ(−s)(E) =


0 if |E| = 0,

µ(E)|E|−s if 0 < |E| < +∞,

∞ otherwise.

Starting from µ ∈ H(Rd), µs, µ(+s) and µ(−s) as defined above still belong to H(Rd) (with s
small enough in the case of µ(−s)).

We are now ready to introduce heterogenous Besov spaces in µ-environment.

Definition 1.6 (Besov spaces in µ-environment). Let µ ∈ H(Rd) satisfy property (P1) of Defini-
tion 1.4 with exponents 0 < s1 ≤ s2, and consider an integer n ≥ ⌊s2 + d

p⌋+ 1.65

For 1 ≤ p, q ≤ ∞, let

Bµ,pq (Rd) = {f ∈ Lp(Rd) : |f |Bµ,p
q (Rd) < +∞},

where
|f |Bµ,p

q (Rd) =
∥∥∥2jd/p(ωµn(f, 2−j ,Rd)p)j∈N

∥∥∥
ℓq(N)

. (1.10)

Also, let

Bµ,p
q (Rd) =

⋂
0<ε<min(s1,1)

Bµ
(−ε),p

q (Rd). (1.11)

Note that Bµ,pq (Rd) ⊂ Bµ,p
q (Rd). The spaces Bµ,pq (Rd) and Bµ,p

q (Rd) will be referred to as Besov
spaces in µ-environment.

At this stage, both Bµ,pq (Rd) and Bµ,p
q (Rd) depend a priori on the choice of n. However, the

dependence in n ≥ ⌊s2+ d
p⌋+1 can be dropped for Bµ,pq (Rd) when µ is a doubling capacity, and also

for Bµ,p
q (Rd), under the (rather weak) extra property (P2) of Definition 1.4 (see Theorem 2 for a70

precise statement). Moreover, endowed with the norm ∥ ∥Lp(Rd) + | |Bµ,p
q (Rd), B

µ,p
q (Rd) is a Banach

space. Hence, Bµ,p
q (Rd) is naturally endowed with a Fréchet space structure, as the intersection of

a nested family of such spaces. The Fréchet spaces Bµ,p
q (Rd) will be used to solve the Frisch-Parisi

conjecture.

Let Ld stand for the d-dimensional Lebesgue measure. For µ = (Ld)
s
d−

1
p , it is quite direct to see75

that Bµ,pq (Rd) = Bs,pq (Rd) when s > d/p. When µ ∈ H(Rd) is multifractal (typically µ = νs where
ν is a multifractal measure and s > 0) the heterogeneity associated to the distribution of the values
of µ at small scales makes natural to see such a capacity as defining an heterogeneous environment
imposing local distorsions in the computation of the moduli of smoothness in comparison to positive
powers of Ld, which are homogeneous in space. Like for Bs,pq (Rd), to study the typical multifractal80

behavior in Bµ,pq (Rd) and Bµ,p
q (Rd), it is essential to establish a wavelet characterization of these

spaces. Such a characterization exists for Bµ,p
q (Rd) when µ is almost doubling, and for Bµ,pq (Rd)

when µ is doubling (see Theorem 2).
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1.2. Wavelet characterization of Besov spaces in almost doubling environments

It is standard that classical Besov spaces are characterized in terms of wavelet coefficients decay.85

We investigate the situation for the spaces Bµ,pq (Rd) and Bµ,p
q (Rd).

Let {ϕ, {ψ(i)}i=1,...,2d−1} be a family of wavelets defining a multi-resolution analysis with re-
construction in L2(Rd) (see [3, Ch. 2 and 3] for a general construction).

Let Λ =
⋃
j∈Z Λj , where for j ∈ Z

Λj = {(i, j, k) : i ∈ {1, . . . , 2d − 1}, k ∈ Zd}.

For every λ = (i, j, k) ∈ Λ, denote by ψλ the function x 7→ ψ(i)(2jx − k). The functions 2dj/2ψλ,
j ∈ Z, λ ∈ Λj , form an orthonormal basis of L2(Rd), and every f ∈ L2(Rd) can be expanded, in
two equivalent manners, as

f =
∑
k∈Zd

β(k)ϕ(· − k) +
∑
j∈N

∑
λ∈Λj

cλψλ =
∑
j∈Z

∑
λ∈Λj

cλψλ,

where

β(k) =

∫
Rd

f(x)ϕ(x− k) dx and cλ =

∫
Rd

2djψλ(x)f(x) dx (k ∈ Zd, λ ∈ Λ). (1.12)

Recall that a mapping ψ : Rd → R has r vanishing moments when for every multi-index α ∈ Nd
of length smaller than or equal to r,

∫
Rd x

α1
1 · · ·xαd

d ψ(x)dx = 0.90

Definition 1.7. For every r ∈ N, call Fr the set of those
{
ϕ, {ψ(i)}i=1,...,2d−1

}
which define a

multi-resolution analysis with reconstruction in L2(Rd), and such that ϕ and the ψ(i) are compactly
supported, r times continuously differentiable functions, and every ψ(i) has r vanishing moments.

The set Fr is not empty for all r ∈ N (see [3, Prop. 4, section 3.7]).
Fix r ∈ N∗ and Ψ ∈ Fr. For any f ∈ Lp(Rd), 1 ≤ p ≤ ∞, define the sequences (β(k))k∈Zd and

(cλ)λ∈Λ as in (1.12). Besov spaces are characterized by their wavelet coefficients as follows (see [3,
Ch. 6], [4], or [2, Corollary 3.6.2]): For r > s > d/p,

f ∈ Bs,pq (Rd) ⇐⇒

β ∈ ℓp(Zd),
(εj)j∈N ∈ ℓq(N), where εj =

∥∥∥(2j(s−d/p)cλ)
λ∈Λj

∥∥∥
ℓp(Λj)

,
(1.13)

and the decomposition f =
∑
k∈Zd β(k)ϕ(· − k) +

∑
j∈N

∑
λ∈Λj

cλψλ holds. Moreover, ∥β∥ℓp(Zd) +95

∥(εj)∥ℓq(N) is a norm equivalent to the norm ∥f∥Bs,p
q (Rd) defined in (1.6). Note that ψ(i) ∈ Bs,pq (Rd),

and Bs,pq (Rd) ↪→ B
s− d

p ,+∞
+∞ (Rd) = C s− d

p (Rd), where for all α > 0, C α(Rd) = Bα,∞∞ (Rd) is the
Hölder-Zygmund space of order α.

Definition 1.8. Let µ ∈ H(Rd) satisfy property (P1) of Definition 1.4 with exponents 0 < s1 ≤ s2,
and consider an integer n ≥ ⌊s2 + d

p⌋+ 1.100

Fix a wavelet Ψ ∈ Fn, and consider for a function f ∈ Lp(Rd) the quantity

|f |µ,p,q,Ψ = ∥(εµj )j∈N∥ℓq(N), where εµj =

∥∥∥∥∥
Å
cλ
µ(λ)

ã
λ∈Λj

∥∥∥∥∥
ℓp(Λj)

. (1.14)

Then define

Bµ,pq,Ψ(R
d) = {f ∈ Lp(Rd) : |f |µ,p,q,Ψ < +∞}. (1.15)
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The space (Bµ,pq,Ψ(Rd), ∥ ∥Lp(Rd) + | |µ,p,q,Ψ) is complete.

Theorem 2. Let µ ∈ C(Rd) be an almost doubling capacity. Let 0 < s1 ≤ s2 and r = ⌊s2+ d
p⌋+1.

Suppose that property (P) holds for µ with the exponents (s1, s2) and that Bµ,pq (Rd) has been
constructed by using the µ-adapted n-th order Lp moduli of smoothness, for some integer n ≥ r.
Let Ψ ∈ Fr.105

For every ε ∈ (0, 1), there exists a constant Cε,Ψ > 1 such that for all f ∈ Lp(Rd),

∥f∥Lp(Rd) + |f |µ,p,q,Ψ ≤ Cε,Ψ(∥f∥Lp(Rd) + |f |
Bµ(+ε),p

q (Rd)
), (1.16)

∥f∥Lp(Rd) + |f |Bµ,p
q (Rd) ≤ Cε,Ψ(∥f∥Lp(Rd) + |f |µ(+ε),p,q,Ψ). (1.17)

In particular, if 0 < ε < min(1, s1), B
µ,p
q (Rd) ↪→ Bµ

(−ε),p
q,Ψ (Rd) and Bµ,pq,Ψ(Rd) ↪→ Bµ

(−ε),p
q (Rd).

Moreover, if µ is doubling and satisfies property (P) with ϕ = 0, then Bµ,pq (Rd) = Bµ,pq,Ψ(Rd) and
the norms ∥ ∥Lp + | |µ,p,q,Ψ and ∥ ∥Lp + | |Bµ,p

q (Rd) are equivalent.

Thus, when µ is doubling and satisfies (P) with ϕ = 0, the space Bµ,pq (Rd) coincides with

Bµ,pq,Ψ(Rd) and possesses two equivalent definitions based either on Lp moduli of smoothness or
on wavelet coefficients, and this definition is independent of the choice of n ≥ r and Ψ ∈ Fr.
Moreover, when µ satisfies property (P), combining (1.16) and (1.17) shows that f ∈ Bµ,p

q (Rd)
if and only if f ∈ Bµ

(−ε),p
q,Ψ (Rd) for every ε ∈ (0,min(1, s1)), hence one also gets a wavelet

characterization of Bµ,p
q (Rd). And since by construction the family of Banach spaces

{
Bε :=

Bµ
(−ε),p

q,Ψ (Rd)
}
0<ε<min(s1,1)

satisfies Bε ↪→ Bε′ for all 0 < ε ≤ ε′ < min(s1, 1), one obtains another

way to see that the space Bµ,p
q (Rd) can be endowed with a Fréchet space structure, of which a

countable basis of neighborhoods of the origin is given byß
Nm =

ß
f ∈ Bµ,p

q (Rd) : ∥f∥Lp(Rd) + |f |
µ(− 1

m
),p,q,Ψ

<
1

m

™™
m∈N,

m>max(1,s−1
1 )

. (1.18)

Remark 1.9. (1) The embeddings B
s2+

d
p ,p

q (Rd) ↪→ Bµ,pq (Rd) ↪→ B
s1+

d
p ,p

q (Rd) and Bµ(+ε),p
q (Rd) ↪→

Bµ,pq (Rd) hold under (P1).110

(2) It is direct from the proof of Theorem 2 that under the weaker assumption that (P) holds for
all (s′1, s

′
2) such that 0 < s′1 < s1 ≤ s2 < s′2, the statement remains true.

(3) Fundamental examples of doubling capacities satisfying property (P) with ϕ = 0, namely Gibbs
capacities, will be given in Remark 1.15.

1.3. Recalls about the class of multifractal environments constructed in [1]115

In this section, we resume some of the results proved in the companion paper [1], concerning the
construction of capacities µ ∈ H([0, 1]d) having a prescribed multifractal spectrum and satisfying
a multifractal formalism.

Definition 1.10. Let µ ∈ H([0, 1]d). For x ∈ supp(µ), the lower and upper pointwise Hölder
exponents of µ at x are respectively defined by

hµ(x) = lim inf
j→+∞

log2 µ(λj(x))

−j
and hµ(x) = lim sup

j→∞

log2 µ(λj(x))

−j
.

Whenever hµ(x) = hµ(x), the common limit is called hµ(x). Then, for α ∈ R,

Eµ(α) =
{
x ∈ supp(µ) : hµ(x) = α

}
Eµ(α) =

{
x ∈ supp(µ) : hµ(x) = α

}
,

and Eµ(α) = Eµ(α) ∩ Eµ(α).

6



The singularity (or multifractal) spectrum of µ is then the mapping

σµ : α ∈ R 7−→ dimEµ(α).

Definition 1.11. The Lq-spectrum of µ ∈ H([0, 1]d) with supp(µ) ̸= ∅ is defined by

τµ : q ∈ R 7→ lim inf
j→+∞

−1

j
log2

∑
λ∈Dj , λ⊂[0,1]d,

µ(λ)>0

µ(λ)q.

Recall the definition of the Legendre transform g∗ of a mapping g : R → R: for every α ∈ R,
g∗(α) = infq∈R qα− g(q). One always has (see [5, 6])

σµ(α) ≤ τ∗µ(α) := inf
q∈R

qα− τµ(q). (1.19)

Definition 1.12. A set function µ ∈ H([0, 1]d) with supp(µ) ̸= ∅ is said to obey the multifractal
formalism (MF) over an interval I ⊂ R when for all α ∈ I,

σµ(α) = τ∗µ(α). (1.20)

It is said to obey the strong multifractal formalism (SMF) over I if for all α ∈ I, in addition to
(1.20) one as dimEµ(α) = τ∗µ(α).120

When I = R, one simply says that the MF or the SMF holds for µ.

The following result is proved in [1] (Sd is defined in Conjecture 1).

Theorem 3 ([1], Corollary 5). There exists a family of environments Ed ⊂ C(Rd) such that :

1. Every µ ∈ Ed is Zd-invariant, fully supported on Rd, almost doubling and satisfies property
(P), and the SMF holds for µ|[0,1]d .125

2. For every σ ∈ Sd, there exists µ ∈ Ed such that σ = σµ.

By Remark 1.9 (2), when µ ∈ Ed, since property (P) holds with any (s1, s2) such that 0 < s1 <
τ ′µ(+∞) ≤ τ ′µ(−∞) < s2, B

µ,p
q (Rd) is well defined by (1.11) independently of the integer n ≥ sµ,

where

sµ =

õ
τ ′µ(−∞) +

d

p

û
+ 1, (1.21)

and the wavelet characterization of Bµ,p
q (Rd) holds with any Ψ ∈ Fsµ .

1.4. Typical singularity spectrum in Besov spaces in multifractal environment

Our result on the multifractal nature of the elements of Bµ,p
q (Rd) when µ ∈ Ed is the following.

The multifractal formalism’s validity is dealt with in the next section.130

Theorem 4. Let µ ∈ Ed, let p, q ∈ [1,+∞], and consider the mapping

ζµ,p(t) =


p− t

p
τµ

Å
p

p− t
t

ã
if t ∈ (−∞, p)

τ ′µ(+∞)t if t ∈ [p,+∞).
(1.22)

1. For all f ∈ Bµ,p
q (Rd),

σf (H) ≤
®
ζ∗µ,p(H) if H ≤ ζ ′µ,p(0

+)

d if H > ζ ′µ,p(0
+).

(1.23)
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2. For typical functions f ∈ Bµ,p
q (Rd), one has σf = ζ∗µ,p.

The possible shapes of σf when f is typical in Bµ,p
q (Rd) are investigated in detail in Section 4

(see Proposition 4.2): depending on the values of p and σ∗
µ(αmin), various phenomena may occur.

See for instance Figures 1 and 3 for a representation of typical singularity spectrum in Bµ,p
q (Rd),

according to whether σµ(αmin) = 0 or σµ(αmin) > 0. Next remark gathers key information, proved135

in Proposition 4.2.

Remark 1.13. 1. The map ζµ,p is always concave. Also, it is immediate that ζµ,+∞ = τµ, so
typical functions in Bµ,+∞

q (Rd) satisfy σf = τ∗µ.

2. The support of ζ∗µ,p is the compact subinterval [ζµ,p(+∞), ζ ′µ,p(−∞)] ⊂ (0,+∞). Moreover,
since ζµ,p(0) = τµ(0) = −d, the maximum of ζ∗µ,p is d, and it is reached at H if and only if140

H ∈ [ζ ′µ,p(0
+), ζµ,p(0

−)].

3. One has ζ ′µ,p(−∞) ≤ τ ′µ(−∞) + d
p (see the first item of Section 4.2).

Two examples of capacities are given in the next remarks: the first ones are the Lebesgue
measure and its powers, this case is included both in Jaffard’s results and as a particular case of
capacities belonging to Ed. The second ones are the Gibbs capacities: although they do not belong145

to Ed, they share the same multifractal properties as the capacities of Ed, and the conclusions of
Theorems 4 and 5 remain true with them.

Remark 1.14. The set of environments Ed includes all the positive powers of the Lebesgue measure
Ld (see [1]). Taking s > d/p and µ = (Ld)s/d−1/p, Theorem 4 coincides with the celebrated Jaffard’s
theorem [7], which can be stated as follows:150

1. For all f ∈ Bs,pq (Rd), σf (H) ≤
®
min

{
p
(
H − (s− d

p )
)
, d
}

if H ≥ s− d/p,

−∞ if H < s− d/p.

2. Typical f ∈ Bs,pq (Rd) satisfy σf (H) =

®
p
(
H − (s− d

p )
)

if H ∈ [s− d/p, s],

−∞ otherwise.

In this case, τµ(t) = (s− d/p)t− d so τ ′µ(−∞) = τ ′µ(+∞) = s− d/p, τ∗µ(H) = d if H = s− d/p
and −∞ otherwise. Hence, ζµ,p(t) = st − d for t < p and ζµ,p(t) = (s − d/p)t for t ≥ p, whose
Legendre transform is the typical spectrum in Bs,pq (Rd).155

Remark 1.15. Gibbs capacities are a fundamental class of multifractal doubling capacities obeying
property (P) with ϕ = 0, and for which Theorem 4, as well as Theorem 5 below, hold not only for
Bµ,p
q (Rd), but also for Bµ,pq (Rd). Such a capacity is of the form µ = νs, where s > 0 and ν is a

Gibbs measure defined as follows: let φ : Rd → R be a Zd-invariant real valued Hölder continuous
function. The sequence of Radon measures

νn(dx) =
exp (Snφ(x))∫

[0,1]d
exp (Snφ(t))Ld(dt)

Ld(dx), where Snφ(x) =

n−1∑
k=0

φ(2nx),

converges vaguely to a Zd-invariant Radon measure ν fully supported on Rd, called Gibbs measure
associated with φ.

Also, the so-called topologival pressure of φ, P (φ) = limn→+∞
1
n log

∫
[0,1]d

2n exp (Snφ(x))Ld(dx)
exists, and τν|[0,1]d (t) = tP (φ)− P (tφ). Moreover, τν|[0,1]d is analytic (see [8, 9]).

One can check that when p = +∞, or τ∗ν|[0,1]d
(τ ′ν|[0,1]d

(+∞)) = 0, or the potential φ reaches its160

minimum at 0, the proofs of Theorems 4 and 5 when µ ∈ Ed remain true (up to slight modifications)
for µ = νs. The general case requires additional efforts.
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σf (H)

H

0

d

τ′
µ(+∞) ζ′µ,1(0+)

σf (H)

H

0

d

τ′
µ(+∞) ζ′µ,1(−∞)

Figure 1: Left: Upper bound for the singularity spectrum of every f ∈ Bµ,1
q (Rd). Right: Singularity spectrum of

a typical f ∈ Bµ,1
q (Rd). The dashed graph represents the (initial) singularity spectrum of µ. When p = +∞ and f

is typical in Bµ,+∞
q (Rd), σf = σµ.

1.5. Multifractal formalism for functions in Bµ,p
q (Rd)

The formalism used in this paper is based on the one developed by Jaffard in [10]. Let us begin
with the definition of wavelet leaders.165

Definition 1.16 (Wavelet leaders). Given Ψ ∈
⋃
r∈N Fr and f ∈ Lploc(Rd) for p ∈ [1,+∞],

denoting the wavelet coefficients of f associates with Ψ by (cλ)λ∈Λ, the wavelet leader of f associated
with λ ∈ D is defined as:

Lfλ = sup{|cλ′ | : λ′ = (i, j, k) ∈ Λ, λ′j,k ⊂ 3λ}. (1.24)

Pointwise Hölder exponents of Hölder continuous functions (recall (1.1)) are related to the
wavelet leaders as follows (see [10, Corollary 1]).

Proposition 1.17. Let r ∈ N∗ and Ψ ∈ Fr. If f ∈ C ε(Rd) for some ε > 0, then for every

x0 ∈ Rd, hf (x0) < r if and only lim infj→∞
logLf

λj(x)

log(2−j) < r, and in this case

hf (x0) = lim inf
j→∞

logLfλj(x)

log(2−j)
. (1.25)

In order to estimate from above the singularity spectrum σf of f ∈ Bµ,p
q (Rd), it is then natural

to consider, exactly as it was done for the elements of H([0, 1]d), the Lq-spectrum of f relative to
Ψ defined as follows: For any N ∈ N∗, set

ζN,Ψf = lim inf
j→+∞

ζN,Ψf,j , where ζN,Ψf,j : t ∈ R 7→ −1

j
log2

( ∑
λ∈Dj , λ⊂N [0,1]d, Lf

λ>0

(Lfλ)
t
)
. (1.26)

Recall that (N [0, 1]d)N∈N∗ is the increasing sequence of boxes [−(N − 1)/2, (N + 1)/2]d, whose
union covers Rd.

Definition 1.18. The Lq-spectrum of f relative to Ψ is the concave function

ζΨf = inf{ζN,Ψf : N ∈ N∗} = lim
N→+∞

ζN,Ψf . (1.27)

The concavity of ζΨf follows from the fact that (ζN,Ψf )N≥1 is a non-increasing sequence of170

functions,
It is remarkable that ζΨf |R+

does not depend on Ψ [10, Th. 3]. This would be the case over R
if Ψ belonged to the Schwarz class [10, Th. 4]. However, the wavelet characterization of Bµ,pq (Rd)
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makes it necessary to use compactly supported wavelets, which never belong to C∞(Rd) [11]. For
simplicity, ζΨf |R+

is simply denoted by ζf |R+
.175

Let us now define the multifractal formalism for functions. First, recall that by [10], when
H < r, the Legendre transform of ζΨf at H (recall formula (1.19) of the Legendre transform)
provides an upper bound for dimEf (H), i.e. one has

σf (H) ≤ (ζΨf )
∗(H). (1.28)

The formalism we use will combines Jaffard’s formalism (based on wavelet leaders) with a variant
of it (used to control the decreasing part of σf ). This variant is necessary since when µ ∈ Ed,
q < +∞ and the elements of Ψ are smooth, it is generic in Bµ,p

q (Rd) that ζΨf |R∗
−

equals −∞

(see Theorem 5(3)). Hence, for H ≥ (ζf )
′(0+), (ζΨf )

∗(H) only provides the trivial upper bound
σf (H) ≤ d.180

Definition 1.19. Let r ∈ N∗ and f ∈
⋃
s>0 C s(Rd). Suppose that σf has a compact domain

included in (0, r). Let I ⊂ dom(σf ) be a compact interval.

1. The wavelet leaders multifractal formalism (WMF) holds for f on I when there exists r̃ ≥ r
such that for all H ∈ I and all Ψ ∈ Fr̃, , σf (H) = (ζΨf )

∗(H).

2. The weak wavelet leaders multifractal formalism (WWMF) holds for f on I relatively to185

Ψ ∈ Fr when the following property holds: there exists an increasing sequence (jk)k∈N such

that for all N ∈ N, limk→∞ ζN,Ψf,jk
= ζ

(N),Ψ
f,w exists, and setting ζΨf,w = limN→+∞ ζ

(N),Ψ
f,w , one

has σf (H) = (ζΨf,w)
∗(H) for all H ∈ I.

Remark 1.20. Contrarily to (1.28), in general, even if there exists such a subsequence (jk)k∈N,
one cannot get the a priori inequality σf ≤ (ζΨf,w)

∗. This justifies the terminology “weak”. Never-190

theless, the existence of ζΨf,w emphasizes that the sequences (ζN,Ψf,j (t))j∈N converge along the same

subsequence for all N and t. This property is typical in Bµ,p
q (Rd), and holds simultaneously for

countably many Ψ’s.

Theorem 4 can now be completed by the following result on the validity of the multifractal
formalism. Recall (1.22) and (1.21) for the definitions of ζµ,p and sµ respectively, as well as195

Remarks 1.9 (2) and 1.13.

Theorem 5 (Validity of the multifractal formalism). Let µ ∈ Ed.

1. For all f ∈ Bµ,p
q (Rd), one has ζf |R+

≥ ζµ,p|R+
.

2. Typical functions f ∈ Bµ,p
q (Rd) satisfy the WMF on [ζ ′µ,p(+∞), ζ ′µ,p(0

+)] (i.e. in the increas-
ing part of σf ), and ζf |R+

= ζµ,p|R+
.200

3. (i) Let Ψ ∈ Fsµ . Typical functions f ∈ Bµ,p
q (Rd) satisfy the WWMF on dom(σf ) =

[ζ ′µ,p(+∞), ζ ′µ,p(−∞)] relatively to Ψ, with ζΨf,w = σ∗
f = ζµ,p. Moreover, if q < +∞, the

property ζΨf |R∗
−
= −∞ is typical as well.

(ii) Given a countable subset F of Fsµ , typical functions f ∈ Bµ,p
q (Rd) satisfy the WWMF

on the interval dom(σf ) relatively to any Ψ ∈ F , with ζΨf,w = σ∗
f = ζµ,p, and ζ

Ψ
f |R∗

−
=205

−∞ if q < +∞.

Let us mention that, although typical functions in Bµ,p
q (Rd) are multifractal and satisfy a

multifractal formalism, they do not possess any self-similar structure, consolidating the idea that
being multifractal is far from being exceptional.
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1.6. Solutions to the Frisch-Parisi conjecture210

It is worth recalling the results obtained by Jaffard in [7]. Consider an increasing continuous
and concave function η : R+ → R+, with positive slope η′(+∞) at ∞, such that η(0) ∈ [0, d], and
η∗ takes values in [−d, 0] over its domain. Setting ζ = η−d, Jaffard seeks for a Baire space in which
the increasing part of the typical singularity spectrum is given by ζ∗. He works with the so-called

homogeneous Besov spaces Ḃs,pq (Rd), introduced the Baire space V =
⋂
ϵ>0

⋂
t>0 Ḃ

(η(t)−ϵ)/t,t
t,loc (Rd)

[7] and proved that for typical functions f ∈ V , σf = ζ̃∗ , where

ζ̃(t) =

®
d(t/tc − 1) if t < tc

ζ(t) if t ≥ tc
,

tc being the unique solution of ζ(tc) = 0. In particular, σf is necessarily increasing, with domain
[ζ ′(+∞), d/tc], and with an affine part over the interval [ζ ′(tc+), d/tc]. Also, σf coincides with ζ∗

over [ζ ′(+∞), ζ ′(tc+)].
In addition, in the multifractal formalism used in [7], the scaling function ζf (t) is defined as

sup{s ≥ 0 : f ∈ Ḃ
s/t,t
∞,loc(Rd)} − d for t > 0, and with this definition typical functions in V satisfy215

ζf = ζ. Thus the associated multifractal formalism holds on [ζ ′(+∞), ζ ′(tc+)] only. However, it

can be checked that the WMF does hold for f with ζf = ζ̃ on [ζ ′(+∞), d/tc].
Hence, although this approach was a substantial progress, it allowed to reach only increasing

singularity spectra, necessarily composed by an affine part followed by a concave part. Up to now,
no better solution to Conjecture 1 has been proposed.220

Combining the previously stated results (Theorems 3, 4 and 5), we can now state our main
theorems. The first one is a direct corollary of Theorems 4 and 5.

Theorem 6. The Frisch-Parisi conjecture 1 is true. Given σ ∈ Ss and µ ∈ Ed such that σµ = σ,
the associated inverse problem is solved by Bµ,+∞

q (Rd), for any q ∈ [1,+∞].

Our second statement provides solutions of the form Bµ,p
q (Rd) with 1 ≤ p < +∞. Its proof is225

given in Section 8.

Theorem 7 (Solutions of the form Bµ,p
q (Rd) with p < +∞). Let σ ∈ Sd and denote its

domain by [Hmin, Hmax].

1. If σ is the typical singularity spectrum in Bµ,p
q (Rd) for some 1 ≤ p < +∞, q ∈ [1,+∞] and

µ ∈ Ed, then σ(Hmin) = 0 and σ′(H+
min) ≤ p.230

2. Suppose σ(Hmin) = 0 and σ′(H+
min) < +∞. For all p ∈

[
max(1, σ′(H+

min)),+∞
)
, there exists

µ ∈ Ed such that for all q ∈ [1,+∞], σ is the singularity spectrum of the typical elements of
Bµ,p
q (Rd); also, typical functions in Bµ,p

q (Rd) satisfy the WMF in the increasing part of σ
and the WWMF over [Hmin, Hmax] relatively to any Ψ in a countable family of elements of
Fsµ .235

Let us make a final remark. Like for Besov spaces, one can let p or q take values in (0,+∞]
in the definition of Besov spaces in multifractal environment, and all our results remain valid, the
only change to make being to take p ∈

[
σ′(H+

min),+∞
)
in Theorem 7(2). This provides a larger

set of solutions to the inverse problem 1.

1.7. Organization of the rest of the paper240

In Section 2, the wavelet characterization of the space Bµ,p
q (Rd) is established when µ is an

almost doubling capacity satisfying property (P) (Theorem 2).
In Section 3 are gathered the main properties proved in [1] to be satisfied by the capacities

µ ∈ Ed.
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The various shapes of ζµ,p and ζ∗µ,p are investigated in Section 4, where ζ∗µ,p is explicitly ex-245

pressed in terms of τ∗µ ; this expression turns out to be very useful in the proof of the WMF’s
validity for typical functions.

Next, in section 5, the upper bound for the singularity spectrum of all functions in Bµ,p
q (Rd) is

obtained (part (1) of Theorem 4), as a consequence of part (1) of Theorem 5 which is also proved
there. Part (2) of Theorem 4 is shown in Section 6. It consists first in building a specific function250

whose singularity spectrum is typical, and then in building a dense Gδ-set included in Bµ,p
q (Rd)

in which all functions share the same multifractal spectrum. Parts (2) and (3) of Theorem 5 are
established in Section 7. Finally, the proof of Theorem 7 is given in Section 8.

2. Wavelet characterization of Bµ,p
q (Rd)

After some definitions and two basic lemmas in Section 2.1, Theorem 2 is proved when p ∈255

[1,+∞) in Section 2.2. The much simpler case p = +∞ is left to the reader who can easily adapt
the lines used to treat the case p < +∞.

2.1. Preliminary definitions and observations

We start by extending the definition of the moduli of smoothness (1.4) and (1.5) to all Borel
sets Ω ⊂ Rd.260

Definition 2.1. Let Ω ⊂ Rd. For h ∈ Rd, let

Ωh,n = {x ∈ Ω : x+ kh ∈ Ω, k = 1, . . . , n}. (2.1)

Then, for f : Rd → R, µ ∈ H(Rd), t > 0 and n ≥ 1 set

ωµn(f, t,Ω)p = sup
t/2≤|h|≤t

∥∆µ,n
h f∥Lp(Ωh,n) (2.2)

and ωn(f, t,Ω)p = sup
0≤|h|≤t

∥∆n
hf∥Lp(Ωh,n). (2.3)

Let µ ∈ C(Rd) be an almost doubling capacity such that property (P) holds with exponents
0 < s1 ≤ s2. Let n ≥ r = ⌊s2 + d

p⌋+ 1 and Ψ = {ϕ, {ψ(i)}i=1,...,2d−1} ∈ Fr (see Definition 1.7).

Also, recall that for λ = (i, j, k) ∈ Λj , ψλ(x) = ψ(i)(2jx− k). It follows from the construction
of Ψ (see [3, Section 3.8]) that there exists an integer NΨ ∈ N∗ such that supp(ϕ) and supp(ψ(i))
are included in NΨ[0, 1]

d. Our proofs will use some estimates established in [2]. These estimates265

require to associate with each λ = (i, j, k) ∈ Λj a larger cube λ̃ described in the following definition.

Definition 2.2. For each λ = (i, j, k) ∈ Λj, set

λ̃ = λj,k + 2−j(supp(ϕ)− supp(ϕ)).

Note that λj,k ⊂ supp(ψλ) ⊂ λ̃ ⊂ 3NΨλj,k, the second embedding coming from the construction
of compactly supported wavelets (see [3, Section 3.8]).

For every j ∈ N, the cubes (λ̃)λ∈Λj
do not overlap too much, in the sense that

KΨ := sup
j∈N

sup
λ∈Λj

#{λ′ ∈ Λj : λ̃ ∩ λ̃′ ̸= ∅} < +∞. (2.4)

Lemma 2.3. Let p ∈ [1,+∞) and n ∈ N∗. There exists a constant Cd,n,p (depending on p, n, and
d only) such that for all f ∈ Lploc(Rd), t > 0 and λ ∈ Λ, the following inequality holds:

ωn(f, t, λ̃)
p
p ≤ Cd,n,p t

−d
∫
t≤|y|≤4nt

∫
λ̃+B(0,2nt)

|∆n
yf(x)|p dxdy.
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Proof. The approach follows the lines of the proof of [2, inequality (3.3.17)], where a similar
inequality is proved.270

Fix f , t and λ as in the statement. For any h, y ∈ Rd, recall the following equality (see (3.3.19)
in [2]):

∆n
hf(x) =

n∑
k=1

(−1)k
Ç
n

k

å[
∆n
kyf(x+ kh)−∆n

h+kyf(x)
]
.

Integrating |∆n
hf |p over λ̃h,n (recall definition (2.1)), one sees that for some constant Cn,p > 0,

when |h| ≤ t,

∥∆n
hf∥

p

Lp(λ̃h,n)
≤ Cn,p

n∑
k=1

∥∆n
kyf(·+ kh)∥p

Lp(λ̃h,n)
+ ∥∆n

h+kyf∥
p

Lp(λ̃h,n)

≤ Cn,p

n∑
k=1

∥∆n
kyf∥

p

Lp(λ̃+B(0,2nt))
+ ∥∆n

h+kyf∥
p

Lp(λ̃+B(0,2nt))
.

Then, defining Cd = Ld(B(0, 3) \B(0, 2)), an integration with respect to y over B(0, 3t) \B(0, 2t)
yields

Cdt
d∥∆n

hf∥
p

Lp(λ̃h,n)
≤ Cn,p

n∑
k=1

∫
2t≤|y|≤3t

∫
λ̃+B(0,2nt)

|∆n
kyf(x)|p + |∆n

h+kyf(x)|p dxdy.

Further, operating the change of variable y′ = ky in each term of the sum yields

td∥∆n
hf∥

p

Lp(λ̃h,n)
≤ C−1

d Cn,p

n∑
k=1

∫
2kt≤|y|≤3kt

∫
λ̃+B(0,2nt)

|∆n
yf(x)|p + |∆n

h+yf(x)|p dxdy

≤ 2nC−1
d Cn,p

∫
t≤|y|≤4nt

∫
λ̃+B(0,2nt)

|∆n
yf(x)|p dxdy.

where one used that t ≤ |h+ y| ≤ 4nt when |h| ≤ t and |y| ≥ 2t. The previous upper bound being
independent of h ∈ B(0, t), one concludes that

ωn(f, t, λ̃)
p
p = sup

0≤|h|≤t
∥∆n

hf∥
p

Lp(λ̃h,n)
≤

2nC−1
d Cn,p
td

∫
t≤|y|≤4nt

∫
λ̃+B(0,2nt)

|∆n
yf(x)|p dxdy,

as desired.

Lemma 2.4. Let ε > 0 and µ ∈ C(Rd) that satisfies Property (P) with exponents s1 and s2.
There exists a constant C = C(ε, n, µ) ≥ 1 such that for every j ∈ N and λ ∈ Λj, for every

x ∈ λ̃+B(0, 2n2−j) and y ∈ Rd such that 2−j ≤ |h| ≤ 4n2−j, for every f : λ̃→ R, one has

|∆n
hf(x)|
µ(λ)

≤ C
|∆n

hf(x)|
µ(+ε)(B[x, x+ nh])

.

Proof. Observe first that under the assumptions of the Lemma, the inequality

µ(B[x, x+ ny])

µ(λ)
≤ C(n|y|)−ε,

follows easily from the definition of the almost doubling property (1.7). Then, Lemma 2.4 is
deduced from last inequality and the definition of µ(+ε).
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2.2. Proof of Theorem 2 when 1 ≤ p < +∞275

Let us now explain our approach to get Theorem 2 when p ∈ [1,+∞). Recall that Bµ,pq (Rd)
is defined via Lp moduli of smoothness of order n ≥ r = ⌊s2 + d/p + 1⌋, and that Ψ belongs to
Fr. The purpose of this theorem is to establish relations between this definition (1.10) and the
wavelet-based one (1.14).

In Section 2.2.1, it is shown that, for any ε ∈ (0, 1), when Bµ
(+ε),p

q (Rd) is defined via the Lp280

modulus of smoothness of order n, then (1.16) holds for any Ψ ∈ Fn. It is only a partial proof of
the statement, since one wants to obtain (1.16) for any Ψ ∈ Fr.

Then, in Section 2.2.2, (1.17) is completely proved to hold for any ε ∈ (0, 1) and any Ψ ∈ Fr
when Bµ,pq (Rd) is defined via the Lp modulus of smoothness of order exactly equal to r. Since
Fn ⊂ Fr, the statement also holds for Ψ ∈ Fn.285

Finally, from the two preceding observations, we conclude that (1.16) holds for any ε ∈ (0, 1)
and any Ψ ∈ Fr, by applying:

• first (1.16) with the environment µ, the n-th order difference operator, ε/3 and any wavelet‹Ψ ∈ Fn,

• then (1.17) with the environment µ(+ε/3), the r-th order difference operator, ε/3 and the290

same ‹Ψ ∈ Fn,

• finally (1.16) with the environment µ(+2ε/3), the r-th order difference operator, ε/3 and
Ψ ∈ Fr.

2.2.1. Proof of inequality (1.16) in Theorem 2

Assume that Ψ ∈ Fn ⊂ Fr. Fix ε > 0, f ∈ Lp(Rd) and j ∈ N.295

For every λ = (i, j, k) ∈ Λj , since ψλ is orthogonal to any polynomial P of degree ≤ n, the
wavelet coefficient cλ can be written

cλ = 2jd
∫
Rd

(f(x)− P (x))ψλ(x)dx.

Due to the local approximation of f by polynomials (equation (3.3.13) in [2]), there exists a
polynomial Pλ of degree ≤ n such that

∥f − Pλ∥Lp(λ̃) ≤ Cωn(f, 2
−j , λ̃)p,

where C depends on n and p only. Recall that supp(ψλ) ⊂ λ̃.
The last inequalities, together with Hölder’s inequality, yield

|cλ|
µ(λ)

≤ 2jd
∥ψλ∥Lp′ (Rd)∥f − Pλ∥Lp(λ̃)

µ(λ)
≤ C2jd

2−jd/p
′∥ψ(i)∥Lp′ (Rd)ωn(f, 2

−j , λ̃)p

µ(λ)

≤ ‹C2jd/pωn(f, 2−j , λ̃)p
µ(λ)

, (2.5)

where ‹C = C sup
¶
∥ψ(i)∥Lp′ (Rd) : 1 ≤ i ≤ 2d − 1

©
.

Then, Lemma 2.3 gives( |cλ|
µ(λ)

)p
≤ Cd,n,p‹Cp22dj ∫

2−j≤|y|≤4n2−j

∫
λ̃+B(0,2n2−j)

|∆n
yf(x)|p

µ(λ)p
dxdy,

14



and by Lemma 2.4, there exists C ′ depending on (ε, n, p,Ψ) such that( |cλ|
µ(λ)

)p
≤ Cd,n,p(C

′)p22dj
∫
2−j≤|y|≤4n2−j

∫
λ̃+B(0,2n2−j)

|∆µ(+ε),n
y f(x)|p dxdy

≤ Cd,n,p(C
′)p

jn∑
k=0

22dj
∫
2−j+k≤|y|≤2−j+k+1

∫
λ̃+B(0,2n2−j)

|∆µ(+ε),n
y f(x)|p dxdy,

where jn = ⌊log2(4n)⌋. By (2.4), there exists a constant KΨ,n > 0 depending on (Ψ, n) only such

that any λ ∈ Λj is covered by at most KΨ,n sets of the form λ̃′ + B(0, 2n2−j) with λ′ ∈ Λj . It
follows that

∑
λ∈Λj

( |cλ|
µ(λ)

)p
≤ KΨ,nCd,n,p(C

′)p
jn∑
j′=0

22dj
∫
2−j+j′≤|y|≤2−j+j′+1

∫
Rd

|∆µ(+ε),n
y f(x)|p dxdy.

Recalling the definition (1.4) of ωµ
(+ε)

n (f, t,Rd), for every j′ the double integral above is bounded

by 2d(−j+j
′+1)ωµ

(+ε)

n (f, 2−j+j
′+1,Rd)pp. Since 2d(j

′+1) ≤ 2d(jn+1) ≤ (8n)d, one has

∑
λ∈Λj

( |cλ|
µ(λ)

)p
≤ Cp1

jn∑
j′=0

2djωµ
(+ε)

n (f, 2−j+j
′+1,Rd)pp,

where C1 = ((8n)dKΨ,nCd,n,p)
1/pC ′ does not depend on f or j.

Suppose now that q ∈ [1,+∞) (the case q = +∞ is obvious). The previous estimates together
with the subadditivity of t ≥ 0 7→ t1/p and the convexity of t ≥ 0 7→ tq yield

∥∥∥( cλ
µ(λ)

)
λ∈Λj

∥∥∥q
ℓp(Λj)

≤ Cq1(jn + 1)q−1

jn∑
j′=0

(
2dj/pωµ

(+ε)

n (f, 2−j+j
′+1,Rd)p

)q
.

Summing the last inequality over j ∈ N gives

∑
j≥0

∥∥∥( cλ
µ(λ)

)
λ∈Λj

∥∥∥q
ℓp(Λj)

≤ Cq1(jn + 1)q−1
+∞∑

j=−jn−1

Kj

(
ωµ

(+ε)

n (f, 2−j ,Rd)p
)q
,

where Kj =

®∑j+jn+1
j′=j+1 2qdj

′/p when j ≥ −1∑j+jn+1
j′=0 2qdj

′/p when − jn − 1 ≤ j ≤ −2
. It is easily seen that there is a constant

C2 = C2(n, q, d) such that Cq1(jn + 1)q−1Kj ≤ C22
qdj/p, so

∑
j≥0

∥∥∥( cλ
µ(λ)

)
λ∈Λj

∥∥∥q
ℓp(Λj)

≤ C2

+∞∑
j=−jn−1

(
2dj/pωµ

(+ε)

n (f, 2−j ,Rd)p
)q
.

Observe that there is C3 ≥ 1 depending on n such that for−jn−1 ≤ j ≤ 0, 2dj/pωµ
(+ε)

n (f, 2−j ,Rd)p ≤
C3∥f∥Lp(Rd). This follows from the fact that for such a j:300

• 2dj/p ≤ 1;

• by periodicity of µ, µ(B[x, x+ n2−j ]) ≥ µ([0, 1]d) = 1, so
|∆n

y f(x)|
µ(λ) ≤ |∆n

yf(x)|, and thus for

some constant C ′′′

ωµ
(+ε)

n (f, 2−j ,Rd)p ≤ 2jεωn(f, 2
−j ,Rd)p ≤ (ωn(f, 8n,Rd)p ≤ C3∥f∥Lp(Rd).
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Consequently, for some constant C independent of f ,∑
j≥0

∥∥∥( cλ
µ(λ)

)
λ∈Λj

∥∥∥q
ℓp(Λj)

≤ C
(
∥f∥q

Lp(Rd)
+
∑
j≥0

(
2dj/pωµ

(+ε)

n (f, 2−j ,Rd)p
)q)

,

which implies that ∥f∥Lp(Rd)+ |f |µ,p,q,Ψ ≤ C(∥f∥Lp(Rd)+ |f |
Bµ(+ε),p

q (Rd)
). Hence, (1.16) holds when

Ψ ∈ Fn.

2.2.2. Proof of inequality (1.17) in Theorem 2

Fix ε > 0 and f ∈ Lp(Rd).305

Define the partial sums fj =
∑
λ∈Λj

cλψλ, for all j ≥ 0.
The following lemma is needed.

Lemma 2.5. Let s ∈
Ä
s2 +

d
p , s2 +

d
p + 1

ä
. There exist a constant C > 0 and a sequence

(ε̃m)m∈N ∈ ℓq(N) bounded by 1, independent of f , such that for all j, J ≥ 0,

ωµn(fj , 2
−J ,Rd)p ≤ C2−jd/pmin

(
1, 2(j−J)(s−s2)ε̃J−j

)Ñ∑
λ∈Λj

Å |cλ|
µ(+ε)(λ)

ãpé1/p

, (2.6)

with the convention that ε̃m = 1 when m < 0.

Proof. Inspired by the proof of [2, Theorem 3.4.3], two cases are separated:

Case 1: J < j. In order to prove (2.6), let us begin by writing that

ωµn(fj , 2
−J ,Rd)pp = sup

2−J−1≤|h|≤2−J

∑
λ′∈DJ

∫
λ′

∣∣∣∑λ∈Λj
cλ∆

n
hψλ(x)

∣∣∣p
µ(B(x, x+ nh))p

dx. (2.7)

Consider λ ∈ Λj , x ∈ Rd, and h ∈ Rd such that 2−J−1 ≤ |h| ≤ 2−J . Then:310

(i) If x ̸∈
⋃n
k=0 supp(ψλ)− kh, then ∆n

hψλ(x) = 0;

(ii) Let λ′ = λJ(x) the unique cube of generation J that contains x.

There exists an integer N = N(n,Ψ) such that if x ∈
⋃n
k=0 supp(ψλ)− kh, then necessarily

λ ⊂ Nλ′.

(iii) By the almost doubling property of µ, there exists a constant C = C(µ, n,Ψ, ε) such that for
every x ∈

⋃n
k=0 supp(ψλ)− kh,

µ(+ε)(λ) = 2−jεµ(λ) ≤ 2−jεµ(Nλ′) ≤ Cµ(B(x, x+ nh)). (2.8)

From the equality ∆n
hψλ =

∑n
k=0(−1)k

(
n
k

)
ψλ(· + (n − k)h), the three items (i)-(iii) and (2.7),

one obtains that

ωµn(fj , 2
−J ,Rd)pp ≤ Cp sup

2−J−1≤|h|≤2−J

∑
λ′∈DJ

2jεp

µ(Nλ′)p

∫
λ′

∣∣∣ ∑
λ∈Λj , λ⊂Nλ′

cλ∆
n
hψλ(x)

∣∣∣p dx
≤ Cp

∑
λ′∈DJ

2jεp

µ(Nλ′)p
Tj,J,λ′,λ,ψ,

where

Tj,J,λ′,λ,ψ = sup
2−J−1≤|h|≤2−J

∫
Rd

∣∣∣ n∑
k=0

(−1)k
Ç
n

k

å ∑
λ∈Λj , λ⊂Nλ′

cλ ψλ(x+ (n− k)h)
∣∣∣p dx.
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The convexity inequality (
∑n
k=0 |zk|)p ≤ (n+ 1)p−1

∑n
k=0 |zk|p and

(
n
k

)
≤ 2n give

Tj,J,λ′,λ,ψ ≤ 2np(n+ 1)p−1 sup
2−J−1≤|h|≤2−J

n∑
k=0

∫
Rd

∣∣∣ ∑
λ∈Λj , λ⊂Nλ′

cλ ψλ(x+ (n− k)h)
∣∣∣p dx.

Observe that the property (ii) above allows to bound each integral in the above sum by the same

term
∫
Rd

∣∣∣∑λ∈Λj , λ⊂Nλ′ cλ ψλ(x)
∣∣∣p dx. Moreover, according to [3, Ch. 6, Prop. 7], there exists

C ′ > 0 depending on Ψ only such that∫
Rd

∣∣∣ ∑
λ∈Λj , λ⊂Nλ′

cλ ψλ(x)
∣∣∣p dx ≤ C ′p2−jd

∑
λ∈Λj , λ⊂Nλ′

|cλ|p.

Consequently, using the first inequality of (2.8),

ωµn(fj , 2
−J ,Rd)pp ≤ (CC)′p(n+ 1)p2np

∑
λ′∈DJ

2−jd
∑

λ∈Λj , λ⊂Nλ′

( |cλ|
µ(+ε)(λ)

)p
.

Finally, the number of dyadic cubes λ′ ∈ DJ such that Nλ′ intersects a given λ ∈ Λj is bounded
uniformly with respect of j and J , so

ωµn(fj , 2
−J ,Rd)p ≤ C2−jd/p

Ñ∑
λ∈Λj

Å |cλ|
µ(+ε)(λ)

ãpé1/p

for some constant C that depends on n, p and other constants. This yields (2.6).315

Case 2: J ≥ j. Let us start with a few observations. First, by assumption, ψ(i) ∈ Bs,pq (Rd), hence

ωn(ψ
(i), 2j−J ,Rd)p ≤ 2(j−J)sε̃

(i)
J−j ,

where (ε̃
(i)
m )m≥1 ∈ ℓq(N∗) and ∥ε̃(i)∥ℓq(N∗) ≤ ∥ψ(i)∥Bs,p

q
. Consequently, for all λ ∈ Λj

ωn(ψλ, 2
−J ,R)p ≤ 2(j−J)s2−jd/pε̃J−j , (2.9)

where ε̃J−j = supi ε̃
(i)
J−j .

Next, observe the following facts:

(i) There exists an integer N independent of j and J such that for all x ∈ Rd and h ∈ Rd such
that 2−J−1 ≤ |h| ≤ 2−J , B[x, x + nh] ⊂ Nλj(x). Also, ∆n

hψλ(x) ̸= 0 only if λ ⊂ Nλj(x)
(recall that λ = (i, j, k) ⊂ E means λj,k ⊂ E).320

(ii) There exist two dyadic cubes λ′ ∈ DJ+3 and λ′′ ∈ Dj such that λ′ ⊂ B(x, x + nh) and
λ′ ⊂ λ′′ ⊂ Nλj(x). By construction, for all Λj ∋ λ ⊂ Nλj(x), one has

µ(B[x, x+ nh])−1 ≤ µ(λ′)−1 =
µ(λ′′)

µ(λ′)

µ(λ)

µ(λ′′)
µ(λ)−1.

Hence, using property (P2) to get µ(λ)
µ(λ′′) = O(2N

dϕ(j)) and µ(λ′′)
µ(λ′) = O(2ϕ(j)2(J−j)s2), as well

as the fact that 2ϕ(j)(N
d+1) ≤ |λ|−ε since ϕ ∈ Φ, there exists a constant C depending on

(µ, n, ε) only such that

µ(B[x, x+ nh])−1 ≤ C2(J−j)s2(µ(+ε)(λ)−1.
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The two previous observations yield

ωµn(fj , 2
−J ,Rd)pp = sup

2−J−1≤|h|≤2−J

∑
λ′∈DJ

∫
λ′

∣∣∣∑λ∈Λj
cλ∆

n
hψλ(x)

∣∣∣p
µ(B(x, x+ nh))p

dx

≤ Cp2(J−j)s2p sup
2−J−1≤|h|≤2−J

∫
Rd

( ∑
λ∈Λj ,λ⊂Nλj(x)

|cλ|
µ(+ε)(λ)

|∆n
hψλ(x)|

)p
dx.

Since #{λ ∈ Λj : λ ⊂ Nλj(x)} ≤ (2Nd)d, for each x ∈ Rd one has( ∑
λ∈Λj ,λ⊂Nλj(x)

|cλ|
µ(+ε)(λ)

|∆n
hψλ(x)|

)p
≤ (2Nd)d(p−1)

∑
λ∈Λj ,λ⊂Nλj(x)

( |cλ|
µ(+ε)(λ)

)p
|∆n

hψλ(x)|p.

Also, each λ ∈ Dj intersects at most (2N)d cubes Nλ′ with λ′ ∈ Dj , so∫
Rd

∑
λ∈Λj ,λ⊂Nλj(x)

( |cλ|
µ(+ε)(λ)

)p
|∆n

hψλ(x)|p dx ≤ (2N)dp
∑
λ∈Λj

( |cλ|
µ(+ε)(λ)

)p ∫
Rd

|∆n
hψλ(x)|p dx.

Finally, taking the supremum over h ∈ [2−J−1, 2−J ] in the last inequalities gives

ωµn(fj , 2
−J ,Rd)pp ≤ Cp(2N)dp2(J−j)s2p

∑
λ∈Λj

( |cλ|
µ(+ε)(λ)

)p
ωn(ψλ, 2

−J ,Rd)pp,

hence the conclusion by (2.9).

By changing the constant C in (2.9) into C∥(ε̃j)j≥0∥ℓ∞ , one gets ε̃j ≤ 1.

We are now in position to prove (1.17). Fix ε ∈ (0, 1). Setting f̃ = f −
∑∞
j=0 fj , the triangle

inequality yields

ωµn(f, 2
−J ,Rd)p ≤ ωµn(f̃ , 2

−J ,Rd)p +
∞∑
j=0

ωµn(fj , 2
−J ,Rd)p, (2.10)

and our goal is to control the ℓq norms of the sequences (uJ := 2Jd/pωµn(f̃ , 2
−J ,Rd)p)J∈N and

(vJ := 2Jd/p
∑∞
j=0 ω

µ
n(fj , 2

−J ,Rd)p)J∈N.

• The terms (uJ)J≥1 correspond to low frequencies, and can be controlled as follows. Using
property (P), one has µ(B(x, 2−J)) ≥ 2−J(s2+ε) for every x ∈ Rd, and so

uJ ≤ 2J(s2+ε+d/p)ωn(f̃ , 2
−J ,Rd)p. (2.11)

Observe that, since f̃ is obtained by removing from f the high frequency terms, f̃ ∈ Bs
′,p
q (Rd) for all325

s′ ∈ (d/p, r) and q ∈ [1,+∞], as can be checked using (1.13). In addition, |f̃ |
(Ld)

s′+ε+d/p
d

− 1
p ,p,q,Ψ

=

|f̃ |
(Ld)

s1+ε+d/p
d

− 1
p ,p,q,Ψ

= 0 since the wavelet coefficients cλ(f̃) of f̃ vanish for all λ ∈ Λj , j ≥ 1.

Recalling the decomposition (1.12), one notes that the wavelet coefficients (β(k))k∈Zd in the

wavelet expansions of f and f̃ are identical. Hence, using the equivalence of norms recalled after
(1.13), there is a constant ‹C depending on (d, ε, µ, p, q,Ψ) (that may change from line to line) such

18



that

∥(uJ)J∈N∥ℓq(N) ≤ ∥f̃∥
B

s2+ε+d/p,p
q (Rd)

≤ ‹C(∥f̃∥Lp(Rd) + |f̃ |
(Ld)

s2+ε+d/p
d

− 1
p ,p,q,Ψ

)

= ‹C(∥f̃∥Lp(Rd) + |f̃ |
(Ld)

s1+ε+d/p
d

− 1
p ,p,q,Ψ

)

≤ ‹C(∥β(k)∥ℓp(Zd) + |f |
(Ld)

s1+ε+d/p
d

− 1
p ,p,q,Ψ

)

≤ ‹C(∥f∥Lp(Rd) + |f |
(Ld)

s1+ε+d/p
d

− 1
p ,p,q,Ψ

)

≤ ‹C(∥f∥Lp(Rd) + |f |µ(+ε),p,q,Ψ),

where the last inequality is a consequence of property (P1) (which implies that µ(λ) ≤ C2−js1 =

CLd(λ)
s1+d/p

d −1/p for all j ∈ N and λ ∈ Dj).

• Next the ℓq norm of (vJ)J≥1 is controlled. Set Aj =

∥∥∥∥Ä |cλ|
µ(+ε)(λ)

ä
λ∈Λj

∥∥∥∥
ℓp(Λj)

.330

By Lemma 2.5, when j ≤ J one has ωµn(fj , 2
−J ,Rd)p ≤ C2−jd/p2(j−J)(s−s2)pAj , while when

j > J , one has ωµn(fj , 2
−J ,Rd)p ≤ C2−jd/pAj . Consequently,

vJ ≤ C2Jd/p
J∑
j=0

2−jd/p+(j−J)(s−s2)Aj + C2Jd/p
∞∑

j=J+1

2−jd/pAj ,

which implies that ∥(vJ)J≥0∥ℓq(N) ≤ C(∥(αJ)J≥0∥ℓq(N) + ∥(βJ)J≥0∥ℓq(N)), where

αJ := 2Jd/p
J∑
j=0

2−jd/p+(j−J)(s−s2)Aj and βJ := 2Jd/p
∞∑

j=J+1

2−jd/pAj .

Recall now the two following Hardy’s inequalities (see, e.g. (3.5.27) and (3.5.36) in [2]): let
q ∈ [1,+∞] as well as 0 < γ < δ. There exists a constant K > 0 such that :

• if (aj)j∈N is a non negative sequence and for J ∈ N one sets bJ = 2−δJ
∑J
j=0 2

jδaj , then

∥(2γJbJ)J≥1∥ℓq(N) ≤ K∥(2γJaJ)J≥0∥ℓq(N).

• if (aj)j∈N is a non negative sequence and for J ∈ N one defines bJ =
∑
j≥J aj , then335

∥(2γJbJ)J∈N∥ℓq(N) ≤ K∥(2γJaJ)J≥0∥ℓq(N).

Let δ = s− s2 and γ = d/p. The first Hardy’s inequality with aj = 2−jd/pAj yields

∥(αj)j∈N∥ℓq(N) ≤ K∥(Aj)j∈N∥ℓq(N),

while the second one with aj = 2−jd/pAj and γ = d/p gives

∥(βJ)J∈N∥ℓq(N) ≤ K∥(Aj)J∈N∥ℓq(N).

Since ∥(AJ)J∈N∥ℓq(N) = |f |µ(+ε),p,q,Ψ, one concludes that

∥(vJ)J≥1∥ℓq(N) ≤ 2CK(∥f∥Lp(Rd) + |f |µ(+ε),p,q,Ψ),

which, together with the control of ∥(uJ)J≥1∥ℓq(N), implies (1.17).

Although we do not elaborate on this in this paper, it is certainly worth investigating the
relationship between the Besov spaces in multifractal environment and the following analog of
Sobolev space in multifractal environment.340

Definition 2.6. Let µ be a probability measure on Rd, s > 0, p ≥ 1. A function f belongs to
Wµ,s
p (Rd) if and only if ∥f∥Wµ,s

p (Rd) < +∞, where ∥f∥Wµ,s
p (Rd) = ∥f∥Lp(Rd) + |f |Wµ,s

p (Rd) and

|f |Wµ,s
p (Rd) :=

∫∫
([0,1]d)2

|f(x)− f(y)|p

µ(B[x, y])sp|x− y|2d
dxdy < +∞.
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3. Main properties of the capacities µ ∈ Ed

In this section, we gather the main geometric, statistical and approximation properties proved
to be associated with the capacities µ ∈ Ed in [1]. This completes Theorem 3.

3.1. Geometric and statistical properties

Let us introduce the notations for ε > 0, α ∈ R, and I = [a, b] an interval:

α± ε = [α− ε, α+ ε] and I ± ε = [a− ε, b+ ε]. (3.1)

Definition 3.1. Let µ ∈ C([0, 1]d) with supp(µ) ̸= ∅. For I ⊂ R and j ∈ N∗ define

Dµ(j, I) =
ß
λ ⊂ [0, 1]d, λ ∈ Dj :

log2 µ(λ)

−j
∈ I

™
.

Define the lower and upper large deviations spectra of µ respectively as345

σLD
µ : α ∈ R 7→ lim

ε→0
lim inf
j→∞

log2 #Dµ(j, α± ε)

j

and σLD
µ : α ∈ R 7→ lim

ε→0
lim sup
j→+∞

log2 #Dµ(j, α± ε)

j
.

Also, define

E≤
µ (α) = {x ∈ supp(µ) : hµ(x) ≤ α} and E

≥
µ (α) = {x ∈ supp(µ) : hµ(x) ≥ α}.

Proposition 3.2. Let µ ∈ Ed. Then :

1. the concave function τ∗µ is continuous over its domain

dom(τ∗µ) = [τ ′µ(+∞), τ ′µ(−∞)] = {α ∈ R : τ∗µ(α) ≥ 0} ⊂ (0,+∞).

2. For every α ∈ dom(τ∗µ), there exists a Borel probability measure µα defined on [0, 1]d and

supported on a set Σ̃α ⊂ [0, 1]d such that for every x ∈ Σ̃α, hµ(x) = α and hµα
(x) = τ∗µ(α).

3. For every α ∈ R, one has

σµ(α) = τ∗µ(α) = dimEµ(α) = dimEµ(α) = dimEµ(α) = σLD
µ (α) = σLD

µ (α).

In particular the SMF holds for µ.

4. For every α ≤ τ ′µ(0
−), dim E≤

µ (α) = τ∗µ(α).350

5. For every α ≥ τ ′µ(0
+), dim E

≥
µ (α) = τ∗µ(α).

6. For every η > 0 and every interval I ⊂ dom(τ∗µ), there exists ε0 > 0 and J0 ∈ N such that

for every ε ∈ (0, ε0) and j ≥ J0, for Ĩ ∈ {I, I ± ε},∣∣∣∣∣ log2 #Dµ(j, Ĩ)
j

− sup
α∈I

τ∗µ(α)

∣∣∣∣∣ ≤ η.

7. There exists a positive decreasing sequence (εj)j≥0 tending to 0 when j → +∞, such that for
all j ∈ N and λ ∈ Dj,

τ ′µ(+∞)− εj ≤
log2 µ(λ)

−j
≤ τ ′µ(−∞) + εj .
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Proposition 3.3. Let µ ∈ Ed.

1. For every ε > 0, there exists jε ∈ N such that for all j′ ≥ j ≥ jε, for all λ, λ̃ ∈ Dj such that

∂λ ∩ ∂λ̃ ̸= ∅, and all λ′ ∈ Dj′ such that λ′ ⊂ λ, one has

µ(λ′) ≤ µ(λ̃)2jε2−(j′−j)(αmin−ε). (3.2)

2. For all integers j, j′ ≥ 0 and λ ∈ Dj, one has

µ(λ · [0, 2−j
′
]d) = µ(λ)2−ϕλ2−j

′αmin+ϕ̃λ(j
′), (3.3)

where:

• λ · [0, 2−j′ ]d is the concatenation of λ and [0, 2−j
′
]d, meaning that λ · [0, 2−j′ ]d is the355

image of [0, 2−j
′
]d by the canonical similarity which maps [0, 1]d onto λ,

• ϕλ ∈ R and ϕ̃λ ∈ Φ are uniform o(j) in the sense that

lim
j→+∞

sup

ß |ϕλ|
j

: λ ∈ Dj
™
= lim
j′→+∞

sup

 |ϕ̃λ(j′)|
j′

: λ ∈
⋃
j∈N

Dj

 = 0. (3.4)

These inequalities are key to prove the optimal upper bound for the singularity spectrum of
typical functions in Bµ,p

q (Rd).

3.2. Some approximation properties

Definition 3.4. A dyadic vector 2−jk, j ∈ N, k ∈ Zd, is irreducible when k ∈ Zd \ (2Z)d.360

The irreducible representation of a dyadic vector 2−jk with j ∈ N and k ∈ Zd is the unique
irreducible dyadic vector 2−jk such that 2−jk = 2−jk.

If λ = 2−j(k + [0, 1]d) ∈ Dj, then its associated irreducible cube is λ := 2−j(k + [0, 1]d) ∈ Dj,
where 2−jk is the irreducible representation of 2−jk.

The following definition invokes an increasing mapping γ : N → N which is defined in the
construction of Ed in [1]. The precise definition of γ(N) is not needed here. The only interesting
point to mention here is that the integer (j)δ defined below is such that

(j)δ ∼j→+∞ j/δ. (3.5)

Definition 3.5. Let µ ∈ Ed.365

For δ > 1 and j ≥ 1, let (j)δ be the largest integer in γ(N) ∩ [0, j/δ].
For any positive sequence η = (ηj)j≥1, define the set

Xj(δ, η) =

2−(j)δk ∈ [0, 1]d :


k ∈ Zd \ 2Zd,
µ
(
2−(j)δ(k + [0, 1]d

)
≥ 2−(j)δ(αmin+η(j)δ ),

µ
(
2−(j)δk + 2−j [0, 1]d

)
≥ 2−j(αmin+ηj)

 .

Then, for any increasing sequence of integers (jn)n≥1, set

S(δ, η, (jn)n≥1) =
⋂
N≥1

⋃
n≥N

⋃
2−(jn)δk∈Xjn (δ,η)

(2−(jn)δk + 2−jn [0, 1]d).

Recall that the lower Hausdorff dimension of a Borel probability measure ν on Rd is the infimum
of the Hausdorff dimension of the Borel sets of positive ν-measure (see [12] for instance).

21



Proposition 3.6. Let µ ∈ Ed. Suppose that σµ(αmin) > 0.
There is a positive sequence η = (ηj)j≥1 converging to 0 when j → +∞ such that for any δ > 1,370

for any increasing sequence of integers (jn)n≥1, there exists a Borel probability measure ν on Rd of
lower Hausdorff dimension larger than or equal to σµ(αmin)/δ, and such that ν(S(δ, η, (jn)n≥1)) =
1. In particular, dimS(δ, η, (jn)n≥1)) ≥ σµ(αmin)/δ.

Proposition 3.7. Let µ ∈ Ed. For every x ∈ [0, 1]d, call λj(x) ∈ D
j(x)

the irreducible represen-

tation of λj(x). For every α ∈ [αmin, αmax] such that τ∗µ(α) > 0, for µα-almost every x, one has375

limn→+∞
jn(x)

jn
= 1, where µα is as in Proposition 3.2(2).

4. Main features of the typical singularity spectrum in Bµ,p
q (Rd)

Given µ ∈ Ed, Theorem 4(2) claims that the singularity spectrum of typical functions in
Bµ,p
q (Rd) equals the Legendre transform ζ∗µ,p of ζµ,p, which is explicitly given by (1.22) in terms

of τµ. In this section, we find an explicit formula for ζ∗µ,p in terms of τ∗µ (= σµ) (Proposition 4.2),380

and we discuss the possible shapes and features of ζ∗µ,p and ζµ,p (Sections 4.2 and 4.3).

We will need the basic properties listed in the following remark.

Remark 4.1. The Legendre pair {τµ, τ∗µ} has the following properties:

• τ∗µ is increasing over [τ ′µ(+∞)), τ ′µ(0
+)).

Also,385

• if t∞ := (τ∗µ)
′(τ ′µ(+∞)+) < +∞, then t∞ = inf{t : τ ′µ(t) = τ ′µ(+∞)},

• for all t ≥ t∞ one has τµ(t) = τ ′µ(+∞)t− τ∗µ(τ
′
µ(+∞)),

• if τµ is linear over the interval [p,+∞), then t∞ ≤ p.

Similarly,

• if t−∞ := (τ∗µ)
′(τ ′µ(−∞)−) > −∞, then t−∞ = sup{t : τ ′µ(t) = τ ′µ(−∞)},390

• for all t ≤ t−∞ one has τµ(t) = τ ′µ(−∞)t− τ∗µ(τ
′
µ(−∞)),

• if τµ is linear over the interval (−∞, p), then t−∞ ≥ p.

4.1. Preliminaries and statements

To express ζ∗µ,p in terms of τ∗µ , the following continuous and concave mapping θp is introduced:

θp : α ∈ [τ ′µ(+∞), τ ′µ(−∞)] 7−→ α+
τ∗µ(α)

p
, (4.1)

see Figure 2. Notice that θ∞ is just the identity map.

The concave sub-differential of a continuous concave function g whose domain is a non trivial395

interval is well defined as the opposite −∂(−g) of the sub-differential ∂(−g) of the convex function

−g, and is denoted by
⌢

∂g.

Let us briefly describe the variations of θp, see Figure 2 for an illustration.

If τ ′µ(+∞) = τ ′µ(−∞), then θp is constant and we set αp = τ ′µ(−∞).
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θp(H)

H
0

θp(αp)

αp

τ′
µ(+∞)

τ′
µ(+∞)

τ′
µ(−∞)

τ′
µ(−∞)

Figure 2: The mapping θp when σµ(τ ′µ(+∞)) = σµ(τ ′µ(−∞)) = 0.

If [τ ′µ(+∞), τ ′µ(−∞)] is non trivial, using the concavity of τ∗µ , it is easily seen that the mapping
θp is concave and reaches is maximum at αp, where

αp =

{
min

{
α ∈ [τ ′µ(+∞), τ ′µ(−∞)] : −p ∈

⌢

∂ (τ∗µ)(α)
}

if − p ∈
⌢

∂ (τ∗µ)

τ ′µ(−∞) otherwise

(when τ∗µ is differentiable and strictly concave, αp is the unique exponent α at which (τ∗µ)
′(α) = −p400

whenever it exists). Moreover, θp is increasing over [τ ′µ(+∞), αp] and if αp < τ ′µ(−∞), then θp is
constant over [αp, α

′
p] and decreasing over [α′

p, τ
′
µ(−∞)], where α′

p = max{α ∈ [τ ′µ(+∞), τ ′µ(−∞)] :

−p ∈
⌢

∂ (τ∗µ)(α)}. Also, one has αp ≥ τ ′µ(0
+) since τ∗µ is increasing over the interval [τ ′µ(+∞), τ ′µ(0

+)),

and by Legendre duality, if −p ∈
⌢

∂ (τ∗µ), then τµ(−p) = (τ∗µ)
∗(−p) = −αpp− τ∗µ(αp) = −pθp(αp).

Thus, in any case, the range of θp restricted to the interval [τ ′µ(+∞), αp] is the interval405

[θp(τ
′
µ(+∞)), θp(αp)], where

θp(αp) =


τµ(−p)
−p

if − p ∈
⌢

∂ (τ∗µ),

τ ′µ(−∞) +
τ∗µ(τ

′
µ(−∞))

p
otherwise.

Note that according to Remark 4.1, if −p /∈
⌢

∂ (τ∗µ), then (τ∗µ)
′(τ ′µ(−∞)−) > −∞ so that τµ is

linear near −∞. This is also the case for ζµ,p, with the formula ζµ,p(t) = (τ ′µ(−∞)+
τ∗
µ(τ

′
µ(−∞))

p )t−
τ∗µ(τ

′
µ(−∞)).

Let θ−1
p be the inverse branch of θp over [θp(τ

′
µ(+∞)), θp(αp)], see Figure 2. The Legendre410

transform of ζµ,p can be written as follows.

Proposition 4.2. Let µ ∈ Ed. One has

ζ∗µ,p(H) =


p(H − τ ′µ(+∞)) if H ∈

[
τ ′µ(+∞), θp(τ

′
µ(+∞))

)
τ∗µ(θ

−1
p (H)) if H ∈ [θp(τ

′
µ(+∞)), θp(αp)]

−∞ if H ̸∈ [τ ′µ(+∞), θp(αp)].

(4.2)

The case p = +∞ is trivial, since as noticed in Remark 1.13, ζµ,+∞ = τµ and θ∞ is the identity
map.
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4.2. Main features of ζµ,p and ζ∗µ,p

These properties of ζµ,p and ζ
∗
µ,p follow from Proposition 4.2, whose proof is given in Section 4.3,415

or from the definition of ζµ,p.

•As an immediate consequence of Proposition 4.2, τ ′µ(+∞) = ζ ′µ,p(+∞) and θp(αp) = ζ ′µ,p(−∞),

although these equalities can be directly checked. Also, by definition of θp, ζ
′
µ,p(−∞) ≤ τ ′µ(−∞)+ d

p .

• When p = +∞, ζµ,+∞ ≡ τµ.

• When τ∗µ(τ
′
µ(+∞)) = 0 (i.e. when θp(τ

′
µ(+∞)) = τ ′µ(+∞)), the function ζ∗µ,p reduces to the420

map H 7→ τ∗µ(θ
−1
p (H)) on the interval [θp(τ

′
µ(+∞)), θp(αp)], see Figure 1.

• When τ∗µ(τ
′
µ(+∞)) > 0 and p ∈ [1,+∞), (equivalently, when θp(τ

′
µ(+∞)) > τ ′µ(+∞)), ζ∗µ,p

is linear over [τ ′µ(+∞), θp(τ
′
µ(+∞))

)
. This occurs when ζµ,p is not differentiable at p, and in this

case ζ ′µ,p(p
+) = τ ′µ(+∞) and ζ ′µ,p(p

−) = θp(τ
′
µ(+∞)).

Note that this affine part in the singularity spectrum ζ∗µ,p of typical functions f ∈ Bµ,p
q (Rd)425

follows from the heterogeneous ubiquity property stated in Proposition 3.6.

• When [θp(τ
′
µ(+∞)), θp(αp)] is non trivial, ζ∗µ,p is concave on this interval.

Moreover, using the notations of Remark 4.1, ζ∗µ,p is differentiable at θp(τ
′
µ(+∞)) if and only

if t∞ = (τ∗µ)
′(τ ′µ(+∞)+) = +∞. Otherwise, one has (ζ∗µ,p)

′(θp(τ
′
µ(+∞))+) = t∞

t∞+pp < p =

(ζ∗µ,p)
′(θp(τ

′
µ(+∞))−). This implies that ζµ,p is affine over the interval [ t∞

t∞+pp, p], with slope430

θp(τ
′
µ(+∞)).
See Figures 1 and 3 for some examples of the shape of the spectrum of typical functions

f ∈ Bµ,p
q (Rd).

• When −p ̸∈
⌢

∂ (τ∗µ), one has t−∞ > −∞, so both τµ and ζµ,p are affine near −∞.

4.3. Proof of Proposition 4.2435

The case p = +∞ is trivial. Assume p ∈ [1,+∞).
Let χ be the mapping defined by the right hand side of (4.2). We are going to prove that

χ∗ = ζµ,p (which is defined by (1.22)). Next, the continuity and concavity of χ is shown. This and
the Legendre duality imply that ζ∗µ,p = χ.

Denote [τ ′µ(+∞), τ ′µ(−∞)] by [αmin, αmax]. It is convenient to write χ∗ = min(ζ1, ζ2) where,
for t ∈ R,

ζ1(t) = inf{tH − p(H − αmin) : H ∈ [αmin, θp(αmin))}
ζ2(t) = inf{tH − τ∗µ(θ

−1
p (H)) : H ∈ [θp(αmin), θp(αp)]}.

When t ̸= p, set

tp =
pt

p− t
.

Then, whenever it exists, let α̃tp be the minimum of those real numbers α such that

tp ∈ [(τ∗µ)
′(α+), (τ∗µ)

′(α−)].

Otherwise, set α̃tp = αmin.440
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4.3.1. Proof of the equality χ∗ = ζµ,p

Recall that ζµ,p is given by formula (1.22), i.e. ζµ,p(t) = p−t
p τµ

Ä
p
p−t t
ä

when t < p, and

ζµ,p(t) = tαmin when t ≥ p.

Case t > p. In this case, tp < −p (as shows a simple verification). Moreover, the mapping
H 7→ tH − p(H − αmin) is increasing, hence ζ1(t) = tαmin.445

Setting α = θ−1
p (H) for H ∈ [θp(αmin), θp(αp)], one has

ζ2(t) = inf
α∈[αmin,αp]

χ̃2(α) where χ̃2(α) = tθp(α)− τ∗µ(α). (4.3)

Suppose that αmin < αp. Differentiating (formally) χ̃2 gives

χ̃′
2(α) = t+

t− p

p
(τ∗µ)

′(α) =
t− p

p
((τ∗µ)

′(α)− tp). (4.4)

Recall that τ∗µ is concave, non-decreasing over [αmin, τ
′
µ(0

+)] and non-increasing over [τ ′µ(0
+), αmax].

Hence, by definition of αp, (τ
∗
µ)

′(α−) and (τ∗µ)
′(α+) are both greater than −p when α ∈ [αmin, αp).

So formula (4.4) and the fact that t− p > 0 imply that the concave mapping χ̃2 is non-decreasing
over [αmin, αp]. Thus, the infimum defining ζ2 is reached at αmin, where it equals tαmin +
t−p
p τ∗µ(αmin) ≥ tαmin.450

If αp = αmin, then ζ2(t) = tθp(αmin)− τ∗µ(αmin) = tαmin.
In both cases, ζ2(t) ≥ tαmin, and so χ∗(t) = min(ζ1(t), ζ2(t)) = tαmin, and (1.22) holds true.

The case t = p follows by continuity.

Case t < p. The mapping H 7→ tH−p(H−αmin) is non increasing, so ζ1(t) = (t−p)θp(αmin)+
pαmin = tαmin + t−p

p τ∗µ(αmin).455

Next we determine ζ2(t). Since tp > −p, using (4.4) and the fact that t − p < 0 now shows
that the convex mapping χ̃2 reaches its minimum at α̃tp , which necessarily belongs to [αmin, αp].
Consequently,

ζ2(t) = tθp(α̃tp)− τ∗µ(α̃tp).

Two subcases are distinguished:

• Suppose that tp ≤ (τ∗µ)
′(α+

min).
In this case, α̃tp ≥ αmin, and one has τ∗µ(α̃tp) = tpα̃tp − τµ(tp) (even if α̃tp = αmin, because in

this case tp = (τ∗µ)
′(α+

min) = t∞, hence t∞ < ∞ and we can use Remark 4.1). After simplification
one gets

ζ2(t) = t

Ç
α̃tp +

τ∗µ(α̃tp)

p

å
− τ∗µ(α̃tp) =

p− t

p
τµ(tp).

If α̃tp = αmin, then ζ2(t) = tθp(αmin) − τ∗µ(αmin) = tαmin + (t − p)τ∗µ(αmin)/p = ζ1(t). And a

quick computation shows that tαmin + (t− p)τ∗µ(αmin)/p =
p−t
p τµ

Ä
p
p−t t
ä
.

If α̃tp > αmin, then let us show that ζ2(t) ≥ ζ1(t). Indeed, this inequality reads tαmin +
t−p
p τ∗µ(αmin) ≥ p−t

p τµ(tp) = tα̃tp − p−t
p τ∗µ(α̃tp). The previous inequality is equivalent to t(α̃tp −

αmin) ≤ p−t
p (τ∗µ(α̃tp)− τ∗µ(αmin)), i.e.

τ∗µ(α̃tp)− τ∗µ(αmin)

α̃tp − αmin
≥ tp.

The concavity of τ∗µ entails that this last inequality holds true.460

Hence, in all cases χ∗(t) = min(ζ1(t), ζ2(t)) =
p−t
p τµ

Ä
p
p−t t
ä
, so (1.22) holds.
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• Suppose that tp > (τ∗µ)
′(α+

min). In this case, t∞ = (τ∗µ)
′(α+

min) < +∞, which implies that
τµ(t) = αmint− τ∗µ(αmin) for all t ≥ t∞ (see Remark 4.1).

Also, since tp > (τ∗µ)
′(α+

min) > 0, α̃tp = αmin and the image of ∂χ̃2 is included in (0,+∞). In
particular the convex mapping χ̃2 reaches its minimum at αmin. Consequently, ζ2(t) = ζ1(t) =465

tαmin+
t−p
p τ∗µ(αmin). Since tp ≥ t∞ and τµ is affine on [t∞,+∞), it follows that χ∗(t) = p−t

p τµ(tp),

as stated by (1.22).
Note that the previous case corresponds to t∞

t∞+pp < t < p. In regard to the form taken by

ζ∗µ,p, it is convenient to rewrite ζµ,p(t) = θp(αmin)t− τ∗µ(αmin).

4.3.2. Concavity of χ470

First, observe that χ is affine on the interval [αmin, θp(αmin)].
Let us explain why χ is also concave over [θp(αmin), θp(αp)].
Assume first that τ∗µ is differentiable over (αmin, θ

−1
p (αp)). Then this is also the case for θ−1

p over
(θp(αmin), θp(αp)). For H ∈ (θp(αmin), θp(αp)), denoting α = θ−1

p (H) and t = (τ∗µ)
′(α), one gets

χ′(H) = t
1+t/p , which is increasing as a function of t. Since H = θp(α) is an increasing function of475

α and α is a decreasing function of t, it follows that χ′ is decreasing over (θp(αmin), θp(αp)). Hence
χ is concave over [θp(αmin), θp(αp)]. If τ

∗
µ has non differentiability points over (αmin, θ

−1
p (αp)), we

get the same conclusion by approximating τ∗µ by the differentiable Lq-spectra associated with the
Bernoulli product generated by the probability vectors used to construct µ.

Thus, one knows that χ is concave on the two intervals [αmin, θp(αmin)] and on [θp(αmin), θp(αp)].480

If θp(αmin) = θp(αp), or if θp(αmin) = αmin, the conclusion is immediate. Otherwise, to get
that χ is concave, one must check that χ′(θp(α

+
min)) ≤ p = χ′(θp(α

−
min)). With the notations

used above, a direct computation then yields χ′(θp(α
+
min)) = p if (τ∗µ)

′(α+
min) = t∞ = +∞ and

χ′(θp(α
+
min)) =

t∞
t∞+pp if t∞ < +∞. Hence the conclusion that χ is concave.

5. Lower bound for the Lq-spectrum, and upper bound for the singularity spectrum485

in Bµ,p
q (Rd), when µ ∈ Ed

This section uses the wavelet leaders and Lq-spectrum of a function introduced in Section 1.5.
Item (1) of Theorem 4 is proved by establishing a general lower bound for the Lq-spectrum of all
f ∈ Bµ,p

q (Rd) when µ ∈ Ed (Theorem 5(1)).
The main result of this section is the following. Recall the definition (1.21) of sµ.490

Theorem 8. Let µ ∈ Ed and p, q ∈ [1,+∞]. Let Ψ ∈ Fsµ . For all f ∈ Lp(Rd) such that
|fµ,p,q,Ψ| < +∞, one has ζf |R+

≥ ζµ,p|R+
.

It is implicit in Theorem 8 that the semi-norm |fµ,p,q,Ψ| defined in (1.14) is computed using
the wavelet Ψ ∈ Fsµ fixed by the statement.

Theorem 8 yields the following corollary.495

Corollary 9. Let µ ∈ Ed and p, q ∈ [1,+∞]. For all f ∈ Bµ,p
q (Rd), one has:

1. ζf |R+
≥ ζµ,p|R+

, i.e. the claim of Theorem 5(1) holds true.

2. For all H ∈ R,

σf (H) ≤
®
ζ∗µ,p(H) if H ≤ ζ ′µ,p(0

+)

d if H > ζ ′µ,p(0
+),

,

i.e. part (1) of Theorem 4 holds true.

Proof. Part (1) follows from the definition of Bµ,p
q (Rd) and the continuity of ζµ(−ε),p|R+

as a

function of ε. Part (2) is then a consequence of (1.28).500
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The wavelets Ψ ∈ Fsµ are fixed for the rest of this section.
To obtain Theorem 8, one needs to estimate, for any f ∈ Lp(Rd) such that |fµ,p,q,Ψ| < +∞ and

anyN ∈ N, the upper large deviations spectrum of the wavelet leaders (Lfλ)λ⊂N [0,1]d associated with
Ψ, defined as follows. Recall the notations H ± ε introduced in (3.1), and Nλ in the introduction.

Definition 5.1. Let f ∈ L1
loc(Rd) and N ∈ N∗, with wavelet coefficients and leaders computed

with the wavelet Ψ. For any compact subinterval I of R, set

DN
f (j, I) =

®
λ ∈ Dj : λ ⊂ N [0, 1]d,

log2 |L
f
λ|

−j
∈ I

´
,

The upper wavelet leaders large deviation spectrum of f associated with Ψ and N [0, 1]d is505

σLD,N
f (H) = lim

ε→0
lim sup
j→+∞

log2 #DN
f (j,H ± ε)

j
.

Proposition 5.2. Let µ ∈ Ed and p, q ∈ [1,+∞]. For all f ∈ Lp(Rd) such that |fµ,p,q,Ψ| < +∞,
and all N ∈ N, one has

σLD,N
f (H) ≤

®
ζ∗µ,p(H) if H ≤ ζ ′µ,p(0

+)

d if H > ζ ′µ,p(0
+)

. (5.1)

Assuming that Proposition 5.2 is proved, let us explain how Theorem 8 follows.

Proof of Theorem 8. Note that by large deviations theory [13], ζN,Ψf defined in (1.26) is the Leg-

endre transform of the concave hull of σLD,N
f . By Proposition 5.2, this concave hull is dominated

by the right hand-side of (5.1). It is easily seen that this right-hand side, as a function of H, is
concave, and that its Legendre transform is equal to ζµ,p|R+

over R+ and equal to −∞ over R∗
+.510

Consequently, ζN,Ψf |R+
≥ ζµ,p|R+

, which allows to conclude since ζΨf |R+
= limN→+∞ ζN,Ψf |R+

does

not depend on Ψ.

The rest of this section is devoted to the proof of Proposition 5.2. It requires large deviations
estimates on the distribution of the wavelet coefficients of f under the constraint |fµ,p,+∞| < +∞,
which holds automatically if |fµ,p,q,Ψ| < +∞.515

5.1. Large deviations estimates for wavelet coefficients

Definition 5.3. Let µ ∈ C(Rd), IH and Iα be two compact subintervals of R, and f ∈ L1
loc(Rd)

with wavelet coefficients(cλ)λ∈Λ. Then, define

Λf,µ(j, IH , Iα) =

λ = (i, j, k) ∈ Λ : λj,k ⊂ 3[0, 1]d,


log2 |cλ|

−j
∈ IH

log2 µ(λj,k)

−j
∈ Iα

 . (5.2)

In other words, Λf,µ(j, IH , Iα) contains those cubes λ of generation j such that µ(λ) ∼ |λ|α
with α ∈ Iα and |cλ| ∼ 2−jh with h ∈ IH . The cube 3[0, 1]d is considered, rather than [0, 1]d

because the computation of wavelet leaders on [0, 1]d requires some knowledge of µ and f in this
neighborhood of [0, 1]d.520

The cardinality of Λf,µ(j, IH , Iα) is estimated to get a control of the wavelets leaders large
deviations spectrum under the assumptions of Proposition 5.2.

In the next lemma, the convention ∞× x = +∞ for x ≥ 0 is adopted.

Lemma 5.4. Let µ ∈ Ed and p ∈ [1,+∞]. Let αmin = τ ′µ(+∞) and αmax = τ ′µ(−∞). Let

f ∈ Lp(Rd) be such that |f |µ,p,+∞,Ψ < +∞ and let IH , Iα be two compact subintervals of R.525
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1. If max IH < min Iα, then Λf,µ(j, IH , Iα) = ∅ for j large enough.
2. If Iα ⊂ [αmin, αmax] and min Iα ≤ min IH , then for every η > 0, there exists ε0 > 0 and
J0 ∈ N such that for every ε ∈ [0, ε0] and j ≥ J0:

log2 #Λf,µ(j, IH ± ε, Iα ± ε)

j
≤ max
β∈Iα∩[0,max IH ]

min(p(max IH − β), τ∗µ(β)) + η. (5.3)

Proof. We treat the case p < +∞ and leave the simpler case p = +∞ to the reader.

(1) Recall that by definition supj∈N

∥∥∥( cλ
µ(λ)

)
λ∈Λj

∥∥∥
ℓp(Λj)

< +∞. There is Cf ≥ 1 such that

sup
j∈N

∥∥∥( cλ
µ(λ)

)
λ∈Λj

∥∥∥
ℓp(Λj)

≤ Cf . (5.4)

It follows that item (1) holds true, for otherwise (5.4) would be contradicted.

(2) Fix η, ε > 0 and set ‹H = max(IH). Since Iα is compact and τ∗µ is continuous over its compact

domain, there are finitely many numbers α0 < . . . < αm such that Iα =
⋃m−1
ℓ=0 [αℓ, αℓ+1] and for530

every ℓ, αℓ+1 − αℓ ≤ η/p and |τ∗µ(β)− τ∗µ(β
′)| ≤ η for all β, β′ ∈ [αℓ, αℓ+1].

Let j ∈ N. Consider the subset Λf,µ(j, IH , [αℓ, αℓ+1]± ε) of Λf,µ(j, IH ± ε, Iα ± ε). With each
cube λ ∈ Λf,µ(j, IH ± ε, [αℓ, αℓ+1] ± ε) is associated a wavelet coefficient cλ whose absolute value

is at least equal to 2−j(H̃+ε). Thus, for each ℓ ∈ {0, ...,m− 1},

Cpf ≥
∑
λ∈Λj

Å |cλ|
µ(λ)

ãp
≥

∑
λ∈Λf,µ(j,IH±ε,[αℓ,αℓ+1]±ε)

Ç
2−j(H̃+ε)

2−j(αℓ−ε)

åp
. (5.5)

Remark 5.5. Recall that for λ = (i, j, k) ∈ Λj, we make a slight abuse of notation by identifying
λ with λj,k ∈ Dj and writing µ(λ) for µ(λj,k) and λ ⊂ E for λj,k ⊂ E.

It follows from (5.5) that

#Λf,µ(j, IH , [αℓ, αℓ+1]± ε) ≤ Cpf2
jp(H̃−αℓ+2ε).

On the other hand, observe that for each j ≥ 0, one has

Λf,µ(j, IH ± ε, [αℓ, αℓ+1]± ε) ⊂
{
λ = (i, j, k) ∈ Λ : λ ⊂ 3[0, 1]d,

log2 µ(λ)

−j
∈ I

}
,

where I = [αℓ, αℓ+1]± ε ∩ [0, ‹H + ε]. Applying Proposition 3.2(6) to each interval [αℓ, αℓ+1]± ε ∩
[0, ‹H + ε], one finds ε0 > 0 and J0 ∈ N such that for all ε ∈ (0, ε0], 0 ≤ ℓ ≤ m− 1 and j ≥ J0,

#Dµ(j, [αℓ, αℓ+1]± ε ∩ [0, ‹H + ε]) ≤ #Dµ(j, ([αℓ, αℓ+1] ∩ [0, ‹H])± 2ε) ≤ 2j(γℓ+η),

where γℓ = max{τ∗µ(β) : β ∈ [αℓ, αℓ+1] ∩ [0, ‹H]}. Then, taking into account the fact that µ is

Zd-invariant, as well as the fact that with each dyadic cube λj,k are associated 2d − 1 wavelet
coefficients, one obtains

#Λf,µ(j, IH ± ε, [αℓ, αℓ+1]± ε) ≤ 3d(2d − 1)2j(γℓ+η).

Combining the previous estimates, one gets for ε ∈ (0, ε0] and j ≥ J0

#Λf,µ(j, IH , Iα ± ε) ≤
m−1∑
ℓ=0

#Λf,µ(j, IH , [αℓ, αℓ+1]± ε)

≤
m−1∑
ℓ=0

min
(
Cpf2

jp(H̃−αℓ+2ε), 3d(2d − 1) · 2j(γℓ+η)
)

≤ 3d(2d − 1)Cpf mmax
{
2jmin(p(H̃−αℓ+2ε),γℓ+η) : ℓ = 0, 1, ...,m− 1

}
.
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Also, the constraints imposed to the exponents αℓ and the continuity of τ∗µ imply that

max
{
min(p(‹H − αℓ + 2ε), γℓ + η) : ℓ = 0, 1, ...,m− 1

}
≤ max

{
min(p(‹H − β), τ∗µ(β)) : β ∈ Iα ∩ [0, ‹H]

}
+ 2pε+ 3η.

Taking ε0 ≤ η/p and J0 so large that 2J0η ≥ 3d(2d − 1)Cpfm, we finally get the desired upper
bound (5.3) (with 6η instead of η).535

We are now ready to get an upper bound for the wavelet leaders upper large deviations spectrum
of f .

5.2. Proof of Proposition 5.2

Note that since µ is Zd-invariant, and by definition of | |µ,p,q,Ψ, any general upper bound for

σLD,1
f|[0,1]d

holds for σLD,N
f . Thus, without loss of generality we prove that σLD,1

f is upper bounded by540

the right hand side of (5.1).

This proof is rather involved because all the possible interactions between the values µ(λ) and
the corresponding wavelet coefficients cλ must be taken care of.

Note that the inequality σLD,1
f ≤ d obviously holds. So it is enough to deal with the case

H ≤ ζ ′µ,p(0
+).545

Fix H ≤ ζ ′µ,p(0
+). For ε > 0 small enough, #D1

f (j,H ± ε) is going to be estimated from above
(recall Definition 5.1). We are going to prove that there exist C, c > 0 such that for any η > 0, if
ε0 ∈ (0, η] is chosen small enough, then for j large enough, for all ε ∈ (0, ε0),

#D1
f (j,H ± ε) ≤ Cj2j(ζ

∗
µ,p(H)+cη). (5.6)

It is immediate to check that (5.6) implies (5.1), hence Proposition 5.2.

Since |f |µ,p,+∞ < +∞, there exists C > 0 such that |cλ| ≤ Cµ(λ) for every λ ∈
⋃
j≥0 Λj (recall

Remark 5.5). Without loss of generality, suppose that the above constant is equal to 1 and so

|cλ| ≤ µ(λ) for every λ ∈
⋃
j≥0

Λj . (5.7)

Recall the definition (1.24) of wavelet leaders: Lfλ = sup{|cλ′ | : λ′ = (i, j, k) ∈ Λ, λ′ ⊂ 3λ}. The
following observations are key.

Lemma 5.6. A dyadic cube λ belongs to D1
f (j,H ± ε) if and only if:

• λ ⊂ [0, 1]d;550

• There exists a dyadic cube λ′ ⊂ 3λ of generation j′ ≥ j as well as i ∈ {1, · · · 2d − 1} and
k′ ∈ Zd such that λ′ = λj′,k′ , and |c(i,j′,k′)| = 2−j

′H′
with H ′ ∈ j

j′ [H − ε,H + ε];

• when j is large enough, j′ ≤ 2j(H + ε)/αmin.

Proof. The first item is trivial, and the second one follows from the definition (1.24) of the wavelet

leaders and the fact that
log2 |Lf

λ|
−j ∈ H ± ε if and only if there exists some λ′ ⊂ 3λ of generation555

j′ ≥ j and i ∈ {1, · · · 2d − 1} such that
log2 |c(i,j′,k′)|

−j ∈ H ± ε.

For the third item, Lemma 5.4(2) implies that |c(i,j′,k′)| ≤ 2−j
′αmin/2 when j (and so j′) is

large. Hence H ′ ≥ αmin/2 and the fact that j′ ≤ j(H + ε)/H ′ implies the claim.
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The second item of Lemma 5.6 is used repeatedly in the forthcoming pages.

Three cases are separated.560

Case 1 : H < αmin.
Note that ζ∗µ,p(H) = −∞. Suppose that ε > 0 is so small that αmin − ε > H + ε. Due to

Proposition 3.2(6) and the observation made just above, for j large enough

#D1
f (j,H ± ε) ≤

∑
j≤j′≤2j(H+ε)/αmin

#Λf,µ(j
′, [0, H + ε], Iα),

with Iα = [αmin − ε, αmax + ε]. However, H + ε < αmin − ε, so by Lemma 5.4, D1
f (j,H ± ε) = ∅.

This implies (5.1), i.e. σLD,1
f|[0,1]d

(H) = −∞.

To deal with the other cases, we discretize the interval [αmin, H].

Fix η > 0, ε0 ∈ (0,min(1/2, αmin/2, η)), and split the interval [αmin, H] into finitely many565

contiguous closed intervals I1, ..., Im (m = m(ε0)) such that

• |Iℓ| ≤ ε0 for every ℓ ∈ {1, ...,m},

• Writing Iℓ = [hℓ, hℓ+1], one has 1 ≤ hℓ+1/hℓ ≤ 1 + ε0 for every 1 ≤ ℓ ≤ m.

In particular, H/hℓ ≥ 1 for every ℓ.

By Lemma 5.6, if j ≥ J0 and λ ∈ D1
f (j,H ± ε), there exist j′ ≥ j and λ′ = (i, j′, k′) ∈ Λj′570

such that λ′ ⊂ 3λ and |cλ′ | = 2−j
′H′

with H ′ ∈ j
j′ [H ± ε]. By (5.7), |cλ′ | ≤ µ(λ′), so there exist

1 ≤ ℓ′ ≤ ℓ ≤ m such that λ′ ∈ Λf,µ(j
′, Iℓ ± ε, Iℓ′ ± ε) (recall (5.2)).

In addition, H ′ ∈ Iℓ ± ε ⊂ Iℓ ± ε0, j
′ ∈ j

H′ [H ± ε] ⊂
î
j H−ε0
hℓ+1+ε0

, j H+ε0
hℓ−ε0

ó
, and hℓ+1 ≤ H.

Consequently,

D1
f (j,H ± ε) ⊂

⋃
1≤ℓ′≤ℓ≤m

Dℓ,ℓ′

f (j,H ± ε), (5.8)

where (recall Remark 5.5)

Dℓ,ℓ′

f (j,H ± ε)=
⋃

j′∈j·
[

H−ε0
hℓ+1+ε0

,
H+ε0
hℓ−ε0

]
®
λ ∈ Dj ∩ [0, 1]d :

®
∃λ′ ∈ Λf,µ(j

′, Iℓ ± ε, Iℓ′ ± ε)

such that λ′ ⊂ 3λ

´
.

Next, the cardinality of Dℓ,ℓ′

f (j,H ± ε) (and thus of D1
f (j,H ± ε)) is going to be bounded from

above using different estimates.
To do so, Lemma 5.4(2) is applied to each pair {Iℓ, Iℓ′}: there exist ε ∈ (0, ε0) and J0 ∈ N such

that for all j′ ≥ J0, for all 1 ≤ ℓ′ ≤ ℓ ≤ m,

log2 #Λf,µ(j
′, Iℓ ± ε, Iℓ′ ± ε)

j′
≤ d(ℓ, ℓ′) + η (5.9)

where
d(ℓ, ℓ′) = max

{
min(p(hℓ+1 − β), τ∗µ(β)) : β ∈ Iℓ′

}
. (5.10)

Case 2: αmin ≤ H < θp(αmin) = αmin +
τ∗
µ(αmin)

p . This case occurs only when τ∗µ(αmin) > 0.575

Let j ≥ J0. For every 1 ≤ ℓ′ ≤ ℓ ≤ m, one has p(hℓ+1−hℓ′) ≤ p(H−αmin) ≤ τ∗µ(αmin) ≤ τ∗µ(β),
for every β ∈ Iℓ′ . So, from (5.10) one deduces that d(ℓ, ℓ′) ≤ p(hℓ+1 − αmin). Thus, if j′ ∈î
j H−ε0
hℓ+1+ε0

, j H+ε0
hℓ−ε0

ó
, then j′d(ℓ, ℓ′) ≤ jp(H+ε0)

hℓ+1−αmin

hℓ−ε0 . Then observing that supℓ∈{1,...,m}
hℓ+1−αmin

hℓ
=

H−αmin

H +O(ε0), one has

j′(d(ℓ, ℓ′) + η) ≤ j(p(H − αmin) +O(ε0) + η) = j(ζ∗µ,p(H) +O(ε0) + η).

30



Consequently, since (5.8) implies

#D1
f (j,H ± ε) ≤

∑
1≤ℓ′≤ℓ≤m

∑
j′∈

[
j

H−ε0
hℓ+1+ε0

,j
H+ε0
hℓ−ε0

]#Λf,µ(j
′, Iℓ ± ε, Iℓ′ ± ε),

the inequality (5.9) combined with the previous remarks yields

#D1
f (j,H ± ε) ≤ m2j

H + ε0
αmin − ε0

2j(ζ
∗
µ,p(H)+O(ε0)+η) = C2j(ζ

∗
µ,p(H)+O(ε0)+η),

so (5.6) holds true.

Case 3: θp(αmin) ≤ H ≤ ζ ′µ,p(0
+) = θp(τ

′
µ(0

+)).

This case is divided into four subcases in order to estimate #Dℓ,ℓ′

f (j,H ± ε).
The term d(ℓ, ℓ′) can easily be expressed in terms of the mappings θp defined in (4.1) and τ∗µ .

The mapping θp is an increasing map over [αmin, αp] and αp ≥ τ ′µ(0
+), so using that hℓ ≤ H, one580

deduces that

d(ℓ, ℓ′) =


τ∗µ(hℓ′+1) if hℓ′+1 ≤ θ−1

p (hℓ+1),

p(hℓ+1 − hℓ′) if hℓ′ ≥ θ−1
p (hℓ+1),

τ∗µ(θ
−1
p (hℓ+1)) = ζ∗µ,p(hℓ+1) otherwise.

(5.11)

Moreover, the maximum of the three possible values is always ζ∗µ,p(hℓ+1).

Subcase (3a): H
hℓ+1

d(ℓ, ℓ′) ≤ ζ∗µ,p(H). Using the definition of Dℓ,ℓ′

f (j,H ± ε) and inequality (5.9),

for j ≥ J0

#Dℓ,ℓ′

f (j,H ± ε) ≤
∑

j′∈
[
j

H−ε0
hℓ+1+ε0

,j
H+ε0
hℓ−ε0

]#Λf,µ(j
′, Iℓ ± ε, Iℓ′ ± ε)

≤
∑

j′∈
[
j

H−ε0
hℓ+1+ε0

,j
H+ε0
hℓ−ε0

] 2j
′(d(ℓ,ℓ′)+η) ≤ j

H + ε0
hℓ − ε0

2
j

H+ε0
hℓ−ε0

(d(ℓ,ℓ′)+η)
.

By our assumption, H+ε0
hℓ−ε0 d(ℓ, ℓ

′) ≤
(

H
hℓ+1

+ O(ε0)
)
d(ℓ, ℓ′) ≤ ζ∗µ,p(H) + O(ε0), this O(ε0) being

uniform with respect to ℓ. So

#Dℓ,ℓ′

f (j,H ± ε) ≤ C2j(ζ
∗
µ,p(H)+O(ε0)+η).

Subcase (3b): H
hℓ+1

d(ℓ, ℓ′) > ζ∗µ,p(H) and hℓ′+1 ≤ θ−1
p (hℓ+1).

Recall the definition (4.1) of θp. A technical lemma is needed.

Lemma 5.7. For every j large enough,

Dℓ,ℓ′

f (j,H ± ε) ⊂ Dµ
Å
j,

ï
αmin, αmin +

H

hℓ+1
(hℓ′+1 − αmin)

ò
±O(ε0)

ã
,

where O(ε0) is independent of (ℓ, ℓ′).585

Proof. Take λ ∈ Dℓ,ℓ′

f (j,H ± ε) and applying Lemma 5.6, consider j′ ∈
î
j H−ε0
hℓ+1+ε0

, j H+ε0
hℓ−ε0

ó
such

that there exists λ′ = (i, j′, k′) ∈ Λf,µ(j
′, Iℓ ± ε, Iℓ′ ± ε) for which λ′ ⊂ 3λ.

Denote by λ̂ the unique dyadic cube of Dj containing λ′. Then, note that:
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• The two cubes λ and λ̂ are either equal or neighbors. Hence, by property (P2) of µ, µ(λ) ≥
2−jε0µ(λ̂) when j is large enough.590

• µ(λ̂) = µ(λ′) µ(λ̂)µ(λ′) , and by construction of µ (see (3.2)), µ(λ̂)
µ(λ′) ≥ 2−jε02(j

′−j)(αmin−ε0).

• Since λ′ ∈ Λf,µ(j
′, Iℓ ± ε, Iℓ′ ± ε), µ(λ′) ≥ 2−j

′(hℓ′+1+ε0).

Consequently,

logµ(λ)

−j log(2)
≤ ε0 +

logµ(λ̂)

−j log(2)
≤ 2ε0 +

j′

j
(hℓ′+1 + ε0) + (1− j′

j
)(αmin − ε0)

≤ αmin +
j′

j
(hℓ′+1 − (αmin − 4ε0)) ≤ αmin +

H

hℓ+1
(hℓ′+1 − αmin) +O(ε0),

where O(ε0) is independent of (ℓ, ℓ
′). This yields the result.

Let us now bound αmin +
H
hℓ+1

(hℓ′+1 −αmin) from above. Thanks to (5.11), hℓ′+1 ≤ θ−1
p (hℓ+1)

implies that d(ℓ, ℓ′) = τ∗µ(hℓ′+1). Using that θ−1
p (hℓ+1) ≤ θ−1

p (H) ≤ τ ′µ(0
+) and that τ∗µ is non

decreasing over [αmin, τ
′
µ(0

+)], one has

H

hℓ+1
τ∗µ(θ

−1
p (hℓ+1)) ≥

H

hℓ+1
τ∗µ(hℓ′+1) =

H

hℓ+1
d(ℓ, ℓ′) > ζ∗µ,p(H) = τ∗µ(θ

−1
p (H)),

from which one deduces that
τ∗µ(θ

−1
p (hℓ+1))

hℓ+1
>
τ∗µ(θ

−1
p (H))

H
. (5.12)

Observe that the definition (4.1) of θp implies that

θ−1
p (β) + p−1τ∗µ(θ

−1
p (β)) = β (5.13)

for all β ∈ [αmin, ζ
′
µ,p(0

+)]. Applying (5.13) to both sides of (5.12) yields

θ−1
p (hℓ+1)

hℓ+1
<
θ−1
p (H)

H
, (5.14)

and since H
hℓ+1

> 1, the following series of inequalities holds:

αmin +
H

hℓ+1
(hℓ′+1 − αmin) ≤

H

hℓ+1
hℓ′+1 ≤ H

hℓ+1
θ−1
p (hℓ+1) ≤ θ−1

p (H). (5.15)

Consequently, Lemma 5.7 yields

Dℓ,ℓ′

f (j,H ± ε) ⊂ Dµ
(
j, [αmin, θ

−1
p (H)]±O(ε0)

)
. (5.16)

The function τ∗µ is continuous and non-decreasing over [αmin, θ
−1
p (H)]. Hence, choosing initially

ε0 small enough yields for j large enough that

#Dℓ,ℓ′

f (j,H ± ε) ≤ 2j(τ
∗
µ(θ

−1
p (H))+η) = 2j(ζ

∗
µ,p(H)+η). (5.17)

Subcase (3c): H
hℓ+1

d(ℓ, ℓ′) > ζ∗µ,p(H) and hℓ′ < θ−1
p (hℓ+1) < hℓ′+1.

Here one has hℓ′+1 ≤ (1 + ε0)hℓ′ ≤ (1 + ε0)θ
−1
p (hℓ+1), so595

αmin +
H

hℓ+1
(hℓ′+1 − αmin) ≤ (1 + ε0)

H

hℓ+1
θ−1
p (hℓ+1) + αmin

Å
1− H

hℓ′+1

ã
≤ (1 + ε0)

H

hℓ+1
θ−1
p (hℓ+1). (5.18)
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Also, (5.11) gives d(ℓ, ℓ′) = τ∗µ(θ
−1
p (hℓ+1)), so

H
hℓ+1

d(ℓ, ℓ′) > ζ∗µ,p(H) is equivalent to (5.12), and it

implies (5.14). Finally, arguing as in the subcase (3b) and using (5.18), one sees that

αmin +
H

hℓ+1
(hℓ′+1 − αmin) ≤ H −

ζ∗µ,p(H)

p
+O(ε0) = θ−1

p (H) +O(ε0). (5.19)

Applying Lemma 5.7, one deduces that (5.17) holds once again.

Subcase (3d): H
hℓ+1

d(ℓ, ℓ′) > ζ∗µ,p(H) and hℓ′ ≥ θ−1
p (hℓ+1).

By (5.11), d(ℓ, ℓ′) = p(hℓ+1 − hℓ′). Consequently, hℓ′ = hℓ′ − d(ℓ,ℓ′)
p < hℓ+1 − hℓ+1

H ζ∗µ,p(H)/p,
and

αmin +
H

hℓ+1
(hℓ′+1 − αmin) ≤

H

hℓ+1
hℓ′+1 <

H

hℓ+1

(
hℓ+1 −

hℓ+1

H

ζ∗µ,p(H)

p

)
+H

hℓ+1 − hℓ
hℓ+1

.

Thus, (5.19) and then (5.17) hold in this subcase as well.

Collecting the estimates obtained along the cases considered above, (5.6) is proved, and so is
Proposition 5.2.600

6. Typical singularity spectrum in Bµ,p
q (Rd)

In this section, the singularity spectrum of typical functions in Bµ,p
q (Rd) when µ ∈ Ed is

computed, proving item (2) of Theorem 4.
The strategy is similar to the one used to derive the generic multifractal behavior in classical

Besov spaces. First, a saturation function is built, whose multifractal structure is the one claimed605

be generic in Bµ,p
q (Rd). Then, this particular function is used to perturb a countable family of

dense sets in Bµ,p
q (Rd), in order to obtain a countable family of dense open sets on the intersection

of which the desired multifractal behavior holds. However, the construction of the saturation
function and the multifractal analysis of typical functions are much more delicate in Bµ,p

q (Rd)
than in Bs,pq (Rd).610

The environment µ ∈ Ed is fixed for the rest of this section, as well as (p, q) ∈ [1,+∞]2 and
Ψ ∈ Fsµ .

6.1. A saturation function

In this section, a saturation function gµ,p,q ∈ Bµ,p
q (Rd) is built via its wavelet coefficients, which

are as large as possible in Bµ,p
q (Rd), and its wavelet leaders are estimated.615

The definition of gµ,p,q demands some preparation.
When αmin = αmax, we set (MN := N2)N∈N∗ and INi = {αmin} for all 1 ≤ i ≤MN .
When αmin < αmax, for every N ∈ N∗, it is possible to find an integerMN such that the interval

[αmin, αmax] = [τ ′µ(+∞), τ ′µ(−∞)] can be split into MN non-trivial contiguous closed intervals

IN1 , I
N
2 , ..., I

N
MN

satisfying for every i ∈ {1, ...,MN},

|INi | ≤ 1/N and max{|τ∗µ(α)− τ∗µ(α
′)| : α, α′ ∈ INi } ≤ 1/N. (6.1)

Without loss of generality, we assume that the sequence (MN )N≥1 is increasing.
In any case, item (6) of Proposition 3.2 yields a decreasing sequence (ηN )N∈N∗ converging

to 0 as N → ∞, and for all N ∈ N∗, MN integers JN,1, JN,2, ..., JN,MN
, such that for every

i ∈ {1, ..,MN}, for every j ≥ JN,i,∣∣∣∣∣ log2 #Dµ(j, INi ± 1/N)

j
− max
α∈INi

τ∗µ(α)

∣∣∣∣∣ ≤ ηN . (6.2)
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Without loss of generality, we assume that ηN ≥ 1/N .
Then, define inductively the non-decreasing sequences of integers (JN )N∈N∗ and (Nj)j≥1 such

that: 
∀N ≥ 1, JN ≥ max{JN,i : i ∈ {1, ...,MN}}
∀N ≥ 2, MN ≤ 2JNηN−1 ,

∀N ≥ 3, JN−1ηN−2 < JNηN−1,

for every JN ≤ j < JN+1, we set Nj = N.

(6.3)

Moreover, Proposition 3.2(7) makes it possible to impose that for every j ≥ JN and λ ∈ Dj ,

2−j(αmax+1/N) ≤ µ(λ) ≤ 2−j(αmin−1/N).

Finally, let us introduce some coefficients depending on the elements λ ∈ Λj :620

• If L ∈ Zd, j ≥ J2 and λ ∈ ΛLj = {λ = (i, j, k) ∈ Λj : λj,k ⊂ L+ [0, 1]d}, set

wλ =


2−

3jηNj−1

p

j
1
p+

2
q (1 + ∥L∥)

d+1
p

if p < +∞

j−
2
q if p = +∞,

(6.4)

with the convention 2
∞ = 0.

• If j ≥ J2 and λ = (i, j, k) ∈ Λj , set αj,k =
log2 µ(λj,k)

−j
and

αλ =


αj,k if αj,k ∈ [αmin, αmax],

αmin if αj,k < αmin,

αmax if αj,k > αmax.

Remark 6.1. Note that ε̃λ = log2 µ(λ)
−j − αλ tends to 0 uniformly in λ ∈ Dj as j → +∞. In other

words, there exists
˜̃
ϕ ∈ Φ (recall Definition 1.3) such that | log2 µ(λ)

−j − αλ| ≤
‹‹ϕ(j)
j .

Recall the Definition 3.4 of the irreducible dyadic cube λ := λj,k.

Definition 6.2. The saturation function gµ,p,q : Rd → R is defined by its wavelet coefficients in625

the wavelet basis associated with Ψ, denoted by (cµ,p,qλ )λ∈Λ, as follows:

• cµ,p,qλ = 0 if λ ∈
⋃
j<J2

Λj.

• If j ≥ J2 and λ = (i, j, k) ∈ Λj, set

cµ,p,qλ =


wλ · µ(λj,k) if p = +∞,

wλ · µ(λj,k) 2
−j
τ∗µ(αλ)

p if p < +∞.

(6.5)

Remark 6.3. 1. Note that cµ,p,qλ does not depend on i if λ = (i, j, k). Consequently, cµ,p,qλ is
defined without ambiguity by the same formula for λ ∈ Dj.
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2. The choice of j and λ in the exponent 2−j
τ∗
µ(α

λ
)

p in (6.5) implies that at a given generation630

j, the wavelet coefficients of gµ,p,q display several order of magnitudes, which are influenced
by the values of µ along the j first generations of dyadic cubes. One can also guess from this
choice that approximation by dyadic vectors plays an important role in our analysis, since
the local behavior of gµ,p,q around a point x depends on how close x is to the dyadic vectors.

Lemma 6.4. The function gµ,p,q belongs to Bµ,pq (Rd) and Bµ,p
q (Rd).635

Proof. Suppose that p < +∞.
For j ∈ N and L ∈ Zd, set DL

j = {λ ∈ Dj : λ ⊂ L+[0, 1]d} and ΛLj = {(i, j, k) ∈ Λj : λj,k ∈ DL
j }.

Recall that for λ = (i, j, k), µ(λ) stands for µ(λj,k).

Let us define, for j ≥ J2 and L ∈ Zd, Aj,L =
∑
λ∈ΛL

j

Å
|cµ,p,q

λ |
µ(λ)

ãp
. To prove that gµ,p,q ∈

Bµ,pq (Rd) ⊂ Bµ,p
q (Rd), it is enough to show that Aj :=

(∑
L∈Zd Aj,L

)1/p

∈ ℓq(N).640

For j ∈ [JN , JN+1), by (6.5) and (6.4), one has

Aj,L =
∑
λ∈ΛL

j

Ñ
2−3jηNj−1/pµ(λ)2−j

τ∗
µ(α

λ
)

p

j
1
p+

2
q (1 + ∥L∥)(d+1)/pµ(λ)

ép

=
(2d − 1)2−3jηNj−1

j1+
2p
q (1 + ∥L∥)(d+1)

∑
λ∈D0

j

2−jτ
∗
µ(αλ), (6.6)

where the factor 2d−1 comes from the fact that cµ,p,qλ , λ = (i, j, k), is independent of i ∈ {1, . . . , 2d−
1}. The periodicity of µ, i.e. µ|[0,1]d = µ|L+[0,1]d is also used.

Recalling the notations in Proposition (3.3), if λ ∈ Dj and λ is the cube associated with its

irreducible representation, then one can write λ = λ · [0, 2−(j−j)]d.
Then, after regrouping in (6.6) the terms according to the generation of their irreducible rep-

resentation, one has

Aj,L = (2d − 1)
2−3jηNj−1

j1+
2p
q (1 + ∥L∥)(d+1)

(
1 +

j∑
J=1

∑
λ∈D0

J\(D0
J−1·[0,2−1]d)

2−Jτ
∗
µ(αλ)

)

≤ 2d
2−3jηNj−1

j1+
2p
q (1 + ∥L∥)(d+1)

(
1 +

j∑
J=1

∑
λ∈D0

J

2−Jτ
∗
µ(αλ)

)

= 2d
2−3jηNj−1

j1+
2p
q (1 + ∥L∥)(d+1)

Ñ
J1−1∑
J=0

+
(Nj−1∑
N=1

JN+1−1∑
J=JN

)
+

j∑
J=JNj

é ∑
λ∈D0

J

2−Jτ
∗
µ(αλ). (6.7)

For each JN ≤ J < JN+1, using (6.1) and then (6.2), we obtain

∑
λ∈D0

J

2−Jτ
∗
µ(αλ) ≤

MNJ∑
i=1

∑
λ∈Dµ(j,I

NJ
i ±1/N)

2−J(max{τ∗
µ(α):α∈I

NJ
i }−1/NJ )

≤
MNJ∑
i=1

2J(max{τ∗
µ(α):α∈I

NJ
i }+ηNJ

)2−J(max{τ∗
µ(α):α∈I

NJ
i }−1/NJ )

=MNJ
2J(ηNJ

+1/NJ ) ≤MNJ
22JηNJ .
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Consequently, by (6.3),Ñ(Nj−1∑
N=1

JN+1−1∑
J=JN

)
+

j∑
J=JNj

é ∑
λ∈D0

J

2−Jτ
∗
µ(αλ)

≤
Nj−1∑
N=1

JN+1−1∑
J=JN

MN22JηN +

j∑
J=JNj

MNj2
2JηNj

≤
Nj−1∑
N=1

(JN+1 − JN )MN22JN+1ηN + (j − JNj
+ 1)MNj

22jηNj

≤ jMNj2
2jηNj−1 ,

since all terms MN22JN+1ηN , for N ≤ Nj−1, are less than MNj
22jηNj−1 .645

Setting Cµ =
∑J1−1
J=0

∑
λ∈D0

J
2−Jτ

∗
µ(αλ), by (6.3) and MNj

22JNηNj−1 ≤ 1 one has

Aj,L ≤ 2d
MNj

2−JnηNj−1

j
2p
q (1 + ∥L∥)(d+1)

(Cµ + 1) ≤ 2d(Cµ + 1)

j
2p
q (1 + ∥L∥)(d+1)

.

Finally, ( ∑
L∈Zd

Aj,L

)1/p

=
∥∥∥(cµ,p,qλ

µ(λ)

)
λ∈Λj

∥∥∥
p
= O(j−2/q),

hence
(∥∥∥( cµ,p,q

λ

µ(λ)

)
λ∈Λj

∥∥∥
p

)
j∈N

belongs to ℓq(N). This implies that gµ,p,q ∈ Bµ,pq (Rd).

When p = +∞, the estimate is much simpler and left to the reader.

Next lemma shows that the wavelet leader (recall (1.24)) L
gµ,p,q

λ of gµ,p,q at λ ∈ Dj is essentially
comparable to the wavelet coefficients cµ,p,qλ′ indexed by the cubes λ′ of generation j which are
neighbors of λ. This property is key to estimate the Lq-spectrum of gµ,p,q relative to Ψ.650

Lemma 6.5. Fix L ∈ Zd. For every ε > 0, there exists Jε ∈ N such that if j ≥ Jε, for every
λ ∈ DL

j ,

c̃µ,p,qλ ≤ L
gµ,p,q

λ ≤ 2jεc̃µ,p,qλ ,

where c̃µ,p,qλ = max{cµ,p,q
λ̃

: λ ∈ Dj , λ̃ ⊂ 3λ}.

Proof. It is enough to prove the result for L = 0. Let ε, ε′ ∈ (0, 1). Let j ≥ 1 and λ ∈ D0
j . Let us

begin with some remarks:

• in (6.5), the term wλ depends only on j, and is decreasing with j.

• if λ′ ⊂ λ, µ(λ′) ≤ µ(λ) since µ ∈ C(Rd).655

• by Remark 6.3(1) cµ,p,qλ does not depend on the index i of λ = (i, j, k).

Next, observe that if λ′ ⊂ λ, the irreducible cubes λ′ ∈ Dj′ and λ ∈ Dj respectively associated

with λ′ and λ, are such that j ≤ j′.
Then one controls the wavelet coefficients as follows:

(i) By the property (P1) of µ, there exists M ∈ N∗ such that for every λ′ ∈ DMj one has660

µ(λ′) ≤ 2−j(d/p+2αmax+1). So µ(λ)2−j
τ∗
µ(α

λ
)

p ≥ 2−j(αmax+1)−jd/p ≥ µ(λ′), which implies that
for j′ ≥Mj, cµ,p,qλ′ ≤ cµ,p,qλ .
Hence, the only wavelet coefficients cλ′ to consider to compute L

gµ,p,q

λ for λ ∈ Dj are those
of generations j′ such that j ≤ j′ ≤Mj.
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(ii) if j′ ≤Mj and j ≤ jpε/(2d), then 2−j
τ∗
µ(α

λ
)

p ≥ 2−jpε/(2d)·d/p ≥ 2−jε, so cµ,p,qλ ≥ wλµ(λ)2
−jε

and by the remarks of the beginning of the proof,

cµ,p,qλ′ ≤ wλ′µ(λ′) ≤ wλµ(λ) ≤ cµ,p,qλ 2jε.

(iii) It is possible to choose ε′ small enough so that if j′−j ≤ ε′j′, then since µ is almost doubling,665

|αλ′ − αλ| is so small that |j′τ∗µ(αλ′)− jτ∗µ(αλ)| ≤ jpε.

(iv) If j′ ≤Mj, j > jpε/(2d) and j′ − j ≤ ε′j′, then by (iii) one has (for j is large enough)

cµ,p,qλ′ ≤ cµ,p,qλ 2jε ≤ cµ,p,qλ 2jε.

(v) If j′ ≤Mj, j > jpε/(2d) and j′ − j > ε′j′, then

j′αλ′ = jαλ + (j′ − j)α (6.8)

for some α ∈ [αmin − ε, αmax + ε]. The concavity of τ∗µ then implies that for some ε′′

independent of j and j′,

j′τ∗µ(αλ′) ≥ jτ∗µ(αλ) + (j′ − j)(τ∗µ(α
∗)− ε′′), where α∗ =


α when α ∈ [αmin, αmax],

αmax when α ≥ αmax,

αmin when α ≤ αmin.

In particular, j′τ∗µ(αλ′) ≥ jτ∗µ(αλ)− (j′ − j)ε′′, hence

2−j
′τ∗

µ(αλ′ )/p ≤ 2−jτ
∗
µ(αλ)/p2(j

′−j)ε′′/p ≤ 2−jτ
∗
µ(αλ)/p2j

′ε′′/p ≤ 2−jτ
∗
µ(αλ)/p2Mjε′′/p.

One checks that ε′′ can be chosen as small as necessary when j tends to infinity, in particular
so that one has for large j that Mε′′/p ≤ ε. Finally, with this choice of ε′′, cµ,p,qλ′ ≤ cµ,p,qλ 2jε.

Putting together all the previous information yields that when j is large enough, for all λ ∈ D0
j

and all λ′ ∈ Dj′ such that λ′ ⊂ λ, one has cµ,p,qλ′ ≤ cµ,p,qλ 2jε.670

The same property holds true for all λ̃ ∈ Dj such that λ̃ ⊂ 3[0, 1]d and λ′ ∈ Dj′ such that

λ′ ⊂ λ̃. This yields the desired property.

6.2. The singularity spectrum of the saturation function gµ,p,q and some of its perturbations

We now determine the singularity spectrum of gµ,p,q, and more generally of any function whose
wavelet coefficients are “comparable” to those of gµ,p,q over infinitely many generations.675

Proposition 6.6. Let f ∈ Bµ,p
q (Rd) such that for any L ∈ Zd, there exists an increasing sequence

of integers (jn)n∈N, and a positive sequence (εn)n∈N converging to 0 such that for all n ≥ 1 and

λ = (i, jn, k) ∈ Λjn such that λjn,k ⊂ L + 3[0, 1]d the inequality 2−jnεncµ,p,qλ ≤ |cfλ| holds. Then
σf = σgµ,p,q

= ζ∗µ,p.

Only the case p < +∞ is treated, the case p = +∞ is simpler and deduced from arguments680

similar to those developed below. Fix (jn)n∈N and (εn)n∈N as in the statement.

It is enough to prove that dimEf (H) ∩ (L + [0, 1]d) = ζ∗µ,p(H) for all H ∈ R and L ∈ Zd.
Without loss of generality we work with L = 0 and show that dimEf (H) ∩ [0, 1]d = ζ∗µ,p(H) for
all H ∈ R.

Note that the characterization (1.25) and the assumptions on (jn)n∈N imply that for all x ∈
[0, 1]d, for the λjn = (i, jn, k) such that x ∈ λjn , one has

lim inf
n→+∞

log cµ,p,qλjn

log 2−jn
≥ lim inf

n→+∞

log |cfλjn
|

log 2−jn
≥ lim inf

j→+∞

logLfjn(x)

log 2−jn
≥ hf (x). (6.9)

Recall that the value of cµ,p,qλjn
does not depend on the index i of λjn = (i, jn, k).685
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6.2.1. The upper bound σf ≤ ζ∗µ,p.

Theorem 4(1) gives σf (H) ≤ ζ∗µ,p(H) for all H ≤ ζ ′µ,p(0
+). Note also that ζ∗µ,p(H) = d for all

H ∈ [ζ ′µ,p(0
+), ζ ′µ,p(0

−)]. Hence it remains us to treat the case H > ζ ′µ,p(0
−), which corresponds

to the decreasing part of the spectrum of f .

Fix H > ζ ′µ,p(0
−) and x ∈ [0, 1]d such that hf (x) ≥ H.690

By (6.9), denoting λjn any λ = (i, jn, k) ∈ Λjn such that x ∈ λjn , one has

lim inf
n→+∞

log cµ,p,qλjn

log 2−jn
≥ H. (6.10)

Recall that λjn ∈ Djn is the irreducible representation of λjn . Using the concatenation of cubes

introduced after Definition 3.4, one writes λjn = λjn · [0, 2−(jn−jn)]d, and

log cµ,p,qλjn

log 2−jn
=

log2 wλjn

jn
+

log2 µ(λjn))

−jn
+
jn
jn

τ∗µ(αλjn
)

p
. (6.11)

Recall (3.3) and the fact that for j, j′ ∈ N and λ ∈ Dj , one has µ(λ·[0, 2−j
′
]d) = µ(λ)2−ϕλ2−j

′αmin+ϕ̃λ(j
′),

where by (3.4) |ϕλ| and |ϕ̃λ(j′)| are uniformly bounded by a o(j) and a o(j′) respectively. So,

log2 µ(λjn)

−jn
=
jn
jn

log2 µ(λjn)

−jn
+
ϕλjn

jn
+
jn − jn
jn

αmin +
ϕ̃λjn

(jn − jn)

jn

which combined with (6.11) yields

log cµ,p,qλjn

log 2−jn
=
jn
jn
θp(αλjn

) +
(
1− jn

jn

)
αmin + rn(x), (6.12)

where

rn(x) =
log2 wλjn

jn
+
jn
jn

( log2 µ(λjn)
jn

− αλjn

)
+
ϕλjn

jn
+
ϕ̃λjn

(jn − jn)

jn
.

The dependence of rn(x) on x is explicit, to remember it. But it does not play any role in the
bounds above, which are uniform in jn and jn − jn.

Lemma 6.7. One has limn→+∞ rn(x) = 0.

Proof. The first term in rn(x) tends to zero when n→ +∞, by definition (6.4) of wλ.
For the other terms in rn(x), let us define

C = max

Ñ
sup
j≥1


˜̃
ϕ(j)

j

 , sup
j≥1

ß |ϕλ|
j

: λ ∈ Dj
™
, sup
j′≥1

 |ϕ̃λ(j′)|
j′

: λ ∈
⋃
j∈N

Dj


é
.

By (3.3) and Remark 6.1, one has C < +∞.695

Now fix η ∈ (0, 1) and let us treat the second term. Remark 6.1 again gives that jnjn

(
log2 µ(λjn

)

jn
−

αλjn

)
≤
‹‹ϕ(jn)
jn

. When jn is large, one sees that:

• if jnjn > η, then jn is large and |‹‹ϕ(jn)
jn

| ≤ |
‹‹ϕ(jn)
jn

| ≤ η,

• if jnjn ≤ η, then jn
jn
| ˜̃ϕ(jn)| ≤ Cη.
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In any case, for n large enough jn
jn
| ˜̃ϕ(jn)| ≤ (C + 1)η.700

The same argument applies to the third term jn
jn
ϕλjn

.

Finally, for the fourth term, one has:

• if jn−jnjn
> η, then jn − jn is also large and

ϕ̃λjn
(jn−jn)
jn

≤
ϕ̃λjn

(jn−jn)

jn−jn
≤ η,

• if jn−jnjn
≤ η , then

|ϕ̃λjn
(jn−jn)|
jn

=
|ϕ̃λjn

(jn−jn)|

jn−jn
jn−jn
jn

≤ Cη.

This concludes the proof of the Lemma.705

Note now that θp(α) ≥ αmin for all α ∈ [αmin, αmax]. Since αmin ≤ ζ ′µ,p(0
−) < H, (6.10) and

(6.12) together imply that necessarily, for every ε > 0, θp(αλjn
) ≥ H−ε for infinitely many integers

n. Hence, on one hand H ≤ θp(αp) and in particular Ef (H) = ∅ if H > θp(αp), and on the other
hand

hµ(x) ≥ lim sup
j→+∞

log2 µ(λj(x))

−j
≥ lim sup

n→+∞
αλjn

≥ θ−1
p (H),

where the same notations as above are used, i.e. λjn is here the unique cube of generation jn that

contains x. This implies that x ∈ E
≥
µ (θ

−1
p (H)).

As a conclusion, H ≤ θp(αp) and Ef (H) ⊂ E
≥
µ (θ

−1
p (H)). Since θ−1

p (H) ≥ τ ′µ(0
−) lies in

the decreasing part of the singularity spectrum of µ, Proposition 3.2(5) yields that dimEf (H) ≤
dimE

≥
µ (θ

−1
p (H)) = τ∗µ(θ

−1
p (H)). This is the desired upper bound.710

6.2.2. The lower bound σf ≥ ζ∗µ,p over the range [αmin, θp(αp)] = [ζ ′µ,p(+∞), ζ ′µ,p(−∞)].

Two cases must be separated.

Case 1: H ∈ [θp(αmin), θp(αp)].
Let α ∈ [αmin, αp] such that H = θp(α)(= α + τ∗µ(α)/p). Our goal is to show that σf (H) =

dimEf (H) ≥ ζ∗µ,p(H) = τ∗µ(α). To achieve this, we prove that µα(Ef (H)) > 0, where µα is the715

measure described in Proposition 3.2(2). Since µα is exact dimensional with exponent τ∗µ(α), this
yields the claim.

For any H ′ ≥ 0 set
E≤
f (H

′) := {y ∈ [0, 1]d : hf (y) ≤ H ′}.

Let us start with one technical lemma.

Lemma 6.8. For every η > 0, µα(Eµ(α) ∩ E≤
f (H − η)) = 0.

Proof. Fix η > 0, J0 ∈ N, and set

Eµ,η,J0(α) =

®
x ∈ [0, 1]d :

®
∀ J ≥ J0, ∀λ ∈ DJ such that λ ⊂ 3λJ(x),

2−J(α+
η
8 ) ≤ µ(λ) ≤ 2−J(α−

η
8 )

´
and for j ≥ J ≥ J0

Dη,J,j(α) =
®
λ ∈ DJ :

®
λ ∩ Eµ,η,J0(α) ∩ E

≤
f (H − η) ̸= ∅ and

∃λ′ = (i, j, k) ∈ Λj , λ
′ ⊂ 3λ, |cfλ′ | ≥ 2−J(H− η

2 )

´
. (6.13)

Recall the following fact stated along the proof of Lemma 6.5: there exists a constant M such720

that the only wavelet coefficients cλ′ to consider to compute L
gµ,p,q

λ for λ ∈ Dj are the j′ such that
j ≤ j′ ≤Mj.

39



Lemma 6.9. There exists C > 0 such that for J0 ≤ J ≤ j ≤MJ ,

#Dη,J,j(α) ≤ C2−(j−J)pαmin
2 2J(τ

∗
µ(α)−p

η
8 ),

and when j > MJ , Dη,J,j(α) is empty.

Proof. The case j > MJ follows from the remark just before the Lemma.
Let x ∈ Eµ,η,J0(α) ∩ E≤

f (H − η). By (1.25), there are infinitely many integers J ≥ J0 for725

which LfJ(x) ≥ 2−J(H−η/2). For such a generation J , the definition of the wavelet leader as a
supremum implies that there exist MJ ≥ j ≥ J and λ = (i, j, k) ∈ Λj with λ ⊂ 3λJ(x) such that

|cfλ| ≥ 2−J(H−η/2). This means that λJ(x) ∈ Dη,J,j(α).
Recalling (3.2), assume that J0 is so large that µ(λ) ≤ µ(λJ(x))2

Jη/82−(j−J)αmin/2.
Then, the definition of Eµ,η,J0(α) and the fact that α+ τ∗µ(α)/p = H give

|cfλ|
µ(λ)

≥ 2−Jη/82(j−J)
αmin

2 2−J(H− η
2 )2J(α−η/8) ≥ 2(j−J)

αmin
2 2−J

(
τ∗
µ(α)

p − η
4

)
. (6.14)

Since f ∈ Bµ,p
q (Rd), f ∈ Bµ

(− η
8M

),p
q (Rd), and so

∑
λ∈Λj

(
2−j

η
8M

|cfλ|
µ(λ)

)p
= C <∞. Thus,

C ≥
∑
λ∈Λj

Ç
2−j

η
8M

|cfλ|
µ(λ)

åp
1

|cf
λ
|

µ(λ)
≥2(j−J)

αmin
2 2

−J

(
τ∗
µ(α)

p
− η

4

) .
The number of cubes λ ∈ Λj such that the above indicator function is 1 is by (6.13) larger than
the cardinality of Dη,J,j(α). It follows that

C ≥ #Dη,J,j(α)2−jp
η

8M

(
2(j−J)

αmin
2 2−J

(
τ∗
µ(α)

p − η
4

))p
.

Noting that j ≤MJ implies 2jp
η

8M ≤ 2Jp
η
8 , the last inequality yields the result.730

In particular, Dη,J,j = ∅ for j ≥ J(pαmin

2 + τ∗µ(αmin)).
Note that

Eµ,η,J0(α) ∩ E
≤
f (H − η) ⊂

⋂
J≥J0

⋃
j≥J

⋃
λ∈Dη,J,j(α)

λ.

For any δ > 0, denote by H s
δ the pre-s-Hausdorff measure on Rd associated with coverings by sets

of diameter less than or equal to δ. Using
⋃
j≥J

⋃
λ∈Dη,J,j(α)

λ as covering of Eµ,η,J0(α)∩E
≤
f (H−η),

one deduces that for every J ≥ J0,

H s√
d·2−J

(
Eµ,ε,J0(α) ∩ E

≤
f (H − η)

)
≤

∑
J≤j≤J(pαmin

2 +τ∗
µ(αmin))

(#Dη,J,j)(α)(
√
d · 2−j)s

≤ (
√
d)sC

Ñ∑
m≥0

2−mp
αmin

2

é
2J(τ

∗
µ(α)−p

η
8−s),

which tends to zero as soon as s > τ∗µ(α)− pη8 . It follows that

dim
(
Eµ,η,J0(α) ∩ E

≤
f (H − η)

)
≤ τ∗µ(α)− p

η

8
,

and thus µα(Eµ,η,J0(α)∩E
≤
f (H − η)) = 0, because µα may give a positive mass to a set E only if

dimE ≥ τ∗µ(α).
To conclude, observe that the almost doubling property of µ yields

Eµ(α) =
⋂
m≥1

⋃
J0∈N

Eµ, 1
m ,J0(α).

This, combined with the previous estimate on µα gives µα(Eµ(α) ∩ E≤
f (H − η)) = 0.
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σf (H)

H
τ′
µ(+∞) = ζ′µ,1(+∞)

σµ(αmin) > 0

0 τ′
µ(−∞) ζ′µ,1(−∞)

Figure 3: Case where σµ(αmin) > 0 and p = 1: the dashed graph represents the spectrum of µ, the plain graph

represents the multifractal spectrum σf of typical functions f ∈ Bµ,1
q (Rd). An affine segment (in red) with slope

p = 1 appears in the spectrum σf .

We are now equipped to prove the lower bound dimEf (H) ≥ τ∗µ(α).735

First, (6.12) states that
log cµ,p,q

λjn
(x)

log 2−jn = jn(x)
jn(x)

θp(αλjn (x)
) +

(
1− jn(x)

jn(x)

)
αmin + rn(x).

By Proposition 3.2(2), for µα-almost every x, limj→+∞ αλj(x) = α. By Proposition 3.7, for

µα-almost every x, limn→+∞
jn(x)
jn(x)

= 1.

One deduces that hf (x) ≤ θp(α) = H for µα-almost every x, i.e. µα(E
≤
f (H)) = 1 (the equality

hf (x) = H does not hold in general, since (6.12) is true only for a subsequence of integers (jn)n≥1).740

Combining all the above results, one concludes that

µα(Ef (H)) = µα(Eµ(α) ∩ Ef (H))

≥ µα(Eµ(α) ∩ E≤
f (H))−

∑
m≥1

µα(Eµ(α) ∩ E≤
f (H − 1/m)) = 1.

This proves that necessarily dimEf (H) ≥ τ∗µ(α), as expected.

Case 2: H ∈ [αmin, θp(αmin)): this corresponds to the affine part of the spectrum, which occurs
only when σµ(αmin) = τ∗µ(αmin) > 0, see Figure 3.

If H ∈ [αmin, θp(αmin)), write H = αmin +
τ∗
µ(αmin)

δp , where δ > 1. By Proposition 3.6 applied

to the sequence (jn)n∈N given by Proposition 6.6, the set S(δ, (ηj)j∈N∗ , (jn)n∈N) supports a Borel745

probability measure ν of lower Hausdorff dimension at least equal to τ∗µ(αmin)/δ = p(H −αmin) =
ζ∗µ,p(H). Note that (ηj)j∈N∗ depends only on µ.

For x ∈ S(δ, (ηj)j∈N∗ , (jn)n∈N), one checks that

hf (x) ≤ lim inf
n→+∞

log cµ,p,qjn
(x)

log 2−jn
≤ αmin +

τ∗µ(αmin)

δp
= H.

In addition, {y ∈ [0, 1]d : hf (y) < H} =
⋃
m≥1E

≤
f (H − 1/m), and each set E≤

f (H − 1/m) has
a ν-measure equal to 0, since due to Proposition 3.2(2) applied to the capacity provided by the

leaders of f , dimE≤
f (H − 1/m) ≤ (ζΨf )

∗(H − 1/m) < ζ∗µ,p(H). Consequently, ν(Ef (H)) = 1 and750

dimEf (H) ≥ ζ∗µ,p(H).

Finally, if H = αmin, the set F =
⋂
p∈N S(p, (ηj)j≥1, (jn)n∈N) is easily seen to be non empty

(by taking δ = p at step p of the construction in the proof of proposition 3.6) and to be included

in E≤
f (αmin), by using the previous estimates. However we know that E≤

f (h) = ∅ for all h < αmin

by Theorem 4. Consequently, E≤
f (αmin) = E≤

f (αmin) ̸= ∅, so σf (αmin) = dimEf (αmin) ≥ 0.755
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6.3. Typical multifractal behavior in Bµ,p
q (Rd)

We finally prove item (2) of Theorem 4, hence obtaining the multifractal behavior of typical
functions in Bµ,p

q (Rd).

Recall the definition (1.18) of the basis {Nm}m∈N of neighborhoods of the origin in Bµ,p
q (Rd).

For every integer m > m0 = ⌊max(1, s−1
1 )⌋+ 1, set760

Vm =

®
f ∈ Bµ,p

q (Rd) : ∀j ≥ J2, ∀λ ∈ Λj ,
|cfλ|
cµ,p,qλ

∈ m−1{1, . . . ,m2}
´
.

Then let
G = lim sup

m→∞
(Vm +N2⌈m log(m)⌉). (6.15)

Each
⋃
ℓ≥m Vℓ, m ≥ m0, is dense in Bµ,p

q (Rd), so G contains a dense Gδ set.
When f ∈ G, there exists an increasing sequence (jn)n≥0 such that f ∈ Vjn +N2⌈jn log(jn)⌉ for

all n ≥ 0.
Fix L ∈ Zd. Looking at the particular generation jn, for all λ ∈ Λjn such that λ ⊂ L+3[0, 1]d, by

definition of Vjn and ‹N2⌈jn log(jn)⌉ , the lower bound |cfλ| ≥ j−1
n cµ,p,qλ −2−⌈jn log(jn)⌉µ(λ)2jn2

−jn log(jn)

765

holds. By construction of the coefficients cµ,p,qλ , this implies that for n large enough one has

|cfλ| ≥ j−1
n cµ,p,qλ /2, hence there exists a positive sequence (εn)n∈N converging to 0 such that |cfλ| ≥

2−jnεn |cµ,p,qλ | for all λ ∈ Λjn such that λ ⊂ L + 3[0, 1]d. Consequently, Proposition 6.6 yields
σf = σgµ,p,q

= ζ∗µ,p.

Remark 6.10. In fact, the definitions of Vjn ,
‹N2⌈jn log(jn)⌉ , and c

µ,p,q
λ , imply that if (jn)n≥1 is an

increasing sequence of integers and f ∈
⋂
n≥1 Vjn + N2⌈jn log(jn)⌉ , then for all N,K ∈ N∗, for all

n ≥ 1 large enough and λ ∈
⋃Kjn
j=jn

Λj such that λ ⊂ N [0, 1]d, one has

1

2jn
cµ,p,qλ ≤ |cfλ| ≤ 2jnc

µ,p,q
λ .

These bounds will be useful to estime the Lq-spectrum of f .770

7. Validity of the WMF and the WWMF in Bµ,p
q (Rd)

Recall that the multifractal formalisms for functions were defined in Section 1.5. In this last
section, we first discuss the validity of the WMF for the saturation function gµ,p,q. This helps in
establishing part (3) of Theorem 5 in Section 7.3, while Section 7.2 provides the proof of part (2)
of Theorem 5.775

7.1. WMF and WWMF for the saturation function gµ,p,q

Recall that the wavelet Ψ is fixed, and that gµ,p,q is built via its wavelet coefficients in the

wavelet basis generated by Ψ. Also, recall (1.26) for the definition of ζN,Ψgµ,p,q,j
, and the various

notations concerning Lq-spectra for functions.

Proposition 7.1. The WMF holds for gµ,p,q on the interval [ζ ′µ,p(+∞), ζ ′µ,p(0
+)], and the WWMF780

holds for gµ,p,q on the interval [ζ ′µ,p(+∞), ζ ′µ,p(−∞)].

Moreover, for all N ∈ N∗, one has limj→+∞ ζN,Ψgµ,p,q,j
= ζµ,p.

The second part of the statement shows that the convergence of the sequence
(
ζN,Ψgµ,p,q,j

)
j≥1

is

stronger than what is required for the WWMF to hold (only the convergence over a subsequence
is needed).785

42



Proof. Suppose that it is established that for all N ∈ N∗, one has limj→+∞ ζN,Ψgµ,p,q,j
= ζµ,p. In

particular ζN,Ψgµ,p,q
= ζµ,p for all N ∈ N∗, so ζΨgµ,p,q

= ζµ,p. Since it was shown in the previous section
that σgµ,p,q = ζ∗µ,p, one concludes that gµ,p,q satisfies the WMF.

Now, fix N ∈ N∗. Let us prove that limj→+∞ ζN,Ψgµ,p,q,j
= ζµ,p.

The Zd-invariance of µ and the definition of gµ,p,q show that if is enough to work on [0, 1]d and790

to prove that limj→+∞ j−1 log
∑
λ∈D0

j
(L

gµ,p,q

λ )t = ζµ,p(t).

Fix t ∈ R. Recall Remark 6.3(1) and Lemma 6.5. The reader can check that due to these two
facts,

lim
j→∞

j−1 log

∑
λ∈D0

j
(L

gµ,p,q

λ )t∑
λ∈D0

j
(c
gµ,p,q

λ )t
= 0.

Moreover, by definition of the coefficients c
gµ,p,q

λ , and since log(wλ) = o(log(µ(λ))) uniformly in
λ ∈ Λj as j → +∞,

lim
j→∞

j−1 log

∑
λ∈D0

j
(c
gµ,p,q

λ )t

B(j, t)
= 0, where B(j, t) =

∑
λ∈D0

j

Ö
µ(λ)2

−j
τ∗µ(αλ)

p

èt

.

Thus, one must prove that
lim

j→+∞
j−1 log2B(j, t) = ζµ,p(t). (7.1)

When p = +∞, this was established in Section 3 of [1], but in the general case where µ is a positive
power of such a measure the result holds as well by a direct calculation.

Assume now that p < +∞. Fix t ∈ R∗, the case t = 0 being obvious.

Fix ε > 0. Using the same decomposition as that used in the proof of Lemma 6.4,

B(j, t) =

j∑
J=0

∑
λ∈D0

J\(D0
J−1·[0,2−1]d)

µ(λ · [0, 2−(j−J)]d)t2−
t
pJτ

∗
µ(αλ).

Then, from (3.3) we deduce that there exists a positive sequence (Cj)j≥1 depending on t and µ

such that limj→+∞
log(Cj)

j = 0 and for all j ≥ 1,

2(j−J)(αmin+ε)C−1
j ≤ µ(λ)

µ(λ · [0, 2−(j−J)]d)
≤ Cj2

(j−J)(αmin−ε).

Observe that when λ and λ′ are neighbors in ΛJ , the two numbers µ(λ)t2−
t
pJτ

∗
µ(αλ) and µ(λ′)t2−

t
pJτ

∗
µ(αλ′ )

795

differ by a factor at most 2Jε. This follows from the almost doubling property (P2) of µ and the
continuity of τ∗µ .

These considerations prove that there exists another positive sequence (‹Cj)j≥1 depending on t

and µ such that limj→+∞
log(‹Cj)

j = 0 and‹C−1
j
‹B(j, t, αmin, s(t)ε) ≤ B(j, t) ≤ ‹Cj‹B(j, t, αmin,−s(t)ε), (7.2)

where s(t) is the sign of t and‹B(j, t, β, γ) =

j∑
J=0

2−(j−J)t(β+γ)2−Jγ
∑
λ∈D0

J

µ(λ)t2−
t
pJτ

∗
µ(αλ), (7.3)
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The quantity
∑
λ∈D0

J
µ(λ)t2−

t
pJτ

∗
µ(αλ) is now controlled. Using Proposition 3.2(6), the interval

[αmin, αmax] can be split into M contiguous intervals Ii = [αi, αi+1], i = 1, . . . ,M , of length less
than ε such that for every i ∈ {1, . . . ,M},∣∣∣ sup

α∈Ii
τ∗µ(α)−

log2 #Dµ(j, Ii)
j

∣∣∣ ≤ ε and sup
α,α′∈Ii

|τ∗µ(α)− τ∗µ(α
′)
∣∣ ≤ ε.

Define the mapping χ3 : α ∈ [αmin, αmax] 7→ tθp(α)−τ∗µ(α) (in (4.3) its restriction χ̃2 to the interval
[αmin, αp] was considered). Without loss of generality, suppose that there exists 1 ≤ i0 ≤ M such
that tθp(αi0)− τ∗µ(αi0) = min{χ3(α) : α ∈ [αmin, αmax]} := ζ3(t).800

Also, by Remark 6.1, there exists C ≥ 1 such that for all j ∈ N and λ ∈ D0
j , one has

C−12−j(αλ+ε) ≤ µ(λ) ≤ C2−j(αλ−ε).
If follows from the previous information that

∑
λ∈D0

J

µ(λ)t2−
t
pJτ

∗
µ(αλ)


≤ C |t|

M∑
i=1

2J(τ
∗
µ(αi)+ε)2−Jt(αi−2s(t)ε)2−

t
pJ(τ

∗
µ(αi)−s(t)ε)

≥ C−|t|
M∑
i=1

2J(τ
∗
µ(αi)−ε)2−Jt(αi+2s(t)ε)2−

t
pJ(τ

∗
µ(αi)+s(t)ε),

which implies that

2Js(t)ε
∑
λ∈D0

J

µ(λ)t2−
t
pJτ

∗
µ(αλ) = mJ(t, ε)

M∑
i=1

2−Jχ3(αi) (7.4)

where | log(mJ(t, ε))| ≤ |t| log(C) + (2 + 2|t|+ |t|
p )Jε.

Then, incorporating (7.4) in (7.3) and using that the infimum of χ3(αi) is reached at i0, i.e.
χ3(αi0) = ζ3(t), one gets‹B(j, t, β,±ε) =

j∑
J=0

2−(j−J)t(β+γ)‹mJ(t, ε)2
−Jζ3(t), (7.5)

where | log(‹mJ(t, ε))| ≤ log(M) + |t| log(C) + (2 + 2|t| + |t|
p )Jε. Incorporating (7.5) in (7.2) then

implies

Bj = “mj(t, ε)2
−jtαmin

j∑
J=0

mJ(t, ε)‹mJ(t, ε)2
−J(ζ3(t)−tαmin), (7.6)

where max(| log(mj(t, ε)), | log(“mj(t, ε))|) ≤ j|t|ε+ log(‹Cj).
It follows from (7.6) and the fact that ε is arbitrary, that:805

• ζ3(t)− tαmin ≥ 0 implies lim
j→+∞

−j−1 log2B(j, t) = tαmin,

• ζ3(t)− tαmin ≤ 0 implies lim
j→+∞

−j−1 log2B(j, t) = ζ3(t).

hence, to prove (7.1) and Proposition 7.1, the value of ζ3(t) and the sign of ζ3(t)− tαmin must be
investigated. According to the previous observations, this will give the desired conclusion.

The two cases αmin = αmax and αmin < αmax are split.810

Suppose first that αmin = αmax. Then, τµ(t) = αmint− d for all t ∈ R, and

ζµ,p(t) =

®
(αmin + d

p )t− d when t < p,

αmint when t ≥ p.
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A straightforward computation gives ζ3(t) = tαmin+
(
t
p−1

)
d. Thus when t < p, ζ3(t) = ζµ,p(t).

Moreover, ζ3(t)− tαmin =
(
t
p −1

)
τ∗µ(αmin) is non negative if and only if t ≥ p, i.e. ζµ,p(t) = αmint;

and when p > t one has ζµ,p(t) = ζ3(t), hence the result.

Assume next that [αmin, αmax] is non trivial.

When t ≥ p, the mapping χ3 rewrites χ3(α) = tα+
(
t
p−1

)
τ∗µ(α) so it is concave, and it reaches815

its minimum ζ3(t) either at αmin or at αmax. In either case, ζ3(t) − tαmin ≥ 0. Moreover, in this
range ζµ,p(t) = tαmin, so (7.1) holds true.

When t < p, recall the notations introduced and the fact established in the proof of Proposi-
tion 4.2.

If tp = pt
p−t ≤ t∞ = (τ∗µ)

′(α+
min), the convex function χ3 reaches its minimum p−t

p τµ(
p
p−t t) =820

ζµ,p(t) at α̃t, i.e. ζ3(t) = ζµ,p(t).

If tp > t∞, then χ3 is increasing and reaches at αmin its minimum equal to tαmin +
(
t
p −

1
)
τ∗µ(αmin) = ζµ,p(t) (here ζ3(t) = ζµ,p(t) as well). In both cases, ζ3(t)−tαmin ≤ ζ3(t)−χ3(αmin) ≤

0 and (7.1) holds true.

7.2. Proof of Theorem 5(2)825

As recalled in the introduction, it is known [10] that for any smooth function f , one has
σf ≤ ζ∗f . Since it was shown in Section 6.3 that σf = (ζµ,p)

∗ for typical functions in Bµ,p
q (Rd),

for such functions one necessarily has ζf ≤ ζµ,p by inverse Legendre transform. Simultaneously,
Theorem 8 states that ζf |R+

= ζΨf |R+
≥ ζµ,p|R+

, which yields the desired result.

7.3. Proof of Theorem 5(3)830

It is enough to get part (i). Then part (ii) follows from the fact that the class of residual sets
is stable by countable intersection.

Let f ∈ G, where G is theGδ set defined by (6.15), and consider a sequence (jn)n≥1 such that f ∈
Vjn+N2⌈m log(m)⌉ for all n ≥ 1. Fix N ∈ N∗. We prove that ζΨ,Nf,jn

converges pointwise to ζµ,p as n→
+∞, which is enough to show that the WWMF holds relatively to Ψ over [ζ ′µ,p(+∞), ζ ′µ,p(−∞)],835

since it was established that σf = ζ∗µ,p.

Since a function f ∈ G necessarily belongs to C αmin−ε(Rd) (for every ε > 0), one has |cfλ| ≤
2−j(αmin−ε) for every large j and λ ∈ Λj such that λ ⊂ (N + 1)[0, 1]d.

Fix ε = αmin/2. By construction, when j is large and λ ∈ Λj , c
µ,p,q
λ ≥ 2−2jαmax . Hence, from

the previous fact and Remark 6.10 applied with K = ⌊4αmax/αmin⌋ + 1, one sees that when n840

becomes large, for all j ≥ jn and λ ∈ Λj such that λ ⊂ (N + 1)[0, 1]d:

• either j ∈ {jn, . . . ,Kjn} and the wavelet coefficient cfλ of f satisfies 1
2jn

cµ,p,qλ ≤ |cfλ| ≤
2jnc

µ,p,q
λ , ı̀tem or j > Kjn and |cfλ| ≤ cµ,p,qλ . This implies that for all λ ∈ Djn such that

λ ⊂ N [0, 1]d, the wavelets leader Lfλ of f satisfies

1

2jn
L
gµ,p,q

λ ≤ Lfλ ≤ 2jn L
gµ,p,q

λ .

Consequently, limn→+∞ j−1
n log2

(
ζΨ,N
f,jn

ζΨ,N
g,jn

)
= 0, and by Proposition 7.1, ζΨ,Nf,jn

indeed converges to

ζµ,p as n→ ∞.

Finally, when q < +∞, to establish that for a typical f ∈ Bµ,p
q (Rd) one has ζΨf |R∗

−
= −∞,

consider for all m ∈ N∗ the set‹Vm =
¶
f ∈ Bµ,p

q (Rd) : ∀ m ≤ j ≤ m log(m), ∀λ ∈ Λj , c
f
λ = 0

©
.
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The set lim supm→∞
‹Vm is dense in Bµ,p

q (Rd) and

G̃ = G ∩ lim sup
m→∞

(‹Vm +N2⌈m log(m)⌉).

is a dense Gδ-set. When f ∈ G̃, there exists an increasing sequence of integers (mn)n∈N such that

f ∈ ‹Vmn
+ N2⌈mn log(mn)⌉ for all n ∈ N. It is easily checked that for any A > 0 and N ∈ N, for n

large enough, if λ ∈ Dmn and λ ⊂ N [0, 1]d, one has Lfλ ≤ 2−Amn . This implies that for t < 0,∑
λ∈Dmn , λ⊂N [0,1]d

1Lf
λ>0(L

f
λ)
t ≥ #{λ ∈ Dmn , λ ⊂ N [0, 1]d : Lfλ > 0} · 2−Atmn ,

hence ζΨ,Nf (t) ≤ At. Thus, A being arbitrary and t < 0, the desired conclusion holds.

8. Proof of Theorem 7845

Part (1) follows from the fact that for σ ∈ Ss to be the typical singularity spectrum in Bµ,p
q (Rd)

with p < +∞, by Theorem 4 and Proposition 4.2 it is necessary that σ(Hmin) = 0, and by
Theorem 4 the function σ∗ is linear over [p,+∞] so σ′(H+

min) ≤ p by Remark 4.1.

To prove part (2), the cases p ̸∈
⌢

∂σ((Hmin, Hmax]) and p ∈
⌢

∂σ((Hmin, Hmax]) are separated.

Case p ̸∈
⌢

∂σ((Hmin, Hmax]): Define the mapping

A : H ∈ [Hmin, Hmax] 7→ H − σ(H)

p
.

It is a continuous increasing bijection onto its image, that we denote by I = [αmin, αmax]. For
α ∈ I, denote A−1(α) by H(α). It is easily checked that the mapping

σ̃ : α ∈ I 7→ p(H(α)− α)

belongs to Sd as well, and that if µ ∈ Ed is chosen such that σµ = σ̃, the study achieved in850

Section 4 implies that σ is the singularity spectrum of the typical functions in Bµ,p
q (Rd), for all

q ∈ [1,+∞] (the function A is then the inverse of the function θp defined in (4.1)).
Suppose, moreover, that σ′(H−

max) = −∞ and σ(Hmax) > 0. This is equivalent to suppose that
σ̃′(α−

max) = −p and σ̃(αmax) > 0. Again, the study achieved in Section 4 shows that for any element
σ̂ of Sd whose domain takes the form [αmin, α

′
max] with α

′
max > αmax and σ̂|[αmin,αmax] = σ̃, for any855

ν ∈ Ed such that σν = σ̂, σ is still the singularity spectrum of the typical functions in Bν,p
q (Rd),

for all q ∈ [1,+∞]. Note that there are infinitely many ways to consider such an extension. On
the contrary, if σ′(H−

max) > −∞ or σ(Hmax) = 0, µ is the unique element of Ed such that typical
elements of Bµ,p

q (Rd) do have a singularity spectrum equal to σ.

Case p ∈
⌢

∂σ((Hmin, Hmax]): this means that there is a non-trivial maximal subinterval860

[Hmin, ‹Hmin] of [Hmin, Hmax] such that for all H ∈ [Hmin, ‹Hmin] one has σ(H) = p(H −Hmin).

If ‹Hmin = Hmax, one chooses σ̃ = d · 1Hmax
, so that µ = (Ld)

Hmax
d is such that σµ = σ̃ and σ is

the singularity spectrum of the typical functions in Bµ,p
q (Rd), for all q ∈ [1,+∞].

If ‹Hmin < Hmax, the same approach as in the case p ̸∈ ∂((Hmin, Hmax]) works, except that σ

is replaced by its restriction to [‹Hmin, Hmax], and with the difference that now one necessarily has865

σ(‹Hmin) > 0.

The claim about the validity of the WMF and WWMF follows from Theorem 5.
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