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. We find a characterization of the elements of B in terms of wavelet coefficients, and then describe the multifractal properties (singularity spectrum, validity of the multifractal formalism) of their Baire typical functions. This allows us to fully solve the Frisch-Parisi conjecture inside B.

Résumé.

. Nous trouvons une caractérisation des élements de B en termes de coefficients d'ondelettes, puis nous décrivons les propriétés multifractales (spectre de singularité, validité du formalisme multifractal) de leurs fonctions génériques. Ceci nous permet de résoudre complètement la conjecture de Frisch-Parisi dans B.

Introduction

The so-called Frisch-Parisi conjecture is the inverse problem, raised by S. Jaffard, consisting in seeking for Baire function spaces in which typical elements share the same prescribed multifractal behavior and obey a multifractal formalism. To be more specific, recall that for a real valued function f ∈ L ∞ loc (R d ), the pointwise Hölder exponent function h f is defined as follows. Given x 0 ∈ R d , and H ∈ R + , f is said to belong to C H (x 0 ) if there exist a polynomial P of degree at most ⌊H⌋, a constant C > 0, and a neighborhood V of x 0 such that

∀ x ∈ V, |f (x) -P (x -x 0 )| ≤ C|x -x 0 | H . The pointwise Hölder exponent of f ∈ L ∞ loc (R d ) at x 0 is h f (x 0 ) = sup H ∈ R + : f ∈ C H (x 0 ) , (1.1) 
and f is said to have a Hölder singularity of order h f (x 0 ) at x 0 . Then the multifractal spectrum, or singularity spectrum of f is the mapping

σ f : ® R → [0, d] ∪ {-∞} H → dim E f (H),
where

E f (H) = {x ∈ R d : h f (x) = H},
dim stands for the Hausdorff dimension, and dim E = -∞ if and only if E = ∅.

Conjecture 1 (Frisch-Parisi conjecture). Let S d be the set of functions σ : R → [0, d] ∪ {-∞} such that σ is concave, continuous, with compact support included in (0, +∞) and whose maximum equals d. For every σ ∈ S d , there exists a Baire functional space of functions defined on R d in which any typical element f obeys some multifractal formalism and satisfies σ f = σ.

We refer to the companion paper [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF] for an introduction to multifractals and this conjecture. In [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF], we constructed a set M d of Z d -invariant Radon measures on R d , exhausting the possible multifractal behaviors of fully supported measures obeying a multifractal formalism, and with a prescribed singularity spectrum compactly supported in (0, ∞). Considering the set of capacities E d = {ν s : ν ∈ M d , s > 0}, the prescription part of the conjecture followed thanks to a family of Baire spaces {B µ (R d )} µ∈E d extending naturally the Hölder-Zygmund spaces and defined using wavelet expansion of uniformly bounded Hölder fonctions (see [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF]Theorems 2 and 7]); in particular typical elements in B µ (R d ) inherit the singularity spectrum of µ. In this paper, we introduce heterogeneous Besov spaces denoted by B µ,p q (R d ) (depending on a capacity µ and two indices p, q ∈ (0, +∞]), which generalise in a natural direction the standard Besov spaces defined through L p moduli of smoothness. In particular, one will see that B µ,∞ ∞ (R d ) = B µ (R d ). Roughly speaking, the central role played by the Lebesgue measure in the structure of Besov spaces is now played by (possibly) multifractal measures and more generally capacities. We first characterize these new spaces using wavelet coefficients. Then, we consider the family B = {B µ,p q (R d )} µ∈E d ,(p,q)∈[1,+∞] 2 of such spaces where µ belongs to set of capacities E d . Through a delicate study we identify the multifractal behavior of the typical elements in any function space B µ,p q (R d ); this behavior depends in a non trivial way on that of µ and on p. Then, we show that these typical functions obey a multifractal formalism. Finally, we solve the inverse problem exhaustively inside B.

Sections 1.1 and 1.2 respectively introduce the heterogeneous Besov spaces (called Besov spaces in multifractal environment) considered in this paper, and provide the characterisation of these spaces using wavelets (Theorem 2). Then, basic multifractal properties of the elements of E d are gathered in Section 1.3 (Theorem 3). The typical multifractal behavior in B µ,p q (R d ) when µ ∈ E d is presented in Section 1.4 (Theorem 4), while the multifractal formalism used in this paper and its typical validity in B µ,p q (R d ) are the subject of Section 1.5 (Theorem 5). The full solution to the conjecture is given in Section 1.6 (Theorems 6 and 7).

Definitions of heterogeneous Besov spaces

Standard Besov spaces can be defined by using L p moduli of smoothness, and are characterized using decay rate of wavelet coefficients. To define Besov spaces in multifractal environment, the classical definition of L p moduli of smoothness is extended using Hölder capacities. For x ∈ R d , r ∈ R + , B(x, r) denotes the closed Euclidean ball with center x and radius r.

Definition 1.1. The set of Hölder set functions on B(R d ) is defined as

H(R d ) = µ : B(R d ) → R + ∪ {∞} : ∃ C, s > 0, ∀ E ⊂ R d , µ(E) ≤ C|E| s . (1.2)
Then, the set of Hölder capacities is defined as

C(R d ) = µ ∈ H(R d ) : ∀ E, F ∈ B(R d ), E ⊂ F ⇒ µ(E) ≤ µ(F ) . (1.
3)

The topological support supp(µ) of µ ∈ H(R d ) is the set of points x ∈ R d for which µ(B(x, r)) > 0 for every r > 0. A capacity µ is fully supported when supp(µ) = R d .

Similarly, H([0, 1] d ) and C([0, 1] d ) are defined by replacing above R d by [0, 1] d .

Definition 1.2. For h ∈ R d and f : R d → R, consider the finite difference operator

∆ h f : x ∈ R d → f (x + h) -f (x). Then, for n ≥ 2, set ∆ n h f = ∆ h (∆ n-1 h f ). For every fully supported set function µ ∈ H(R d ), for every n ∈ N * , h ∈ R d \ {0} and x ∈ R d , set ∆ µ,n h f (x) = ∆ n h f (x) µ(B[x, x + nh])
,

where B[x, y] stands for the Euclidean ball of diameter [x, y].

For p ∈ [1, +∞], the µ-adapted n-th order L p modulus of smoothness of f is defined at any t > 0 by

ω µ n (f, t, R d ) p = sup t/2≤|h|≤t ∥∆ µ,n h f ∥ L p (R d ) . (1.4) 
Observe that when µ(E) = 1 for every set E, then ω µ n (f, t, R d ) p is a modification of the standard n-th order L p modulus of smoothness of f defined by

ω n (f, t, R d ) p = sup 0≤|h|≤t ∥∆ n h f ∥ L p (R d ) . (1.5) 
Recall that when s > 0, and p, q ∈ [1, +∞], the Besov space B s,p q (R d ) is the set of those functions f : R d → R such that

∥f ∥ B s,p q (R d ) = ∥f ∥ L p (R d ) + |f | B s,p q (R d ) < ∞, (1.6) 
where |f | B s,p q (R d ) = ∥(2 js (ω n (f, 2 -j , R d ) p ) j∈N ∥ ℓ q (N) < +∞, and n is an integer ≥ s. The dependence on n in |f | B s,p q (R d ) is voluntarily omitted. Indeed, the norm ∥ ∥ B s,p q (R d ) makes B s,p q (R d ) a Banach space, and different values of n > s yield equivalent norms (see [START_REF] Cohen | Wavelet methods in numerical analysis[END_REF]Remark 3.2.2]).

Let us recall some notations used in [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF]. For every j ∈ Z, let D j stand for the collection of (closed) dyadic cubes of generation j, i.e. λ j,k = 2 -j k + 2 -j [0, 1] d , where k ∈ Z d . Let us also set D = j∈Z D j , and if λ = λ j,k ∈ D j we set x λ = 2 -j k.

For x ∈ R d , λ j (x) is the closure of the unique dyadic cube of generation j, product of semi-open to the right dyadic intervals, which contains x.

For j ∈ Z, λ ∈ D j , and N ∈ N * , N λ denotes the cube with same center as λ and radius equal to N • 2 -j-1 in (R d , ∥ ∥ ∞ ). For instance, 3λ is the union of those λ ′ ∈ D j such that ∂λ ∩ ∂λ ′ ̸ = ∅ (∂λ stands for the frontier of the cube λ).

The capacities considered in this paper and in [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF] satisfy additional properties. Definition 1.3. Let Φ be the set of non decreasing functions ϕ : N → R + such that lim j→+∞ ϕ(j) j = 0. A capacity µ ∈ C(R d ) is almost doubling when there exists ϕ ∈ Φ such that for all x ∈ supp(µ) and j ∈ N, µ(3λ j (x)) ≤ e ϕ(j) µ(λ j (x)).

(1.7)

Definition 1.4. A set function µ ∈ H(R d ) satisfies property (P) if there exist C, s 1 , s 2 > 0 and ϕ ∈ Φ such that:

(P 1 ) for all j ∈ N and λ ∈ D j , C -1 2 -js2 ≤ µ(λ) ≤ C2 -js1 .

(1.8) (P 2 ) for all j, j ′ ∈ N with j ′ ≥ j, for all λ, λ ∈ D j such that ∂λ ∩ ∂ λ ̸ = ∅, and λ ′ ∈ D j ′ such that λ ′ ⊂ λ: C -1 2 -ϕ(j) 2 (j ′ -j)s1 µ(λ ′ ) ≤ µ( λ) ≤ C2 ϕ(j) 2 (j ′ -j)s2 µ(λ ′ ).

(1.9)

In particular, µ is almost-doubling, and doubling if ϕ = 0.

Definition 1.5. For s > 0, a set function µ ∈ H(R d ) is s-Hölder when there exists C > 0 such that µ(E) ≤ C|E| s for all E ∈ B(R d ).

Then, for µ ∈ H(R d ), s > 0, and E ∈ R d , define

µ s (E) = µ(E) s and µ (+s) (E) = µ(E)|E| s ,
and if µ is s 0 -Hölder, then for all s ∈ (0, s 0 ), define

µ (-s) (E) =      0 if |E| = 0, µ(E)|E| -s if 0 < |E| < +∞, ∞ otherwise.
Starting from µ ∈ H(R d ), µ s , µ (+s) and µ (-s) as defined above still belong to H(R d ) (with s small enough in the case of µ (-s) ).

We are now ready to introduce heterogenous Besov spaces in µ-environment.

Definition 1.6 (Besov spaces in µ-environment). Let µ ∈ H(R d ) satisfy property (P 1 ) of Definition 1.4 with exponents 0 < s 1 ≤ s 2 , and consider an integer n ≥ ⌊s 2 + d p ⌋ + 1.

For 1 ≤ p, q ≤ ∞, let

B µ,p q (R d ) = {f ∈ L p (R d ) : |f | B µ,p q (R d ) < +∞}, where |f | B µ,p q (R d ) = 2 jd/p (ω µ n (f, 2 -j , R d ) p ) j∈N ℓ q (N)
.

(1.10) Also, let B µ,p q (R d ) = 0<ε<min(s1,1)

B µ (-ε) ,p q (R d ).

(1.11)

Note that B µ,p q (R d ) ⊂ B µ,p q (R d ). The spaces B µ,p q (R d ) and B µ,p q (R d ) will be referred to as Besov spaces in µ-environment.

At this stage, both B µ,p q (R d ) and B µ,p q (R d ) depend a priori on the choice of n. However, the dependence in n ≥ ⌊s 2 + d p ⌋+1 can be dropped for B µ,p q (R d ) when µ is a doubling capacity, and also for B µ,p q (R d ), under the (rather weak) extra property (P 2 ) of Definition 1.4 (see Theorem 2 for a precise statement). Moreover, endowed with the norm

∥ ∥ L p (R d ) + | | B µ,p q (R d ) , B µ,p q (R d ) is a Banach space. Hence, B µ,p q (R d
) is naturally endowed with a Fréchet space structure, as the intersection of a nested family of such spaces. The Fréchet spaces B µ,p q (R d ) will be used to solve the Frisch-Parisi conjecture.

Let L d stand for the d-dimensional Lebesgue measure. For µ = (L d )

s d -1 p , it is quite direct to see that B µ,p q (R d ) = B s,p q (R d ) when s > d/p. When µ ∈ H(R d
) is multifractal (typically µ = ν s where ν is a multifractal measure and s > 0) the heterogeneity associated to the distribution of the values of µ at small scales makes natural to see such a capacity as defining an heterogeneous environment imposing local distorsions in the computation of the moduli of smoothness in comparison to positive powers of L d , which are homogeneous in space. Like for B s,p q (R d ), to study the typical multifractal behavior in B µ,p q (R d ) and B µ,p q (R d ), it is essential to establish a wavelet characterization of these spaces. Such a characterization exists for B µ,p q (R d ) when µ is almost doubling, and for B µ,p q (R d ) when µ is doubling (see Theorem 2).

Wavelet characterization of Besov spaces in almost doubling environments

It is standard that classical Besov spaces are characterized in terms of wavelet coefficients decay.

We investigate the situation for the spaces B µ,p q (R d ) and B µ,p q (R d ). Let {ϕ, {ψ (i) } i=1,...,2 d -1 } be a family of wavelets defining a multi-resolution analysis with reconstruction in L 2 (R d ) (see [START_REF] Meyer | Ondelettes et opérateurs I[END_REF]Ch. 2 and 3] for a general construction).

Let Λ = j∈Z Λ j , where for j ∈ Z

Λ j = {(i, j, k) : i ∈ {1, . . . , 2 d -1}, k ∈ Z d }.
For every λ = (i, j, k) ∈ Λ, denote by ψ λ the function x → ψ (i) (2 j x -k). The functions 2 dj/2 ψ λ , j ∈ Z, λ ∈ Λ j , form an orthonormal basis of L 2 (R d ), and every f ∈ L 2 (R d ) can be expanded, in two equivalent manners, as

f = k∈Z d β(k)ϕ(• -k) + j∈N λ∈Λj c λ ψ λ = j∈Z λ∈Λj c λ ψ λ ,
where

β(k) = R d f (x)ϕ(x -k) dx and c λ = R d 2 dj ψ λ (x)f (x) dx (k ∈ Z d , λ ∈ Λ). (1.12) 
Recall that a mapping ψ : R d → R has r vanishing moments when for every multi-index α ∈ N d of length smaller than or equal to r,

R d x α1 1 • • • x α d d ψ(x)dx = 0.
Definition 1.7. For every r ∈ N, call F r the set of those ϕ, {ψ (i) } i=1,...,2 d -1 which define a multi-resolution analysis with reconstruction in L 2 (R d ), and such that ϕ and the ψ (i) are compactly supported, r times continuously differentiable functions, and every ψ (i) has r vanishing moments.

The set F r is not empty for all r ∈ N (see [START_REF] Meyer | Ondelettes et opérateurs I[END_REF]Prop. 4, section 3.7]). Fix r ∈ N * and Ψ ∈ F r . For any f ∈ L p (R d ), 1 ≤ p ≤ ∞, define the sequences (β(k)) k∈Z d and (c λ ) λ∈Λ as in (1.12). Besov spaces are characterized by their wavelet coefficients as follows (see [START_REF] Meyer | Ondelettes et opérateurs I[END_REF]Ch. 6], [START_REF] Triebel | A note on wavelet bases in function spaces[END_REF], or [2, Corollary 3.6

.2]): For r > s > d/p, f ∈ B s,p q (R d ) ⇐⇒    β ∈ ℓ p (Z d ), (ε j ) j∈N ∈ ℓ q (N), where ε j = 2 j(s-d/p) c λ λ∈Λj ℓ p (Λj ) , (1.13) 
and the decomposition f

= k∈Z d β(k)ϕ(• -k) + j∈N λ∈Λj c λ ψ λ holds. Moreover, ∥β∥ ℓ p (Z d ) + ∥(ε j )∥ ℓ q (N) is a norm equivalent to the norm ∥f ∥ B s,p q (R d ) defined in (1.6). Note that ψ (i) ∈ B s,p q (R d ), and B s,p q (R d ) → B s-d p ,+∞ +∞ (R d ) = C s-d p (R d ), where for all α > 0, C α (R d ) = B α,∞ ∞ (R d
) is the Hölder-Zygmund space of order α. Fix a wavelet Ψ ∈ F n , and consider for a function

f ∈ L p (R d ) the quantity |f | µ,p,q,Ψ = ∥(ε µ j ) j∈N ∥ ℓ q (N) , where ε µ j = Å c λ µ(λ) ã λ∈Λj ℓ p (Λj )
.

(1.14)

Then define

B µ,p q,Ψ (R d ) = {f ∈ L p (R d ) : |f | µ,p,q,Ψ < +∞}. (1.15) The space (B µ,p q,Ψ (R d ), ∥ ∥ L p (R d ) + | | µ,p,q,Ψ ) is complete. Theorem 2. Let µ ∈ C(R d
) be an almost doubling capacity. Let 0 < s 1 ≤ s 2 and r = ⌊s 2 + d p ⌋ + 1. Suppose that property (P) holds for µ with the exponents (s 1 , s 2 ) and that B µ,p q (R d ) has been constructed by using the µ-adapted n-th order L p moduli of smoothness, for some integer n ≥ r. Let Ψ ∈ F r .

For every ε ∈ (0, 1), there exists a constant

C ε,Ψ > 1 such that for all f ∈ L p (R d ), ∥f ∥ L p (R d ) + |f | µ,p,q,Ψ ≤ C ε,Ψ (∥f ∥ L p (R d ) + |f | B µ (+ε) ,p q (R d )
), (1.16)

∥f ∥ L p (R d ) + |f | B µ,p q (R d ) ≤ C ε,Ψ (∥f ∥ L p (R d ) + |f | µ (+ε) ,p,q,Ψ ).
(1.17)

In particular, if 0 < ε < min(1, s 1 ), B µ,p q (R d ) → B µ (-ε) ,p q,Ψ (R d ) and B µ,p q,Ψ (R d ) → B µ (-ε) ,p q (R d ).
Moreover, if µ is doubling and satisfies property (P) with ϕ = 0, then

B µ,p q (R d ) = B µ,p q,Ψ (R d ) and the norms ∥ ∥ L p + | | µ,p,q,Ψ and ∥ ∥ L p + | | B µ,p q (R d ) are equivalent.
Thus, when µ is doubling and satisfies (P) with ϕ = 0, the space B µ,p q (R d ) coincides with B µ,p q,Ψ (R d ) and possesses two equivalent definitions based either on L p moduli of smoothness or on wavelet coefficients, and this definition is independent of the choice of n ≥ r and Ψ ∈ F r . Moreover, when µ satisfies property (P), combining (1.16) and (1.17

) shows that f ∈ B µ,p q (R d ) if and only if f ∈ B µ (-ε) ,p q,Ψ (R d ) for every ε ∈ (0, min(1, s 1
)), hence one also gets a wavelet characterization of B µ,p q (R d ). And since by construction the family of Banach spaces

B ε := B µ (-ε) ,p q,Ψ (R d ) 0<ε<min(s1,1) satisfies B ε → B ε ′ for all 0 < ε ≤ ε ′ < min(s 1 , 1)
, one obtains another way to see that the space B µ,p q (R d ) can be endowed with a Fréchet space structure, of which a countable basis of neighborhoods of the origin is given by

ß N m = ß f ∈ B µ,p q (R d ) : ∥f ∥ L p (R d ) + |f | µ (-1 m ) ,p,q,Ψ < 1 m ™™ m∈N, m>max(1,s -1 1 )
.

(1.18) Remark 1.9.

(1) The embeddings B

s2+ d p ,p q (R d ) → B µ,p q (R d ) → B s1+ d p ,p q (R d ) and B µ (+ε) ,p q (R d ) → B µ,p q (R d ) hold under (P 1 ).
(2) It is direct from the proof of Theorem 2 that under the weaker assumption that (P) holds for all

(s ′ 1 , s ′ 2 ) such that 0 < s ′ 1 < s 1 ≤ s 2 < s ′ 2 , the statement remains true. ( 3 
)
Fundamental examples of doubling capacities satisfying property (P) with ϕ = 0, namely Gibbs capacities, will be given in Remark 1.15. [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF] In this section, we resume some of the results proved in the companion paper [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF], concerning the construction of capacities µ ∈ H([0, 1] d ) having a prescribed multifractal spectrum and satisfying a multifractal formalism. Definition 1.10. Let µ ∈ H([0, 1] d ). For x ∈ supp(µ), the lower and upper pointwise Hölder exponents of µ at x are respectively defined by

Recalls about the class of multifractal environments constructed in

h µ (x) = lim inf j→+∞ log 2 µ(λ j (x))
-j and h µ (x) = lim sup j→∞ log 2 µ(λ j (x)) -j .

Whenever h µ (x) = h µ (x), the common limit is called h µ (x). Then, for α ∈ R,

E µ (α) = x ∈ supp(µ) : h µ (x) = α E µ (α) = x ∈ supp(µ) : h µ (x) = α , and E µ (α) = E µ (α) ∩ E µ (α).
The singularity (or multifractal) spectrum of µ is then the mapping

σ µ : α ∈ R -→ dim E µ (α).
Definition 1.11. The L q -spectrum of µ ∈ H([0, 1] d ) with supp(µ) ̸ = ∅ is defined by

τ µ : q ∈ R → lim inf j→+∞ - 1 j log 2 λ∈Dj , λ⊂[0,1] d , µ(λ)>0 µ(λ) q .
Recall the definition of the Legendre transform g * of a mapping g : R → R: for every α ∈ R, g * (α) = inf q∈R qα -g(q). One always has (see [START_REF] Brown | On the multifractal analysis of measures[END_REF][START_REF] Véhel | Multifractal analysis of Choquet capacities[END_REF])

σ µ (α) ≤ τ * µ (α) := inf q∈R qα -τ µ (q). (1.19) Definition 1.12. A set function µ ∈ H([0, 1] d ) with supp(µ) ̸ = ∅ is said to obey the multifractal formalism (MF) over an interval I ⊂ R when for all α ∈ I, σ µ (α) = τ * µ (α). (1.20)
It is said to obey the strong multifractal formalism (SMF) over I if for all α ∈ I, in addition to

(1.20) one as dim E µ (α) = τ * µ (α).
When I = R, one simply says that the MF or the SMF holds for µ.

The following result is proved in [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF] (S d is defined in Conjecture 1).

Theorem 3 ([1], Corollary 5).

There exists a family of environments E d ⊂ C(R d ) such that : 

1. Every µ ∈ E d is Z d -invariant,
) such that 0 < s 1 < τ ′ µ (+∞) ≤ τ ′ µ (-∞) < s 2 , B µ,p q (R d
) is well defined by (1.11) independently of the integer n ≥ s µ , where

s µ = õ τ ′ µ (-∞) + d p û + 1, (1.21)
and the wavelet characterization of B µ,p q (R d ) holds with any Ψ ∈ F sµ .

Typical singularity spectrum in Besov spaces in multifractal environment

Our result on the multifractal nature of the elements of B µ,p q (R d ) when µ ∈ E d is the following. The multifractal formalism's validity is dealt with in the next section. Theorem 4. Let µ ∈ E d , let p, q ∈ [1, +∞], and consider the mapping

ζ µ,p (t) =    p -t p τ µ Å p p -t t ã if t ∈ (-∞, p) τ ′ µ (+∞)t if t ∈ [p, +∞). (1.22) 1. For all f ∈ B µ,p q (R d ), σ f (H) ≤ ® ζ * µ,p (H) if H ≤ ζ ′ µ,p (0 + ) d if H > ζ ′ µ,p (0 + ). (1.23) 2. For typical functions f ∈ B µ,p q (R d ), one has σ f = ζ * µ,p .
The possible shapes of σ f when f is typical in B µ,p q (R d ) are investigated in detail in Section 4 (see Proposition 4.2): depending on the values of p and σ * µ (α min ), various phenomena may occur. See for instance Figures 1 and3 for a representation of typical singularity spectrum in B µ,p q (R d ), according to whether σ µ (α min ) = 0 or σ µ (α min ) > 0. Next remark gathers key information, proved in Proposition 4.2.

Remark 1.13.

1. The map ζ µ,p is always concave. Also, it is immediate that 

ζ µ,+∞ = τ µ , so typical functions in B µ,+∞ q (R d ) satisfy σ f = τ * µ . 2. The support of ζ * µ,p is the compact subinterval [ζ µ,p (+∞), ζ ′ µ,p (-∞)] ⊂ (0, +∞). Moreover, since ζ µ,p (0) = τ µ (0) = -d,
H ∈ [ζ ′ µ,p (0 + ), ζ µ,p (0 -)]. 3. One has ζ ′ µ,p (-∞) ≤ τ ′ µ (-∞) + d p (see the first item of Section 4.2)
. Two examples of capacities are given in the next remarks: the first ones are the Lebesgue measure and its powers, this case is included both in Jaffard's results and as a particular case of capacities belonging to E d . The second ones are the Gibbs capacities: although they do not belong to E d , they share the same multifractal properties as the capacities of E d , and the conclusions of Theorems 4 and 5 remain true with them.

Remark 1.14. The set of environments E d includes all the positive powers of the Lebesgue measure L d (see [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF]). Taking s > d/p and µ = (L d ) s/d-1/p , Theorem 4 coincides with the celebrated Jaffard's theorem [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF], which can be stated as follows:

1. For all f ∈ B s,p q (R d ), σ f (H) ≤ ® min p H -(s -d p ) , d if H ≥ s -d/p, -∞ if H < s -d/p. 2. Typical f ∈ B s,p q (R d ) satisfy σ f (H) = ® p H -(s -d p ) if H ∈ [s -d/p, s], -∞ otherwise.
In this case,

τ µ (t) = (s -d/p)t -d so τ ′ µ (-∞) = τ ′ µ (+∞) = s -d/p, τ * µ (H) = d if H = s -d/p
and -∞ otherwise. Hence, ζ µ,p (t) = st -d for t < p and ζ µ,p (t) = (s -d/p)t for t ≥ p, whose Legendre transform is the typical spectrum in B s,p q (R d ).

Remark 1.15. Gibbs capacities are a fundamental class of multifractal doubling capacities obeying property (P) with ϕ = 0, and for which Theorem 4, as well as Theorem 5 below, hold not only for B µ,p q (R d ), but also for B µ,p q (R d ). Such a capacity is of the form µ = ν s , where s > 0 and ν is a Gibbs measure defined as follows: let φ : R d → R be a Z d -invariant real valued Hölder continuous function. The sequence of Radon measures

ν n (dx) = exp (S n φ(x)) [0,1] d exp (S n φ(t)) L d (dt) L d (dx), where S n φ(x) = n-1 k=0 φ(2 n x),
converges vaguely to a Z d -invariant Radon measure ν fully supported on R d , called Gibbs measure associated with φ. Also, the so-called topologival pressure of φ, P (φ) = lim n→+∞ [START_REF] Parry | Zeta functions and the periodic orbit structure of hyperbolic dynamics[END_REF][START_REF] Pesin | Dimension theory in dynamical systems, Contemporary views and applications[END_REF]).

1 n log [0,1] d 2 n exp (S n φ(x)) L d (dx) exists, and τ ν |[0,1] d (t) = tP (φ) -P (tφ). Moreover, τ ν |[0,1] d is analytic (see
One can check that when p = +∞, or

τ * ν |[0,1] d (τ ′ ν |[0,1] d (+∞))
= 0, or the potential φ reaches its minimum at 0, the proofs of Theorems 4 and 5 when µ ∈ E d remain true (up to slight modifications) for µ = ν s . The general case requires additional efforts.

σ f (H) H 0 d τ ′ µ (+∞) ζ ′ µ,1 (0 + ) σ f (H) H 0 d τ ′ µ (+∞) ζ ′ µ,1 (-∞)
Figure 1: Left: Upper bound for the singularity spectrum of every f ∈ B µ,1 q (R d ). Right: Singularity spectrum of a typical f ∈ B µ,1 q (R d ). The dashed graph represents the (initial) singularity spectrum of µ. When p = +∞ and f is typical in B µ,+∞ q (R d ), σ f = σµ.

1.5. Multifractal formalism for functions in B µ,p q (R d ) The formalism used in this paper is based on the one developed by Jaffard in [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF]. Let us begin with the definition of wavelet leaders.

Definition 1.16 (Wavelet leaders). Given Ψ ∈ r∈N F r and f ∈ L p loc (R d ) for p ∈ [1, +∞],
denoting the wavelet coefficients of f associates with Ψ by (c λ ) λ∈Λ , the wavelet leader of f associated with λ ∈ D is defined as:

L f λ = sup{|c λ ′ | : λ ′ = (i, j, k) ∈ Λ, λ ′ j,k ⊂ 3λ}. (1.24)
Pointwise Hölder exponents of Hölder continuous functions (recall (1.1)) are related to the wavelet leaders as follows (see [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF]Corollary 1]).

Proposition 1.17. Let r ∈ N * and Ψ ∈ F r . If f ∈ C ε (R d ) for some ε > 0, then for every

x 0 ∈ R d , h f (x 0 ) < r if and only lim inf j→∞ log L f λ j (x)
log(2 -j ) < r, and in this case

h f (x 0 ) = lim inf j→∞ log L f λj (x) log(2 -j )
.

(1.25)

In order to estimate from above the singularity spectrum σ f of f ∈ B µ,p q (R d ), it is then natural to consider, exactly as it was done for the elements of H([0, 1] d ), the L q -spectrum of f relative to Ψ defined as follows: For any N ∈ N * , set

ζ N,Ψ f = lim inf j→+∞ ζ N,Ψ f,j , where ζ N,Ψ f,j : t ∈ R → - 1 j log 2 λ∈Dj , λ⊂N [0,1] d , L f λ >0 (L f λ ) t . (1.26) Recall that (N [0, 1] d ) N ∈N * is the increasing sequence of boxes [-(N -1)/2, (N + 1)/2] d , whose union covers R d .
Definition 1.18. The L q -spectrum of f relative to Ψ is the concave function Let us now define the multifractal formalism for functions. First, recall that by [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF], when H < r, the Legendre transform of ζ Ψ f at H (recall formula (1.19) of the Legendre transform) provides an upper bound for dim E f (H), i.e. one has

ζ Ψ f = inf{ζ N,Ψ f : N ∈ N * } = lim N →+∞ ζ N,Ψ f . ( 1 
σ f (H) ≤ (ζ Ψ f ) * (H).
(1.28)

The formalism we use will combines Jaffard's formalism (based on wavelet leaders) with a variant of it (used to control the decreasing part of σ f ). This variant is necessary since when µ ∈ E d , q < +∞ and the elements of Ψ are smooth, it is generic in

B µ,p q (R d ) that ζ Ψ f |R * - equals -∞ (see Theorem 5(3)). Hence, for H ≥ (ζ f ) ′ (0 + ), (ζ Ψ f ) * (H) only provides the trivial upper bound σ f (H) ≤ d. Definition 1.19. Let r ∈ N * and f ∈ s>0 C s (R d ).
Suppose that σ f has a compact domain included in (0, r). Let I ⊂ dom(σ f ) be a compact interval.

1. The wavelet leaders multifractal formalism (WMF) holds for f on I when there exists r ≥ r such that for all H ∈ I and all

Ψ ∈ F r , , σ f (H) = (ζ Ψ f ) * (H). 2.
The weak wavelet leaders multifractal formalism (WWMF) holds for f on I relatively to Ψ ∈ F r when the following property holds: there exists an increasing sequence (j k ) k∈N such that for all N ∈ N,

lim k→∞ ζ N,Ψ f,j k = ζ (N ),Ψ f,w
exists, and setting

ζ Ψ f,w = lim N →+∞ ζ (N ),Ψ f,w , one has σ f (H) = (ζ Ψ f,w ) * (H) for all H ∈ I.
Remark 1.20. Contrarily to (1.28), in general, even if there exists such a subsequence (j k ) k∈N , one cannot get the a priori inequality σ f ≤ (ζ Ψ f,w ) * . This justifies the terminology "weak". Nevertheless, the existence of ζ Ψ f,w emphasizes that the sequences (ζ N,Ψ f,j (t)) j∈N converge along the same subsequence for all N and t. This property is typical in B µ,p q (R d ), and holds simultaneously for countably many Ψ's.

Theorem 4 can now be completed by the following result on the validity of the multifractal formalism. Recall (1.22) and (1.21) for the definitions of ζ µ,p and s µ respectively, as well as Remarks 1.9 (2) and 1.13.

Theorem 5 (Validity of the multifractal formalism

). Let µ ∈ E d . 1. For all f ∈ B µ,p q (R d ), one has ζ f |R+ ≥ ζ µ,p |R+ . 2. Typical functions f ∈ B µ,p q (R d ) satisfy the WMF on [ζ ′ µ,p (+∞), ζ ′ µ,p (0 + )] (i.e. in the increas- ing part of σ f ), and ζ f |R+ = ζ µ,p |R+ . 3. (i) Let Ψ ∈ F sµ . Typical functions f ∈ B µ,p q (R d ) satisfy the WWMF on dom(σ f ) = [ζ ′ µ,p (+∞), ζ ′ µ,p (-∞)] relatively to Ψ, with ζ Ψ f,w = σ * f = ζ µ,p . Moreover, if q < +∞, the property ζ Ψ f |R * - = -∞ is typical as well. (ii) Given a countable subset F of F sµ , typical functions f ∈ B µ,p q (R d ) satisfy the WWMF on the interval dom(σ f ) relatively to any Ψ ∈ F, with ζ Ψ f,w = σ * f = ζ µ,p , and ζ Ψ f |R * - = -∞ if q < +∞.
Let us mention that, although typical functions in B µ,p q (R d ) are multifractal and satisfy a multifractal formalism, they do not possess any self-similar structure, consolidating the idea that being multifractal is far from being exceptional.

Solutions to the Frisch-Parisi conjecture

It is worth recalling the results obtained by Jaffard in [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF]. Consider an increasing continuous and concave function η : R + → R + , with positive slope η ′ (+∞) at ∞, such that η(0) ∈ [0, d], and η * takes values in [-d, 0] over its domain. Setting ζ = η -d, Jaffard seeks for a Baire space in which the increasing part of the typical singularity spectrum is given by ζ * . He works with the so-called homogeneous Besov spaces Ḃs,p q (R d ), introduced the Baire space V = ϵ>0 t>0 Ḃ(η(t)-ϵ)/t,t t,loc (R d ) [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF] and proved that for typical functions f ∈ V , σ f = ζ * , where

ζ(t) = ® d(t/t c -1) if t < t c ζ(t) if t ≥ t c , t c being the unique solution of ζ(t c ) = 0. In particular, σ f is necessarily increasing, with domain [ζ ′ (+∞), d/t c ],
and with an affine part over the interval

[ζ ′ (t c +), d/t c ]. Also, σ f coincides with ζ * over [ζ ′ (+∞), ζ ′ (t c +)].
In addition, in the multifractal formalism used in [START_REF] Jaffard | On the Frisch-Parisi conjecture[END_REF], the scaling function

ζ f (t) is defined as sup{s ≥ 0 : f ∈ Ḃs/t,t ∞,loc (R d )} -d for t > 0,
and with this definition typical functions in V satisfy

ζ f = ζ. Thus the associated multifractal formalism holds on [ζ ′ (+∞), ζ ′ (t c +)]
only. However, it can be checked that the WMF does hold for f with

ζ f = ζ on [ζ ′ (+∞), d/t c ].
Hence, although this approach was a substantial progress, it allowed to reach only increasing singularity spectra, necessarily composed by an affine part followed by a concave part. Up to now, no better solution to Conjecture 1 has been proposed.

Combining the previously stated results (Theorems 3, 4 and 5), we can now state our main theorems. The first one is a direct corollary of Theorems 4 and 5.

Theorem 6. The Frisch-Parisi conjecture 1 is true. Given σ ∈ S s and µ ∈ E d such that σ µ = σ, the associated inverse problem is solved by B µ,+∞ q (R d ), for any q ∈ [1, +∞].

Our second statement provides solutions of the form B µ,p q (R d ) with 1 ≤ p < +∞. Its proof is given in Section 8.

Theorem 7 (Solutions of the form B µ,p q (R d ) with p < +∞). Let σ ∈ S d and denote its domain by

[H min , H max ]. 1. If σ is the typical singularity spectrum in B µ,p q (R d ) for some 1 ≤ p < +∞, q ∈ [1, +∞] and µ ∈ E d , then σ(H min ) = 0 and σ ′ (H + min ) ≤ p.
2. Suppose σ(H min ) = 0 and σ ′ (H + min ) < +∞. For all p ∈ max(1, σ ′ (H + min )), +∞ , there exists µ ∈ E d such that for all q ∈ [1, +∞], σ is the singularity spectrum of the typical elements of B µ,p q (R d ); also, typical functions in B µ,p q (R d ) satisfy the WMF in the increasing part of σ and the WWMF over [H min , H max ] relatively to any Ψ in a countable family of elements of F sµ .

Let us make a final remark. Like for Besov spaces, one can let p or q take values in (0, +∞] in the definition of Besov spaces in multifractal environment, and all our results remain valid, the only change to make being to take p ∈ σ ′ (H + min ), +∞ in Theorem 7 [START_REF] Cohen | Wavelet methods in numerical analysis[END_REF]. This provides a larger set of solutions to the inverse problem 1.

Organization of the rest of the paper

In Section 2, the wavelet characterization of the space B µ,p q (R d ) is established when µ is an almost doubling capacity satisfying property (P) (Theorem 2).

In Section 3 are gathered the main properties proved in [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF] to be satisfied by the capacities µ ∈ E d .

The various shapes of ζ µ,p and ζ * µ,p are investigated in Section 4, where ζ * µ,p is explicitly expressed in terms of τ * µ ; this expression turns out to be very useful in the proof of the WMF's validity for typical functions.

Next, in section 5, the upper bound for the singularity spectrum of all functions in B µ,p q (R d ) is obtained (part (1) of Theorem 4), as a consequence of part (1) of Theorem 5 which is also proved there. Part (2) of Theorem 4 is shown in Section 6. It consists first in building a specific function whose singularity spectrum is typical, and then in building a dense G δ -set included in B µ,p q (R d ) in which all functions share the same multifractal spectrum. Parts ( 2) and (3) of Theorem 5 are established in Section 7. Finally, the proof of Theorem 7 is given in Section 8.

Wavelet characterization of

B µ,p q (R d )
After some definitions and two basic lemmas in Section 2.1, Theorem 2 is proved when p ∈ [1, +∞) in Section 2.2. The much simpler case p = +∞ is left to the reader who can easily adapt the lines used to treat the case p < +∞.

Preliminary definitions and observations

We start by extending the definition of the moduli of smoothness (1.4) and (1.

5) to all Borel sets Ω ⊂ R d . Definition 2.1. Let Ω ⊂ R d . For h ∈ R d , let Ω h,n = {x ∈ Ω : x + kh ∈ Ω, k = 1, . . . , n}. (2.1) 
Then, for f :

R d → R, µ ∈ H(R d ), t > 0 and n ≥ 1 set ω µ n (f, t, Ω) p = sup t/2≤|h|≤t ∥∆ µ,n h f ∥ L p (Ω h,n ) (2.2) and ω n (f, t, Ω) p = sup 0≤|h|≤t ∥∆ n h f ∥ L p (Ω h,n ) . (2.3) 
Let µ ∈ C(R d ) be an almost doubling capacity such that property (P) holds with exponents 0

< s 1 ≤ s 2 . Let n ≥ r = ⌊s 2 + d p ⌋ + 1 and Ψ = {ϕ, {ψ (i) } i=1,...,2 d -1 } ∈ F r (see Definition 1.7). Also, recall that for λ = (i, j, k) ∈ Λ j , ψ λ (x) = ψ (i) (2 j x -k).
It follows from the construction of Ψ (see [START_REF] Meyer | Ondelettes et opérateurs I[END_REF]Section 3.8]) that there exists an integer N Ψ ∈ N * such that supp(ϕ) and supp(ψ (i) ) are included in N Ψ [0, 1] d . Our proofs will use some estimates established in [START_REF] Cohen | Wavelet methods in numerical analysis[END_REF]. These estimates require to associate with each λ = (i, j, k) ∈ Λ j a larger cube λ described in the following definition.

Definition 2.2. For each λ = (i, j, k) ∈ Λ j , set λ = λ j,k + 2 -j (supp(ϕ) -supp(ϕ)). Note that λ j,k ⊂ supp(ψ λ ) ⊂ λ ⊂ 3N Ψ λ j,k
, the second embedding coming from the construction of compactly supported wavelets (see [START_REF] Meyer | Ondelettes et opérateurs I[END_REF]Section 3.8]).

For every j ∈ N, the cubes ( λ) λ∈Λj do not overlap too much, in the sense that

K Ψ := sup j∈N sup λ∈Λj #{λ ′ ∈ Λ j : λ ∩ λ ′ ̸ = ∅} < +∞.
(2.4)

Lemma 2.3. Let p ∈ [1, +∞) and n ∈ N * .
There exists a constant C d,n,p (depending on p, n, and d only) such that for all f ∈ L p loc (R d ), t > 0 and λ ∈ Λ, the following inequality holds:

ω n (f, t, λ) p p ≤ C d,n,p t -d t≤|y|≤4nt λ+B(0,2nt) |∆ n y f (x)| p dxdy.
Proof. The approach follows the lines of the proof of [2, inequality (3.3.17)], where a similar inequality is proved.
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Fix f , t and λ as in the statement. For any h, y ∈ R d , recall the following equality (see (3.3.19) in [START_REF] Cohen | Wavelet methods in numerical analysis[END_REF]):

∆ n h f (x) = n k=1 (-1) k Ç n k å ∆ n ky f (x + kh) -∆ n h+ky f (x) . Integrating |∆ n h f | p over λ h,n (recall definition (2.1)), one sees that for some constant C n,p > 0, when |h| ≤ t, ∥∆ n h f ∥ p L p ( λ h,n ) ≤ C n,p n k=1 ∥∆ n ky f (• + kh)∥ p L p ( λ h,n ) + ∥∆ n h+ky f ∥ p L p ( λ h,n ) ≤ C n,p n k=1 ∥∆ n ky f ∥ p L p ( λ+B(0,2nt)) + ∥∆ n h+ky f ∥ p L p ( λ+B(0,2nt))
.

Then, defining

C d = L d (B(0, 3) \ B(0, 2)
), an integration with respect to y over B(0, 3t) \ B(0, 2t) yields

C d t d ∥∆ n h f ∥ p L p ( λ h,n ) ≤ C n,p n k=1 2t≤|y|≤3t λ+B(0,2nt) |∆ n ky f (x)| p + |∆ n h+ky f (x)| p dxdy.
Further, operating the change of variable y ′ = ky in each term of the sum yields

t d ∥∆ n h f ∥ p L p ( λ h,n ) ≤ C -1 d C n,p n k=1 2kt≤|y|≤3kt λ+B(0,2nt) |∆ n y f (x)| p + |∆ n h+y f (x)| p dxdy ≤ 2nC -1 d C n,p t≤|y|≤4nt λ+B(0,2nt) |∆ n y f (x)| p dxdy.
where one used that t ≤ |h + y| ≤ 4nt when |h| ≤ t and |y| ≥ 2t. The previous upper bound being independent of h ∈ B(0, t), one concludes that

ω n (f, t, λ) p p = sup 0≤|h|≤t ∥∆ n h f ∥ p L p ( λ h,n ) ≤ 2nC -1 d C n,p t d t≤|y|≤4nt λ+B(0,2nt)
|∆ n y f (x)| p dxdy, as desired.

Lemma 2.4. Let ε > 0 and µ ∈ C(R d ) that satisfies Property (P) with exponents s 1 and s 2 .

There exists a constant C = C(ε, n, µ) ≥ 1 such that for every j ∈ N and λ ∈ Λ j , for every x ∈ λ + B(0, 2n2 -j ) and y ∈ R d such that 2 -j ≤ |h| ≤ 4n2 -j , for every f : λ → R, one has

|∆ n h f (x)| µ(λ) ≤ C |∆ n h f (x)| µ (+ε) (B[x, x + nh]) .
Proof. Observe first that under the assumptions of the Lemma, the inequality

µ(B[x, x + ny]) µ(λ) ≤ C(n|y|) -ε ,
follows easily from the definition of the almost doubling property (1.7). Then, Lemma 2.4 is deduced from last inequality and the definition of µ (+ε) .

Proof of Theorem 2 when 1 ≤ p < +∞

Let us now explain our approach to get Theorem 2 when p ∈ [1, +∞). Recall that B µ,p q (R d ) is defined via L p moduli of smoothness of order n ≥ r = ⌊s 2 + d/p + 1⌋, and that Ψ belongs to F r . The purpose of this theorem is to establish relations between this definition (1.10) and the wavelet-based one (1.14).

In Section 2.2.1, it is shown that, for any ε ∈ (0, 1), when B µ (+ε) ,p q (R d ) is defined via the L p modulus of smoothness of order n, then (1.16) holds for any Ψ ∈ F n . It is only a partial proof of the statement, since one wants to obtain (1.16) for any Ψ ∈ F r .

Then, in Section 2.2.2, (1.17) is completely proved to hold for any ε ∈ (0, 1) and any Ψ ∈ F r when B µ,p q (R d ) is defined via the L p modulus of smoothness of order exactly equal to r. Since F n ⊂ F r , the statement also holds for Ψ ∈ F n .

Finally, from the two preceding observations, we conclude that (1.16) holds for any ε ∈ (0, 1) and any Ψ ∈ F r , by applying:

• first (1.16) with the environment µ, the n-th order difference operator, ε/3 and any wavelet

‹ Ψ ∈ F n ,
• then (1.17) with the environment µ (+ε/3) , the r-th order difference operator, ε/3 and the same ‹ Ψ ∈ F n ,

• finally (1.16) with the environment µ (+2ε/3) , the r-th order difference operator, ε/3 and Ψ ∈ F r .

Proof of inequality (1.16) in Theorem 2

Assume that Ψ ∈ F n ⊂ F r . Fix ε > 0, f ∈ L p (R d ) and j ∈ N.

For every λ = (i, j, k) ∈ Λ j , since ψ λ is orthogonal to any polynomial P of degree ≤ n, the wavelet coefficient c λ can be written

c λ = 2 jd R d (f (x) -P (x))ψ λ (x)dx.
Due to the local approximation of f by polynomials (equation (3.3.13) in [START_REF] Cohen | Wavelet methods in numerical analysis[END_REF]), there exists a polynomial P λ of degree ≤ n such that

∥f -P λ ∥ L p ( λ) ≤ Cω n (f, 2 -j , λ) p ,
where C depends on n and p only. Recall that supp(ψ λ ) ⊂ λ.

The last inequalities, together with Hölder's inequality, yield

|c λ | µ(λ) ≤ 2 jd ∥ψ λ ∥ L p ′ (R d ) ∥f -P λ ∥ L p ( λ) µ(λ) ≤ C2 jd 2 -jd/p ′ ∥ψ (i) ∥ L p ′ (R d ) ω n (f, 2 -j , λ) p µ(λ) ≤ ‹ C2 jd/p ω n (f, 2 -j , λ) p µ(λ) , (2.5) 
where

‹ C = C sup ¶ ∥ψ (i) ∥ L p ′ (R d ) : 1 ≤ i ≤ 2 d -1 © . Then, Lemma 2.3 gives |c λ | µ(λ) p ≤ C d,n,p ‹ C p 2 2dj 2 -j ≤|y|≤4n2 -j λ+B(0,2n2 -j ) |∆ n y f (x)| p µ(λ) p dxdy,
and by Lemma 2.4, there exists C ′ depending on (ε, n, p, Ψ) such that

|c λ | µ(λ) p ≤ C d,n,p (C ′ ) p 2 2dj 2 -j ≤|y|≤4n2 -j λ+B(0,2n2 -j ) |∆ µ (+ε) ,n y f (x)| p dxdy ≤ C d,n,p (C ′ ) p jn k=0 2 2dj 2 -j+k ≤|y|≤2 -j+k+1 λ+B(0,2n2 -j ) |∆ µ (+ε) ,n y f (x)| p dxdy,
where j n = ⌊log 2 (4n)⌋. By (2.4), there exists a constant K Ψ,n > 0 depending on (Ψ, n) only such that any λ ∈ Λ j is covered by at most K Ψ,n sets of the form

λ ′ + B(0, 2n2 -j ) with λ ′ ∈ Λ j . It follows that λ∈Λj |c λ | µ(λ) p ≤ K Ψ,n C d,n,p (C ′ ) p jn j ′ =0 2 2dj 2 -j+j ′ ≤|y|≤2 -j+j ′ +1 R d |∆ µ (+ε) ,n y f (x)| p dxdy. Recalling the definition (1.4) of ω µ (+ε) n (f, t, R d ), for every j ′ the double integral above is bounded by 2 d(-j+j ′ +1) ω µ (+ε) n (f, 2 -j+j ′ +1 , R d ) p p . Since 2 d(j ′ +1) ≤ 2 d(jn+1) ≤ (8n) d , one has λ∈Λj |c λ | µ(λ) p ≤ C p 1 jn j ′ =0 2 dj ω µ (+ε) n (f, 2 -j+j ′ +1 , R d ) p p ,
where

C 1 = ((8n) d K Ψ,n C d,n,p ) 1/p C ′ does not depend on f or j.
Suppose now that q ∈ [1, +∞) (the case q = +∞ is obvious). The previous estimates together with the subadditivity of t ≥ 0 → t 1/p and the convexity of t ≥ 0 → t q yield c λ µ(λ) λ∈Λj q ℓ p (Λj )

≤ C q 1 (j n + 1) q-1 jn j ′ =0 2 dj/p ω µ (+ε) n (f, 2 -j+j ′ +1 , R d ) p q .
Summing the last inequality over j ∈ N gives

j≥0 c λ µ(λ) λ∈Λj q ℓ p (Λj ) ≤ C q 1 (j n + 1) q-1 +∞ j=-jn-1 K j ω µ (+ε) n (f, 2 -j , R d ) p q ,
where

K j = ® j+jn+1 j ′ =j+1 2 qdj ′ /p when j ≥ -1 j+jn+1 j ′ =0 2 qdj ′ /p when -j n -1 ≤ j ≤ -2
. It is easily seen that there is a constant

C 2 = C 2 (n, q, d) such that C q 1 (j n + 1) q-1 K j ≤ C 2 2 qdj/p , so j≥0 c λ µ(λ) λ∈Λj q ℓ p (Λj ) ≤ C 2 +∞ j=-jn-1 2 dj/p ω µ (+ε) n (f, 2 -j , R d ) p q .
Observe that there is

C 3 ≥ 1 depending on n such that for -j n -1 ≤ j ≤ 0, 2 dj/p ω µ (+ε) n (f, 2 -j , R d ) p ≤ C 3 ∥f ∥ L p (R d )
. This follows from the fact that for such a j:

• 2 dj/p ≤ 1; • by periodicity of µ, µ(B[x, x + n2 -j ]) ≥ µ([0, 1] d ) = 1, so |∆ n y f (x)| µ(λ)
≤ |∆ n y f (x)|, and thus for some constant

C ′′′ ω µ (+ε) n (f, 2 -j , R d ) p ≤ 2 jε ω n (f, 2 -j , R d ) p ≤ (ω n (f, 8n, R d ) p ≤ C 3 ∥f ∥ L p (R d ) .
Consequently, for some constant C independent of f ,

j≥0 c λ µ(λ) λ∈Λj q ℓ p (Λj ) ≤ C ∥f ∥ q L p (R d ) + j≥0 2 dj/p ω µ (+ε) n (f, 2 -j , R d ) p q , which implies that ∥f ∥ L p (R d ) +|f | µ,p,q,Ψ ≤ C(∥f ∥ L p (R d ) +|f | B µ (+ε) ,p q (R d )
). Hence, (1.16) holds when

Ψ ∈ F n . 2.2.2. Proof of inequality (1.17) in Theorem 2 Fix ε > 0 and f ∈ L p (R d ).
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Define the partial sums f j = λ∈Λj c λ ψ λ , for all j ≥ 0.

The following lemma is needed.

Lemma 2.5. Let s ∈ Ä s 2 + d p , s 2 + d p + 1 ä
. There exist a constant C > 0 and a sequence ( ε m ) m∈N ∈ ℓ q (N) bounded by 1, independent of f , such that for all j, J ≥ 0,

ω µ n (f j , 2 -J , R d ) p ≤ C2 -jd/p min 1, 2 (j-J)(s-s2) ε J-j Ñ λ∈Λj Å |c λ | µ (+ε) (λ) ã p é 1/p , (2.6) 
with the convention that ε m = 1 when m < 0.

Proof. Inspired by the proof of [2, Theorem 3.4.3], two cases are separated:

Case 1: J < j. In order to prove (2.6), let us begin by writing that

ω µ n (f j , 2 -J , R d ) p p = sup 2 -J-1 ≤|h|≤2 -J λ ′ ∈D J λ ′ λ∈Λj c λ ∆ n h ψ λ (x) p µ(B(x, x + nh)) p dx. (2.7) Consider λ ∈ Λ j , x ∈ R d , and h ∈ R d such that 2 -J-1 ≤ |h| ≤ 2 -J . Then: 310 (i) If x ̸ ∈ n k=0 supp(ψ λ ) -kh, then ∆ n h ψ λ (x) = 0; (ii) Let λ ′ = λ J (x)
the unique cube of generation J that contains x.

There exists an integer

N = N (n, Ψ) such that if x ∈ n k=0 supp(ψ λ ) -kh, then necessarily λ ⊂ N λ ′ .
(iii) By the almost doubling property of µ, there exists a constant

C = C(µ, n, Ψ, ε) such that for every x ∈ n k=0 supp(ψ λ ) -kh, µ (+ε) (λ) = 2 -jε µ(λ) ≤ 2 -jε µ(N λ ′ ) ≤ Cµ(B(x, x + nh)). (2.8) From the equality ∆ n h ψ λ = n k=0 (-1) k n k ψ λ (• + (n -k)h
), the three items (i)-(iii) and (2.7), one obtains that

ω µ n (f j , 2 -J , R d ) p p ≤ C p sup 2 -J-1 ≤|h|≤2 -J λ ′ ∈D J 2 jεp µ(N λ ′ ) p λ ′ λ∈Λj , λ⊂N λ ′ c λ ∆ n h ψ λ (x) p dx ≤ C p λ ′ ∈D J 2 jεp µ(N λ ′ ) p T j,J,λ ′ ,λ,ψ , where T j,J,λ ′ ,λ,ψ = sup 2 -J-1 ≤|h|≤2 -J R d n k=0 (-1) k Ç n k å λ∈Λj , λ⊂N λ ′ c λ ψ λ (x + (n -k)h) p dx.
The convexity inequality (

n k=0 |z k |) p ≤ (n + 1) p-1 n k=0 |z k | p and n k ≤ 2 n give T j,J,λ ′ ,λ,ψ ≤ 2 np (n + 1) p-1 sup 2 -J-1 ≤|h|≤2 -J n k=0 R d λ∈Λj , λ⊂N λ ′ c λ ψ λ (x + (n -k)h) p dx.
Observe that the property (ii) above allows to bound each integral in the above sum by the same term

R d λ∈Λj , λ⊂N λ ′ c λ ψ λ (x) p dx.
Moreover, according to [3, Ch. 6, Prop. 7], there exists

C ′ > 0 depending on Ψ only such that R d λ∈Λj , λ⊂N λ ′ c λ ψ λ (x) p dx ≤ C ′p 2 -jd λ∈Λj , λ⊂N λ ′ |c λ | p .
Consequently, using the first inequality of (2.8),

ω µ n (f j , 2 -J , R d ) p p ≤ (CC) ′p (n + 1) p 2 np λ ′ ∈D J 2 -jd λ∈Λj , λ⊂N λ ′ |c λ | µ (+ε) (λ) p .
Finally, the number of dyadic cubes λ ′ ∈ D J such that N λ ′ intersects a given λ ∈ Λ j is bounded uniformly with respect of j and J, so

ω µ n (f j , 2 -J , R d ) p ≤ C2 -jd/p Ñ λ∈Λj Å |c λ | µ (+ε) (λ) ã p é 1/p
for some constant C that depends on n, p and other constants. This yields (2.6).

Case 2: J ≥ j. Let us start with a few observations. First, by assumption, ψ (i) ∈ B s,p q (R d ), hence

ω n (ψ (i) , 2 j-J , R d ) p ≤ 2 (j-J)s ε (i) J-j ,
where ( ε

(i) m ) m≥1 ∈ ℓ q (N * ) and ∥ ε (i) ∥ ℓ q (N * ) ≤ ∥ψ (i) ∥ B s,p q . Consequently, for all λ ∈ Λ j ω n (ψ λ , 2 -J , R) p ≤ 2 (j-J)s 2 -jd/p ε J-j , (2.9) 
where ε J-j = sup i ε (i) J-j . Next, observe the following facts:

(i) There exists an integer N independent of j and J such that for all

x ∈ R d and h ∈ R d such that 2 -J-1 ≤ |h| ≤ 2 -J , B[x, x + nh] ⊂ N λ j (x). Also, ∆ n h ψ λ (x) ̸ = 0 only if λ ⊂ N λ j (x) (recall that λ = (i, j, k) ⊂ E means λ j,k ⊂ E).
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(ii) There exist two dyadic cubes λ ′ ∈ D J+3 and λ ′′ ∈ D j such that λ ′ ⊂ B(x, x + nh) and λ ′ ⊂ λ ′′ ⊂ N λ j (x). By construction, for all Λ j ∋ λ ⊂ N λ j (x), one has

µ(B[x, x + nh]) -1 ≤ µ(λ ′ ) -1 = µ(λ ′′ ) µ(λ ′ ) µ(λ) µ(λ ′′ ) µ(λ) -1 .
Hence, using property (P 2 ) to get

µ(λ) µ(λ ′′ ) = O(2 N d ϕ(j) ) and µ(λ ′′ ) µ(λ ′ ) = O(2 ϕ(j) 2 (J-j)s2
), as well as the fact that 2 ϕ(j)(N d +1) ≤ |λ| -ε since ϕ ∈ Φ, there exists a constant C depending on (µ, n, ε) only such that

µ(B[x, x + nh]) -1 ≤ C2 (J-j)s2 (µ (+ε) (λ) -1 .
The two previous observations yield

ω µ n (f j , 2 -J , R d ) p p = sup 2 -J-1 ≤|h|≤2 -J λ ′ ∈D J λ ′ λ∈Λj c λ ∆ n h ψ λ (x) p µ(B(x, x + nh)) p dx ≤ C p 2 (J-j)s2p sup 2 -J-1 ≤|h|≤2 -J R d λ∈Λj ,λ⊂N λj (x) |c λ | µ (+ε) (λ) |∆ n h ψ λ (x)| p dx. Since #{λ ∈ Λ j : λ ⊂ N λ j (x)} ≤ (2N d) d , for each x ∈ R d one has λ∈Λj ,λ⊂N λj (x) |c λ | µ (+ε) (λ) |∆ n h ψ λ (x)| p ≤ (2N d) d(p-1) λ∈Λj ,λ⊂N λj (x) |c λ | µ (+ε) (λ) p |∆ n h ψ λ (x)| p . Also, each λ ∈ D j intersects at most (2N ) d cubes N λ ′ with λ ′ ∈ D j , so R d λ∈Λj ,λ⊂N λj (x) |c λ | µ (+ε) (λ) p |∆ n h ψ λ (x)| p dx ≤ (2N ) dp λ∈Λj |c λ | µ (+ε) (λ) p R d |∆ n h ψ λ (x)| p dx.
Finally, taking the supremum over h ∈ [2 -J-1 , 2 -J ] in the last inequalities gives

ω µ n (f j , 2 -J , R d ) p p ≤ C p (2N ) dp 2 (J-j)s2p λ∈Λj |c λ | µ (+ε) (λ) p ω n (ψ λ , 2 -J , R d ) p p ,
hence the conclusion by (2.9).

By changing the constant C in (2.9) into C∥( ε j ) j≥0 ∥ ℓ ∞ , one gets ε j ≤ 1.

We are now in position to prove (1.17). Fix ε ∈ (0, 1). Setting f = f -∞ j=0 f j , the triangle inequality yields

ω µ n (f, 2 -J , R d ) p ≤ ω µ n ( f , 2 -J , R d ) p + ∞ j=0 ω µ n (f j , 2 -J , R d ) p , (2.10) 
and our goal is to control the ℓ q norms of the sequences (u

J := 2 Jd/p ω µ n ( f , 2 -J , R d ) p ) J∈N and (v J := 2 Jd/p ∞ j=0 ω µ n (f j , 2 -J , R d ) p ) J∈N .
• The terms (u J ) J≥1 correspond to low frequencies, and can be controlled as follows. Using property (P), one has µ(B(x, 2 -J )) ≥ 2 -J(s2+ε) for every x ∈ R d , and so

u J ≤ 2 J(s2+ε+d/p) ω n ( f , 2 -J , R d ) p .
(2.11)

Observe that, since f is obtained by removing from f the high frequency terms, f ∈ B s ′ ,p q (R d ) for all 325 s ′ ∈ (d/p, r) and q ∈ [1, +∞], as can be checked using (1.13). In addition,

| f | (L d ) s ′ +ε+d/p d -1 p ,p,q,Ψ = | f | (L d ) s 1 +ε+d/p d - 1 
p ,p,q,Ψ = 0 since the wavelet coefficients c λ ( f ) of f vanish for all λ ∈ Λ j , j ≥ 1.

Recalling the decomposition (1.12), one notes that the wavelet coefficients (β(k)) k∈Z d in the wavelet expansions of f and f are identical. Hence, using the equivalence of norms recalled after (1.13), there is a constant ‹ C depending on (d, ε, µ, p, q, Ψ) (that may change from line to line) such that

∥(u J ) J∈N ∥ ℓ q (N) ≤ ∥ f ∥ B s 2 +ε+d/p,p q (R d ) ≤ ‹ C(∥ f ∥ L p (R d ) + | f | (L d ) s 2 +ε+d/p d -1 p ,p,q,Ψ ) = ‹ C(∥ f ∥ L p (R d ) + | f | (L d ) s 1 +ε+d/p d -1 p ,p,q,Ψ ) ≤ ‹ C(∥β(k)∥ ℓp(Z d ) + |f | (L d ) s 1 +ε+d/p d -1 p ,p,q,Ψ ) ≤ ‹ C(∥f ∥ L p (R d ) + |f | (L d ) s 1 +ε+d/p d -1 p ,p,q,Ψ ) ≤ ‹ C(∥f ∥ L p (R d ) + |f | µ (+ε) ,p,q,Ψ ),
where the last inequality is a consequence of property (P 1 ) (which implies that µ(λ) ≤ C2 -js1 = CL d (λ)

s 1 +d/p d -1
/p for all j ∈ N and λ ∈ D j ).

• Next the ℓ q norm of (v

J ) J≥1 is controlled. Set A j = Ä |c λ | µ (+ε) (λ) ä λ∈Λj ℓ p (Λj )
. By Lemma 2.5, when j ≤ J one has ω µ n (f j , 2 -J , R d ) p ≤ C2 -jd/p 2 (j-J)(s-s2)p A j , while when j > J, one has

ω µ n (f j , 2 -J , R d ) p ≤ C2 -jd/p A j . Consequently, v J ≤ C2 Jd/p J j=0 2 -jd/p+(j-J)(s-s2) A j + C2 Jd/p ∞ j=J+1 2 -jd/p A j , which implies that ∥(v J ) J≥0 ∥ ℓ q (N) ≤ C(∥(α J ) J≥0 ∥ ℓ q (N) + ∥(β J ) J≥0 ∥ ℓ q (N) )
, where

α J := 2 Jd/p J j=0
2 -jd/p+(j-J)(s-s2) A j and β J := 2 Jd/p ∞ j=J+1 2 -jd/p A j .

Recall now the two following Hardy's inequalities (see, e.g. (3.5.27) and (3.5.36) in [START_REF] Cohen | Wavelet methods in numerical analysis[END_REF]): let q ∈ [1, +∞] as well as 0 < γ < δ. There exists a constant K > 0 such that :

• if (a j ) j∈N is a non negative sequence and for J ∈ N one sets b J = 2 -δJ J j=0 2 jδ a j , then ∥(2 γJ b J ) J≥1 ∥ ℓ q (N) ≤ K∥(2 γJ a J ) J≥0 ∥ ℓ q (N) .

• if (a j ) j∈N is a non negative sequence and for J ∈ N one defines b J = j≥J a j , then

∥(2 γJ b J ) J∈N ∥ ℓ q (N) ≤ K∥(2 γJ a J ) J≥0 ∥ ℓ q (N) .
Let δ = s -s 2 and γ = d/p. The first Hardy's inequality with a j = 2 -jd/p A j yields

∥(α j ) j∈N ∥ ℓ q (N) ≤ K∥(A j ) j∈N ∥ ℓ q (N) ,
while the second one with a j = 2 -jd/p A j and γ = d/p gives

∥(β J ) J∈N ∥ ℓ q (N) ≤ K∥(A j ) J∈N ∥ ℓ q (N) . Since ∥(A J ) J∈N ∥ ℓ q (N) = |f | µ (+ε) ,p,q,Ψ , one concludes that ∥(v J ) J≥1 ∥ ℓ q (N) ≤ 2CK(∥f ∥ L p (R d ) + |f | µ (+ε) ,p,q,Ψ ),
which, together with the control of ∥(u J ) J≥1 ∥ ℓ q (N) , implies (1.17).

Although we do not elaborate on this in this paper, it is certainly worth investigating the relationship between the Besov spaces in multifractal environment and the following analog of Sobolev space in multifractal environment. Definition 2.6. Let µ be a probability measure on

R d , s > 0, p ≥ 1. A function f belongs to W µ,s p (R d ) if and only if ∥f ∥ W µ,s p (R d ) < +∞, where ∥f ∥ W µ,s p (R d ) = ∥f ∥ L p (R d ) + |f | W µ,s p (R d ) and |f | W µ,s p (R d ) := ([0,1] d ) 2 |f (x) -f (y)| p µ(B[x, y]) sp |x -y| 2d dxdy < +∞.

Main properties of the capacities µ ∈ E d

In this section, we gather the main geometric, statistical and approximation properties proved to be associated with the capacities µ ∈ E d in [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF]. This completes Theorem 3.

Geometric and statistical properties

Let us introduce the notations for ε > 0, α ∈ R, and I = [a, b] an interval:

α ± ε = [α -ε, α + ε] and I ± ε = [a -ε, b + ε]. (3.1) Definition 3.1. Let µ ∈ C([0, 1] d ) with supp(µ) ̸ = ∅. For I ⊂ R and j ∈ N * define D µ (j, I) = ß λ ⊂ [0, 1] d , λ ∈ D j : log 2 µ(λ) -j ∈ I ™ .
Define the lower and upper large deviations spectra of µ respectively as

345 σ LD µ : α ∈ R → lim ε→0 lim inf j→∞ log 2 #D µ (j, α ± ε) j and σ LD µ : α ∈ R → lim ε→0 lim sup j→+∞ log 2 #D µ (j, α ± ε) j .
Also, define

E ≤ µ (α) = {x ∈ supp(µ) : h µ (x) ≤ α} and E ≥ µ (α) = {x ∈ supp(µ) : h µ (x) ≥ α}.
Proposition 3.2. Let µ ∈ E d . Then :

1. the concave function τ * µ is continuous over its domain

dom(τ * µ ) = [τ ′ µ (+∞), τ ′ µ (-∞)] = {α ∈ R : τ * µ (α) ≥ 0} ⊂ (0, +∞).
2. For every α ∈ dom(τ * µ ), there exists a Borel probability measure µ α defined on [0, 1] d and supported on a set Σ α ⊂ [0, 1] d such that for every x ∈ Σ α , h µ (x) = α and h µα (x) = τ * µ (α). 3. For every α ∈ R, one has

σ µ (α) = τ * µ (α) = dim E µ (α) = dim E µ (α) = dim E µ (α) = σ LD µ (α) = σ LD µ (α).
In particular the SMF holds for µ.

For every

α ≤ τ ′ µ (0 -), dim E ≤ µ (α) = τ * µ (α). 350 5. For every α ≥ τ ′ µ (0 + ), dim E ≥ µ (α) = τ * µ (α). 6.
For every η > 0 and every interval I ⊂ dom(τ * µ ), there exists ε 0 > 0 and J 0 ∈ N such that for every ε ∈ (0, ε 0 ) and j ≥ J 0 , for I ∈ {I, I ± ε},

log 2 #D µ (j, I) j -sup α∈I τ * µ (α) ≤ η.
7. There exists a positive decreasing sequence (ε j ) j≥0 tending to 0 when j → +∞, such that for all j ∈ N and λ ∈ D j ,

τ ′ µ (+∞) -ε j ≤ log 2 µ(λ) -j ≤ τ ′ µ (-∞) + ε j . Proposition 3.3. Let µ ∈ E d .
1. For every ε > 0, there exists j ε ∈ N such that for all j ′ ≥ j ≥ j ε , for all λ, λ ∈ D j such that ∂λ ∩ ∂ λ ̸ = ∅, and all λ ′ ∈ D j ′ such that λ ′ ⊂ λ, one has

µ(λ ′ ) ≤ µ( λ)2 jε 2 -(j ′ -j)(αmin-ε) . (3.2)
2. For all integers j, j ′ ≥ 0 and λ ∈ D j , one has

µ(λ • [0, 2 -j ′ ] d ) = µ(λ)2 -ϕ λ 2 -j ′ αmin+ φλ (j ′ ) , (3.3) 
where:

• λ • [0, 2 -j ′ ] d is the concatenation of λ and [0, 2 -j ′ ] d , meaning that λ • [0, 2 -j ′ ] d is the image of [0, 2 -j ′ ] d by the canonical similarity which maps [0, 1] d onto λ,
• ϕ λ ∈ R and φλ ∈ Φ are uniform o(j) in the sense that

lim j→+∞ sup ß |ϕ λ | j : λ ∈ D j ™ = lim j ′ →+∞ sup    | φλ (j ′ )| j ′ : λ ∈ j∈N D j    = 0. (3.4) 
These inequalities are key to prove the optimal upper bound for the singularity spectrum of typical functions in B µ,p q (R d ).

Some approximation properties

Definition 3.4. A dyadic vector 2 -j k, j ∈ N, k ∈ Z d , is irreducible when k ∈ Z d \ (2Z) d .
The irreducible representation of a dyadic vector 2 -j k with j ∈ N and k ∈ Z d is the unique irreducible dyadic vector 2 -j k such that 2 -j k = 2 -j k.

If λ = 2 -j (k + [0, 1] d ) ∈ D j , then its associated irreducible cube is λ := 2 -j (k + [0, 1] d ) ∈ D j ,
where 2 -j k is the irreducible representation of 2 -j k.

The following definition invokes an increasing mapping γ : N → N which is defined in the construction of E d in [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF]. The precise definition of γ(N) is not needed here. The only interesting point to mention here is that the integer (j) δ defined below is such that (j) δ ∼ j→+∞ j/δ.

(3.5)

Definition 3.5. Let µ ∈ E d .
For δ > 1 and j ≥ 1, let (j) δ be the largest integer in γ(N) ∩ [0, j/δ].

For any positive sequence η = (η j ) j≥1 , define the set

X j (δ, η) =      2 -(j) δ k ∈ [0, 1] d :      k ∈ Z d \ 2Z d , µ 2 -(j) δ (k + [0, 1] d ≥ 2 -(j) δ (αmin+η (j) δ ), µ 2 -(j) δ k + 2 -j [0, 1] d ≥ 2 -j(αmin+ηj )      .
Then, for any increasing sequence of integers (j n ) n≥1 , set

S(δ, η, (j n ) n≥1 ) = N ≥1 n≥N 2 -(jn ) δ k∈Xj n (δ,η) (2 -(jn) δ k + 2 -jn [0, 1] d ).
Recall that the lower Hausdorff dimension of a Borel probability measure ν on R d is the infimum of the Hausdorff dimension of the Borel sets of positive ν-measure (see [START_REF] Fan | Sur les dimensions de mesures[END_REF] for instance).

• Suppose that t p > (τ * µ ) ′ (α + min ). In this case, t ∞ = (τ * µ ) ′ (α + min ) < +∞, which implies that τ µ (t) = α min t -τ * µ (α min ) for all t ≥ t ∞ (see Remark 4.1). Also, since t p > (τ * µ ) ′ (α + min ) > 0, α tp = α min and the image of ∂ χ 2 is included in (0, +∞). In particular the convex mapping χ 2 reaches its minimum at α min . Consequently, )), we get the same conclusion by approximating τ * µ by the differentiable L q -spectra associated with the Bernoulli product generated by the probability vectors used to construct µ.

ζ 2 (t) = ζ 1 (t) = tα min + t-
Thus, one knows that χ is concave on the two intervals [α min , θ p (α min )] and on [θ p (α min ), θ p (α p )].

If θ p (α min ) = θ p (α p ), or if θ p (α min ) = α min , the conclusion is immediate. Otherwise, to get that χ is concave, one must check that χ ′ (θ p (α + min )) ≤ p = χ ′ (θ p (α - min )). With the notations used above, a direct computation then yields χ ′ (θ p (α + min )) = p if (τ * µ ) ′ (α + min ) = t ∞ = +∞ and χ ′ (θ p (α + min )) = t∞ t∞+p p if t ∞ < +∞. Hence the conclusion that χ is concave.

5. Lower bound for the L q -spectrum, and upper bound for the singularity spectrum in B µ,p q (R d ), when µ ∈ E d

This section uses the wavelet leaders and L q -spectrum of a function introduced in Section 1.5. Item (1) of Theorem 4 is proved by establishing a general lower bound for the L q -spectrum of all f ∈ B µ,p q (R d ) when µ ∈ E d (Theorem 5(1)). The main result of this section is the following. Recall the definition (1.21) of s µ .

Theorem 8. Let µ ∈ E d and p, q ∈ [1, +∞]. Let Ψ ∈ F sµ . For all f ∈ L p (R d ) such that |f µ,p,q,Ψ | < +∞, one has ζ f |R+ ≥ ζ µ,p |R+ .
It is implicit in Theorem 8 that the semi-norm |f µ,p,q,Ψ | defined in (1.14) is computed using the wavelet Ψ ∈ F sµ fixed by the statement.

Theorem 8 yields the following corollary. 

σ f (H) ≤ ® ζ * µ,p (H) if H ≤ ζ ′ µ,p (0 + ) d if H > ζ ′ µ,p (0 + ), ,
i.e. part (1) of Theorem 4 holds true.

Proof. Part (1) follows from the definition of B µ,p q (R d ) and the continuity of ζ µ (-ε) ,p |R+ as a function of ε. Part ( 2) is then a consequence of (1.28).

The wavelets Ψ ∈ F sµ are fixed for the rest of this section. To obtain Theorem 8, one needs to estimate, for any f ∈ L p (R d ) such that |f µ,p,q,Ψ | < +∞ and any N ∈ N, the upper large deviations spectrum of the wavelet leaders (L f λ ) λ⊂N [0,1] d associated with Ψ, defined as follows. Recall the notations H ± ε introduced in (3.1), and N λ in the introduction. Definition 5.1. Let f ∈ L 1 loc (R d ) and N ∈ N * , with wavelet coefficients and leaders computed with the wavelet Ψ. For any compact subinterval I of R, set

D N f (j, I) = ® λ ∈ D j : λ ⊂ N [0, 1] d , log 2 |L f λ | -j ∈ I
´,

The upper wavelet leaders large deviation spectrum of f associated with Ψ and

N [0, 1] d is σ LD,N f (H) = lim ε→0 lim sup j→+∞ log 2 #D N f (j, H ± ε) j . Proposition 5.2. Let µ ∈ E d and p, q ∈ [1, +∞]. For all f ∈ L p (R d
) such that |f µ,p,q,Ψ | < +∞, and all N ∈ N, one has The rest of this section is devoted to the proof of Proposition 5.2. It requires large deviations estimates on the distribution of the wavelet coefficients of f under the constraint |f µ,p,+∞ | < +∞, which holds automatically if |f µ,p,q,Ψ | < +∞. 

σ LD,N f (H) ≤ ® ζ * µ,p (H) if H ≤ ζ ′ µ,p (0 + ) d if H > ζ ′ µ,p (0 + ) . ( 5 

Large deviations estimates for wavelet coefficients

Λ f,µ (j, I H , I α ) =      λ = (i, j, k) ∈ Λ : λ j,k ⊂ 3[0, 1] d ,      log 2 |c λ | -j ∈ I H log 2 µ(λ j,k ) -j ∈ I α      . (5.2)
In other words, Λ f,µ (j, I H , I α ) contains those cubes λ of generation j such that µ(λ) ∼ |λ| α with α ∈ I α and |c λ | ∼ 2 -jh with h ∈ I H . The cube 3[0, 1] d is considered, rather than [0, 1] d because the computation of wavelet leaders on [0, 1] d requires some knowledge of µ and f in this neighborhood of [0, 1] d .

The cardinality of Λ f,µ (j, I H , I α ) is estimated to get a control of the wavelets leaders large deviations spectrum under the assumptions of Proposition 5.2.

In the next lemma, the convention ∞ × x = +∞ for x ≥ 0 is adopted.

Lemma 5.4. Let µ ∈ E d and p ∈ [1, +∞]. Let α min = τ ′ µ (+∞) and α max = τ ′ µ (-∞). Let f ∈ L p (R d ) be such that |f | µ,p
,+∞,Ψ < +∞ and let I H , I α be two compact subintervals of R.

1. If max I H < min I α , then Λ f,µ (j, I H , I α ) = ∅ for j large enough. 2. If I α ⊂ [α min , α max ] and min I α ≤ min I H , then for every η > 0, there exists ε 0 > 0 and J 0 ∈ N such that for every ε ∈ [0, ε 0 ] and j ≥ J 0 :

log 2 #Λ f,µ (j, I H ± ε, I α ± ε) j ≤ max β∈Iα∩[0,max I H ] min(p(max I H -β), τ * µ (β)) + η. (5.3) 
Proof. We treat the case p < +∞ and leave the simpler case p = +∞ to the reader.

(1) Recall that by definition sup j∈N c λ µ(λ) λ∈Λj ℓp(Λj )

< +∞. There is

C f ≥ 1 such that sup j∈N c λ µ(λ) λ∈Λj ℓp(Λj ) ≤ C f . (5.4) 
It follows that item (1) holds true, for otherwise (5.4) would be contradicted.

(2) Fix η, ε > 0 and set ‹ H = max(I H ). Since I α is compact and τ * µ is continuous over its compact domain, there are finitely many numbers α 0 < . . . < α m such that H+ε) . Thus, for each ℓ ∈ {0, ..., m -1},

I α = m-1 ℓ=0 [α ℓ , α ℓ+1 ] and for 530 every ℓ, α ℓ+1 -α ℓ ≤ η/p and |τ * µ (β) -τ * µ (β ′ )| ≤ η for all β, β ′ ∈ [α ℓ , α ℓ+1 ]. Let j ∈ N. Consider the subset Λ f,µ (j, I H , [α ℓ , α ℓ+1 ] ± ε) of Λ f,µ (j, I H ± ε, I α ± ε). With each cube λ ∈ Λ f,µ (j, I H ± ε, [α ℓ , α ℓ+1 ] ± ε) is associated a wavelet coefficient c λ whose absolute value is at least equal to 2 -j(
C p f ≥ λ∈Λj Å |c λ | µ(λ) ã p ≥ λ∈Λ f,µ (j,I H ±ε,[α ℓ ,α ℓ+1 ]±ε) Ç 2 -j( H+ε) 2 -j(α ℓ -ε)
åp .

(5.5)

Remark 5.5. Recall that for λ = (i, j, k) ∈ Λ j , we make a slight abuse of notation by identifying λ with λ j,k ∈ D j and writing µ(λ) for µ(λ j,k ) and λ ⊂ E for λ j,k ⊂ E.

It follows from (5.5) that

#Λ f,µ (j, I H , [α ℓ , α ℓ+1 ] ± ε) ≤ C p f 2 jp( H-α ℓ +2ε
) . On the other hand, observe that for each j ≥ 0, one has

Λ f,µ (j, I H ± ε, [α ℓ , α ℓ+1 ] ± ε) ⊂ λ = (i, j, k) ∈ Λ : λ ⊂ 3[0, 1] d , log 2 µ(λ) -j ∈ I , where I = [α ℓ , α ℓ+1 ] ± ε ∩ [0, ‹ H + ε]. Applying Proposition 3.2(6) to each interval [α ℓ , α ℓ+1 ] ± ε ∩ [0, ‹ H + ε], one finds ε 0 > 0 and J 0 ∈ N such that for all ε ∈ (0, ε 0 ], 0 ≤ ℓ ≤ m -1 and j ≥ J 0 , #D µ (j, [α ℓ , α ℓ+1 ] ± ε ∩ [0, ‹ H + ε]) ≤ #D µ (j, ([α ℓ , α ℓ+1 ] ∩ [0, ‹ H]) ± 2ε) ≤ 2 j(γ ℓ +η) ,
where

γ ℓ = max{τ * µ (β) : β ∈ [α ℓ , α ℓ+1 ] ∩ [0, ‹ H]}.
Then, taking into account the fact that µ is Z d -invariant, as well as the fact that with each dyadic cube λ j,k are associated 2 d -1 wavelet coefficients, one obtains

#Λ f,µ (j, I H ± ε, [α ℓ , α ℓ+1 ] ± ε) ≤ 3 d (2 d -1)2 j(γ ℓ +η) .
Combining the previous estimates, one gets for ε ∈ (0, ε 0 ] and j ≥ J 0

#Λ f,µ (j, I H , I α ± ε) ≤ m-1 ℓ=0 #Λ f,µ (j, I H , [α ℓ , α ℓ+1 ] ± ε) ≤ m-1 ℓ=0 min C p f 2 jp( H-α ℓ +2ε) , 3 d (2 d -1) • 2 j(γ ℓ +η) ≤ 3 d (2 d -1)C p f m max 2 j min(p( H-α ℓ +2ε),γ ℓ +η) : ℓ = 0, 1, ..., m -1 .
Also, the constraints imposed to the exponents α ℓ and the continuity of τ * µ imply that max min(p( ‹ H -α ℓ + 2ε), γ ℓ + η) : ℓ = 0, 1, ..., m -1

≤ max min(p( ‹ H -β), τ * µ (β)) : β ∈ I α ∩ [0, ‹ H] + 2pε + 3η.
Taking ε 0 ≤ η/p and J 0 so large that 2 J0η ≥ 3 d (2 d -1)C p f m, we finally get the desired upper bound (5.3) (with 6η instead of η).

We are now ready to get an upper bound for the wavelet leaders upper large deviations spectrum of f .

Proof of Proposition 5.2

Note that since µ is Z d -invariant, and by definition of | | µ,p,q,Ψ , any general upper bound for σ LD,1

f |[0,1] d holds for σ LD,N f . Thus, without loss of generality we prove that σ LD,1 f is upper bounded by the right hand side of (5.1).

This proof is rather involved because all the possible interactions between the values µ(λ) and the corresponding wavelet coefficients c λ must be taken care of.

Note that the inequality σ LD,1 f ≤ d obviously holds. So it is enough to deal with the case

H ≤ ζ ′ µ,p (0 + ). Fix H ≤ ζ ′ µ,p (0 + ). For ε > 0 small enough, #D 1 f (j, H ± ε
) is going to be estimated from above (recall Definition 5.1). We are going to prove that there exist C, c > 0 such that for any η > 0, if ε 0 ∈ (0, η] is chosen small enough, then for j large enough, for all ε ∈ (0, ε 0 ),

#D 1 f (j, H ± ε) ≤ Cj2 j(ζ * µ,p (H)+cη) . (5.6)
It is immediate to check that (5.6) implies (5.1), hence Proposition 5.2.

Since |f | µ,p,+∞ < +∞, there exists C > 0 such that |c λ | ≤ Cµ(λ) for every λ ∈ j≥0 Λ j (recall Remark 5.5). Without loss of generality, suppose that the above constant is equal to 1 and so

|c λ | ≤ µ(λ) for every λ ∈ j≥0 Λ j .
(5.7)

Recall the definition (1.24) of wavelet leaders:

L f λ = sup{|c λ ′ | : λ ′ = (i, j, k) ∈ Λ, λ ′ ⊂ 3λ}.
The following observations are key. Lemma 5.6. A dyadic cube λ belongs to D 1 f (j, H ± ε) if and only if:

• λ ⊂ [0, 1] d ;
• There exists a dyadic cube λ ′ ⊂ 3λ of generation j ′ ≥ j as well as

i ∈ {1, • • • 2 d -1} and k ′ ∈ Z d such that λ ′ = λ j ′ ,k ′ , and |c (i,j ′ ,k ′ ) | = 2 -j ′ H ′ with H ′ ∈ j j ′ [H -ε, H + ε];
• when j is large enough, j ′ ≤ 2j(H + ε)/α min .

Proof. The first item is trivial, and the second one follows from the definition (1.24) of the wavelet leaders and the fact that

log 2 |L f λ | -j
∈ H ± ε if and only if there exists some λ ′ ⊂ 3λ of generation

j ′ ≥ j and i ∈ {1, • • • 2 d -1} such that log 2 |c (i,j ′ ,k ′ ) | -j ∈ H ± ε.
For the third item, Lemma 5.4(2) implies that |c (i,j ′ ,k ′ ) | ≤ 2 -j ′ αmin/2 when j (and so j ′ ) is large. Hence H ′ ≥ α min /2 and the fact that j ′ ≤ j(H + ε)/H ′ implies the claim.

The second item of Lemma 5.6 is used repeatedly in the forthcoming pages.

Three cases are separated.

Case 1 : H < α min .

Note that ζ * µ,p (H) = -∞. Suppose that ε > 0 is so small that α min -ε > H + ε. Due to Proposition 3.2(6) and the observation made just above, for j large enough

#D 1 f (j, H ± ε) ≤ j≤j ′ ≤2j(H+ε)/αmin #Λ f,µ (j ′ , [0, H + ε], I α ), with I α = [α min -ε, α max + ε]. However, H + ε < α min -ε, so by Lemma 5.4, D 1 f (j, H ± ε) = ∅. This implies (5.1), i.e. σ LD,1 f |[0,1] d (H) = -∞.
To deal with the other cases, we discretize the interval [α min , H]. Fix η > 0, ε 0 ∈ (0, min(1/2, α min /2, η)), and split the interval [α min , H] into finitely many contiguous closed intervals I 1 , ..., I m (m = m(ε 0 )) such that

• |I ℓ | ≤ ε 0 for every ℓ ∈ {1, ..., m}, • Writing I ℓ = [h ℓ , h ℓ+1 ], one has 1 ≤ h ℓ+1 /h ℓ ≤ 1 + ε 0 for every 1 ≤ ℓ ≤ m.
In particular, H/h ℓ ≥ 1 for every ℓ. By Lemma 5.6, if j ≥ J 0 and λ ∈ D 1 f (j, H ± ε), there exist j ′ ≥ j and

λ ′ = (i, j ′ , k ′ ) ∈ Λ j ′ such that λ ′ ⊂ 3λ and |c λ ′ | = 2 -j ′ H ′ with H ′ ∈ j j ′ [H ± ε]. By (5.7), |c λ ′ | ≤ µ(λ ′ ), so there exist 1 ≤ ℓ ′ ≤ ℓ ≤ m such that λ ′ ∈ Λ f,µ (j ′ , I ℓ ± ε, I ℓ ′ ± ε) (recall (5.2)).
In addition,

H ′ ∈ I ℓ ± ε ⊂ I ℓ ± ε 0 , j ′ ∈ j H ′ [H ± ε] ⊂ î j H-ε0 h ℓ+1 +ε0 , j H+ε0 h ℓ -ε0 ó , and 
h ℓ+1 ≤ H. Consequently, D 1 f (j, H ± ε) ⊂ 1≤ℓ ′ ≤ℓ≤m D ℓ,ℓ ′ f (j, H ± ε), (5.8) 
where (recall Remark 5.5)

D ℓ,ℓ ′ f (j, H ± ε)= j ′ ∈j• H-ε 0 h ℓ+1 +ε 0 , H+ε 0 h ℓ -ε 0 ® λ ∈ D j ∩ [0, 1] d : ® ∃ λ ′ ∈ Λ f,µ (j ′ , I ℓ ± ε, I ℓ ′ ± ε) such that λ ′ ⊂ 3λ
´.

Next, the cardinality of D ℓ,ℓ ′ f (j, H ± ε) (and thus of D 1 f (j, H ± ε)) is going to be bounded from above using different estimates.

To do so, Lemma 5.4( 2) is applied to each pair {I ℓ , I ℓ ′ }: there exist ε ∈ (0, ε 0 ) and J 0 ∈ N such that for all j ′ ≥ J 0 , for all 1

≤ ℓ ′ ≤ ℓ ≤ m, log 2 #Λ f,µ (j ′ , I ℓ ± ε, I ℓ ′ ± ε) j ′ ≤ d(ℓ, ℓ ′ ) + η (5.9) where d(ℓ, ℓ ′ ) = max min(p(h ℓ+1 -β), τ * µ (β)) : β ∈ I ℓ ′ .
(5.10)

Case 2: α min ≤ H < θ p (α min ) = α min + τ * µ (αmin) p
. This case occurs only when τ * µ (α min ) > 0.

Let j ≥ J 0 . For every 1

≤ ℓ ′ ≤ ℓ ≤ m, one has p(h ℓ+1 -h ℓ ′ ) ≤ p(H -α min ) ≤ τ * µ (α min ) ≤ τ * µ (β), for every β ∈ I ℓ ′ . So, from (5.10) one deduces that d(ℓ, ℓ ′ ) ≤ p(h ℓ+1 -α min ). Thus, if j ′ ∈ î j H-ε0 h ℓ+1 +ε0 , j H+ε0 h ℓ -ε0 ó , then j ′ d(ℓ, ℓ ′ ) ≤ jp(H+ε 0 ) h ℓ+1 -αmin h ℓ -ε0
. Then observing that sup ℓ∈{1,...,m}

h ℓ+1 -αmin h ℓ = H-αmin H + O(ε 0 ), one has j ′ (d(ℓ, ℓ ′ ) + η) ≤ j(p(H -α min ) + O(ε 0 ) + η) = j(ζ * µ,p (H) + O(ε 0 ) + η).
Consequently, since (5.8) implies

#D 1 f (j, H ± ε) ≤ 1≤ℓ ′ ≤ℓ≤m j ′ ∈ j H-ε 0 h ℓ+1 +ε 0 ,j H+ε 0 h ℓ -ε 0 #Λ f,µ (j ′ , I ℓ ± ε, I ℓ ′ ± ε),
the inequality (5.9) combined with the previous remarks yields

#D 1 f (j, H ± ε) ≤ m 2 j H + ε 0 α min -ε 0 2 j(ζ * µ,p (H)+O(ε0)+η) = C2 j(ζ * µ,p ( 
H)+O(ε0)+η) , so (5.6) holds true.

Case 3: θ p (α min ) ≤ H ≤ ζ ′ µ,p (0 + ) = θ p (τ ′ µ (0 + )
). This case is divided into four subcases in order to estimate #D ℓ,ℓ ′ f (j, H ± ε). The term d(ℓ, ℓ ′ ) can easily be expressed in terms of the mappings θ p defined in (4.1) and τ * µ . The mapping θ p is an increasing map over [α min , α p ] and α p ≥ τ ′ µ (0 + ), so using that h ℓ ≤ H, one deduces that

d(ℓ, ℓ ′ ) =      τ * µ (h ℓ ′ +1 ) if h ℓ ′ +1 ≤ θ -1 p (h ℓ+1 ), p(h ℓ+1 -h ℓ ′ ) if h ℓ ′ ≥ θ -1 p (h ℓ+1 ), τ * µ (θ -1 p (h ℓ+1 )) = ζ * µ,p (h ℓ+1 ) otherwise.
(5.11)

Moreover, the maximum of the three possible values is always ζ * µ,p (h ℓ+1 ).

Subcase (3a):

H h ℓ+1 d(ℓ, ℓ ′ ) ≤ ζ * µ,p (H).
Using the definition of D ℓ,ℓ ′ f (j, H ± ε) and inequality (5.9), for j ≥ J 0

#D ℓ,ℓ ′ f (j, H ± ε) ≤ j ′ ∈ j H-ε 0 h ℓ+1 +ε 0 ,j H+ε 0 h ℓ -ε 0 #Λ f,µ (j ′ , I ℓ ± ε, I ℓ ′ ± ε) ≤ j ′ ∈ j H-ε 0 h ℓ+1 +ε 0 ,j H+ε 0 h ℓ -ε 0 2 j ′ (d(ℓ,ℓ ′ )+η) ≤ j H + ε 0 h ℓ -ε 0 2 j H+ε 0 h ℓ -ε 0 (d(ℓ,ℓ ′ )+η) .

By our assumption,

H+ε0 h ℓ -ε0 d(ℓ, ℓ ′ ) ≤ H h ℓ+1 + O(ε 0 ) d(ℓ, ℓ ′ ) ≤ ζ * µ,p (H) + O(ε 0 ), this O(ε 0 ) being uniform with respect to ℓ. So #D ℓ,ℓ ′ f (j, H ± ε) ≤ C2 j(ζ * µ,p (H)+O(ε0)+η) . Subcase (3b): H h ℓ+1 d(ℓ, ℓ ′ ) > ζ * µ,p (H) and h ℓ ′ +1 ≤ θ -1 p (h ℓ+1 ).
Recall the definition (4.1) of θ p . A technical lemma is needed.

Lemma 5.7. For every j large enough,

D ℓ,ℓ ′ f (j, H ± ε) ⊂ D µ Å j, ï α min , α min + H h ℓ+1 (h ℓ ′ +1 -α min ) ò ± O(ε 0 ) ã ,
where O(ε 0 ) is independent of (ℓ, ℓ ′ ).
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Proof. Take λ ∈ D ℓ,ℓ ′ f (j, H ± ε) and applying Lemma 5.6, consider

j ′ ∈ î j H-ε0 h ℓ+1 +ε0 , j H+ε0 h ℓ -ε0 ó such that there exists λ ′ = (i, j ′ , k ′ ) ∈ Λ f,µ (j ′ , I ℓ ± ε, I ℓ ′ ± ε) for which λ ′ ⊂ 3λ.
Denote by λ the unique dyadic cube of D j containing λ ′ . Then, note that:

• The two cubes λ and λ are either equal or neighbors. Hence, by property (P 2 ) of µ, µ(λ) ≥ 2 -jε0 µ( λ) when j is large enough.
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• µ( λ) = µ(λ ′ ) µ( λ) µ(λ ′ ) , and by construction of µ (see

(3.2)), µ( λ) µ(λ ′ ) ≥ 2 -jε0 2 (j ′ -j)(αmin-ε0) . • Since λ ′ ∈ Λ f,µ (j ′ , I ℓ ± ε, I ℓ ′ ± ε), µ(λ ′ ) ≥ 2 -j ′ (h ℓ ′ +1 +ε0) . Consequently, log µ(λ) -j log(2) ≤ ε 0 + log µ( λ) -j log(2) ≤ 2ε 0 + j ′ j (h ℓ ′ +1 + ε 0 ) + (1 - j ′ j )(α min -ε 0 ) ≤ α min + j ′ j (h ℓ ′ +1 -(α min -4ε 0 )) ≤ α min + H h ℓ+1 (h ℓ ′ +1 -α min ) + O(ε 0 ),
where O(ε 0 ) is independent of (ℓ, ℓ ′ ). This yields the result.

Let us now bound α min + H h ℓ+1 (h ℓ ′ +1 -α min ) from above. Thanks to (5.11),

h ℓ ′ +1 ≤ θ -1 p (h ℓ+1 ) implies that d(ℓ, ℓ ′ ) = τ * µ (h ℓ ′ +1 ). Using that θ -1 p (h ℓ+1 ) ≤ θ -1 p (H) ≤ τ ′ µ (0 + ) and that τ * µ is non decreasing over [α min , τ ′ µ (0 + )], one has H h ℓ+1 τ * µ (θ -1 p (h ℓ+1 )) ≥ H h ℓ+1 τ * µ (h ℓ ′ +1 ) = H h ℓ+1 d(ℓ, ℓ ′ ) > ζ * µ,p (H) = τ * µ (θ -1 p (H)), from which one deduces that τ * µ (θ -1 p (h ℓ+1 )) h ℓ+1 > τ * µ (θ -1 p (H)) H . (5.12) 
Observe that the definition (4.1) of θ p implies that

θ -1 p (β) + p -1 τ * µ (θ -1 p (β)) = β (5.13)
for all β ∈ [α min , ζ ′ µ,p (0 + )]. Applying (5.13) to both sides of (5.12) yields

θ -1 p (h ℓ+1 ) h ℓ+1 < θ -1 p (H) H , (5.14) 
and since H h ℓ+1 > 1, the following series of inequalities holds:

α min + H h ℓ+1 (h ℓ ′ +1 -α min ) ≤ H h ℓ+1 h ℓ ′ +1 ≤ H h ℓ+1 θ -1 p (h ℓ+1 ) ≤ θ -1 p (H). (5.15) 
Consequently, Lemma 5.7 yields

D ℓ,ℓ ′ f (j, H ± ε) ⊂ D µ j, [α min , θ -1 p (H)] ± O(ε 0 ) . (5.16) 
The function τ * µ is continuous and non-decreasing over [α min , θ -1 p (H)]. Hence, choosing initially ε 0 small enough yields for j large enough that

#D ℓ,ℓ ′ f (j, H ± ε) ≤ 2 j(τ * µ (θ -1 p (H))+η) = 2 j(ζ * µ,p (H)+η) .
(5.17)

Subcase (3c): H h ℓ+1 d(ℓ, ℓ ′ ) > ζ * µ,p (H) and h ℓ ′ < θ -1 p (h ℓ+1 ) < h ℓ ′ +1 . Here one has h ℓ ′ +1 ≤ (1 + ε 0 )h ℓ ′ ≤ (1 + ε 0 )θ -1 p (h ℓ+1 ), so 595 α min + H h ℓ+1 (h ℓ ′ +1 -α min ) ≤ (1 + ε 0 ) H h ℓ+1 θ -1 p (h ℓ+1 ) + α min Å 1 - H h ℓ ′ +1 ã ≤ (1 + ε 0 ) H h ℓ+1 θ -1 p (h ℓ+1 ).
(5.18) Also, (5.11) 

gives d(ℓ, ℓ ′ ) = τ * µ (θ -1 p (h ℓ+1 )), so H h ℓ+1 d(ℓ, ℓ ′ ) > ζ * µ,p ( 
H) is equivalent to (5.12), and it implies (5.14). Finally, arguing as in the subcase (3b) and using (5.18), one sees that

α min + H h ℓ+1 (h ℓ ′ +1 -α min ) ≤ H - ζ * µ,p (H) p + O(ε 0 ) = θ -1 p (H) + O(ε 0 ). ( 5.19) 
Applying Lemma 5.7, one deduces that (5.17) holds once again.

Subcase (3d): H h ℓ+1 d(ℓ, ℓ ′ ) > ζ * µ,p (H) and h ℓ ′ ≥ θ -1 p (h ℓ+1 ). By (5.11), d(ℓ, ℓ ′ ) = p(h ℓ+1 -h ℓ ′ ). Consequently, h ℓ ′ = h ℓ ′ -d(ℓ,ℓ ′ ) p < h ℓ+1 -h ℓ+1 H ζ * µ,p ( 
H)/p, and

α min + H h ℓ+1 (h ℓ ′ +1 -α min ) ≤ H h ℓ+1 h ℓ ′ +1 < H h ℓ+1 h ℓ+1 - h ℓ+1 H ζ * µ,p (H) p + H h ℓ+1 -h ℓ h ℓ+1 .
Thus, (5.19) and then (5.17) hold in this subcase as well.

Collecting the estimates obtained along the cases considered above, (5.6) is proved, and so is Proposition 5.2.

Typical singularity spectrum in

B µ,p q (R d )
In this section, the singularity spectrum of typical functions in

B µ,p q (R d ) when µ ∈ E d is computed, proving item (2) of Theorem 4.
The strategy is similar to the one used to derive the generic multifractal behavior in classical Besov spaces. First, a saturation function is built, whose multifractal structure is the one claimed be generic in B µ,p q (R d ). Then, this particular function is used to perturb a countable family of dense sets in B µ,p q (R d ), in order to obtain a countable family of dense open sets on the intersection of which the desired multifractal behavior holds. However, the construction of the saturation function and the multifractal analysis of typical functions are much more delicate in B µ,p q (R d ) than in B s,p q (R d ).

The environment µ ∈ E d is fixed for the rest of this section, as well as (p, q) ∈ [1, +∞] 2 and Ψ ∈ F sµ .

A saturation function

In this section, a saturation function g µ,p,q ∈ B µ,p q (R d ) is built via its wavelet coefficients, which are as large as possible in B µ,p q (R d ), and its wavelet leaders are estimated.

The definition of g µ,p,q demands some preparation. When α min = α max , we set (M N := N 2 ) N ∈N * and

I N i = {α min } for all 1 ≤ i ≤ M N . When α min < α max , for every N ∈ N * , it is possible to find an integer M N such that the interval [α min , α max ] = [τ ′ µ (+∞), τ ′ µ (-∞)] can be split into M N non-trivial contiguous closed intervals I N 1 , I N 2 , ..., I N M N satisfying for every i ∈ {1, ..., M N }, |I N i | ≤ 1/N and max{|τ * µ (α) -τ * µ (α ′ )| : α, α ′ ∈ I N i } ≤ 1/N. ( 6.1) 
Without loss of generality, we assume that the sequence (M N ) N ≥1 is increasing.

In any case, item (6) of Proposition 3.2 yields a decreasing sequence (η N ) N ∈N * converging to 0 as N → ∞, and for all N ∈ N * , M N integers J N,1 , J N,2 , ..., J N,M N , such that for every i ∈ {1, .., M N }, for every j ≥ J N,i ,

log 2 #D µ (j, I N i ± 1/N ) j -max α∈I N i τ * µ (α) ≤ η N . (6.2)
Without loss of generality, we assume that η N ≥ 1/N . Then, define inductively the non-decreasing sequences of integers (J N ) N ∈N * and (N j ) j≥1 such that:

         ∀ N ≥ 1, J N ≥ max{J N,i : i ∈ {1, ..., M N }} ∀ N ≥ 2, M N ≤ 2 J N η N -1 , ∀ N ≥ 3, J N -1 η N -2 < J N η N -1 , for every J N ≤ j < J N +1 , we set N j = N. (6.3) 
Moreover, Proposition 3.2(7) makes it possible to impose that for every j ≥ J N and λ ∈ D j ,

2 -j(αmax+1/N ) ≤ µ(λ) ≤ 2 -j(αmin-1/N ) .
Finally, let us introduce some coefficients depending on the elements λ ∈ Λ j :

620 • If L ∈ Z d , j ≥ J 2 and λ ∈ Λ L j = {λ = (i, j, k) ∈ Λ j : λ j,k ⊂ L + [0, 1] d }, set w λ =        2 - 3jη N j -1 p j 1 p + 2 q (1 + ∥L∥) d+1 p if p < +∞ j -2 q if p = +∞, (6.4) 
with the convention 2 ∞ = 0.

• If j ≥ J 2 and λ = (i, j, k) ∈ Λ j , set α j,k = log 2 µ(λ j,k ) -j and

α λ =      α j,k if α j,k ∈ [α min , α max ], α min if α j,k < α min , α max if α j,k > α max . Remark 6.1. Note that ε λ = log 2 µ(λ) -j
-α λ tends to 0 uniformly in λ ∈ D j as j → +∞. In other words, there exists ϕ ∈ Φ (recall Definition 1.3) such that

| log 2 µ(λ) -j -α λ | ≤ ‹ ‹ ϕ(j) j .
Recall the Definition 3.4 of the irreducible dyadic cube λ := λ j,k . Definition 6.2. The saturation function g µ,p,q : R d → R is defined by its wavelet coefficients in 625 the wavelet basis associated with Ψ, denoted by (c µ,p,q λ ) λ∈Λ , as follows:

• c µ,p,q λ = 0 if λ ∈ j<J2 Λ j . • If j ≥ J 2 and λ = (i, j, k) ∈ Λ j , set c µ,p,q λ =      w λ • µ(λ j,k ) if p = +∞, w λ • µ(λ j,k ) 2 -j τ * µ (α λ ) p if p < +∞. (6.5) 
Remark 6.3.

1. Note that c µ,p,q λ does not depend on i if λ = (i, j, k). Consequently, c µ,p,q λ is defined without ambiguity by the same formula for λ ∈ D j .

2. The choice of j and λ in the exponent 2 -j τ * µ (α λ ) p in (6.5) implies that at a given generation j, the wavelet coefficients of g µ,p,q display several order of magnitudes, which are influenced by the values of µ along the j first generations of dyadic cubes. One can also guess from this choice that approximation by dyadic vectors plays an important role in our analysis, since the local behavior of g µ,p,q around a point x depends on how close x is to the dyadic vectors.

Lemma 6.4. The function g µ,p,q belongs to B µ,p q (R d ) and B µ,p q (R d ).

Proof. Suppose that p < +∞. For j ∈ N and

L ∈ Z d , set D L j = {λ ∈ D j : λ ⊂ L+[0, 1] d } and Λ L j = {(i, j, k) ∈ Λ j : λ j,k ∈ D L j }.
Recall that for λ = (i, j, k), µ(λ) stands for µ(λ j,k ).

Let us define, for j ≥ J 2 and

L ∈ Z d , A j,L = λ∈Λ L j Å |c µ,p,q λ | µ(λ) ã p . To prove that g µ,p,q ∈ B µ,p q (R d ) ⊂ B µ,p q (R d ), it is enough to show that A j := L∈Z d A j,L 1/p ∈ ℓ q (N).
For j ∈ [J N , J N +1 ), by (6.5) and ( 6.4), one has

A j,L = λ∈Λ L j Ñ 2 -3jη N j -1 /p µ(λ)2 -j τ * µ (α λ ) p j 1 p + 2 q (1 + ∥L∥) (d+1)/p µ(λ) é p = (2 d -1)2 -3jη N j -1 j 1+ 2p q (1 + ∥L∥) (d+1) λ∈D 0 j 2 -jτ * µ (α λ ) , (6.6) 
where the factor 2 d -1 comes from the fact that c µ,p,q λ , λ = (i, j, k), is independent of i ∈ {1, . . . , 2 d -1}. The periodicity of µ, i.e.

µ |[0,1] d = µ |L+[0,1] d is also used.
Recalling the notations in Proposition (3.3), if λ ∈ D j and λ is the cube associated with its irreducible representation, then one can write λ = λ • [0, 2 -(j-j) ] d .

Then, after regrouping in (6.6) the terms according to the generation of their irreducible representation, one has

A j,L = (2 d -1) 2 -3jη N j -1 j 1+ 2p q (1 + ∥L∥) (d+1) 1 + j J=1 λ∈D 0 J \(D 0 J-1 •[0,2 -1 ] d ) 2 -Jτ * µ (α λ ) ≤ 2 d 2 -3jη N j -1 j 1+ 2p q (1 + ∥L∥) (d+1) 1 + j J=1 λ∈D 0 J 2 -Jτ * µ (α λ ) = 2 d 2 -3jη N j -1 j 1+ 2p q (1 + ∥L∥) (d+1) Ñ J1-1 J=0 + Nj -1 N =1 J N +1 -1 J=J N + j J=J N j é λ∈D 0 J 2 -Jτ * µ (α λ ) . (6.7) 
For each J N ≤ J < J N +1 , using (6.1) and then (6.2), we obtain

λ∈D 0 J 2 -Jτ * µ (α λ ) ≤ M N J i=1 λ∈Dµ(j,I N J i ±1/N ) 2 -J(max{τ * µ (α):α∈I N J i }-1/N J ) ≤ M N J i=1 2 J(max{τ * µ (α):α∈I N J i }+η N J ) 2 -J(max{τ * µ (α):α∈I N J i }-1/N J ) = M N J 2 J(η N J +1/N J ) ≤ M N J 2 2Jη N J .
Consequently, by (6.3),

Ñ Nj -1 N =1 J N +1 -1 J=J N + j J=J N j é λ∈D 0 J 2 -Jτ * µ (α λ ) ≤ Nj -1 N =1 J N +1 -1 J=J N M N 2 2Jη N + j J=J N j M Nj 2 2Jη N j ≤ Nj -1 N =1 (J N +1 -J N )M N 2 2J N +1 η N + (j -J Nj + 1)M Nj 2 2jη N j ≤ jM Nj 2 2jη N j -1 , since all terms M N 2 2J N +1 η N , for N ≤ N j-1 , are less than M Nj 2 2jη N j-1 .
Setting

C µ = J1-1 J=0 λ∈D 0 J 2 -Jτ * µ (α λ )
, by (6.3) and M Nj 2 2J N η N j-1 ≤ 1 one has

A j,L ≤ 2 d M Nj 2 -Jnη N j -1 j 2p q (1 + ∥L∥) (d+1) (C µ + 1) ≤ 2 d (C µ + 1) j 2p q (1 + ∥L∥) (d+1)
.

Finally,

L∈Z d A j,L 1/p = c µ,p,q λ µ(λ) λ∈Λj p = O(j -2/q
), hence c µ,p,q λ µ(λ) λ∈Λj p j∈N belongs to ℓ q (N). This implies that g µ,p,q ∈ B µ,p q (R d ).

When p = +∞, the estimate is much simpler and left to the reader.

Next lemma shows that the wavelet leader (recall (1.24)) L gµ,p,q λ of g µ,p,q at λ ∈ D j is essentially comparable to the wavelet coefficients c µ,p,q λ ′ indexed by the cubes λ ′ of generation j which are neighbors of λ. This property is key to estimate the L q -spectrum of g µ,p,q relative to Ψ. Lemma 6.5. Fix L ∈ Z d . For every ε > 0, there exists J ε ∈ N such that if j ≥ J ε , for every λ ∈ D L j , c µ,p,q λ ≤ L gµ,p,q λ ≤ 2 jε c µ,p,q λ , where c µ,p,q λ = max{c µ,p,q λ : λ ∈ D j , λ ⊂ 3λ}.

Proof. It is enough to prove the result for L = 0. Let ε, ε ′ ∈ (0, 1). Let j ≥ 1 and λ ∈ D 0 j . Let us begin with some remarks:

• in (6.5), the term w λ depends only on j, and is decreasing with j.

• if λ ′ ⊂ λ, µ(λ ′ ) ≤ µ(λ) since µ ∈ C(R d ).
• by Remark 6.3(1) c µ,p,q λ does not depend on the index i of λ = (i, j, k).

Next, observe that if λ ′ ⊂ λ, the irreducible cubes λ ′ ∈ D j ′ and λ ∈ D j respectively associated with λ ′ and λ, are such that j ≤ j ′ .

Then one controls the wavelet coefficients as follows:

(i) By the property (P 1 ) of µ, there exists M ∈ N * such that for every λ ′ ∈ D M j one has

µ(λ ′ ) ≤ 2 -j(d/p+2αmax+1) . So µ(λ)2 -j τ * µ (α λ ) p
≥ 2 -j(αmax+1)-jd/p ≥ µ(λ ′ ), which implies that for j ′ ≥ M j, c µ,p,q λ ′ ≤ c µ,p,q λ . Hence, the only wavelet coefficients c λ ′ to consider to compute L gµ,p,q λ for λ ∈ D j are those of generations j ′ such that j ≤ j ′ ≤ M j.

(ii) if j ′ ≤ M j and j ≤ jpε/(2d), then 2 -j τ * µ (α λ ) p ≥ 2 -jpε/(2d)•d/p ≥ 2 -jε , so c µ,p,q λ ≥ w λ µ(λ)2 -jε and by the remarks of the beginning of the proof,

c µ,p,q λ ′ ≤ w λ ′ µ(λ ′ ) ≤ w λ µ(λ) ≤ c µ,p,q λ 2 jε .
(iii) It is possible to choose ε ′ small enough so that if j ′ -j ≤ ε ′ j ′ , then since µ is almost doubling,

|α λ ′ -α λ | is so small that |j ′ τ * µ (α λ ′ ) -jτ * µ (α λ )| ≤ jpε. (iv) If j ′ ≤ M
j, j > jpε/(2d) and j ′ -j ≤ ε ′ j ′ , then by (iii) one has (for j is large enough)

c µ,p,q λ ′ ≤ c µ,p,q λ 2 jε ≤ c µ,p,q λ 2 jε . (v) If j ′ ≤ M j, j > jpε/(2d) and j ′ -j > ε ′ j ′ , then j ′ α λ ′ = jα λ + (j ′ -j)α (6.8)
for some α ∈ [α min -ε, α max + ε]. The concavity of τ * µ then implies that for some ε ′′ independent of j and j ′ ,

j ′ τ * µ (α λ ′ ) ≥ jτ * µ (α λ ) + (j ′ -j)(τ * µ (α * ) -ε ′′ ), where α * =      α when α ∈ [α min , α max ],
α max when α ≥ α max , α min when α ≤ α min .

In particular,

j ′ τ * µ (α λ ′ ) ≥ jτ * µ (α λ ) -(j ′ -j)ε ′′ , hence 2 -j ′ τ * µ (α λ ′ )/p ≤ 2 -jτ * µ (α λ )/p 2 (j ′ -j)ε ′′ /p ≤ 2 -jτ * µ (α λ )/p 2 j ′ ε ′′ /p ≤ 2 -jτ * µ (α λ )/p 2 M jε ′′ /p .
One checks that ε ′′ can be chosen as small as necessary when j tends to infinity, in particular so that one has for large j that M ε ′′ /p ≤ ε. Finally, with this choice of ε ′′ , c µ,p,q λ ′ ≤ c µ,p,q λ 2 jε .

Putting together all the previous information yields that when j is large enough, for all λ ∈ D 0 j and all λ ′ ∈ D j ′ such that λ ′ ⊂ λ, one has c µ,p,q λ ′ ≤ c µ,p,q λ 2 jε .

The same property holds true for all λ ∈ D j such that λ ⊂ 3[0, 1] d and λ ′ ∈ D j ′ such that λ ′ ⊂ λ. This yields the desired property.

6.2. The singularity spectrum of the saturation function g µ,p,q and some of its perturbations

We now determine the singularity spectrum of g µ,p,q , and more generally of any function whose wavelet coefficients are "comparable" to those of g µ,p,q over infinitely many generations. Proposition 6.6. Let f ∈ B µ,p q (R d ) such that for any L ∈ Z d , there exists an increasing sequence of integers (j n ) n∈N , and a positive sequence (ε n ) n∈N converging to 0 such that for all n ≥ 1 and λ = (i, j n , k) ∈ Λ jn such that λ jn,k ⊂ L + 3[0, 1] d the inequality 2 -jnεn c µ,p,q λ ≤ |c f λ | holds. Then σ f = σ gµ,p,q = ζ * µ,p . Only the case p < +∞ is treated, the case p = +∞ is simpler and deduced from arguments similar to those developed below. Fix (j n ) n∈N and (ε n ) n∈N as in the statement.

It is enough to prove

that dim E f (H) ∩ (L + [0, 1] d ) = ζ * µ,p ( 
H) for all H ∈ R and L ∈ Z d . Without loss of generality we work with L = 0 and show that dim

E f (H) ∩ [0, 1] d = ζ * µ,p (H) for all H ∈ R.
Note that the characterization (1.25) and the assumptions on (j n ) n∈N imply that for all x ∈ [0, 1] d , for the λ jn = (i, j n , k) such that x ∈ λ jn , one has lim inf

n→+∞ log c µ,p,q λj n log 2 -jn ≥ lim inf n→+∞ log |c f λj n | log 2 -jn ≥ lim inf j→+∞ log L f jn (x) log 2 -jn ≥ h f (x).
(6.9)

Recall that the value of c µ,p,q λj n does not depend on the index i of λ jn = (i, j n , k). 

(λ•[0, 2 -j ′ ] d ) = µ(λ)2 -ϕ λ 2 -j ′ αmin+ φλ (j ′ ) ,
where by (3.4) |ϕ λ | and | ϕ λ (j ′ )| are uniformly bounded by a o(j) and a o(j ′ ) respectively. So,

log 2 µ(λ jn ) -j n = j n j n log 2 µ(λ jn ) -j n + ϕ λj n j n + j n -j n j n α min + φλj n (j n -j n ) j n
which combined with (6.11) yields log c µ,p,q λj n log 2 -jn =

j n j n θ p (α λj n ) + 1 - j n j n α min + r n (x), (6.12) 
where

r n (x) = log 2 w λj n j n + j n j n log 2 µ(λ jn ) j n -α λj n + ϕ λj n j n + φλj n (j n -j n ) j n .
The dependence of r n (x) on x is explicit, to remember it. But it does not play any role in the bounds above, which are uniform in j n and j n -j n .

Lemma 6.7. One has lim n→+∞ r n (x) = 0.

Proof. The first term in r n (x) tends to zero when n → +∞, by definition (6.4) of w λ .

For the other terms in r n (x), let us define

C = max Ñ sup j≥1    ϕ(j) j    , sup j≥1 ß |ϕ λ | j : λ ∈ D j ™ , sup j ′ ≥1    | φλ (j ′ )| j ′ : λ ∈ j∈N D j    é .
By (3.3) and Remark 6.1, one has C < +∞.
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Now fix η ∈ (0, 1) and let us treat the second term. Remark 6.1 again gives that jn jn

log 2 µ(λ jn ) jn - α λj n ≤ ‹ ‹ ϕ(jn)
jn . When j n is large, one sees that:

• if jn jn > η, then j n is large and | ‹ ‹ ϕ(jn) jn | ≤ | ‹ ‹ ϕ(jn) jn | ≤ η, • if jn jn ≤ η, then jn jn | ϕ(j n )| ≤ Cη.
In any case, for n large enough jn jn | ϕ(j n )| ≤ (C + 1)η.

The same argument applies to the third term jn jn ϕ λj n . Finally, for the fourth term, one has:

• if jn-jn jn > η, then j n -j n is also large and This concludes the proof of the Lemma.

Note now that θ p (α) ≥ α min for all α ∈ [α min , α max ]. Since α min ≤ ζ ′ µ,p (0 -) < H, (6.10) and (6.12) together imply that necessarily, for every ε > 0, θ p (α λj n

) ≥ H -ε for infinitely many integers n. Hence, on one hand H ≤ θ p (α p ) and in particular E f (H) = ∅ if H > θ p (α p ), and on the other hand

h µ (x) ≥ lim sup j→+∞ log 2 µ(λ j (x)) -j ≥ lim sup n→+∞ α λj n ≥ θ -1 p (H),
where the same notations as above are used, i.e. λ jn is here the unique cube of generation j n that contains x. This implies that

x ∈ E ≥ µ (θ -1 p (H)). As a conclusion, H ≤ θ p (α p ) and E f (H) ⊂ E ≥ µ (θ -1 p (H)). Since θ -1 p (H) ≥ τ ′ µ (0 -) lies in the decreasing part of the singularity spectrum of µ, Proposition 3.2(5) yields that dim E f (H) ≤ dim E ≥ µ (θ -1 p (H)) = τ * µ (θ -1 p (H))
. This is the desired upper bound. 

1: H ∈ [θ p (α min ), θ p (α p )]. Let α ∈ [α min , α p ] such that H = θ p (α)(= α + τ * µ (α)/p). Our goal is to show that σ f (H) = dim E f (H) ≥ ζ * µ,p (H) = τ * µ (α).
To achieve this, we prove that µ α (E f (H)) > 0, where µ α is the measure described in Proposition 3.2(2). Since µ α is exact dimensional with exponent τ * µ (α), this yields the claim.

For any H

′ ≥ 0 set E ≤ f (H ′ ) := {y ∈ [0, 1] d : h f (y) ≤ H ′ }. Let us start with one technical lemma. Lemma 6.8. For every η > 0, µ α (E µ (α) ∩ E ≤ f (H -η)) = 0. Proof. Fix η > 0, J 0 ∈ N, and set E µ,η,J0 (α) = ® x ∈ [0, 1] d : ® ∀ J ≥ J 0 , ∀ λ ∈ D J such that λ ⊂ 3λ J (x), 2 -J(α+ η 8 ) ≤ µ(λ) ≤ 2 -J(α-η 8 ) ánd for j ≥ J ≥ J 0 D η,J,j (α) = ® λ ∈ D J : ® λ ∩ E µ,η,J0 (α) ∩ E ≤ f (H -η) ̸ = ∅ and ∃ λ ′ = (i, j, k) ∈ Λ j , λ ′ ⊂ 3λ, |c f λ ′ | ≥ 2 -J(H-η 2 )
´. (6.13)

Recall the following fact stated along the proof of Lemma 6.5: there exists a constant M such that the only wavelet coefficients c λ ′ to consider to compute L gµ,p,q λ for λ ∈ D j are the j ′ such that j ≤ j ′ ≤ M j. Lemma 6.9. There exists C > 0 such that for J 0 ≤ J ≤ j ≤ M J,

#D η,J,j (α) ≤ C2 -(j-J)p α min 2 2 J(τ * µ (α)-p η 8 ) ,
and when j > M J, D η,J,j (α) is empty.

Proof. The case j > M J follows from the remark just before the Lemma.

Let x ∈ E µ,η,J0 (α) ∩ E ≤ f (H -η). By (1.25), there are infinitely many integers J ≥ J 0 for 725 which L f J (x) ≥ 2 -J(H-η/2) . For such a generation J, the definition of the wavelet leader as a supremum implies that there exist M J ≥ j ≥ J and λ = (i, j, k) ∈ Λ j with λ ⊂ 3λ J (x) such that |c f λ | ≥ 2 -J(H-η/2) . This means that λ J (x) ∈ D η,J,j (α). Recalling (3.2), assume that J 0 is so large that µ(λ) ≤ µ(λ J (x))2 Jη/8 2 -(j-J)αmin/2 . Then, the definition of E µ,η,J0 (α) and the fact that α + τ * µ (α)/p = H give

|c f λ | µ(λ) ≥ 2 -Jη/8 2 (j-J) α min 2 2 -J(H-η 2 ) 2 J(α-η/8) ≥ 2 (j-J) α min 2 2 -J τ * µ (α) p -η 4 . (6.14) Since f ∈ B µ,p q (R d ), f ∈ B µ (-η 8M 
) ,p q (R d ), and so λ∈Λj 2

-j η 8M |c f λ | µ(λ) p = C < ∞. Thus, C ≥ λ∈Λj Ç 2 -j η 8M |c f λ | µ(λ) å p 1 |c f λ | µ(λ) ≥2 (j-J) α min 2 2 -J τ * µ (α) p - η 4 
.

The number of cubes λ ∈ Λ j such that the above indicator function is 1 is by (6.13) larger than the cardinality of D η,J,j (α). It follows that

C ≥ #D η,J,j (α)2 -jp η 8M 2 (j-J) α min 2 2 -J τ * µ (α) p -η 4 p .
Noting that j ≤ M J implies 2 jp η 8M ≤ 2 Jp η 8 , the last inequality yields the result.
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In particular, D η,J,j = ∅ for j ≥ J(p αmin 2 + τ * µ (α min )). Note that

E µ,η,J0 (α) ∩ E ≤ f (H -η) ⊂ J≥J0 j≥J λ∈D η,J,j (α) 
λ.

For any δ > 0, denote by H s δ the pre-s-Hausdorff measure on R d associated with coverings by sets of diameter less than or equal to δ. Using j≥J λ∈D η,J,j (α) λ as covering of E µ,η,J0 (α)∩E ≤ f (H -η), one deduces that for every J ≥ J 0 ,

H s √ d•2 -J E µ,ε,J0 (α) ∩ E ≤ f (H -η) ≤ J≤j≤J(p α min 2 +τ * µ (αmin)) (#D η,J,j )(α)( √ d • 2 -j ) s ≤ ( √ d) s C Ñ m≥0 2 -mp α min 2 é 2 J(τ * µ (α)-p η 8 -s) ,
which tends to zero as soon as s > τ

* µ (α) -p η 8 . It follows that dim E µ,η,J0 (α) ∩ E ≤ f (H -η) ≤ τ * µ (α) -p η 8 ,
and thus µ α (E µ,η,J0 (α) ∩ E ≤ f (H -η)) = 0, because µ α may give a positive mass to a set E only if dim E ≥ τ * µ (α). To conclude, observe that the almost doubling property of µ yields

E µ (α) = m≥1 J0∈N E µ, 1 m ,J0 (α). 
This, combined with the previous estimate on µ α gives µ

α (E µ (α) ∩ E ≤ f (H -η)) = 0. σ f (H) H τ ′ µ (+∞) = ζ ′ µ,1 (+∞) σµ(α min ) > 0 0 τ ′ µ (-∞) ζ ′ µ,1 (-∞)
Figure 3: Case where σµ(α min ) > 0 and p = 1: the dashed graph represents the spectrum of µ, the plain graph represents the multifractal spectrum σ f of typical functions f ∈ B µ,1 q (R d ). An affine segment (in red) with slope p = 1 appears in the spectrum σ f .

We are now equipped to prove the lower bound dim E f (H) ≥ τ * µ (α).

First, (6.12) states that log c µ,p,q λ jn (x) log 2 -jn = jn(x) jn(x) θ p (α λj n (x) ) + 1 -jn(x) jn(x) α min + r n (x). By Proposition 3.2(2), for µ α -almost every x, lim j→+∞ α λj (x) = α. By Proposition 3.7, for µ α -almost every x, lim n→+∞ jn(x) jn(x) = 1. One deduces that h f (x) ≤ θ p (α) = H for µ α -almost every x, i.e. µ α (E ≤ f (H)) = 1 (the equality h f (x) = H does not hold in general, since (6.12) is true only for a subsequence of integers (j n ) n≥1 ). Combining all the above results, one concludes that

µ α (E f (H)) = µ α (E µ (α) ∩ E f (H)) ≥ µ α (E µ (α) ∩ E ≤ f (H)) - m≥1 µ α (E µ (α) ∩ E ≤ f (H -1/m)) = 1.
This proves that necessarily dim E f (H) ≥ τ * µ (α), as expected.

Case 2: H ∈ [α min , θ p (α min )): this corresponds to the affine part of the spectrum, which occurs only when σ µ (α min ) = τ * µ (α min ) > 0, see Figure 3.

If H ∈ [α min , θ p (α min )), write H = α min + τ * µ (αmin) δp
, where δ > 1. By Proposition 3.6 applied to the sequence (j n ) n∈N given by Proposition 6.6, the set S(δ, (η j ) j∈N * , (j n ) n∈N ) supports a Borel probability measure ν of lower Hausdorff dimension at least equal to τ

* µ (α min )/δ = p(H -α min ) = ζ * µ,p ( 
H). Note that (η j ) j∈N * depends only on µ. For x ∈ S(δ, (η j ) j∈N * , (j n ) n∈N ), one checks that

h f (x) ≤ lim inf n→+∞ log c µ,p,q jn (x) log 2 -jn ≤ α min + τ * µ (α min ) δp = H.
In addition, {y ∈ [0, 1] d : h f (y) < H} = m≥1 E ≤ f (H -1/m), and each set E ≤ f (H -1/m) has a ν-measure equal to 0, since due to Proposition 3.2(2) applied to the capacity provided by the leaders of f , dim

E ≤ f (H -1/m) ≤ (ζ Ψ f ) * (H -1/m) < ζ * µ,p (H). Consequently, ν(E f (H)) = 1 and dim E f (H) ≥ ζ * µ,p ( 
H). Finally, if H = α min , the set F = p∈N S(p, (η j ) j≥1 , (j n ) n∈N ) is easily seen to be non empty (by taking δ = p at step p of the construction in the proof of proposition 3.6) and to be included in E ≤ f (α min ), by using the previous estimates. However we know that E ≤ f (h) = ∅ for all h < α min by Theorem 4. Consequently, E ≤ f (α min ) = E ≤ f (α min ) ̸ = ∅, so σ f (α min ) = dim E f (α min ) ≥ 0.

6.3. Typical multifractal behavior in B µ,p q (R d ) We finally prove item (2) of Theorem 4, hence obtaining the multifractal behavior of typical functions in B µ,p q (R d ). Recall the definition (1.18) of the basis {N m } m∈N of neighborhoods of the origin in B µ,p q (R d ). For every integer m > m 0 = ⌊max(1, s -1 1 )⌋ + 1, set

V m = ® f ∈ B µ,p q (R d ) : ∀j ≥ J 2 , ∀λ ∈ Λ j , |c f λ | c µ,p,q λ ∈ m -1 {1, . . . , m 2 }
´.

Then let G = lim sup m→∞ (V m + N 2 ⌈m log(m)⌉ ). (6.15)

Each ℓ≥m V ℓ , m ≥ m 0 , is dense in B µ,p q (R d ), so G contains a dense G δ set. When f ∈ G, there exists an increasing sequence (j n ) n≥0 such that f ∈ V jn + N 2 ⌈jn log(jn )⌉ for all n ≥ 0.

Fix L ∈ Z d . Looking at the particular generation j n , for all λ ∈ Λ jn such that λ ⊂ L+3[0, 1] d , by definition of V jn and ‹ N 2 ⌈jn log(jn)⌉ , the lower bound |c f λ | ≥ j -1 n c µ,p,q λ -2 -⌈jn log(jn)⌉ µ(λ)2 jn2 -jn log(jn )

holds. By construction of the coefficients c µ,p,q λ , this implies that for n large enough one has |c f λ | ≥ j -1 n c µ,p,q λ /2, hence there exists a positive sequence (ε n ) n∈N converging to 0 such that |c f λ | ≥ 2 -jnεn |c µ,p,q λ | for all λ ∈ Λ jn such that λ ⊂ L + 3[0, 1] d . Consequently, Proposition 6.6 yields σ f = σ gµ,p,q = ζ * µ,p .

Remark 6.10. In fact, the definitions of V jn , ‹ N 2 ⌈jn log(jn )⌉ , and c µ,p,q λ , imply that if (j n ) n≥1 is an increasing sequence of integers and f ∈ n≥1 V jn + N 2 ⌈jn log(jn )⌉ , then for all N, K ∈ N * , for all n ≥ 1 large enough and λ ∈ Kjn j=jn Λ j such that λ ⊂ N [0, 1] d , one has 1 2j n c µ,p,q λ ≤ |c f λ | ≤ 2j n c µ,p,q λ . These bounds will be useful to estime the L q -spectrum of f .

7. Validity of the WMF and the WWMF in B µ,p q (R d )

Recall that the multifractal formalisms for functions were defined in Section 1.5. In this last section, we first discuss the validity of the WMF for the saturation function g µ,p,q . This helps in establishing part (3) of Theorem 5 in Section 7.3, while Section 7.2 provides the proof of part (2) of Theorem 5.

WMF and WWMF for the saturation function g µ,p,q

Recall that the wavelet Ψ is fixed, and that g µ,p,q is built via its wavelet coefficients in the wavelet basis generated by Ψ. Also, recall (1.26) for the definition of ζ N,Ψ gµ,p,q,j , and the various notations concerning L q -spectra for functions. The second part of the statement shows that the convergence of the sequence ζ N,Ψ gµ,p,q,j j≥1 is stronger than what is required for the WWMF to hold (only the convergence over a subsequence is needed).

Proof. Suppose that it is established that for all N ∈ N * , one has lim j→+∞ ζ N,Ψ gµ,p,q,j = ζ µ,p . In particular ζ N,Ψ gµ,p,q = ζ µ,p for all N ∈ N * , so ζ Ψ gµ,p,q = ζ µ,p . Since it was shown in the previous section that σ gµ,p,q = ζ * µ,p , one concludes that g µ,p,q satisfies the WMF. Now, fix N ∈ N * . Let us prove that lim j→+∞ ζ N,Ψ gµ,p,q,j = ζ µ,p . The Z d -invariance of µ and the definition of g µ,p,q show that if is enough to work on [0, 1] d and 790 to prove that lim j→+∞ j -1 log λ∈D 0 j (L gµ,p,q λ ) t = ζ µ,p (t). Fix t ∈ R. Recall Remark 6.3(1) and Lemma 6. When p = +∞, this was established in Section 3 of [START_REF] Barral | The Frisch-Parisi conjecture I: Prescribed multifractal behavior, and a partial solution[END_REF], but in the general case where µ is a positive power of such a measure the result holds as well by a direct calculation.

Assume now that p < +∞. Fix t ∈ R * , the case t = 0 being obvious.

Fix ε > 0. Using the same decomposition as that used in the proof of Lemma 6.4,

B(j, t) = j J=0 λ∈D 0 J \(D 0 J-1 •[0,2 -1 ] d ) µ(λ • [0, 2 -(j-J) ] d ) t 2 -t p Jτ * µ (α λ ) .
Then, from (3.3) we deduce that there exists a positive sequence (C j ) j≥1 depending on t and µ such that lim j→+∞ log(Cj ) j = 0 and for all j ≥ 1,

2 (j-J)(αmin+ε) C -1 j ≤ µ(λ) µ(λ • [0, 2 -(j-J) ] d )
≤ C j 2 (j-J)(αmin-ε) .

Observe that when λ and λ ′ are neighbors in Λ J , the two numbers µ(λ) 

Proof of Theorem 5(2)

As recalled in the introduction, it is known [START_REF] Jaffard | Wavelet techniques in multifractal analysis[END_REF] It is enough to get part (i). Then part (ii) follows from the fact that the class of residual sets is stable by countable intersection.

Let f ∈ G, where G is the G δ set defined by (6.15), and consider a sequence (j n ) n≥1 such that f ∈ V jn +N 2 ⌈m log(m)⌉ for all n ≥ 1. Fix N ∈ N * . We prove that ζ Ψ,N f,jn converges pointwise to ζ µ,p as n → +∞, which is enough to show that the WWMF holds relatively to Ψ over [ζ ′ µ,p (+∞), ζ ′ µ,p (-∞)],

since it was established that σ f = ζ * µ,p . Since a function f ∈ G necessarily belongs to C αmin-ε (R d ) (for every ε > 0), one has |c f λ | ≤ 2 -j(αmin-ε) for every large j and λ ∈ Λ j such that λ ⊂ (N + 1)[0, 1] d .

Fix ε = α min /2. By construction, when j is large and λ ∈ Λ j , c µ,p,q λ ≥ 2 -2jαmax . Hence, from the previous fact and Remark 6.10 applied with K = ⌊4α max /α min ⌋ + 1, one sees that when n becomes large, for all j ≥ j n and λ ∈ Λ j such that λ ⊂ (N + 1)[0, 1] d :

• either j ∈ {j n , . . . , Kj n } and the wavelet coefficient c f λ of f satisfies 1 2jn c µ,p,q λ ≤ |c f λ | ≤ 2j n c µ,p,q λ , ìtem or j > Kj n and |c f λ | ≤ c µ,p,q λ . This implies that for all λ ∈ D jn such that λ ⊂ N [0, 1] d , the wavelets leader L f λ of f satisfies 1 2j n L gµ,p,q λ ≤ L f λ ≤ 2j n L gµ,p,q λ . Consequently, lim n→+∞ j -1 n log 2 Finally, when q < +∞, to establish that for a typical f ∈ B µ,p q (R d ) one has

ζ Ψ f |R * - = -∞,
consider for all m ∈ N * the set

‹ V m = ¶ f ∈ B µ,p q (R d ) : ∀ m ≤ j ≤ m log(m), ∀λ ∈ Λ j , c f λ = 0 © .

Definition 1 . 8 .

 18 Let µ ∈ H(R d ) satisfy property (P 1 ) of Definition 1.4 with exponents 0 < s 1 ≤ s 2 , and consider an integer n ≥ ⌊s 2 + d p ⌋ + 1.

Corollary 9 . 2 .

 92 Let µ ∈ E d and p, q ∈ [1, +∞]. For all f ∈ B µ,p q (R d ), one has: 1. ζ f |R+ ≥ ζ µ,p |R+ , i.e. the claim of Theorem 5(1) holds true. For all H ∈ R,

. 1 )

 1 Assuming that Proposition 5.2 is proved, let us explain how Theorem 8 follows.Proof of Theorem 8. Note that by large deviations theory[START_REF] Dembo | Large deviations techniques and applications[END_REF], ζ N,Ψ f defined in (1.26) is the Legendre transform of the concave hull of σ LD,N f . By Proposition 5.2, this concave hull is dominated by the right hand-side of (5.1). It is easily seen that this right-hand side, as a function of H, is concave, and that its Legendre transform is equal to ζ µ,p |R+ over R + and equal to -∞ over R * + . Consequently, ζ N,Ψ f |R+ ≥ ζ µ,p |R+ , which allows to conclude since ζ Ψ f |R+ = lim N →+∞ ζ N,Ψ f |R+ does not depend on Ψ.

Definition 5 . 3 .

 53 Let µ ∈ C(R d ), I H and I α be two compact subintervals of R, and f ∈ L 1 loc (R d ) with wavelet coefficients(c λ ) λ∈Λ . Then, define

6. 2 . 2 .

 22 The lower bound σ f ≥ ζ * µ,p over the range [α min , θ p (α p )] = [ζ ′ µ,p (+∞), ζ ′ µ,p (-∞)]. Two cases must be separated.

Case

  

Proposition 7 . 1 .

 71 The WMF holds for g µ,p,q on the interval [ζ ′ µ,p (+∞), ζ ′ µ,p (0 + )], and the WWMF holds for g µ,p,q on the interval[ζ ′ µ,p (+∞), ζ ′ µ,p (-∞)].Moreover, for all N ∈ N * , one has lim j→+∞ ζ N,Ψ gµ,p,q,j = ζ µ,p .

5 .- 1

 51 The reader can check that due to these two facts, definition of the coefficients c gµ,p,q λ , and since log(w λ ) = o(log(µ(λ))) uniformly in λ ∈ Λ j as j → +∞, log 2 B(j, t) = ζ µ,p (t).(7.1) 

7 . 3 .

 73 that for any smooth function f , one has σ f ≤ ζ * f . Since it was shown in Section 6.3 that σ f = (ζ µ,p ) * for typical functions in B µ,p q (R d ), for such functions one necessarily has ζ f ≤ ζ µ,p by inverse Legendre transform. Simultaneously, Theorem 8 states that ζ f |R+ = ζ Ψ f |R+ ≥ ζ µ,p |R+ , which yields the desired result. Proof of Theorem 5(3)

ζ

  Ψ,N f,jn ζ Ψ,N g,jn = 0, and by Proposition 7.1, ζ Ψ,N f,jn indeed converges to ζ µ,p as n → ∞.

  fully supported on R d , almost doubling and satisfies property (P), and the SMF holds for µ |[0,1] d .2.For every σ ∈ S d , there exists µ ∈ E d such that σ = σ µ .

	By Remark 1.9 (2), when µ ∈ E d , since property (P) holds with any (s 1 , s 2

  the maximum of ζ * µ,p is d, and it is reached at H if and only if

  p p τ * µ (α min ). Since t p ≥ t ∞ and τ µ is affine on [t ∞ , +∞), it follows that χ * (t) = p-t p τ µ (t p ), as stated by(1.22).Note that the previous case corresponds to t∞ t∞+p p < t < p. In regard to the form taken byζ * µ,p , it is convenient to rewrite ζ µ,p (t) = θ p (α min )t -τ * µ (α min ).First, observe that χ is affine on the interval [α min , θ p (α min )].Let us explain why χ is also concave over [θ p (α min ), θ p (α p )]. Assume first that τ * µ is differentiable over (α min , θ -1 p (α p )). Then this is also the case for θ -1 p over (θ p (α min ), θ p (α p )). For H ∈ (θ p (α min ), θ p (α p )), denoting α = θ -1

	4.3.2. Concavity of χ

p (H) and t = (τ * µ ) ′ (α), one gets χ ′ (H) = t 1+t/p , which is increasing as a function of t. Since H = θ p (α) is an increasing function of α and α is a decreasing function of t, it follows that χ ′ is decreasing over (θ p (α min ), θ p (α p )). Hence χ is concave over [θ p (α min ), θ p (α p )]. If τ * µ has non differentiability points over (α min , θ -1 p (α p

  By (6.9), denoting λ jn any λ = (i, j n , k) ∈ Λ jn such that x ∈ λ jn , one has Recall that λ jn ∈ D jn is the irreducible representation of λ jn . Using the concatenation of cubes introduced after Definition 3.4, one writes λ jn = λ jn • [0, 2 -(jn-jn) ] d , and ) and the fact that for j, j ′ ∈ N and λ ∈ D j , one has µ

	6.2.1. The upper bound σ f ≤ ζ * µ,p .									
	Theorem 4(1) gives σ f (H) ≤ ζ * µ,p (H) for all H ≤ ζ ′ µ,p (0 + ). Note also that ζ * µ,p (H) = d for all H ∈ [ζ ′ µ,p (0 + ), ζ ′ µ,p (0 -)]. Hence it remains us to treat the case H > ζ ′ µ,p (0 -), which corresponds
	to the decreasing part of the spectrum of f .								
	Fix H > ζ ′ µ,p (0 -) and x ∈ [0, 1] d such that h f (x) ≥ H.						
		lim inf n→+∞	log c µ,p,q λj n log 2 -jn ≥ H.						(6.10)
	log c µ,p,q λj n log 2 -jn =	log 2 w λj n j n	+	log 2 µ(λ jn )) -j n	+	j n j n	τ * µ (α λj n p	)	.	(6.11)
	Recall (3.3									

690

  t 2 -t p Jτ * µ (α λ ) and µ(λ ′ ) t 2 -t p Jτ * µ (α λ ′ ) differ by a factor at most 2 Jε . This follows from the almost doubling property (P 2 ) of µ and the continuity of τ * µ . These considerations prove that there exists another positive sequence ( ‹ C j ) j≥1 depending on t and µ such that lim j→+∞ A straightforward computation gives ζ 3 (t) = tα min + t p -1 d. Thus when t < p, ζ 3 (t) = ζ µ,p (t). Moreover, ζ 3 (t) -tα min = t p -1 τ * µ (α min ) is non negative if and only if t ≥ p, i.e. ζ µ,p (t) = α min t; and when p > t one has ζ µ,p (t) = ζ 3 (t), hence the result. Assume next that [α min , α max ] is non trivial. When t ≥ p, the mapping χ 3 rewrites χ 3 (α) = tα + t p -1 τ * µ (α) so it is concave, and it reaches its minimum ζ 3 (t) either at α min or at α max . In either case, ζ 3 (t) -tα min ≥ 0. Moreover, in this range ζ µ,p (t) = tα min , so (7.1) holds true. When t < p, recall the notations introduced and the fact established in the proof of Proposition 4.2. If t p = pt p-t ≤ t ∞ = (τ * µ ) ′ (α + min ), the convex function χ 3 reaches its minimum p-t p τ µ ( p p-t t) = ζ µ,p (t) at α t , i.e. ζ 3 (t) = ζ µ,p (t). If t p > t ∞ , then χ 3 is increasing and reaches at α min its minimum equal to tα min + t p -1 τ * µ (α min ) = ζ µ,p (t) (here ζ 3 (t) = ζ µ,p (t) as well). In both cases, ζ 3 (t)-tα min ≤ ζ 3 (t)-χ 3 (α min ) ≤ 0 and (7.1) holds true.

	log( ‹ Cj ) j	= 0 and
	‹ C -1	

j ‹ B(j, t, α min , s(t)ε) ≤ B(j, t) ≤ ‹ C j ‹ B(j, t, α min , -s(t)ε),

(7.2)

where s(t) is the sign of t and

‹ B(j, t, β, γ) = j J=0 2 -(j-J)t(β+γ) 2 -Jγ λ∈D 0 J µ(λ) t 2 -t p Jτ * µ (α λ ) ,

(7.3)

Proposition 3.6. Let µ ∈ E d . Suppose that σ µ (α min ) > 0.

There is a positive sequence η = (η j ) j≥1 converging to 0 when j → +∞ such that for any δ > 1,

for any increasing sequence of integers (j n ) n≥1 , there exists a Borel probability measure ν on R d of lower Hausdorff dimension larger than or equal to σ µ (α min )/δ, and such that ν(S(δ, η, (j n ) n≥1 )) = 1. In particular, dim S(δ, η, (j n ) n≥1 )) ≥ σ µ (α min )/δ.

Proposition 3.7. Let µ ∈ E d . For every x ∈ [0, 1] d , call λ j (x) ∈ D j(x) the irreducible representation of λ j (x). For every α ∈ [α min , α max ] such that τ * µ (α) > 0, for µ α -almost every x, one has

jn = 1, where µ α is as in Proposition 3.2(2).

4. Main features of the typical singularity spectrum in B µ,p q (R d )

Given µ ∈ E d , Theorem 4(2) claims that the singularity spectrum of typical functions in B µ,p q (R d ) equals the Legendre transform ζ * µ,p of ζ µ,p , which is explicitly given by (1.22) in terms of τ µ . In this section, we find an explicit formula for ζ * µ,p in terms of τ * µ (= σ µ ) (Proposition 4.2), and we discuss the possible shapes and features of ζ * µ,p and ζ µ,p (Sections 4.2 and 4.3). We will need the basic properties listed in the following remark.

Remark 4.1. The Legendre pair {τ µ , τ * µ } has the following properties:

Also,

Similarly,

Preliminaries and statements

To express ζ * µ,p in terms of τ * µ , the following continuous and concave mapping θ p is introduced:

see Figure 2. Notice that θ ∞ is just the identity map.

The concave sub-differential of a continuous concave function g whose domain is a non trivial interval is well defined as the opposite -∂(-g) of the sub-differential ∂(-g) of the convex function -g, and is denoted by

Let us briefly describe the variations of θ p , see Figure 2 for an illustration.

] is non trivial, using the concavity of τ * µ , it is easily seen that the mapping θ p is concave and reaches is maximum at α p , where 

). Thus, in any case, the range of θ p restricted to the interval [τ ′ µ (+∞), α p ] is the interval

where 

The case p = +∞ is trivial, since as noticed in Remark 1.13, ζ µ,+∞ = τ µ and θ ∞ is the identity map. • As an immediate consequence of Proposition 4.2, ∞), although these equalities can be directly checked. Also, by definition of

) . This occurs when ζ µ,p is not differentiable at p, and in this case

follows from the heterogeneous ubiquity property stated in Proposition 3.6.

. This implies that ζ µ,p is affine over the interval [ t∞ t∞+p p, p], with slope

See Figures 1 and3 for some examples of the shape of the spectrum of typical functions f ∈ B µ,p q (R d ).

• When -p ̸ ∈ ⌢ ∂ (τ * µ ), one has t -∞ > -∞, so both τ µ and ζ µ,p are affine near -∞.

Proof of Proposition 4.2

The case p = +∞ is trivial. Assume p ∈ [1, +∞). Let χ be the mapping defined by the right hand side of (4.2). We are going to prove that χ * = ζ µ,p (which is defined by (1.22)). Next, the continuity and concavity of χ is shown. This and the Legendre duality imply that ζ * µ,p = χ.

Then, whenever it exists, let α tp be the minimum of those real numbers α such that

Otherwise, set α tp = α min . Case t > p. In this case, t p < -p (as shows a simple verification). Moreover, the mapping

Suppose that α min < α p . Differentiating (formally) χ 2 gives The case t = p follows by continuity.

Case t < p. The mapping H → tH -p(H -α min ) is non increasing, so ζ 1 (t) = (t-p)θ p (α min )+ pα min = tα min + t-p p τ * µ (α min ).

Next we determine ζ 2 (t). Since t p > -p, using (4.4) and the fact that t -p < 0 now shows that the convex mapping χ 2 reaches its minimum at α tp , which necessarily belongs to [α min , α p ]. Consequently,

Two subcases are distinguished:

• Suppose that t p ≤ (τ * µ ) ′ (α + min ). In this case, α tp ≥ α min , and one has τ * µ ( α tp ) = t p α tp -τ µ (t p ) (even if α tp = α min , because in this case t p = (τ * µ ) ′ (α + min ) = t ∞ , hence t ∞ < ∞ and we can use Remark 4.1). After simplification one gets 6), the interval [α min , α max ] can be split into M contiguous intervals I i = [α i , α i+1 ], i = 1, . . . , M , of length less than ε such that for every i ∈ {1, . . . , M },

Define the mapping

3) its restriction χ 2 to the interval [α min , α p ] was considered). Without loss of generality, suppose that there exists 1

Also, by Remark 6.1, there exists C ≥ 1 such that for all j ∈ N and λ ∈ D 0 j , one has

If follows from the previous information that

where | log(m J (t, ε))| ≤ |t| log(C) + (2 + 2|t| + |t| p )Jε. Then, incorporating (7.4) in (7.3) and using that the infimum of χ 3 (α i ) is reached at i 0 , i.e.

where | log(‹ m J (t, ε))| ≤ log(M ) + |t| log(C) + (2 + 2|t| + |t| p )Jε. Incorporating (7.5) in (7.2) then implies

where max(| log(m j (t, ε)), | log(" m j (t, ε))|) ≤ j|t|ε + log( ‹ C j ). It follows from (7.6) and the fact that ε is arbitrary, that:

hence, to prove (7.1) and Proposition 7.1, the value of ζ 3 (t) and the sign of ζ 3 (t) -tα min must be investigated. According to the previous observations, this will give the desired conclusion.

The two cases α min = α max and α min < α max are split.

Suppose first that α min = α max . Then, τ µ (t) = α min t -d for all t ∈ R, and

The set lim sup m→∞ ‹ V m is dense in B µ,p q (R d ) and

is a dense G δ -set. When f ∈ G, there exists an increasing sequence of integers (m n ) n∈N such that f ∈ ‹ V mn + N 2 ⌈mn log(mn )⌉ for all n ∈ N. It is easily checked that for any A > 0 and N ∈ N, for n large enough, if λ ∈ D mn and λ ⊂ N [0, 1] d , one has L f λ ≤ 2 -Amn . This implies that for t < 0,

Thus, A being arbitrary and t < 0, the desired conclusion holds.

Proof of Theorem 7

Part (1) follows from the fact that for σ ∈ S s to be the typical singularity spectrum in B µ,p q (R d ) with p < +∞, by Theorem 4 and Proposition 4. 

It is a continuous increasing bijection onto its image, that we denote by I = [α min , α max ]. For α ∈ I, denote A -1 (α) by H(α). It is easily checked that the mapping

belongs to S d as well, and that if µ ∈ E d is chosen such that σ µ = σ, the study achieved in Section 4 implies that σ is the singularity spectrum of the typical functions in B µ,p q (R d ), for all q ∈ [1, +∞] (the function A is then the inverse of the function θ p defined in (4.1)).

Suppose, moreover, that σ ′ (H - max ) = -∞ and σ(H max ) > 0. This is equivalent to suppose that σ ′ (α - max ) = -p and σ(α max ) > 0. Again, the study achieved in Section 4 shows that for any element σ of S d whose domain takes the form [α min , α ′ max ] with α ′ max > α max and σ |[αmin,αmax] = σ, for any ν ∈ E d such that σ ν = σ, σ is still the singularity spectrum of the typical functions in B ν,p q (R d ), for all q ∈ [1, +∞]. Note that there are infinitely many ways to consider such an extension. On the contrary, if σ ′ (H - max ) > -∞ or σ(H max ) = 0, µ is the unique element of E d such that typical elements of B µ,p q (R d ) do have a singularity spectrum equal to σ. is such that σ µ = σ and σ is the singularity spectrum of the typical functions in B µ,p q (R d ), for all q ∈ [1, +∞]. If ‹ H min < H max , the same approach as in the case p ̸ ∈ ∂((H min , H max ]) works, except that σ is replaced by its restriction to [ ‹ H min , H max ], and with the difference that now one necessarily has σ( ‹ H min ) > 0.

Case

The claim about the validity of the WMF and WWMF follows from Theorem 5.