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This paper deals with geometric properties of sequences of reproducing kernels related to de-Branges spaces. If b is a nonconstant function in the unit ball of H ∞ , and T b is the Toeplitz operator, with symbol b, then the de-Branges space, H(b), associated to b, is defined by

where H 2 is the Hardy space of the unit disk. It is equiped with the inner product such that (Id -

First, following a work of Ahern-Clark, we study the problem of orthogonal basis of reproducing kernels in H(b). Then we give a criterion for sequences of reproducing kernels which form an unconditionnal basis in their closed linear span. As far as concerns the problem of complete unconditionnal basis in H(b), we show that there is a dichotomy between the case where b is an extreme point of the unit ball of H ∞ and the opposite case.

Introduction

This paper is devoted to geometric properties of sequences of reproducing kernels in de-Branges spaces. These spaces, first studied by L. de Branges and J. Rovnyak [START_REF] De Branges | Square Summable Power Series[END_REF], are (not necessarily closed) subspaces of the Hardy space H 2 of the unit disk, . Recall first that

H 2 := f : → ¡ analytic : sup 0 r<1 ¢ |f (rζ)| 2 dm(ζ) < ∞
, where £ is the unit circle and dm is the normalized Lebesgue measure on £.

As usual, H 2 will be identified (via radial limits) with the space of L 2 = L 2 (£) functions whose negatively indexed Fourier coefficients vanish. Norm and inner product in L 2 or H 2 will be denoted by • 2 and •, • 2 , respectively.

Let P + denote the orthogonal projection of L 2 onto H 2 . For ϕ ∈ L ∞ , let T ϕ denote the Toeplitz operator with symbol ϕ defined on H 2 by T ϕ f = P + (ϕf ). The de-Branges space, H(ϕ), associated to ϕ consists of those H 2 functions which belong to the range of the operator (Id -T ϕ T ϕ ) 1/2 . It is a Hilbert space when equipped with the inner product f, g ϕ := P Ker(Id-TϕT ϕ ) ⊥ f 1 , P Ker(Id-TϕT ϕ ) ⊥ g 1 2 ,

where f = (Id -T ϕ T ϕ ) 1/2 f 1 , g = (Id -T ϕ T ϕ ) 1/2 g 1 and P Ker(Id-TϕT ϕ ) ⊥ denotes the orthogonal projection of H 2 onto Ker(Id -T ϕ T ϕ ) ⊥ . Note that H(ϕ) is contained contractively in H 2 and the inner product is defined in order to make (Id -T ϕ T ϕ ) 1/2 a partial isometry of H 2 onto H(ϕ). The norm of H(ϕ) will be denoted by • ϕ .

For λ ∈ , we let k λ denote the kernel function for the functionnal on H 2 of evaluation at λ; it is given by k λ (z) = (1 -λz) -1 (z ∈ ) and satisfies f (λ) = f, k λ 2 (f ∈ H 2 ). Since H(ϕ) is contained contractively in H 2 , the restriction to H(ϕ) of evaluation at λ is a bounded linear functionnal on H(ϕ). It is thus induced, relative to the inner product in H(ϕ), by a vector k ϕ λ in H(ϕ). It is easy to see ( [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-3)) that k ϕ λ = (Id -T ϕ T ϕ )k λ and

f (λ) = f, k ϕ λ ϕ ,
for all f ∈ H(ϕ). From now on, b will be a nonconstant function in the unit ball of H ∞ , that is an holomorphic and bounded function in , with b ∞ 1. Then since T b k λ = b(λ)k λ , we have

k b λ = (Id -T b T b )k λ = 1 -b(λ)b 1 -λz .
It is easy to see that H(b) is a closed subspace of H 2 if and only if T b is a partial isometry. That happens if and only if b is an inner function, that is a function in H ∞ whose radial limits are of modulus one almost everywhere. Then H(b) is the orthogonal complement of the Beurling invariant subspace bH 2 , the typical nontrivial invariant subspace of the shift operator S. Hence, the space H(b), with b inner, are the nontrivial invariant subspaces of the backward shift S * . In this case, starting with the work of S.V. Hruscev, N.K. Nikolski and B.S. Pavlov, a whole direction of research has investigated geometric properties of reproducting kernels in H(b) (see [START_REF] Chalendar | Functionnal models and asymptotically orthonormal sequences[END_REF], [START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF], [START_REF]Complétude des noyaux reproduisants dans les espaces modèles[END_REF], [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF]). One of the motivation to study geometric properties of reproducting kernels in H(b) is the link being with nontrigonometric exponentials systems. Recall that in the special case where b(z) = exp(a z+1 z-1 ), a > 0, the reproducing kernels k b λ , with λ ∈ , arise as the range of the exponential functions exp(-iµw)χ (0,a) , with µ = i 1+λ 1-λ , under a natural unitary map going from L 2 (0, a) to H(b). Geometric properties of family of exponentials arise in many problems such as scaterring theory, controllability and analysis of convolution equations (see [START_REF] Avdonin | Families of exponentials[END_REF] and [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF] for details). We intend to provide a comprehensive treatment of geometric properties of reproducing kernels of H(b), emphasing the parallel with the particular case where b is an inner function.

We now recall some basic definitions concerning geometric properties of sequences in an Hilbert space. For most of the definitions and facts below, one can use [START_REF] Nikolski | Treatise on the shift operator[END_REF] as a main reference.

Let H be a complex Hilbert space. If (x n ) n 1 ⊂ H, we denote by Span(x n : n 1) the closure of the linear hull generated by (x n ) n 1 . The sequence (x n ) n 1 is called:

(Co) complete if Span(x n : n 1) = H; (M) minimal if for all n 1, x n ∈ Span(x m : m = n); (UM) uniformly minimal if inf n 1 dist x n x n , Span(x m : m = n) > 0;
(UBS) an unconditionnal basis in its closed linear span if every element x ∈ Span(x n : n 1) can be uniquely decomposed in an uncondionnal convergent series x = n 1 a n x n ;

(RS) a Riesz basis in its closed linear span if there are positive constants c, C such that c

n 1 |a n | 2 n 1 a n x n 2 C n 1 |a n | 2 , (1) 
finite complex sequences (a n ) n≥1 ;

(UB) an unconditionnal basis of H if it is complete and an unconditionnal basis in its closed linear span.

Obviously we have (UB) =⇒ (RS) =⇒ (USB) =⇒ (UM) =⇒ (M).

In general, all the converse implications are false but Köthe-Topelitz theorem asserts that if x n 1, then (USB) ⇐⇒ (RS). The Gram matrix of the sequence (x n ) n≥1 is Γ = ( x n , x m ) n,m≥1 . Unconditionnal basis are characterized by the fact that Γ defines an invertible operator on 2 .

We recall some well-known facts concerning reproducing kernels in H 2 . Let Λ = (λ n ) n 1 be a sequence of distinct points in and denote by x n = k λn k λn 2 the normalized reproducing kernel. Then we have

-(k λn ) n 1 is minimal if and only if (λ n ) n 1 is Blaschke sequence (which means that n 1 (1 -|λ n |) < ∞).
As usual, we denote by

B = B Λ = n 1 b λn , where b λn (z) = |λn| λn λn-z 1-λnz . -If (λ n ) n 1 is a Blaschke sequence, then (k λn ) n 1 is complete in H(B). -(x n ) n 1 is a Riesz basis of H(B) if and only if it is uniformly minimal which is equivalent to (λ n ) n 1 satisfies the Carleson condition inf n 1 |B n (λ n )| > 0,
where B n = B/b λn ; we will write in this case (λ n ) n 1 ∈ (C).

In this paper, we intend to study the property of unconditionnal basis for sequences of reproducing kernels in H(b). The study of the spaces H(b) frequently bifurcates into two cases depending b is an extreme point of the unit ball of H ∞ or not. We will show that for the property of unconditionnal basis in H(b), there exists a dichotomy between the two cases. Recall that K. de Leeuw and W. Rudin [START_REF] De Leeuw | Extreme points and extreme problems in H 1[END_REF] proved that b is an extreme point of the unit ball of H ∞ (abbreviated by b is extreme) if and only if

¢ log(1 -|b| 2 ) dm = -∞.
We now precise some notations that will be used in this paper. For a positive finite Borel measure ν on £ and q a function in L 2 (ν), we let

(K ν q)(z) := ¢ q(e iθ ) 1 -e -iθ z dν(e iθ ), z ∈ ¡ \ £,
and we think of K ν as a linear transformation of L 2 (ν) into the space of holomorphic functions in ¡ \ £. Moreover, we let H 2 (ν) be the closed linear span of z n , n 0, (for the norm of L 2 (ν)) and we denote by Z ν the operator of multiplication by the independant variable on H 2 (ν). If ν is absolutely continuous and ρ is its Radon-Nikodym derivative with respect to nomalized Lebesgue measure, we write K ρ in place of K ν , H 2 (ρ) in place of H 2 (ν) and Z ρ in place of Z ν . Notice that if q ∈ L 2 (ρ) then qρ ∈ L 2 and

K ρ q = P + (qρ).
The plan of the paper is the following: the next section deals with the problem of orthogonal basis of reproducing kernels in H(b). As for the classical case where b is inner, this problem depends on the spectral study of a rank one perturbation of X * , where X = S * |H(b) . In particular, we prove (Corollary 2.2) that if b is not an inner function, then H(b) does not possess orthogonal basis of reproducing kernels. In section 3, we give a criterion for the property of unconditionnal basis in its closed linear span (Theorem 3.1 and Theorem 3.2). Then we give some applications of this criterion, which are generalizations of results concerning the classical case. In section 4, we study the case where b is extreme and prove that Id-T b T b is an invertible operator from H(u) onto H(b), with u an inner function, if and only if dist(ub, H ∞ ) < 1 and dist(zub, H ∞ ) = 1 (Theorem 4.1). Then we use this result to caracterize sequences (k b λn ) n 1 which form an unconditionnal basis of H(b) (Theorem 4.2). In section 5, we study the case where b is not an extreme point. Contrary to the extreme case, we show that H(b) cannot possess unconditionnal basis of reproducing kernels (Corollary 5.1). Then, we get a caracterization of completeness (Proposition 5.2) and finally making further assumption on the multiplier of H(b), we give a result concerning summation basis of reproducing kernels (Theorem 5.1).

Orthogonal bases of reproducing kernel

It is clear that if (λ n ) n 1 ⊂ , then the family (k b λn ) n 1 cannot be orthogonal. In some cases, it is possible, however, to consider reproducing kernels with poles on the unit circle. Let

b(z) = z N n |a n | a n a n -z 1 -a n z exp -¢ ζ + z ζ -z dµ(ζ) ,
be the canonical factorisation of b, where n (1 -|a n |) < ∞ and where µ is a positive Borel measure on £ and set

E b := ζ ∈ £ : n 1 -|a n | 2 |ζ -a n | 2 + ¢ dµ(t) |t -ζ| 2 < +∞ .
Recall that we say that b has an angular derivative in the sense of Carathéodory at the point λ of £ if b and b have a nontangential limit at λ and |b(λ)| = 1.

Then we have the following criterion for the inclusion k

b λ := 1 -b(λ)b 1 -λz ∈ H(b), λ ∈ £.
Theorem A (Ahern-Clark-Sarason, see [START_REF]On inner functions with H p -derivative[END_REF] and [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF])

Let b ∈ H ∞ , b ∞ 1
and λ ∈ £. Then the following assertions are equivalent:

(i) there is a complex number c of unit modulus such that the function

1 -cb(z) 1 -λz is in H(b); (ii) λ ∈ E b ; (iii) lim inf z→λ 1 -|b(z)| 1 -|z| < +∞;
(iv) b has an angular derivative in the sense of Carathéodory at λ;

(v) every function in H(b) has a nontangential limit at the point λ.

Moreover, in this case, the number c is unique and is given by c = b(λ

) := lim r→1 b(rλ). If k b λ := 1 -b(λ)b 1 -λz , then for all f ∈ H(b), we have f (λ) = f, k b λ b . Let now λ, λ ∈ E b , λ = λ and assume that b(λ) = b(λ ) = α, |α| = 1. Then k b λ , k b λ b = k b λ (λ ) = 1 -b(λ)b(λ ) 1 -λλ = 0.
So if we want to get an orthogonal sequence of reproducing kernel (k b λn ) n 1 , we have to choose sequence (λ n ) n 1 such that (λ n ) n 1 ⊂ E b and b(λ n ) = α, n 1, |α| = 1. Following the work of Ahern-Clark [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] concerning the classical case where b is an inner function, we proceed first to a study of rank one perturbations of X * which are isometry, where X = S * |H(b) . Recall that if ϕ ∈ H ∞ , then H(b) is invariant under T ϕ and the norm of T ϕ as an operator in H(b) does not exceed ϕ ∞ . Hence S * = T z acts as a contraction in H(b) (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-7)). Recall also that we have (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-9))

X * h = Sh -h, S * b b b (h ∈ H(b)). (2) 
2.1 Spectral properties of rank one perturbation of X *

In this subsection, we proceed to an investigation of spectral properties of rank one perturbations of X * which are isometry. Actually, our study goes beyond what is necessary for our treatment of the existence of orthogonal basis. First we give results concerning spectral properties for X * . We will see that these properties depend whether b is an extreme point or not (for the analogue results for X, see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (IV-5), (V-7) and (V-8)).

Lemma 2.1 Let b ∈ H ∞ , b ∞ 1 and h ∈ H(b). Then X * h b = h b ⇐⇒ h, S * b b = 0
Proof: using the relation (2), we get

XX * h = S * (Sh -h, S * b b b) = h -h, S * b b S * b. Hence X * h 2 b = XX * h, h b = h 2 b -| h, S * b b | 2 , (3) 
which gives the lemma.

Lemma 2.2 Let b ∈ H ∞ , b ∞ 1. Then σ p (X * ) ⊂ .
Proof: the inclusion σ p (X * ) ⊂ follows from the fact that X * is a contraction.

Assume that there exist λ ∈ £ ∩ σ p (X * ) and let h ∈ H(b), h ≡ 0 such that

X * h = λh. Then X * h b = h b and Lemma 2.1 implies that h, S * b b = 0.
Hence X * h = Sh = λh, which gives that λ ∈ σ p (S), which is absurd and proves the lemma. 

Proposition 2.1 (a) If b is extreme then σ p (X * ) = {λ ∈ : b(λ) = 0} and σ(X * ) = σ p (X * ) ∪ σ(b),
(λ) = 0, then Ker(X * -λId) = ¡ b z -λ . ( 4 
) (b) If b is nonextreme then σ(X * ) = .
Proof: recall that X * is completely nonunitary and if Θ X * denotes the characteristic operator function of X * , in the theory of Sz-Nagy and Foias, we have (see [START_REF] Sarason | Shift-Invariant Spaces from the Brangesian Point of View, in The Bieberbach Conjecture[END_REF]) Θ X * = b (in the extreme case) and Θ X * = b a (in the nonextreme case). Spectral properties of X * follow now from a theorem of Sz-Nagy and Foias (see [START_REF] Szökefalvi-Nagy | Analyse harmonique des opérateurs de l'espace de Hilbert[END_REF], Theorem 4.1. p. 247). It just remains to check equality (4). Let λ ∈ , b(λ) = 0 and f ∈ Ker(X * -λId), f ≡ 0. Then using (2), we have

(z -λ)f = f, S * b b b, which implies that f ∈ ¡(b/(z -λ)). Thus Ker(X * -λId) ⊂ ¡ b z -λ
and an argument of dimension shows that there is equality.

Rank one perturbations of X * that we will interest in are defined as follows.

Definition 2.1 If λ is a complex number of modulus 1, define the operator U λ of H(b) by U λ := X * + λ(1 -λb(0)) -1 k b 0 ⊗ S * b. Proposition 2.2
The operator U λ is an isometry of H(b). Moreover, it is a unitary operator of H(b) if and only if b is extreme and in this case, the U λ are the only one-dimensional perturbations of X * which are unitary.

Proof: denote by µ λ the measure on £ whose Poisson integral is the real part of 1 + λb 1 -λb , denote by V λb the transformation defined on L 2 (µ λ ) by V λb q(z) =

(1 -λb(z))K µ λ q(z), and finally denote by Z µ λ the operator of multiplication by the independant variable on H 2 (µ λ ). We know (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (III-8)) that we have

U λ = V λb Z µ λ V -1 λb (5) 
and moreover V λb is an isometry of H 2 (µ λ ) onto H(b). Hence U λ is cleary an isometry of H(b). We see also that this isometry is onto if and only if 

Z µ λ is onto, which is equivalent to H 2 (µ λ ) = L 2 (µ λ ). But a theorem of Szegö says that H 2 (µ λ ) = L 2 (µ λ ) if
H ∞ function 1 -λb), we see that H 2 (µ λ ) = L 2 (µ λ ) if and only if log(1 -|b| 2 ) is not integrable, which is exactely the condition that b is extreme. Now, assume that b is extreme and that U := X * + h ⊗ k, h, k ∈ H(b), is a unitary operator. If f ⊥ k, then we have Uf = X * f , which gives X * f b = f b . Lemma 2.1 implies that f ⊥ S * b. It follows that there exist c ∈ ¡ such that k = cS * b, which gives U = X * + h 1 ⊗ S * b, with h 1 = ch. Taking the adjoint of this relation, we see that if f ⊥ h 1 , then Xf b = f b . Now recall (see [19], (VIII-4)) that Xf 2 b = f 2 b -|f (0)| 2 , which gives f (0) = 0, that is f ⊥ k b 0 . It follows that there exist c 1 ∈ ¡ such that h 1 = c 1 k b 0 and thus U = X * + c 1 k b 0 ⊗ S * b.
It remains to show that there exist λ ∈ £ such that c 1 = λ(1 -λb(0)) -1 . Notice that for all f ∈ H(b), we have

f 2 b = Uf 2 b = X * f 2 b + |c 1 | 2 | f, S * b b | 2 k b 0 2 b + 2 Re c 1 f, S * b b k b 0 , X * f b . In particular for f = S * b, using relation (3), we get 0 = -S * b 2 b + |c 1 | 2 S * b 2 b (1 -|b(0)| 2 ) + 2 Re(c 1 (X * S * b)(0)). Since X * S * b = SS * b -S * b 2 b b, it follows that (X * S * b)(0) = -S * b 2 b b(0), which implies that 0 = -1 + |c 1 | 2 (1 -|b(0)| 2 ) -2 Re(c 1 b(0)).
Now define λ := c 1 -1 +b(0). Using the previous equality, easy computations show that λ ∈ £ and c 1 = λ(1 -λb(0)) -1 , which ends the proof of the proposition.

The following lemma is a generalization of a result of Ahern-Clark [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] for the case where b is an inner function. 

(Id -zX * )k b z -(Id -ζX * )k b ζ = (Id -zX * )(k b z -k b ζ ) + ((Id -zX * ) -(Id -ζX * ))k b ζ 2 k b z -k b ζ + |z -ζ| X * k b ζ . Hence (Id -zX * )k b z tends to (Id -ζX * )k b ζ as z tends nontangentially to ζ. Moreover we have (Id -zX * )k b z = k b 0 , (see [19], (V-8)) which implies that k b 0 = (Id -ζX * )k b ζ . (ii) =⇒ (i): assume that there exists g ∈ H(b) such that k b 0 = (Id -ζX * )g. We have k b z =(Id -zX * ) -1 k b 0 =(Id -zX * ) -1 (Id -ζX * )g =g + (z -ζ)(Id -zX * )X * g, which gives that k b z g 1 + |z -ζ| (Id -zX * ) -1 X * .
Using the fact that (Id -zX * ) -1

(1 -|z|) -1 , we deduce that

k b z g 1 + |z -ζ| 1 -|z| X * .
As |z -ζ|/(1 -|z|) stays bounded as z tends nontangentially to ζ, we get that k b z stays bounded as z tends nontangentially to ζ, which by Theorem A, implies that b has an angular derivative in the sense of Carathéodory at ζ.

Since U λ is an isometry, its point spectrum is located on the unit circle. The notion of angular derivative will lead us to caracterize it. This result was obtained by Ahern-Clark [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] for the case where b is inner. 

= (Id -ζX * )k b ζ . Hence (U λ -ζId)k b ζ =(X * -ζId)k b ζ + λ(1 -λb(0)) -1 k b ζ , S * b b k b 0 = -ζk b 0 + λ(1 -λb(0)) -1 k b ζ , S * b b k b 0 .
Take now a sequence (z n ) n which tends nontangentially to ζ and notice that

S * b, k b ζ b = lim n→+∞ S * b, k b zn b = lim n→+∞ b(z n ) -b(0) z n = λ -b(0) ζ .
That implies 

(U λ -ζId)k b ζ = -ζk b 0 + λ(1 -λb(0)) -1 ζ(λ -b(0))k b 0 = 0, which proves that ζ ∈ σ p (U λ ) and ¡k b ζ ⊂ Ker(U λ -ζId). Reciprocally, let ζ ∈ σ p (U λ ) and f ∈ H(b), f ≡ 0 such that (U λ -ζId)f = 0. Then, we have (X * -ζId)f = -λ(1 -λb(0)) -1 f, S * b b k b 0 . Notice that if f, S * b b = 0, then ζ ∈ σ p (X * ), which is absurd thanks to Lemma 2.
= (Id -ζX * )k b ζ . We deduce that k b ζ -cf ∈ Ker(X * -ζId) and Lemma 2.2 implies that k b ζ = cf . Hence k b ζ ∈ Ker(U λ -ζId). But previous computations show that (U λ -ζId)k b ζ = -ζ + λ(1 -λb(0)) -1 b(ζ) -b(0) ζ k b 0 , which implies that λ(b(ζ) -b(0))(1 -λb(0)) -1 = 1, hence b(ζ) = λ. Moreover as k b ζ = cf , we have that Ker(U λ -ζId) ⊂ ¡k b ζ .
As in the classical case where b is inner, we can deduce from this result the description of the spectrum of U λ . 

Corollary 2.1 Let λ ∈ £. a) If b is extreme, then σ(U λ ) ⊂ £ and ζ ∈ σ(U λ ) ⇐⇒ (i) ζ ∈ σ(b) or (ii) ζ ∈ c σ(b) and b(ζ) = λ. b) If b is nonextreme, then σ(U λ ) = . Proof: a): assume that b is extreme. Proposition 2.2 shows that U λ is unitary, so σ(U λ ) ⊂ £. Let ζ ∈ σ(U λ ), ζ ∈ c σ(b). Using the fact that σ(b) = σ(X * ) ∩ £ (see Proposition 2.
U λ = X * + λ(1 -λb(0)) -1 k b 0 ⊗ S * b = Y -b ⊗ S * b + λ(1 -λb(0)) -1 k b 0 ⊗ S * b.
Thus we get that Y -ζId is a Fredholm operator of index 0. Since Ker(Y -ζId) = {0}, the following lemma gives a contradiction; hence ⊂ σ(U λ ) , which ends the proof of the corollary. Proof of Lemma 2.4: for all f ∈ H(b), we have

Y * k b µ , f b = k b µ , Y f b = k b µ , zf b = µf (µ) = µk b µ , f b , which proves that Y * k b µ = µk b µ . Hence k b µ ∈ Ker(Y * -µId). Let now f ∈ Ker(Y * -µId) and g ∈ (¡k b µ ) ⊥ . Define h := g z-µ
. Since g(µ) = 0, we get that h ∈ H(b) (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-8)). Hence

g = (z -µ)h = (Y -µId)h ∈ (Y -µId)H(b) ⊂ (Ker(Y * -µId)) ⊥ . That implies f, g b = 0, and thus f ∈ ((¡k b µ ) ⊥ ) ⊥ = ¡k b µ .

orthogonal bases of reproducing kernels in H(b)

Let λ ∈ £. The function

1 -|b(z)| 2 |λ -b(z)| 2 is a nonnegative harmonic function in , so it can be represented as a Poisson integral 1 -|b(z)| 2 |λ -b(z)| 2 = ¢ 1 -|z| 2 |1 -ζz| 2 dµ λ (ζ); z ∈ ,
where µ λ is a nonnegative Borel measure in £.

The following result gives a criterion in terms of the measure µ λ for the existence of an orthogonal basis of reproducing kernels in H(b). In the particular case where b is inner, this result was obtained by Ahern-Clark [START_REF] Ahern | Radial limits and invariant subspaces[END_REF]. (ii) the measure µ λ is purely atomic.

Proof: if ζ ∈ E b , b(ζ) = λ, then Theorem 2.1 implies that U λ k b ζ = ζk b ζ . Hence the family {k b ζ : ζ ∈ E b , b(ζ) = λ} forms an orthogonal system of eigenvectors of U λ in H(b). (i) =⇒ (ii): since H(b) is separable, {ζ ∈ E b : b(ζ) = λ} is countable. Denote by (ζ n ) n 1 := {ζ ∈ E b : b(ζ) = λ}. Since V λb is an isometry from H 2 (µ λ ) onto H(b), the family (V -1 λb k b ζn ) n 1 is an orthogonal basis of H 2 (µ λ ). Moreover, using (5), we have Z µ λ V -1 λb k b ζn = V -1 λb U λ k ζn = ζ n V -1 λb k b ζn .
That means that H 2 (µ λ ) has an orthogonal basis of eigenvectors of Z µ λ , the operator of multiplication by the independant variable on L 2 (µ λ ). It is now a well-known fact that implies that µ λ = n 1 a n δ {ζn} , a n := µ λ (ζ n ).

(ii) =⇒ (i): assume that µ λ is purely atomic, that is µ λ = n 1 a n δ {ζn} , with a n = µ λ ({ζ n }) > 0. In particular, for all f in H 2 (µ λ ) = L 2 (µ λ ), we have

f 2 = n 1 a n |f (ζ n )| 2 .
Using this equality, it is easy to see that (χ {ζn} ) n 1 is an orthogonal basis of L 2 (µ λ ) and we get that (V λb χ {ζn} ) n 1 is an orthogonal basis of H(b). Using once more (5), we have

U λ (V λb χ {ζn} ) = V λb Z µ λ χ {ζn} = ζ n V λb χ {ζn} . Theorem 2.1 implies that ζ n ∈ E b , b(ζ n ) = λ and there exits c n ∈ ¡ * such that V λb χ {ζn} = c n k b ζn . Hence (k b ζn ) n 1 is an orthogonal basis of H(b). It remains to notice that {ζ ∈ E b : b(ζ) = λ} = (ζ n ) n 1 . The inclusion (ζ n ) n 1 ⊂ {ζ ∈ E b : b(ζ) = λ} has already been proved. Assume that there exists ζ ∈ E b , b(ζ) = λ, ζ = ζ n , n 1. Theorem A implies that k b ζ ∈ H(b) and k b ζn , k b ζ = 1 -b(ζ n )b(ζ) 1 -ζ n ζ = 0. Hence k b ζ ∈ H(b) Span(k b ζn : n 1), which is absurd. Corollary 2.2 Let b ∈ H ∞ , b ∞ 1. Assume that b is not an inner function.
Then H(b) does not have an orthogonal basis of reproducing kernels.

Proof:

let λ ∈ £. Since b is not an inner function, there exists A ∈ Bor(£), 

Unconditionnal bases of reproducing kernels in H(b)

Let us first remark that if (λ n ) n 1 ⊂ and (k b λn ) n 1 is minimal, then (λ n ) n 1 is a Blaschke sequence of distincts points. Thus from now on, we assume that (λ n ) n 1 is a Blaschke sequence of distincts points of the unit disk and we denote by B the Blaschke product associated to (λ n ) n 1 .

The problem of unconditionnal basis of reproducing kernels of H(b), in the case where b is inner, was solved by S.V. Hruscev, N.K. Nikolski and B.S. Pavlov [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF]. They prove that if b is inner and sup n 1 |b(λ n )| < 1, then (k b λn ) n 1 is an unconditionnal basis in its closed linear span (resp. of H(b)) if and only if (λ n ) n 1 ∈ (C), dist(Bb, H ∞ ) < 1 (resp. plus dist(Bb, H ∞ ) < 1). The key point to get this criterion is the following formulae

bJT bB JB = Id H 2 -⊕ P b|H(B) , in the space BH 2 -= H 2 -⊕ H(B), (6) 
where [START_REF]Mathematical Surveys and Monograph[END_REF], Lemma 4.4.4. p. 309).

P b = (Id -T b T b ) 1/2 is the orthogonal projection of H 2 onto H(b) = H 2 bH 2 , Jg = zg, g ∈ L 2 (£) (see
In the general case, the formula ( 6) is no longer true. However, we will see that it can be possible to get some similar results for unconditionnal basis of reproducing kernels in their closed linear span. For complete unconditionnal basis, as we will see in the sections 4 and 5, the solution breaks down into two cases depending whether b is extreme or not.

From now on, we denote by ) the normalized reproducing kernels of H 2 (resp. of H(b)) associated to a sequence (λ n ) n 1 .

A criterion for unconditionnal basis in its closed linear span.

The next result shows that Carleson's condition is necessary for a sequence of reproducing kernels of H(b) to be an unconditionnal basis in its closed linear span. The proof is similar to the classical case where b is inner (see [START_REF] Nikolski | Treatise on the shift operator[END_REF], Lect. VIII, p. 200) and is left to the reader.

Proposition 3.1 Assume that (k b λn ) n 1 forms an unconditionnal basis in its closed linear span. Then (λ n ) n 1 ∈ (C).

The next result is the first step in our study of unconditionnal basis property.

Theorem 3.1 Let (λ n ) n 1 ⊂ and let b ∈ H ∞ , b ∞ 1. Assume that sup n 1 |b(λ n )| < 1. ( 7 
)
Then the following statements are equivalent:

(i) (k b λn ) n 1 forms an unconditionnal basis of H(b) (resp. in its closed linear span);

(ii) a) (λ n ) n 1 ∈ (C), b) the operator Id -T b T b is an isomorphism of H(B) onto H(b) (resp.

onto its range).

Proof:

(i) =⇒ (ii) : Proposition 3.1 implies that (λ n ) n 1 ∈ (C) and thus (x n ) n 1 is a Riesz basis of H(B). Moreover, condition [START_REF] De Leeuw | Extreme points and extreme problems in H 1[END_REF] shows that (i) is equivalent to the fact that ((1 Then the following statements are equivalent:

-|b(λ n )| 2 ) 1/2 x b n ) n 1 forms a Riesz basis. But (Id -T b T b )x n = (1 -|λ n | 2 ) 1/2 k b λn = (1 -|b(λ n )| 2 ) 1/
(i) The operator Id -T b T b is an isomorphism of H(u) onto its range; (ii) dist(ub, H ∞ ) < 1; (iii) P u b |H(u) < 1.
Proof: the operator Id -T b T b is an isomorphism of H(u) onto its range if and only if there exists c > 0 such that

c f 2 (Id -T b T b )f b , (f ∈ H(u)).
Notice that

(Id -T b T b )f 2 b = (Id -T b T b ) 1/2 f 2 2 = (Id -T b T b )f, f 2 = f 2 2 -T b f 2 2 .
Hence the operator Id -T b T b is an isomorphism of H(u) onto its range if and only if there exists c > 0 such that, for all f in H(u), we have

T b f 2 2 (1 -c 2 ) f 2 2 , which is equivalent to T b|H(u) < 1. But T b|H(u) = P + b |H(u) and it is easy to see that (T b|H(u) ) * = P u b = uP -ub. It follows that T b|H(u) = uP -ub = P -ub = H ub = dist(ub, H ∞ ),
which gives the equivalence of the first two statements. Now notice that P u b |uH 2 = 0 and so P u b = P u b |H(u) , which gives the equivalence with the third assertion.

Using Theorem 3.1 and Lemma 3.1, we get the following criterion which generalizes the classical one (see [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF], Theorem 2 and 3 bis. p. 230-232).

Theorem 3.2 Let (λ n ) n 1 ⊂ and let b ∈ H ∞ , b ∞ 1. Assume that sup n 1 |b(λ n )| < 1.
Then the following statements are equivalent:

(i) (k b λn
) n 1 forms an unconditionnal basis in its closed linear span;

(ii) a) (λ n ) n 1 ∈ (C), b) dist(Bb, H ∞ ) < 1.

Applications of Theorem 3.1

We now give some applications of our criterion. The proof of the following facts are similar to the case where b is inner (see [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF], Theorem 3.2, 3.5) and are left to the reader.

Corollary 3.1 Let (λ n ) n 1 ⊂ and b ∈ H ∞ , b ∞ 1. Assume that sup n 1 |b(λ n )| < 1.
Then the following statements are equivalent:

(i) there exits p ∈ sufficiently large such that (k b p λn ) n 1 forms an unconditionnal basis in its closed linear span;

(ii) (λ n n 1 ∈ (C). Corollary 3.2 Let (λ n ) n 1 ⊂ and let b ∈ H ∞ , b ∞ 1 such that lim n→0 |b(λ n )| = 0.
Assume that (λ n ) n 1 ∈ (C). Then there exists N ∈ sufficiently large such that (k b λn ) n N forms an unconditionnal basis in its closed linear span.

Corollary 3.3 Let (λ n ) n 1 ⊂ and b ∈ H ∞ , b ∞ 1. Assume that lim n→+∞ |b(λ n )| = 0.
Then the following statements are equivalent:

(i) (k b λn ) n 1 forms an unconditionnal basis in its closed linear span;

(ii) (k b λn ) n 1 is uniformly minimal.

In the case where b is inner, S.V. Hruscev, N.K. Nikolski and B.S. Pavlov ( [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF], Theorem 3.2) show that if b = BS is the canonical factorisation of b, where B is a Blaschke product and S is a singular inner function, and if S = const and lim n→+∞ |b(λ n )| = 0, then the Carleson's condition is sufficient for the sequence (k b λn ) n 1 to be an unconditionnal basis of its closed linear span. Moreover we have dim(H(b) Span(k b λn : n 1)) = +∞. Using Theorem 3.1, we can give an analogue of this result. But before, we will need two lemmas. The first one is an easy generalization of a result for the classical case (see [START_REF]Mathematical Surveys and Monograph[END_REF], p. 313) and the proof is left to the reader. The second one is also a generalization of a result for the classical case but is more complicated.

Lemma 3.2 Let (λ n ) n 1 ⊂ and b ∈ H ∞ , b ∞ 1. Assume that Span(k b λn : n 1) ⊆ H(b).
Then for all µ = λ n , n 1, we have

a) k b µ / ∈ Span(k b λn : n 1); in particular (k b λn ) n 1 is minimal. b) Span(k b λn , k b µ : n = p) ⊆ H(b), ∀p 1. c) {k b λn , k b µ : n 1} is minimal. Lemma 3.3 Let ϕ 1 be an inner function, ϕ 2 ∈ H ∞ , ϕ 2 ∞ 1, and ϕ = ϕ 1 ϕ 2 .
Then we have

Ker(Id -T ϕ 1 T ϕ 1 ) |H(ϕ) = H(ϕ) ∩ ϕ 1 H 2 = ϕ 1 H(ϕ 2 ).
Proof: notice that Id -T ϕ T ϕ Id -T ϕ 1 T ϕ 1 . Indeed, for all f ∈ H 2 , we have

(Id -T ϕ T ϕ )f, f 2 = f 2 2 -P + ϕf 2 2 = f 2 2 -P + ϕ 2 P + ϕ 1 f 2 2 f 2 2 -P + ϕ 1 f 2 2 = (Id -T ϕ 1 T ϕ 1 )f, f 2 .
Using a result of Douglas (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (I-5)), it follows that H(ϕ 1 ) ⊂ H(ϕ). Hence, we have

H(ϕ) ∈ Lat(Id -T ϕ 1 T ϕ 1 ). Since ϕ 1 is inner, we have Ker(Id -T ϕ 1 T ϕ 1 ) = ϕ 1 H 2 and it follows that Ker(Id -T ϕ 1 T ϕ 1 ) |H(ϕ) = H(ϕ) ∩ ϕ 1 H 2 .
Let us show now that

H(ϕ) ∩ ϕ 1 H 2 = ϕ 1 H(ϕ 2 ). First let f ∈ H(ϕ) ∩ ϕ 1 H 2 .
Then there exists g ∈ H 2 such that f = ϕ 1 g and we have [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-4)). But H(ϕ) = H(ϕ 2 ), and so T ϕ 2 g ∈ H(ϕ 2 ). Using once more [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-4), we get that g ∈ H(ϕ 2 ). Reciprocally, let g ∈ H(ϕ 2 ), and f = ϕ 1 g. Of course, f ∈ ϕ 1 H 2 . On the other hand, we have

T ϕ 2 g = P + ϕ 2 g = P + ϕϕ 1 g = T ϕ f. Since f ∈ H(ϕ), T ϕ f ∈ H(ϕ) (see
T ϕ f = P + ϕϕ 1 g = P + ϕ 2 g = T ϕ 2 g,
and an other application of [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-4) show that f ∈ H(ϕ).

As it was mentionned, the next result generalizes Theorem 3.2 in [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF].

Theorem 3.3 Let (λ n ) n 1 ⊂ and let b ∈ H ∞ , b ∞ 1.
Let u 0 be the inner factor and b 0 the outer factor of b. Assume that u 0 is non constant, that b is not a Blaschke product and furthemore that

lim n→+∞ |u 0 (λ n )| = 0.
Then the following statements are equivalent:

(i) (k b λn
) n 1 forms an unconditionnal basis in its closed linear span;

(ii) (λ n ) n 1 ∈ (C).
Moreover in this case, we have dim(H(b) Span(k b λn : n 1)) = +∞. Proof: (i) =⇒ (ii): is always true and follows from Proposition 3.1. (ii) =⇒ (i): write u 0 = B 0 S 0 , where B 0 is a Blaschke product and S 0 is a singular inner function. Define

ϕ 1 = S 1/2 0 B 0 if b 0 ≡ const u 0 if b 0 ≡ const and ϕ 2 = b 0 S 1/2 0 if b 0 ≡ const b 0 if b 0 ≡ const.
In the two cases, we have b = ϕ 1 ϕ 2 , ϕ 1 is an inner function and

ϕ 2 ∈ H ∞ , ϕ 2 ∞ 1.
Moreover, the assumptions on b imply that ϕ 2 ≡ const and lim n→+∞ |ϕ 1 (λ n )| = lim n→+∞ |b(λ n )| = 0. Consequently, it follows from Corollary 3.2 that there exists N ∈ sufficiently large such that both family (k ϕ 1 λn ) n N and (k b λn ) n N form an unconditionnal bases in their closed linear span. Moreover, we see that the norms k b λn b and k ϕ 1 λn ϕ 1 are comparable with each other. Now notice that Id -

T ϕ 1 T ϕ 1 = (Id -T ϕ 1 T ϕ 1 ) |H(b) (Id -T b T b ). Indeed, we have, for all f ∈ H 2 (Id -T ϕ 1 T ϕ 1 ) |H(b) (Id -T b T b )f = (Id -T ϕ 1 T ϕ 1 )f -T b T b f + T ϕ 1 T ϕ 1 T b T b f, and 
T ϕ 1 T ϕ 1 T b T b f =ϕ 1 P + ϕ 1 P + bP + bf =ϕ 1 P + ϕ 1 bP + bf = ϕ 1 P + S 1/2 0 B 0 S 0 B 0 P + bf if b 0 ≡ cte ϕ 1 P + u 0 b 0 u 0 P + bf if b 0 ≡ cte = ϕ 1 S 1/2 0 P + bf if b 0 ≡ cte ϕ 1 b 0 P + bf if b 0 ≡ cte =T b T b f. Hence Id -T ϕ 1 T ϕ 1 = (Id -T ϕ 1 T ϕ 1 ) |H(b) (Id -T b T b ). This implies that k ϕ 1 λn = (Id -T ϕ 1 T ϕ 1 )k λn = (Id -T ϕ 1 T ϕ 1 )(Id -T b T b )k λn = (Id -T ϕ 1 T ϕ 1 ) |H(b) k b λn .
Therefore, (Id - 

T ϕ 1 T ϕ 1 ) |H(b) is an isomorphism from Span(k b λn : n 1) onto Span(k ϕ 1 λn : n 1) ⊂ H(ϕ 1 ). Using Lemma 3.3, we get dim(H(b) Span(k b λn : n N)) dim Ker (Id -T ϕ 1 T ϕ 1 ) |H(b) = dim(ϕ 1 H(ϕ 2 )).
b ∈ H ∞ , b ∞ 1 such that 1 -|b(z)| 2 |1 -b(z)| 2 = ¢ 1 -|z| 2 |1 -ze -iθ | 2 dµ(e iθ ).

Assume that

sup

n 1 |b(λ n )| < 1.
The following statements are equivalent:

(i) (k λn ) n 1 is an unconditionnal basis in the closed subspace of H 2 (µ) it generates;

(ii) (k b λn ) n 1 is an unconditionnal basis in its closed linear span;

(iii) a) (λ n ) n 1 ∈ (C) b) dist(Bb, H ∞ ) < 1.
Proof: the equivalence of (ii) and (iii) follows from Theorem 3.2. To show that (i) ⇐⇒ (ii), consider the linear map V b : L 2 (µ) → Hol( ) defined by V b q(z) = (1 -b(z))K µ q(z), q ∈ L 2 (µ), z ∈ . We know that V b is an isometry from H 2 (µ) onto H(b) and [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (III-7)). Hence 

V b k λn = (1 -b(λ n )) -1 k b λn (see
V b k λn k λn L 2 (µ) = (1 -b(λ n )) -1 k b λn b k λn L 2 (µ) x b n = α n x b n , with α n = (1-b(λ n )) -1 k b λn b k λn L 2 (µ) . Notice that |α n | = 1,

The extreme case

In this section, we want to caracterize sequences (k b λn ) n 1 which form an unconditionnal basis of H(b). So thanks to Theorem 3.1, this problem can be reduced to the fact that Id -T b T b is an isomorphism of H(B) onto H(b). Recall that in the classical case where b is inner, thanks to formula [START_REF] De Branges | Square Summable Power Series[END_REF], we can reformulate this property in terms of the invertibility of T Bb and then get a criterion in terms of dist(Bb, H ∞ ) and dist(bB, H ∞ ). In the general case, formula [START_REF] De Branges | Square Summable Power Series[END_REF] is no longer true but nevertheless we can obtain a similar criterion. First, we will give two lemmas. 

and

(Id -T b T b )(Id -λS * ) = (Id -λS * )(Id -T b T b ) -λS * b ⊗ b. (9) 
Proof: notice that T zb = S * T b ; hence we have Id -

T zb T zb = Id -S * T b T b S. But SS * = Id -⊗ , which implies that Id -T zb T zb =Id -S * T b (SS * + ⊗ )T b S =Id -T b T b -S * b ⊗ S * b.
For the formula (9), write Now recall that if ρ is the function 1 -|b| 2 on £, then the operator K ρ : H 2 (ρ) → H(b) defined by K ρ g := P + (gρ) is an isometry of H 2 (ρ) onto H(b). Moreover we have K ρ J ρ = T ρ , where J ρ is the canonical injection from H 2 into L 2 (ρ) and

(Id -T b T b )(Id -λS * ) -(Id -λS * )(Id -T b T b ) =λ(S * T b ST b S * -S * T b T b ) =λS * T b (ST b S * -T b ) =λS * T b (SS * -Id)T b = -λS * b ⊗ b.
K ρ Z * ρ = S * K ρ ,
(see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (III-2) and (III-3)). 

It follows that

T b f, T b S * n+1 b b = -K ρ g, K ρ Z * ρ n+1 b = -g, Z * ρ n+1 ρ = -Z n+1 ρ g, ρ = -ρg, z n+1 2 . Finally, we get f, S * n+1 b b = f b, z n+1 2 -ρg, z n+1 2 , which implies that f b -ρg, z n+1 2 = 0, ∀n 0. That means that f b -ρg ∈ H 2 . But since T b f = P + (ρg), we also have f b -ρg ∈ H 2 -,
(i) Id -T b T b is an isomorphism of H(u) onto H(b); (ii) Ker (Id -T b T b ) |H(zu) = {0}; (iii) (Id -T b T b ) |H(zu) is not left invertible; (iv) S * b ∈ (Id -T b T b )H(u); (v) dist(zub, H ∞ ) = 1; Proof: notice that (ii) =⇒ (iii) is trivial and (iii) ⇐⇒ (v) follows from Lemma 3.1. (i) =⇒ (ii): there exists f ∈ H(u) such that (Id -T b T b )u = (Id -T b T b )f . Define g := f -u. It is easy to see that g ∈ H(zu) = H 2 zuH 2 and thus g ∈ Ker((Id -T b T b ) |H(zu) ). Moreover, g ≡ 0 (because otherwise u = f ∈ H(u)), which proves that (Id -T b T b ) |H(zu) is not injective. (iii) =⇒ (iv): using the fact that S * |H(b) is a contraction, we get inf f ∈H(zu) f 2 =1 S * (Id -T b T b )f b = 0.
Writing now f = SS * f + f (0), we have

S * (Id -T b T b )f = S * (Id -T b T b )SS * f + f (0)S * k b 0 . But S * (Id -T b T b )S = Id -T zb T zb and S * k b 0 = S * (1 -b(0)b) = -b(0)S * b, which gives S * (Id -T b T b )f = (Id -T zb T zb )S * f -f (0)b(0)S * b. Now it follows from (8) that S * (Id -T b T b )f = (Id -T b T b )S * f -S * f, S * b 2 + f (0)b(0) S * b, which implies inf f ∈H(zu) f 2 =1 (Id -T b T b )S * f -S * f, S * b 2 + f (0)b(0) S * b b = 0.
Thus there exists a sequence (f 

n ) n 1 ⊂ H(zu), f n 2 = 1, such that lim n→+∞ ((Id -T b T b )S * f n -S * f n , S * b 2 + f n (0)b(0) S * b) = 0.
S * f np 2 2 = f np 2 2 -|f np (0)| 2 = 1 -|f np (0)| 2 . ( 10 
)
First case:

δ := sup p 1 |f np (0)| < 1. Using the left invertibility of (Id -T b T b ) |H(u) , there exists k > 0 such that (Id -T b T b )f b k f 2 ∀f ∈ H(u).
It now follows, using (10) that We can now give our criterion for unconditionnal basis in H(b). Then the following statements are equivalent:

|c| 2 S * b 2 b = lim p→+∞ (Id -T b T b )S * f np 2 b k 2 lim sup p→+∞ S * f np 2 2 k 2 (1 -δ 2 ) > 0,
(i) (k λn ) n 1 is an unconditionnal basis of H(b);

(ii) a) (λ n ) n 1 ∈ (C). b) dist(Bb, H ∞ ) < 1. c) dist(zBb, H ∞ ) = 1.
Proof: it suffices to combine Theorem 3.1, Lemma 3.1 and Theorem 4.1.

To finish this section, we would like to give a generalization of Theorem 9 in [START_REF] Hruscev | Unconditionnal bases of exponentials and reproducing kernels[END_REF], which underlines the link between spectral properties of the model operator and geometric properties of reproducing kernels. Recall that a function f in H 2 is pseudocontinuable (across £) if there exist functions f 1 , f 2 ∈ H ∞ such that f = f 1 /f 2 a.e. on £. R. Douglas, H. Shapiro and A. Shields show that a function f ∈ H 2 is pseudocontinuable if and only if f is not S * -cyclic (see [START_REF] Douglas | Cyclic vectors and invariant subspaces for the bakward shift operator[END_REF]). Proof: (a): assume that b is nonextreme and pseudocontinuable. [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (II-9)), we get that Span(k b λn : n 1) is invariant under X. But we know that invariant subspaces of the operator X, when b is nonextreme, are just the intersections of H(b) with the invariant subspaces of S * (see [START_REF]Doubly shift-invariant spaces in H 2[END_REF]). Hence there is an inner function u such that Span(k b λn : n 1) = H(b) ∩ H(u).

  where σ(b) := £ \ ρ(b) and ρ(b) denotes the set of points ζ ∈ £ such that there exist an open arc I, ζ ∈ I and b can be continued analytically across I with |b| = 1 on I. Moreover if b

Lemma 2 . 3

 23 Let ζ ∈ £. The following assertions are equivalent: (i) b has an angular derivative in the sense of Carathéodory at ζ; (ii) k b 0 ∈ Im(Id -ζX * ). Moreover, in that case, we have (Id -ζX * )k b ζ = k b 0 . Proof: (i) =⇒ (ii): since b has angular derivative in the sense of Carathéodory at ζ, we know (see [19], (VI-4)) that k b z tends to k b ζ in norm as z tends nontangentially to ζ. Notice we have

Theorem 2 . 1

 21 Let λ ∈ £. Then a complex number ζ is an eigenvalue of U λ if and only if b has an angular derivative in the sense of Caratheodory at ζ and b(ζ) = λ. Moreover we have Ker(U λ -ζId) = ¡k b ζ . Proof: assume that b has an angular derivative in the sense of Caratheodory at ζ and b(ζ) = λ. Using Lemma 2.3, we have k b 0

  2. Hence f, S * b b = 0, and there exists c∈ ¡, c = 0, such that k b 0 = (Id -ζX * )(cf ). Lemma 2.3 implies that b has an angular derivative in the sense of Carathédory at ζ and k b 0

  [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] and the fact that U λ is a rank-one perturbation of X * , we deduce that U λ -ζId is a Fredholm operator of index 0. Asζ ∈ σ(U λ ), we get that ζ ∈ σ p (U λ ) and Theorem 2.1 implies that b(ζ) = λ.Reciprocally let ζ ∈ σ(b) and assume that ζ ∈ c σ(U λ ). Using once more the fact that U λ is a rank-one perturbation of X * , we get that X * -ζId is a Fredholm operator of index 0. Thanks to Lemma 2.2, we have that Ker(X * -ζId) = {0}. Hence X * -ζId is invertible, which gives ζ ∈ c σ(X * ) = c σ(b), which is absurd. On the other hand, let ζ ∈ c σ(b) and b(ζ) = λ. By definition, there exist an open arc I, ζ ∈ I such that b can be continued analytically across I and |b| = 1 on I. In particular, b has an angular derivative in the sense of Caratheodory at ζ and since b(ζ) = λ, thanks to Theorem 2.1, we get that ζ ∈ σ p (U λ ) ⊂ σ(U λ ). b): assume that b is nonextreme. Since U λ is an isometry, we clearly have σ(U λ ) ⊂ . Now let ζ ∈ and assume that ζ ∈ c σ(U λ ). Recall that when b is nonextreme, then b ∈ H(b) and the space H(b) is invariant under the unilateral shift S (see [19], (IV-5)). Hence if we denote by Y := S |H(b) , we have, using the formula (2),

Lemma 2 . 4

 24 Assume that b is nonextreme and let Y = S |H(b) . Then for µ ∈ , we have Ker(Y * -µId) = ¡k b µ .

Theorem 2 . 2

 22 Let λ ∈ £. The following assertions are equivalent: (i) the family {k b ζ : ζ ∈ E b , b(ζ) = λ} forms an orthogonal basis of H(b);

  m(A) > 0 such that for all ζ ∈ A, |b(ζ)| = 1. Now if 1 -|b(z)| 2 |λ -b(z)| 2 = ¢ 1 -|z| 2 |1 -ζz| 2 dµ λ (ζ); z ∈ , and if µ (a) λ denotes the absolutely component part of the measure µ λ , we know that 1 -|b(ζ)| 2 |λ -b(ζ)| 2 = dµ (a) λ dm (ζ), for almost ζ ∈ A with respect to the Lebesgue measure. Hence µ (a) λ = 0 and the measure µ λ cannot be purely atomic. Theorem 2.2 implies that H(b) does not have an orthogonal basis of reproducing kernels.

  x n := k λn k λn 2 (resp. by x b n

  2 x b n . Hence the operator Id -T b T b transforms a Riesz basis of H(B) onto a Riesz basis of H(b) (resp. of its closed linear span), so it is an isomorphism of H(B) onto H(b) (resp. onto its range). (ii) =⇒ (i) : from a), we get that (x n ) n 1 is a Riesz basis of H(B) and using b), we have that ((Id -T b T b )x n ) n 1 is a Riesz basis of H(b) (resp. of its closed linear span). Hence (k b λn ) n 1 forms an unconditionnal basis of H(b) (resp. in its closed linear span). We will now give a criterion for the left invertibily of (Id -T b T b ) |H(B) . Lemma 3.1 Let u be an inner function and let b ∈ H ∞ , b ∞ 1.

But ϕ 2 ≡

 2 const and thus dim(H(b) Span(k b λn : n N)) = +∞.Applying repeatedly Lemma 3.2, it follows that (k b λn ) n 1 is an unconditionnal basis in its closed linear span, which has infinite codimension. Theorem 3.2 gives also a criterion for a sequence (k λn ) n 1 to be an unconditionnal basis in the closed subspace of H 2 (µ) it generates. Theorem 3.4 Let (λ n ) n 1 ⊂ and let µ be a positive Borel measure on £. Let

Lemma 4 . 1

 41 Let b ∈ H ∞ and λ ∈ . Then we have Id -T zb T zb = Id -T b T b -S * b ⊗ S * b

Lemma 4 . 2

 42 Let b be an extreme point of the unit ball of H ∞ . Then Span b -b(λ) z -λ : λ ∈ = H(b).Proof:let f ∈ H(b) Span b-b(λ) z-λ : λ ∈ . Using the equality b -b(λ) z -λ = (1 -λS * ) -1 S * b = n 0 λ n S *n+1 b, we get f, S * n+1 b b = 0, ∀n 0. It follows from the relation between H(b) and H(b) (see [19], (II-4)), that f, S * n+1 b b = f, S * n+1 2 + T b f, T b S * n+1 b b = f b, z n+1 2 + T b f, T b S * n+1 b b .

  Since f ∈ H(b), T b f ∈ H(b) and there exists g ∈ H 2 (ρ) such that T b f = K ρ g = P + (gρ). Moreover notice that T b S * b = S * T b b = S * ( -(Id -T b T b ) ) = -S * T ρ = -K ρ Z * ρ and by induction T b S * n+1 = -K ρ Z * ρ n+1 .

  and thus f b = ρg. Notice now that |ρg| is not log-integrable. Indeed, we havelog |ρg| log + |ρg| 1/2 + 1 2 log ρ,and the first term on the right side is integrable, whereas the second term has integral -∞ because b is extreme. That implies that log |f b| = log |ρg| ∈ L 1 . But f b ∈ H 2 , thus f b ≡ 0, that is f ≡ 0, which ends the proof.

Theorem 4 . 1

 41 Let b ∈ H ∞ , b ∞ 1, and let u be an inner function. Assume that b is an extreme point of the unit ball of H ∞ and that (Id -T b T b ) |H(u) is left invertible. Then the following statements are equivalent:

  Notice that the sequence of complex numbers a n := S * f n , S * b 2 + f n (0)b(0) is bounded. Hence we can find a subsequence (a np ) p 1 which converges, say to c. So we have lim p→+∞ (Id -T b T b )S * f np = cS * b. Since f np ∈ H(zu), we have S * f np ∈ H(u) and thus cS * b ∈ (Id -T b T b )H(u). Using the fact that (Id -T b T b ) |H(u) is left invertible, we get that cS * b ∈ (Id -T b T b )H(u). Moreover, we have

  which implies that c = 0 and thus S * b ∈ (Id -T b T b )H(u). Second case: sup p 1 |f np (0)| = 1 and b(0) = 0. We can assume that the sequence (f np (0)) p 1 is convergent, say to λ. Since |λ| = 1, we have, using[START_REF]Complétude des noyaux reproduisants dans les espaces modèles[END_REF] lim p→+∞ S * f np 2 = 0, which implies, in particular that lim p→+∞ S * f np , S * b 2 = 0. It now follows that lim p→+∞ a np = λb(0). Thus c = λb(0) = 0 and S * b ∈ (Id -T b T b )H(u). Third case: b(0) = 0. Then b 1 := zb ∈ H ∞ and applying Lemma 3.1, we get that(Id -T b 1 T b 1 ) |H(u) is not left invertible. Hence inf f ∈H(u) f 2 =1 (Id -T b 1 T b 1 )f b 1 = 0. But H(b 1 ) ⊂ H(b), and closed graph Theorem gives inf f ∈H(u) f 2 =1 (Id -T b 1 T b 1 )f b = 0.Using now (8), we have inff ∈H(u) f 2 =1 (Id -T b T b )f -f,S * b 2 S * b b = 0. Since (Id -T b T b ) |H(u) is left invertible, we get as above that S * b ∈ (Id-T b T b )H(u).

(

  iv) =⇒ (i): let λ ∈ and f ∈ H(u) such that S * b = (Id -T b T b )f . Then we have b -b(λ) z -λ = (Id -λS * ) -1 S * b = (Id -λS * ) -1 (Id -T b T b )f.But thanks to (9), we have(Id-λS * ) -1 (Id-T b T b ) = (Id-T b T b )(Id-λS * ) -1 -λ(Id-λS * ) -1 S * b⊗(Id-λS) -1 b, which gives b -b(λ) z -λ =(Id -T b T b )(Id -λS * ) -1 f -λ f, (Id -λS) -1 b 2 (Id -λS * ) -1 S * b =(Id -T b T b )(Id -λS * ) -1 f -λ f, (Id -λS) -1 b 2 b -b(λ) z -λ . Thus 1 + λ f, (Id -λS) -1 b 2 b -b(λ) z -λ = (Id -T b T b )(Id -λS * ) -1 f. Notice that (Id -λS * ) -1 f ∈ H(u). Moreover if c := 1 + λ f, (Id -λS) -1 b 2 = 0, then (Id -λS * ) -1 f ∈ H(u) ∩ Ker(Id -T b T b ),which implies by left invertibility of (Id -T b T b ) |H(u) that f = 0, which is absurd. Thus c = 0 and b -b(λ) z -λ ∈ (Id -T b T b )H(u). Using Lemma 4.2, we get that H(b) = (Id -T b T b )H(u), which proves that Id -T b T b is an isomorphism of H(u) onto H(b).

Theorem 4 . 2

 42 Let (λ n ) n 1 ⊂ and let b ∈ H ∞ , b ∞ 1. Assume that b is an extreme point of the unit ball of H ∞ and sup n 1 |b(λ n )| < 1.

1 ( 1 -

 11 (i) the sequence (k b λn ) n 1 is complete in H(b); (ii) n |λ n |) = +∞. (b) If b is not pseudocontinuable, then the following statements are equivalent: (i) the sequence (k b λn ) n 1 is complete in H(b); (ii) S * b ∈ Span(k b λn : n 1).

2 =

 2 (ii) =⇒ (i) : follows from the fact that H(b) ⊂ H 2 . (i) =⇒ (ii) : assume that (k b λn ) n 1 is complete in H(b) and that (λ n ) n 1 is a Blaschke sequence. Denote by B the Blaschke product associated to (λ n ) n 1 . Since b is pseudocontinuable, there exists a nonconstant inner function u such that b ∈ H(u). Then it follows that b = zhu, where h ∈ H 2 . We will show that k b λn ∈ H(uB), n 1. For all polymial p,, we havek b λn , Bup 2 = k λn , Bup 2 -b(λ n ) bk λn , Bup 2 = -b(λ n ) zhuk λn , Bup -b(λ n ) k λn , zhBp 2 = 0.Hence, using the density of polynomials in H 2 , we get that k b λn ∈ H(uB), n 1. Thus, we haveSpan H(b) (k b λn : n 1) ⊂ H(uB) H(b) ⊂ H(uB), because H(b) is contained contractively in H 2 . Since the sequence (k b λn ) n 1 is complete in H(b), we get that H(b) ⊂ H(uB).But since b is nonextreme, the polynomials belong to H(b) (see[START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (IV-2)) and thus to H(uB). It follows that H 2 ⊂ H(uB), which is absurd.(b): assume that b is nonextreme and not pseudocontinuable. (i) =⇒ (ii): is trivial. (ii) =⇒ (i) : using the equality Xk b λn = λ n k b λn -b(λ n )S * b (see

  and only if the Radon-Nikodym derivative of the absolutely continuous part of µ λ with respect to normalized Lebesgue measure is not logintegrable. Now a theorem of Fatou shows that this Radon-Nikodym derivative equals to 1 -|b| 2 |1 -λb| 2 . Since log |1 -λb| 2 is always integrable (being the logarithm of the modulus of the

  n 1 and it follows that (k λn ) n 1 is an unconditionnal basis in the closed subspace of H 2 (µ) it generates if and only if (α n x b n ) n 1 is a Riesz basis in its closed linear span, which is equivalent to (k b λn ) n 1 is an unconditionnal basis in its closed linear span.

First of all, recall that when b is extreme then σ p (X) = {λ ∈ : b(λ) = 0}, Ker(X -λ) = ¡k λ , and σ p (X * ) = {λ ∈ : b(λ) = 0}, Ker(X * -λ) = ¡ b z -λ ,

(see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF] for the result for X and Proposition 2.1 for X * ).

Assume that b has an infinite sequence (λ n ) n 1 of zeros and let B be the Blaschke product associated to (λ n ) n 1 and let b 1 = Bb. Then the following result gives a criterion for the sequence of eigenvectors of X and X * forms an unconditionnal basis of H(b).

Theorem 4.3 With the previous notations, the following statements are equivalent:

forms an unconditionnal basis of H(b);

(ii) sup 

Proof:

(ii) ⇐⇒ (iii): notice that if b is extreme then b 1 is also extreme. Moreover if dist(Bb 1 , H ∞ ) < 1, then there exists h ∈ H ∞ such that b 1 -Bh ∞ < 1, and we have sup

Now it suffices to apply Theorem 4.2. For (i) ⇐⇒ (ii), we will need the following lemmas.

Lemma 4.3 With the previous notations, we have 

Lemma 4.5 Let H be an Hilbert space and X, Y be two closed subspaces of H. Assume that 

Consequently we have [START_REF] Nikolski | Treatise on the shift operator[END_REF], (Lemma on Close Subspaces, Lect. VIII, p. 201), that P H(b 1 ) , and thus Id -

form an unconditionnal basis of H(B) (see [START_REF] Nikolski | Treatise on the shift operator[END_REF], Lecture VI).

Thanks to Lemma 4.3, we get that b z -λ n n 1 forms an unconditionnal basis of b 1 H(B). Using Lemma 4.5, it remains to show that

is an isomorphism onto its range, which implies that P H(b 1 ) |H(B) is also an isomorphism onto its range. Now using once more Lemma on close subspaces from [START_REF] Nikolski | Treatise on the shift operator[END_REF], we get that

which ends the proof because

Proof of Lemma 4.3: a): follows from [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF] (see (II-6)). b): let A := T b , A 1 := T b 1 and A 2 := T B . Using [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF] (I-10), we have

Moreover, we have

, h is not a cyclic vector of S * (see [START_REF] Douglas | Cyclic vectors and invariant subspaces for the bakward shift operator[END_REF]). It is known that when b is extreme, the nonzero functions in H(b) are cyclic vectors of S * (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (V-2)). Thus g ≡ 0 and f ≡ 0. The fact that T b 1 acts as an isometry of H(B) into H(b) follows from [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (I-11).

Proof of Lemma 4.4: recall that if M and N are two closed subspaces of an Hilbert space H, then H = M + N ⊥ if and only if M ⊥ ∩ N = {0} (see [START_REF] Nikolski | Treatise on the shift operator[END_REF], Lemma on Close Subspaces, Lect. VIII, p. 201). Moreover, thanks to Lemma 4. Proof of Lemma 4.5: it suffices to use the link between the angle and the skew projections (see [START_REF]Operators, Functions, and Systems: An Easy Reading[END_REF] or [START_REF] Nikolski | Treatise on the shift operator[END_REF]).

The nonextreme case

In this section, we discuss the nonextreme case. As we shall see, contrary to the extreme case, there cannot exist basis of reproducing kernels in H(b).

First, recall that if (k b λn ) n 1 is not complete in H(b) then it is minimal (see Lemma 3.2). The following result shows that the converse is also true in the nonextreme case. The key point is the fact that H(b) is invariant under the shift.

1 and (λ n ) n 1 ⊂ . Assume that b is nonextreme. The following statements are equivalent:

Moreover, in this case, we have: dim(H(b) Span(k b λn : n 1)) = +∞.

Proof: thanks to Lemma 3.2, it suffices to prove that if (k λn ) n 1 is minimal, then dim(H(b) Span(k b λn : n 1)) = +∞. Suppose that dim(H(b) Span(k b λn : n 1)) = N < +∞. Then it implies the existence of a sequence of reproducing kernels which is minimal and complete in H(b). Indeed, we can assume that N 1. Applying repeatidely Lemma 3.2, we get that if (µ i )

is minimal and complete in H(b).

In particular, it implies the existence of a function h ∈ H(b) such that h(λ 1 ) = 0 and h(λ

in the nonextreme case (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (IV-5)), we have

Since h ≡ 0, we have f ≡ 0, which contredicts the completeness of (

Then the following statements are equivalent:

(i) (k b λn ) n 1 forms an unconditionnal basis in its closed linear span;

Moreover in this case, we have dim(H(b) Span(k b λn : n 1)) = +∞.

Proof: it suffices to combine Proposition 5.1 and Theorem 3.2.

We can precise a little more Proposition 5.1 and get a caracterization of completeness (and thus of minimality).

(a) If b is pseudocontinuable, then the following statements are equivalent: But then the fact that S * b ∈ H(u) implies that b ∈ H(uz), which is absurd unless u ≡ 0 (because b is not pseudocontinuable). Hence Span(k b λn : n 1) = H(b).

Remark 5.1 For the extreme case, an analogue of this result is far from being known, even in the particular case where b(z) = exp(-a 1+z 1-z ), a > 0. If (k λn ) n 1 is a minimal sequence, then it is well-known that there exists a summable method V such that (k λn ) n 1 is a V -basis of H(B) (see [START_REF] Nikolski | Treatise on the shift operator[END_REF], Lect. VIII, p. 194). If we make assumption on multipliers of H(b), we can give an analogue of this result.

First of all, recall that we say that a function ϕ ∈ H ∞ is a multiplier of H(b) if H(b) is invariant under T ϕ . From the closed graph Theorem, it follows that T ϕ is a bounded operator of H(b). We denote in this case, M ϕ := T ϕ |H(b) .

Many authors study multipliers of H(b) (see for instance [START_REF] Lotto | Inner multipliers of de Branges spaces[END_REF], [START_REF] Lotto | Multipliers of de Branges-Rovnyak spaces[END_REF] or [START_REF] Davis | Multipliers of de Branges' spaces[END_REF]). In particular, it is proved in [START_REF] Lotto | Inner multipliers of de Branges spaces[END_REF] that if b is extreme, then H(b) does not have inner multipliers. Proof: recall that when b is nonextreme, the polynomials belong to H(b) (see [START_REF]Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], (IV-2)), thus ∈ H(b). Since B is a multiplier of H(b), we get that B ∈ H(b). It follows that