
HAL Id: hal-04277831
https://hal.science/hal-04277831

Preprint submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reliable Broadcast despite Mobile Byzantine Faults
Silvia Bonomi, Giovanni Farina, Sébastien Tixeuil

To cite this version:
Silvia Bonomi, Giovanni Farina, Sébastien Tixeuil. Reliable Broadcast despite Mobile Byzantine
Faults. 2023. �hal-04277831�

https://hal.science/hal-04277831
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Reliable Broadcast despite Mobile Byzantine

Faults ∗

Silvia Bonomi1, Giovanni Farina1, and Sébastien Tixeuil2

1Sapienza University of Rome, Rome, Italy
2Sorbonne Université, CNRS, LIP6, Institut Universitaire de

France, Paris, France

Abstract

We investigate the solvability of the Byzantine Reliable Broadcast and
Byzantine Broadcast Channel problems in distributed systems affected by
Mobile Byzantine Faults. We show that both problems are not solvable
even in one of the most constrained system models for mobile Byzantine
faults defined so far. By endowing processes with an additional local
failure oracle, we provide a solution to the Byzantine Broadcast Channel
problem.

1 Introduction

Byzantine Reliable Broadcast (BRB) is a fundamental primitive in fault-tolerant
distributed systems ensuring that all correct processes eventually deliver the
same message from a defined sender regardless of its correctness. Defined by
Bracha [12] as a building block for a Byzantine-tolerant consensus protocol,
BRB has been widely adopted and investigated since then, thanks to its abil-
ity to prevent arbitrarily (i.e., Byzantine) faulty processes from equivocating by
sending different messages to different processes. It has been introduced as a
one-shot primitive that allows a pre-defined process in the system to spread a
single message and generalized as a Byzantine Broadcast Channel (BBC) primi-
tive [14] to allow every process to spread an arbitrary number of messages. BRB
has been used to construct several fault-tolerant distributed solutions, solving
more complex problems such as register abstractions, consensus problems, and
distributed ledgers. Thus, it has been analyzed in the literature from various
perspectives, such as minimizing bandwidth consumption [2], or latency [20, 1].

A fundamental perspective to consider is the investigation of the feasibility
of BRB and BBC when assuming no permanent failures. In this paper, we

∗Part of the content of this paper has been published in [7]

1

are interested in analyzing BRB and BBC solvability considering a dynamic
process failure model, i.e., a model in which every process may potentially fail
and recover, causing a potentially continuous change in a process’s failure state
throughout the system’s lifetime. Some examples of systems considering dy-
namic process failures are crash-recovery systems [28, 5], self-stabilizing systems
[15, 16], and Mobile Byzantine tolerant systems [17, 6]. In this work, we con-
sider the Mobile Byzantine Failure (MBF) model, in which all processes may
alternate between periods of correct behavior and periods of arbitrary behav-
ior (i.e., Byzantine). Indeed, the failure state of processes is governed by an
external attacker capable of compromising and controlling a set of processes
in the system, and such a set is dynamic. The MBF model captures some of
the features of the most frequent attacks targeting distributed systems and re-
lated countermeasures, where the process’s faults are primarily due to external
malicious causes rather than internal misbehavior, and tools such as software
rejuvenation techniques [21], intrusion detection systems [23], and trusted exe-
cution environments [29] are available.

Despite several fundamental distributed problems have been analyzed in
the literature considering the MBF model (i.e., Byzantine agreement [17, 6],
approximate Byzantine agreement [32, 9], and registers emulation [8]), to the
best of our knowledge the BRB problem has never been studied so far in such
settings.

Thus, our objective in this paper is the investigation of BRB and BBC in
the presence of MBFs. In particular, our contributions are:

1. we formalize the Mobile Byzantine Reliable Broadcast (MBRB) and Mo-
bile Byzantine Broadcast Channel (MBBC) as a natural extension of the
BRB and BBC specifications to deal with MBFs. Indeed, the standard
specifications for BRB and BBC primitives consider a static failure model,
where every process is either permanently correct or faulty;

2. we prove several impossibility results, mainly showing that MBRB and
MBBC cannot be implemented without additional knowledge provided by
a powerful oracle reporting about processes’ failure state;

3. we introduce such a powerful oracle and provide a protocol for solving
MBBC in a synchronous round-based system;

4. we analyze a weaker MBBC specification that can be realized without the
oracle.

Let us note that being a natural extension of BRB and BBC primitives,
the MBRB and MBBC primitives prevent faulty processes from equivocat-
ing, namely from sending different information to different processes, and can
be used as building block for other fault-tolerant primitives. For example,
MBRB/MBBC primitives can extend mobile Byzantine fault-tolerant register
abstractions to support Byzantine clients [8]. Our work not only offers an anal-
ysis of a specific problem but also provides several insights for other distributed
system problems where the failure state of a process is dynamic and partially

2

or entirely unknown. We consider relatively strong assumptions in our system
model, the same as those considered in related work, in order determine fun-
damental solvability conditions. Relaxation of most of these assumptions has
already been partially investigated [11].

The rest of the paper is structured as follows. After reviewing related work
on implementations of the BRB primitive and contributions considering mobile
Byzantine failures in Section 2, we formalize the system model in Section 3. We
introduce the new specifications for the Mobile Byzantine Reliable Broadcast
and the Mobile Byzantine Broadcast Channel problems in Section 4. Section
5 presents some impossibilities for the specifications we defined. To overcome
some of the identified impossibilities and solve the Mobile Byzantine Broad-
cast Channel problem, we consider a powerful oracle, we propose a protocol
in Section 6, and we analyze a weaker Mobile Byzantine Broadcast Channel
specification that is realizable without any oracle in Section 7.

2 Related Work

The Byzantine Reliable Broadcast (BRB) abstraction has been introduced by
Bracha [12] as a building block for a Byzantine-tolerant consensus protocol
in a distributed system where at most f processes are permanently arbitrary
(Byzantine) faulty. Thanks to its ability to guarantee agreement among correct
processes over the set of delivered messages, a BRB primitive has been used as
a building block from several fault-tolerant solutions, and has been intensely
investigated under several system and failure models, with the final aim of ex-
tending its power and optimizing different performance metrics.
Imbs and Raynal [20] proposed a protocol that improves latency (in terms of the
number of rounds of message exchanges) compared to Bracha. Guerraoui et al.
[19] relaxed the BRB specification, allowing each property to be violated with
a fixed and arbitrarily small probability. Backes and Cachin [3] and Raynal [26]
discussed extensions of the BRB problem; the former assuming both Byzantine
faulty processes and fail-stop failures, the latter distinguishing between two dif-
ferent kinds of Byzantine behaviors, i.e. those attempting to prevent the liveness
and those attempting to prevent the safety of the BRB. Recently, Guerraoui et
al. [18] and Li et al. [22] extended BRB to distributed systems with dynamic
membership: in any given view (i.e. set of participating processes, governed
by the processes themselves), the set of Byzantine processes remains the same;
however, two consecutive views allow for different sets of Byzantine processes.
By contrast, our work considers a static system membership (i.e., a fixed set
of processes participating in the protocol) but a dynamic failure model, where
Byzantine processes may change (that is, recover, and get Byzantine again) dur-
ing the same view. To the best of our knowledge, all existing BRB protocols
that assumed arbitrary process failures, except the aforementioned works by
Guerraoui et al. [18] and Li et al. [22], considered a static failure model i.e.,
they assumed that the set of Byzantine processes does not change.

Mobile Byzantine Failure (MBF) models have been introduced to capture

3

various types of faults, such as external attacks, virus infections, or even ar-
bitrary behaviors caused by software bugs, using a single model encompassing
detection and rejuvenation capabilities. In all these models, failures are ab-
stracted by an omniscient adversary that can control up to f mobile Byzantine
agents. Every agent is located in a process and makes it Byzantine faulty un-
til the omniscient adversary decides to move it to another process. The main
differences between existing MBF models are in the power of the omniscient
adversary (i.e., when it can move the agents) and in the awareness that every
process has about its failure state. Most MBF models considered round-based
computations and can be classified according to Byzantine mobility constraints:
under constrained mobility [13] the adversary can move agents only when pro-
tocol messages are sent (similarly to how viruses would propagate), while under
unconstrained mobility [4, 6, 17, 24, 31, 27] agents do not move with messages
but rather during specific phases of the round. More in detail, Reischuk [27] con-
sidered malicious agents stationary for a given period; Ostrovsky and Yung [24]
introduced the notion of mobile viruses and defined the adversary as an entity
that can inject and distribute faults; finally, Garay [17], Banu et al. [4], Sasaki
et al. [31], and Bonnet et al. [6] considered that processes execute synchronous
rounds and mobile agents can move from one process to another in a specific
phase of the round, which subsequently affects each process’s ability to adhere
to the algorithm. As a result, the set of Byzantine faulty processes at any given
moment is limited in size; however, its composition may change from one round
to the next, and the impact of past compromises may linger if not properly ad-
dressed by the protocol. The aforementioned works [17, 4, 31, 6] also differ due
to the assumption about the knowledge that processes have about their previous
infection. In the Garay model [17], a process can detect its infection after the
agent leaves it. Conversely, Sasaki et al. [31] investigated a model where pro-
cesses cannot detect when agents leave. Finally, Bonnet et al. [6] considered an
intermediate setting where not faulty processes control the messages they send
(in particular, they send the same message to all destinations, and they do not
send spurious information). Bonomi et al. [10, 11] decoupled algorithm rounds
from Mobile Byzantine agent movement (round-free model). The problems an-
alyzed under MBF models are Byzantine agreement [17, 4, 31, 6], approximate
Byzantine agreement [32, 30, 9], and Byzantine-tolerant registers [10, 8, 11]. To
the best of our knowledge, no efforts have been made to investigate the BRB
problem in the presence of MBFs. All existing works that assume MBFs rely
on some kind of best-effort communication subsystem (i.e., no guarantees exist
when a process is controlled by a Mobile Byzantine agent), potential equivoca-
tions and omissions introduced by faulty processes are directly addressed by the
main investigated primitive (e.g., consensus, register). The existence of a BRB
primitive can simplify the definition of other mobile Byzantine fault-tolerant
primitives, similar to the case of the static failure model [12].

4

3 System Model

We consider a distributed system composed of a set of n processes Π =
{p1, p2 . . . pn}, each associated with a unique identifier.

Processes communicate through message passing. We assume that a process
can communicate with any other process through a reliable, authenticated, point-
to-point link abstraction [14]. This means that messages sent over such channels
cannot be altered, dropped, or duplicated, and the identity of the sender cannot
be forged. A reliable authenticated point-to-point link abstraction exposes two
operations: (i) P2P.send(prcv ,m) which sends the message m to the receiver
process prcv , and (ii) P2P.deliver(psnd ,m) which notifies the reception of the
message m from a sender process psnd .

We measure the time according to a fictional global clock T (not accessible
to processes) spanning over the set of natural numbers N. We refer to the
starting time of the system as t0, the i-th time instant since the beginning of
the execution as ti, and a period of time between time tb and te as Tb,e :=
[tb, te) : tb, te ∈ T; tb < te.

Each process executes a distributed protocol P consisting of a set of local al-
gorithms. Each algorithm in P is represented by a finite state automaton whose
transitions correspond to computation and communication steps. A computa-
tion step denotes a computation executed locally by a given process, while a
communication step denotes the sending or receiving of a message. Computa-
tion steps and communication steps are generally called events. Each process
maintains a set of variables. This set and the current value of those variables
denote the state of a process.

Definition 1 (Local Execution History). A local execution history is an alter-
nating sequence s0, e0, s1, e1, . . . of states and events of a process pi, such that
state sj+1 results from state sj by executing event ej.

We assume that the local algorithms composing P are stored in a tamper-proof
read-only memory.

Processes may fail and we assume that they are affected by Mobile Byzantine
Failures (MBF). That is, we assume the existence of an omniscient adversary
that controls up to f > 0 mobile Byzantine agents and that can “move” such
agents from one set of processes to another. When the adversary places a
Byzantine agent on a process pi, the agent takes control of pi, letting it behave
arbitrarily. For example, pi may omit to send/receive messages, alter the con-
tent of messages, alter its process state regardless of its local algorithm, and
execute arbitrary code. However, we assume that the mobile Byzantine agents
cannot compromise the code stored in the tamper-proof memory. Thus, when
the Byzantine agent leaves pi, pi resumes executing its local algorithm correctly
(albeit from a possibly corrupted state). We assume that the adversary can
move each mobile agent independently of the others. Still, any agent must
remain on a process for a period of time lasting at least ∆s ∈ Q+ (rational
positive numbers), i.e., once arrived, an agent compromises a node for at least
∆s consecutive time units, and when ∆s < 1 we have that an agent can move

5

multiple times in the same time unit. As an example, if ∆s = 2 we have that
every mobile Byzantine agent must remain on the same process for at least 2

consecutive time units, while ∆s = 1
2 means that the agent may move

⌈
1

∆s

⌉
= 2

times in a time unit and compromise
⌈

1
∆s

⌉
= 2 different processes in the same

time unit.
Let us note that, in the MBF model, no single process is guaranteed to remain
correct forever and we may have processes that alternate between correct and
incorrect behavior infinitely often. This fundamental difference from the classi-
cal static Byzantine failure model commands to redefine the notion of correct
and faulty processes (i.e., the process failure states).

Definition 2 (Faulty process). A process pi is said to be faulty at time tk if it
is controlled by a mobile Byzantine agent at time tk. By extension, if at each
time between tb and te, process pi is faulty, then pi is faulty during the period
Tb,e.

When a process pi is faulty, it may execute a protocol P ′ 6= P, and its local
state may be altered arbitrarily.
We denote by B(t) the set of faulty processes at time t and by B(Tb,e) the set
of faulty processes during the whole period Tb,e (i.e., B(Tb,e) =

⋂
iB(ti) for

b ≤ i < e).

Definition 3 (Correct process). A process pi is correct when it is not faulty,
that is, pi is correct at time tk if it is not controlled by a Byzantine agent at
time tk. Similarly, a process pi is correct in the period Tb,e if it remains correct
between times tb and te.

Let us remark that when a process pi is correct, it executes P but potentially it
may start its execution from a compromised state (due to a previous corruption
performed by a mobile Byzantine agent). We denote by C(tk) the set of correct
processes at time tk and by C(Tb,e) the set of correct processes throughout the
period Tb,e (that is, C(Tb,e) =

⋂
i C(ti) for b ≤ i < e).

Note that, due to the mobility of Byzantine agents, every process may po-
tentially alternate between correct and faulty states infinitely often. To this
aim, we also introduce the notion of infinitely often correct processes:

Definition 4 (∆c-Infinitely often correct process). Let ∆c ∈ N+. A process pi
is ∆c-infinitely often correct if, for every time tj, there exists a following period
Tb,e lasting at least ∆c where pi is correct. Formally: ∀tj ∈ T, ∃tb, te such that
tb > tj , te − tb ≥ ∆c, pi ∈ C(Tb,e).

Informally, the notion of ∆c-infinitely often correct process captures the possi-
bility that a process is not permanently faulty, but correct for at least ∆c units
of time after mobile Byzantine agents have left it.
In the following, we will consider several alternative settings for our system
model:

6

• system timing assumptions: we consider either a synchronous (SYNC)
or an asynchronous (ASYNC) system. When considering a synchronous
system, we assume that there is an upper bound on the time required to
perform local computation on the processes and an upper bound on the
time required by a message to be delivered via a P2P link, both of them
known by all processes. In addition, we assume that the computation
evolves in sequential synchronous rounds r1, r2, . . . , rj , Every round
rj is divided into three phases: (i) send where processes transmit messages
to their intended receivers, (ii) receive where processes collect messages
sent during the send phase of the current round, and (iii) compute where
processes process received messages, and prepare those that need to be
sent in the following round. Contrarily, in an asynchronous setting, we
are not assuming any upper bound, and the computation progresses as
soon as an event is generated by a process.

• mobile Byzantine agent synchronization: we consider three differ-
ent types of mobility with different degrees of synchronization between
mobile Byzantine agents. In particular, we will consider movement that
are either synchronized (S-MOB+), synchronous (S-MOB), or asynchronous
(A-MOB) that abstract MBF models existing in the literature. In the A-MOB
model, mobile Byzantine agents move independently and once the move-
ment occurs, the agent remains at the destination node for at least ∆s,
with ∆s unknown to the processes (see ITU model in [10]). In the S-MOB

model, mobile Byzantine agents move independently, and, also in this case,
once the movement happens the agent remains on the destination node
for at least ∆s. Unlike the previous case, ∆s is known to the processes
(see the ITB model in [10]). The S-MOB+ model is a particular case of
the S-MOB model specific for synchronous systems where the computation
evolves in synchronous rounds. Indeed, in this case ∆s is expressed in
terms of round, and mobile Byzantine agents can move only between two
consecutive rounds, i.e. after the computation phase of a round ri and
before the send phase of round ri+1

1(see Garay’s MBF model [17]). Let
us stress that in the S-MOB+ setting every process is either faulty or cor-
rect for an entire round. Therefore, for ease of presentation, we say that
a process is faulty or correct in the round rk in the S-MOB+ systems and
extend the notation of C(t) and B(t) accordingly, that is, with C(rk) and
B(rk), respectively, referring to the sets of correct and faulty processes
in the round rk. Furthermore, we measure the time with the number of
rounds.

• failure awareness: we assume that every process pi is either aware or un-
aware about a mobile Byzantine agent moving away from pi. We abstract
this knowledge by introducing two different local oracles that reveal in-
formation to process pi. Specifically, we consider: basic failure awareness
(OBFA) and full failure awareness (OFFA). In the OBFA case, a process pi

1The agents’ movements are thus synchronized with the synchronous rounds.

7

knows when (i.e., in which time unit) a mobile agent moves away from pi;
in the OFFA case, a processes pi additionally know when the agent arrived
to pi (i.e., pi know the entire period Tb,e in which it was faulty).

More formally:

Definition 5 (Basic Failure Awareness Oracle OBFA). If a mobile Byzantine
agent leaves from a process pi at time tj, then the failure awareness oracle OBFA

generates a cured() event on pi at time tj+1.

Observe that OBFA informs pi as soon as pi becomes free from mobile Byzantine
agents, and thus allows pi to take corrective actions (e.g. to avoid spreading
compromised information). However, OBFA does not provide any information
about the length of the period pi was faulty.

Definition 6 (Full Failure Awareness Oracle OFFA). If a mobile Byzantine
agent takes control of a process pi at time tj and leaves pi at time tk, then the
full failure awareness oracle OFFA generates a cured() event on pi at time
tk+1, and returns the time label tj when invoking operation faulty at().

For the sake of notation, we refer to setting where no oracle is available as ONFA.
Let us remark that both OBFA and OFFA are local oracles, i.e., they provide
information to the actual process where the events occurred; thus, a process pi
is not aware of the failure state of any other process pj .

Note that the assumptions considered in our system model are equivalent
to or less constrained than those in other works dealing with mobile Byzantine
agents [17, 4, 31, 6]. The only exceptions are the OFFA oracle and the notion
of ∆c-infinitely often correct process, which have not been considered before.

In the remainder of the paper, we will characterize the specific setting con-
sidered in terms of system timing assumptions, agent synchronization, and
failure awareness by specifying a triple 〈α, β, γ〉 where α ∈ {SYNC, ASYNC},
β ∈ {A-MOB, S-MOB, S-MOB+} and γ ∈ {OBFA,OFFA,ONFA}. With slight abuse
of notation, we will use ” ∗ ” in a triple when the specific dimension is not
relevant to prove our claims.

4 Mobile BRB and BBC Specification

Informally Byzantine Reliable Broadcast (BRB) [12, 14] is a communication
primitive that enables all processes of a distributed system to agree on the
delivery of a single message disseminated by a pre-defined process called the
source, while the Byzantine Broadcast Channel (BBC) [14] primitive extends
BRB allowing all processes to disseminate an arbitrary number of messages so

that all correct processes eventually deliver the same set of messages 2.
Let us note that in the original BRB and BBC specifications the source is

either always correct or always faulty in a given execution. Conversely, in our

2The formal specification of BRB and BBC primitives are provided in the Appendix A.

8

settings, it is possible that the source of a message changes its failure state
multiple times (even during a single broadcast instance) making the original
specification no more suitable. Thus, we extend the BRB and BBC, by formal-
izing the Mobile Byzantine Reliable Broadcast (MBRB) and the Mobile Byzan-
tine Broadcast Channel (MBBC) problems to capture challenges imposed by
mobile Byzantine faults. We aim to specify two communication primitives ac-
cessible by every process and exposing the MBRB/MBBC.Broadcast(m)
and MBRB/MBBC.Deliver(s,m) operations, where m is a message and
s is a process identifier. We say that a process pi “MBRB/MBBC-
broadcasts a message m” when it executes MBRB/MBBC.Broadcast(m),
and pi “MBRB/MBBC-delivers a message m from ps” when pi generates the
MBRB/MBBC.Deliver(s,m) event. Similarly to other communication prim-
itives, the MBRB/MBBC-broadcast operation is triggered to disseminate a
message, while MBRB/MBBC-deliver notifies message deliveries. We asso-
ciate two additional parameters to both primitives, ∆b ∈ N+ and ∆c ∈ N+,
characterizing the length of two periods (detailed in the specifications’ proper-
ties). We use the character “*” in our specifications when the actual value of
the reference parameter is irrelevant.

Informally, a MBRB(∆b,∆c) communication primitive guarantees that, given a
source process ps and a message m generated by ps while it is correct (for at least
∆b time units), m is reliably delivered by any ∆c-infinitely often correct process
pj in a period where pj is correct. Similarly to BRB, this primitive is specified
by considering an instance for every message generated by the identified source.
More formally, a MBRB(∆b,∆c) communication primitive must guarantee the
following properties:

• (∆b,∆c)-Validity : If there exists a period Ti,j lasting at least ∆b where
a process ps is correct in Ti,j and executes MBRB.Broadcast(m), then
at least one ∆c-infinitely often correct process pd eventually executes
MBRB.Deliver(s,m) while correct.

• No duplication: Every process pd executes MBRB.Deliver(s,∗) at most
once when correct, namely pd MBRB-delivers at most one message from
ps among all times tk ∈ T such that pd ∈ C(Tk,k+1).

• ∆b-Integrity : If a process pd is correct at time tk and executes
MBRB.Deliver(s,m), then either ps was correct in Ti,j = [ti, ti+∆b

),
with ti ≤ tk, and executed MBRB.Broadcast(m) at time ti, or ps was
faulty at some ti ≤ tk.

• Consistency : If some process is correct at time tk and executes
MBRB.Deliver(s,m), and another process is correct at time tl and ex-
ecutes MBRB.Deliver(s,m′), then m = m′.

• ∆c-Totality : If some process is correct at time tk and executes
MBRB.Deliver(s, ∗), then every ∆c-infinitely often correct process even-
tually executes MBRB.Deliver(s, ∗).

9

The MBBC communication primitive is the natural extension of the BBC
and its specification extends the one of the MBRB. In particular, the MBBC
primitive guarantees that multiple messages generated by a source process (while
it is correct for at least ∆b consecutive time units) will be eventually delivered
by any process pj that is ∆c-infinitely often correct in a period in which pj
is correct. More formally, a MBBC(∆b,∆c) communication primitive must
guarantee the following properties:

• (∆b,∆c)-Validity : If there exists a period Ti,j lasting at least ∆b where a
process ps is correct in Ti,j and executes MBRB.Broadcast(m), then
at least one ∆c-infinitely often correct process pd eventually executes
MBRB.Deliver(s,m) while correct.

• No duplication: Every process pd executes MBBC.Deliver(s,m),
with message m and source s, at most once when correct, namely, it
MBBC-delivers a message m from ps at most once among all times tk
such that pd ∈ C(Tk,k+1).

• ∆b-Integrity : If a process pd is correct at time tk and executes
MBRB.Deliver(s,m), then either ps was correct in Ti,j = [ti, ti+∆b

),
with ti ≤ tk, and executed MBRB.Broadcast(m) at time ti, or ps was
faulty at some ti ≤ tk.

• ∆c-Agreement : If some process is correct at time tk and executes
MBRB.Deliver(s,m), then every ∆c-infinitely often correct process
eventually executes MBRB.Deliver(s,m).

Note that the specifications rule the MBRB/MBBC.Deliver(s,m) opera-
tions in times when processes are correct. Operations executed when a process
is faulty cannot be controlled and thus are not relevant to the specification. Fur-
thermore, note that when a process is controlled by a mobile Byzantine agent,
it may execute arbitrary code and alter its local memory. Such a process has no
information about what occurred when compromised (except the fact of being
previously compromised in case an oracle is available). This makes the imple-
mentation of the presented communication primitives particularly challenging
and will lead to proving several impossibility results that are specific to mobile
Byzantine faults in the following sections.

5 Impossibility Results

This section presents several impossibility results for the MBRB and MBBC
problems. In particular, Theorems 7 and 9 prove the impossibility of solv-
ing both MBRB and MBBC if the system is asynchronous, or if the agents’

10

movements are asynchronous. Then, assuming a synchronous system and syn-
chronized agents, Theorems 10 and 12 state the impossibility of solving MBRB
with the strongest failure oracle we considered, OFFA, and the impossibility of
solving MBBC with the weaker failure oracle, OBFA. These latter impossibilities
arise from the fact that a correct process cannot infer other processes’ failure
state from their behavior. Thus, they cannot distinguish messages that must be
delivered from those that can be safely dropped. Table 1 provides an overview
of the impossibilities proved in this Section based on the specific considered
settings.

Theorem 7. There exists no protocol P implementing the Mobile Byzan-
tine Reliable Broadcast (resp. Mobile Byzantine Broadcast Channel) in
〈ASYNC, S-MOB,OFFA〉.

Proof. In order to prove our claim we first show that it is impossible for any
protocol P solving MBRB to generate an execution satisfying both (∆b,∆c)-
Validity and ∆c-Totality. Then we extend our arguments to prove the claim
also for MBBC, where it is impossible to satisfy both (∆b,∆c)-Validity and
∆c-Agreement.

Let us consider a process ps that is correct at a certain time tbcast, that
triggers MBRB.broadcast(m) at time tbcast, and that remains correct for a
period ∆src ≥ ∆b after tbcast. If P exists, it needs to guarantee (∆b,∆c)-Validity
for the message m. As a consequence, if there exists a ∆c-infinitely often correct
process pdest, P must guarantee that eventually a MBRB.deliver(s,m) event
is generated from pdest. To guarantee both (∆b,∆c)-Validity and ∆c-Totality
pdest must be different from ps. It is therefore necessary that in P psrc sends
the message m through the reliable authenticated links at least once to allow a
∆c-infinitely often correct process pdest to become aware of the message.

Let us remark that under the ASYNC timing assumptions, there not exists
any upper bound on the time required to exchange a message over a P2P link.
In particular, given a message m sent by a process pi to a process pj at a
certain time t using a reliable authenticated perfect point-to-point link, we can
only guarantee that m will be delivered to pj at some time t′ > t but it is not
possible to estimate its latency d = t′−t (i.e., the time needed to deliver m). As
a consequence, it is easily to identify a scenario where a single mobile Byzantine
agent moves n times in Tt,t′ and corrupts in sequence every processes pi in the
system right after the message is P2P-delivered on pi, discarding the message
when received (mimic the loss of the message) and thus preventing a process
pdest 6= ps from delivering m.

The reasoning can be extended considering many processes pi and for
a MBBC instance with respect the properties (∆b,∆c)-Validity and ∆c-
Agreement, and the claim follows.

Let us note that Theorem 7 holds assuming the most constrained agent’s
mobility model available in an asynchronous system (i.e., S-MOB) and the most
powerful failure oracle (OFFA) considered. It follows that the MBRB and MBBC

11

problems cannot be solved in ASYNC assuming a less constrained environment,
as stated in the following Corollary.

Corollary 8. There exists no protocol P implementing the Mobile Byzan-
tine Reliable Broadcast (resp. Mobile Byzantine Broadcast Channel) in
〈ASYNC,M,O〉, with M ∈ {A-MOB, S-MOB} and O ∈ {OFFA,OBFA}.

Proof. The claim follows from the same argument provided as in Theorem 7,
given that the 〈ASYNC, S-MOB,OFFA〉 setting is the strongest possible for the
parameters M and O.

Theorem 9. There exists no protocol P implementing the Mobile Byzan-
tine Reliable Broadcast (resp. Mobile Byzantine Broadcast Channel) in
〈SYNC, A-MOB,OFFA〉.

Proof. The proof follow from Theorem 7 by observing that the same misbehav-
ior occurs both in the 〈SYNC, A-MOB,OFFA〉 and 〈ASYNC, S-MOB,OFFA〉 settings.
Indeed, if the latency of the communication δ is bounded due to the SYNC model,
it is always possible to find a value for ∆s < 1 such that in every period Tt,t+δ
a single mobile Byzantine agent can compromise n different processes. Consid-
ering that in A-MOB processes do not know the value of ∆s they cannot leverage
on it in the protocol P.

Theorem 10. If ∆b ∈ N+ and ∆b ≥ 2 rounds, then there exists no proto-
col P implementing a Mobile Byzantine Reliable Broadcast primitive in 〈SYNC,
S-MOB+, OFFA〉.

Proof. For the sake of contradiction, let us assume that such a protocol P ex-
ists. Let us consider the local execution history H′s of a process ps that is
correct for ∆b ≥ 2 rounds and executes MBRB.Broadcast(m′) in round r1.
Subsequently, ps remains correct for the successive ∆1 rounds, it gets perma-
nently faulty from round r∆b+∆1+1 (namely ∀rj ∈ [r∆b+∆1+1,∞), ps ∈ B(rj)),
and it executes MBRB.Broadcast(m′′) in round r∆b+∆1+1. We remark that
the failure state of any process may change unexpectedly due to the move-
ment of a Byzantine agent. Let us consider another local execution history
H′′s of process ps where the failure state of ps evolves in the opposite way
from H′s, that is process ps is faulty in rounds rj ∈ [r1, r∆b+∆1

] and executes
MBRB.Broadcast(m′) in round r1; subsequently, ps is permanently correct
from round r∆b+∆1+1 (namely ∀rj ∈ [r∆b+∆1+1,∞), ps ∈ C(rj)) and executes
MBRB.Broadcast(m′′) in round r∆b+∆1+1. Notice that in both histories
ps executes the MBRB.Broadcast operation only once while correct. We
provide a graphical representation of the two histories in Figure 1a. Let us con-
sider a process p1 6= ps that is correct for the entire lifetime of the system (i.e.
∀rj , p1 ∈ C(rj)), thus p1 is also an ∆c-infinitely often correct process for any
value of ∆c ∈ N. The two execution histories H′s and H′′s are indistinguishable
to p1 because the same operations and events occurred on ps. Process p1 is not
aware of the failure state of ps (i.e. it has no access to the failure oracle on ps).
Even defining an algorithm A that allows process ps to share the information

12

………

Δb Δ1

H’s

m’ m’’

………

Δb Δ1

m’ m’’

H’’s

X X X X X

X X X X X X

r1

r1

(a) Graphical representations for Theorem
10

…

Δ1 Δ2

H’1

m

Ø…

…

Δ1 Δ2

H’’1
Ø…

CURED()

CURED()

XX X X X

rΔ1

rΔ1

X X X X X X X

(b) Graphical representations for Theorem
12.

Figure 1: Graphical representations for Theorems’ proof.

obtained from OFFA with process p1 through the point-to-point primitive, pro-
cess p1 cannot distinguish an execution of A where ps is correct and reveals a
previous faulty state, from another where ps is faulty, and maliciously reports
the same information.

According to the Validity property of the MBRB specification, process p1

executing P must MBRB-deliver a message from ps considering both histories
because process ps MBRB-broadcasts a message when correct. If P makes
process p1 eventually MBRB-deliver message m′, then the Validity property
is violated in H′′s , because process p1 never MBRB-delivers m′′ (according to
the No-duplication property) that is broadcast when ps is correct. If P makes
process p1 eventually MBRB-deliver message m′′, then the Validity property is
violated in H′s for the same reason. This is a contradiction and the claim follows
regardless of the value of ∆b and ∆c.

Theorem 10 states the impossibility in solving MBRB assuming the most con-
strained assumptions we considered. Corollary 11 extends the result to less
constrained settings.

Corollary 11. If ∆b ∈ N+ and ∆b ≥ 2 rounds, then there exists no proto-
col P implementing a Mobile Byzantine Reliable Broadcast primitive in 〈SYNC,
S-MOB+,OBFA〉 or in 〈SYNC, S-MOB, ∗〉.

Proof. The claim follows from the same argument provided in Theorem 10 give
that the considered settings assume either a less constrained agent mobility
model (S-MOB) or a failure oracle providing less knowledge (OBFA).

Theorem 12. If ∆b ∈ N+ and ∆b ≥ 2 rounds, then there exists no
protocol P implementing a Mobile Byzantine Reliable Channel primitive in
〈SYNC, S-MOB+,OBFA〉.

Proof. For the sake of contradiction, let us assume that such a protocol P ex-
ists. Let us assume a permanently correct process ps (i.e. ∀rj , ps ∈ C(rj)) that

13

ASYNC SYNC

S-MOB+
OBFA OFFA

7 7
(Cor. 11) (Th. 10)

S-MOB
7

OBFA OFFA

7 7
(Cor. 8) (Cor. 11) (Cor. 11)

A-MOB
7 7

(Cor. 8) (Th. 9)

(a) MBRB

ASYNC SYNC

S-MOB+
OBFA OFFA

7(* Sec 7) 3
(Th. 12) (Th. 16)

S-MOB
7

OBFA OFFA

(Cor. 8) 7 ?

A-MOB
7 7

(Cor. 8) (Th. 9)

(b) MBBC

Table 1: Summary of the solvability results.

executes MBBC.Broadcast(m) in rounds r1. Let us consider the local execu-
tion history H′1 of a process p1 that is correct in rounds rj ∈ [r1, r∆1

], ∆1 ∈ N,
and executes MBBC.Deliver(m) in round r∆1

; subsequently, p1 gets faulty
for ∆2 consecutive rounds, ∆2 ∈ N, it wipes its local state (i.e. initialises all the
process variables) in round r∆1+∆2

, and it gets permanently correct from round
r∆1+∆2+1 (namely ∀ri ∈ [r∆1+∆2+1,∞), p1 ∈ C(ri)).
Let us consider another local execution history H′′1 of process p1 that is faulty
in rounds rj ∈ [r1, r∆1+∆2

] and it wipes its local state in round r∆1+∆2
; sub-

sequently, p1 gets permanently correct from round r∆1+∆2+1 (namely ∀rj ∈
[r∆1+∆2+1,∞), p1 ∈ C(rj)). We provide a graphical representation in Figure
1b. In round r∆1+∆2+1, process p1 has the same local state in both histories
and the OBFA oracle generates the same cured() event on process p1. Process
p1 does not know what happened during the previous rounds. It is even defining
an algorithm A that allows any process pi to share and retrieve the state and
events occurred on the process through the point-to-point primitive: process pi
can execute such a protocol either as correct or as faulty, and the two executions
would be indistinguishable by any other process.

According to the Validity property of the MBBC specification, process p1

executing P must MBBC-deliver message m from ps in both histories. In round
r∆1+∆2+1 process p1 has the same local state on both histories, thus it can act in
one only way, specifically it can command or not process pi to deliver message m
from ps. In the positive case, the protocol violates the No duplication property
in history H′1, in the negative case the Validity property is violated by the
protocol in H′′1 . This leads to a contradiction and the claim follows regardless
to the value of ∆1,∆2, and ∆c.

Discussion. Contrarily to what we could expect, the MBRB and MBBC prob-
lems are impossible to solve in settings (e.g., 〈SYNC, S-MOB+, ONFA/BFA〉) where
the register abstraction and consensus problems are solvable [17, 4, 31, 6, 10,
8, 11]. The intuition behind this is that other problems addressed under the
MBF model have a semantics that do not require to execute a particular oper-
ation (the delivery of a message in our case) at most once and depending on a
precedent failure state of the process. Indeed, both the register abstractions and
consensus set constraints on a local value stored by the processes (respectively,

14

the shared value and the decided value) but no primitive operation is associated
with their update in their specification. Contrarily, MBRB and MBBC intro-
duce constraints on the deliveries of messages that depend on the actual and
previous failure states of the processes, generating thus symmetry conditions
that are impossible to break without violating one of the properties charac-
terizing the specification. In particular, the main challenge is to ensure that
a single broadcast instance does not generate multiple deliveries to the same
process while it is correct. Another counter-intuitive result is that consider-
ing a setting stronger than the one considered in related works (e.g., 〈SYNC,
S-MOB+, OFFA〉), the MBRB problem is impossible to solve while the MBBC
one is possible (see Section 6). In the static Byzantine failure model (where ev-
ery process is always either correct or faulty in a given execution), the channel
specification extends the broadcast one allowing multiple broadcast from the
same source. As a matter of fact, in the mobile Byzantine failure model such
an extension is less constrained with respect to the broadcast: in MBRB, every
process can execute only one broadcast operation for the entire lifetime of the
system, whereas MBBC allows multiple broadcasts from the same source; if a
process is faulty and executes a broadcast, then it is not allowed to execute
a subsequent broadcast when correct in the future in the MBRB specification
(No duplication property), while it is in MBBC. Finally, note that other prim-
itives, such as consensus or register abstractions, are not useful in solving the
MBRB/MBBC problems. Consider again the execution depicted in Figure 1a,
correct process may agree or may store a set of delivered messages (according
to the MBRB/MBBC specifications) but a single process (ps in the example),
in the settings we characterized, cannot infer if it has already delivered or not
a message if it was previously compromised.

6 A Protocol for MBBC in 〈SYNC, S-MOB+,

OFFA〉
Theorem 12 and Corollary 11 motivate the definition of a stronger local ora-
cle than those considered in related work dealing with mobile Byzantine faults,
OFFA: both MBRB and MBBC are impossible to solve in the (〈SYNC, S-MOB+,
ONFA/BFA〉) settings. Theorem 10 states the impossibility in solving MBRB
even in (〈SYNC, S-MOB+, OFFA〉). This Section investigates the remaining
open problem-setting: the solvability of MBBC in (〈SYNC, S-MOB+, OFFA〉).
Specifically, we start by defining PMBBC−RB , a protocol implementing the
MBBC(∆b,∆c) communication primitive. Then, we prove its correctness and
fault-tolerance optimality.

6.1 PMBBC−RB: Protocol Description

PMBBC−RB is an extension of Bracha’s algorithm [12] aimed to solve the MBBC
problem. It inherits Bracha’s diffusion mechanism: a payload message m is ex-
changed inside three protocol messages, SEND, ECHO, and READY. The former

15

is initially sent by the source process to all peers, and the latter are subsequently
diffused by all correct processes to all peers if certain conditions are met, namely
certain quorums are reached.
The pseudo-code of PMBBC−RB is shown in Algorithm 1. This solution over-
comes the impossibility stated in Theorem 12 by leveraging on OFFA and
by fixing the round index (i.e., the moment in time) where MBBC-deliveries
must occur. Every protocol’s message contains the information about a specific
MBBC-broadcast instance, specifically the source process label s, the message
(payload) m, and the round counter rb when the broadcast instance started. An
MBBC-broadcast instance proceeds in four consecutive rounds in PMBBC−RB .
In the first round rb, the protocol’s message SEND is computed by ps and en-
queued to P2P-send to all processes in the subsequent round. Every process
that P2P-receives a SEND message in round rb+1 from ps computes the ECHO
protocol’s message for 〈s, rb,m〉 and enqueues it to P2P-send to all peers. In
round rb+2, the processes that receive sufficiently many ECHO messages (more
than (n + f)/2) for an MBBC-broadcast instance from distinct peers generate
the related READY protocol’s message to P2P-send to all processes. Finally, in
round rb+3, the processes that receive a sufficient number of READY messages
(more than 2f) for an MBBC-broadcast instance from distinct peers MBBC-
deliver the associated message m from ps. An additional protocol’s message with
respect to Bracha [12], i.e. ABORT, is exchanged in PMBBC−RB to guarantee
the Agreement property in case of a faulty source. In PMBBC−RB , if a correct
process ps executes MBBC.Broadcast(m) in round rb, then every process
that is correct in round rb+3 triggers MBBC.Deliver(s,m) in the compute
phase of that round; every process that is faulty in round rb+3 MBBC-delivers
the message m from ps at the first round rk > rb+3 it is correct.

We plug the fault-tolerant round counter defined by Bonnet at al. [6] inside
the PMBBC−RB protocol, enabling all correct processes to share the same value
for the round index (that is assumed as an integer value). Its purpose is to fix
the single round where the delivery of a certain message can take place. The
round counter features are summarised in the following remark.

Remark 13 (Round counter correctness [6]). In 〈SYNC, S-MOB+, OBFA/FFA〉,
if n > 3f then every correct process pi in round rj stores the same value for the
round index (namely the variable rc in Algorithm 1) during compute phase.

We stress the fact that protocol’s messages in PMBBC−RB (SEND, ECHO,
READY, and ABORT) must be propagated in specific rounds with respect to
the beginning of the MBBC-broadcast, in order to progress till the delivery of
the associated message m.

For ease of better understanding, we give a detailed description of
PMBBC−RB in Appendix C, and we illustrate some examples of its execution
in Appendix B and within the proof of Lemma 14.

16

Algorithm 1 PMBBC−RB

1: procedure Init
2: To send ← ∅, Sends ← ∅, cured ← False, rc ← 1
3: Echos ← {}, Readys ← {}, Aborts ← {} . map, 〈s, r,m〉 : set of process ids
4: RC ← {} . map, process id : round value

5: procedure Broadcast(m)
6: To send ← To send ∪ {〈SEND, s, rc,m〉}
7: upon OFFA.cured do
8: cured ← True

Send Phase
9: if cured then

10: To send ← ∅
11: for pk ∈ To send do
12: for q ∈ Π do
13: P2P.send(q, pk)

Receive Phase
14: Sends ← ∅, Echos ← {}, Readys ← {}, Aborts ← {}, RC ← {}
15: upon P2P.deliver(q, 〈Type, s, rb,m〉) do
16: if s = q and Type = SEND then
17: Sends ← Sends ∪ {〈s, rb,m〉}
18: if Type = ECHO then
19: Echos[〈s, rb,m〉] ← Echos[〈s, rb,m〉] ∪ {q}
20: if Type = READY then
21: Readys[〈s, rb,m〉] ← Readys[〈s, rb,m〉] ∪ {q}
22: if Type = ABORT then
23: Aborts[〈s, rb,m〉] ← Aborts[〈s, rb,m〉] ∪ {q}
24: upon P2P.deliver(q, 〈ROUND, j〉) do
25: RC[q] ← j

Compute Phase
26: To send ← ∅, rc ← getMajority(RC.values)
27: for 〈s, rb,m〉 ∈ Sends do
28: if rc = rb+1 then
29: To send ← To send ∪ {〈ECHO, s, rb,m〉}
30: for 〈s, rb,m〉 ∈ Echos do
31: if |Echos[〈s, rb,m〉]| > (n+ f)/2 then
32: To send ← To send ∪ {〈READY, s, rb,m〉}
33: else if |Echos[〈s, rb,m〉]| > f then
34: To send ← To send ∪ {〈ABORT, s, rb,m〉}
35: for 〈s, rb,m〉 ∈ Aborts do
36: if |Aborts[〈s, rb,m〉]| > f then
37: |Readys[〈s, rb,m〉] ← ∅
38: for 〈s, rb,m〉 ∈ Readys do
39: if |Readys[〈s, rb,m〉]| > 2f then
40: if ((rc = rb+3) or (cured and rc > rb+3 and OFFA.faulty at ≤ rb+3))

and (@〈s, rk,m〉 ∈ Readys : (|Readys〈s, rk,m〉| > 2f) ∧ (rk < rb)) then
41: Deliver(s,m)

42: To send ← To send ∪ {〈READY, s, rb,m〉}
43: cured ← False, rc ← rc+1, To send ← To send ∪ {〈ROUND, rc〉}

6.2 Correctness Proofs

We remark that in S-MOB+ mobile agents can move only between the compute
and send phase of two consecutive rounds. This implies that ∆s is assumed
greater than or equal to one round. Such mobility model has the following
effects to the agents’ capabilities: at the beginning of a round rj , mobile agents
can potentially control the messages that are diffused by 2f processes, the ones
where the mobile agents are placed in rj and the others where they were in
the previous round rj−1 (they can set in round rj−1 the messages that will

17

be exchange by freed processes in round rj). This capability can partially be
mitigated by the local failure detector OFFA: a process can discard all messages
queued to be send right after the failure detector notifies the cured() event. It
follows that, at the beginning of a round, at most f processes may not participate
in the protocol and at most f may have a Byzantine behavior.

The following Lemmas and Theorem state the correctness of PMBBC−RB in
solving the MBBC problem and its fault-tolerance optimality with respect to
the number of tolerated mobile agents.

Lemma 14. If ∆b ≥ 2 rounds and ∆c ≥ 1 round, then PMBBC−RB solves
the Mobile Byzantine Broadcast Channel problem (MBBC) in 〈SYNC, S-MOB+,

OFFA〉 if n > 5f .

Proof. For simplicity, we give the proof assuming the minimum values for ∆b

and ∆c. The arguments extend to higher values.
(∆b = 2 rounds, ∆c = 1 round)-Validity : We prove that if we assume ∆b =

2 rounds, ∆c = 1 round, and a process ps is correct in round rb when it executes
MBBC.Broadcast(m), then every process that is ∆c-infinitely often correct
eventually triggers MBBC.Deliver(s,m), that implies the (∆b,∆c)-Validity
property. The MBBC-delivery of a message m from a process ps may occur
either because ps was correct in round rb and executed MBBC.Broadcast(m)
or since ps was faulty at some round rd < rb and P2P-sent a SEND message
with payload m. Let us assume that process ps has not P2P-sent yet the SEND
message with payload m neither as correct or faulty before round rb, that it is
correct in rounds rb and rb+1 (∆b = 2) and executes the procedure Broadcast
with parameter m in round rb. The 〈SEND, s, rb,m〉 message is then prepared
(line 6) to be relayed to all other processes (lines 11-13). In round rb+1, the
〈SEND, s, rb,m〉 message is P2P-sent by ps to all processes and it is received by
all but f (the ones controlled by mobile agents); it follows that n− f processes
executes lines 15-17 during the receive phase in round rb+1 and lines 27-29 in
the compute phase, preparing the 〈ECHO, s, rb,m〉 message to P2P-send in round
rb+2. In round rb+2, at least n−2f processes relay the message 〈ECHO, s, rb,m〉
(f process may be faulty in round rb+2 and f process may have been faulty in
round rb+1) and it is received by n− f processes (again, the ones not controlled
by mobile agents). These processes execute lines 15, 18 and 19 in the receive
phase and lines 31 and 32 in the compute phase. In particular, the condition
inside the if statement at line 31 is verified due to the assumption n > 5f , given
that n − 2f > (n + f)/2, and line 32 is executed preparing 〈READY, s, rb,m〉
message to P2P-send in round rb+3. Finally, in round rb+3, the same reasoning
given for round rb+2 applies and n − f processes execute lines 39-41, given
n − 2f > 2f and Remark 13, and thus they trigger Deliver with parameters
s and m. At every round rj > rb+3 the 〈READY, s, rb,m〉 message is P2P-
sent by all the correct processes not faulty in round rj−1 (that are at least
n − f). The if statement at line 40 guarantees that every process that was
faulty in round rb+3 delivers message m from ps at the first round rk > rb+3

it is correct. Finally, in case (i) process ps was faulty and P2P-sent the SEND
message with payload m in round rk < rb, (ii) every ∆c-infinitely correct process

18

MBBC-delivered m from ps, and (iii) process ps is correct in round rb > rk and
executes MBBC.Broadcast(m), then the claim still follows: the message m
has been already MBBC-delivered (further details can be found in the Agreement
property’s proof).

No duplication: The second sub-condition of the if statement at line 40
guarantees that the entire if statement is verified only for the minimum rj
among all the tuples 〈s, ∗,m〉 (i.e. the MBBC-delivery is independent from the
rb parameter). The first sub-condition inside the if statement at line 40 is
verified only once among all the rounds a mobile agent does not control the
process. More in detail, if the cured variable is False, the condition is verified
only in round rb+3 for the tuple 〈s, rb,m〉. Otherwise, the if statement in line
40 is verified in round rk > rb+3 when a mobile agent, arrived on the process in
round rj ≤ rb+3, leaves the process, that occurs only once on a process during
the entire lifetime of the system given Remark 13. The condition rc > rb+3 in
line 40 is not required but simplifies this proof.

(∆b = 2)-Integrity : For the sake of contradiction, let us assume that a pro-
cess pi is correct in round rk and executes MBBC.Deliver(s,m), that process
ps is correct in rounds rb and rb+1 (that is, ∆b = 2), and that it does not execute
MBBC.Broadcast(m) in round rb.
Process pi MBBC-delivers m from ps either in round rk = rb+3 if pi is cor-
rect, or at the first round rk > rb+3 when pi is correct. In the former case,
more than 2f processes sent message 〈READY, s, rb,m〉 in round rb+3, therefore
more than (n+f)/2 processes sent message 〈ECHO, s, rb,m〉 in round rb+2, that
implies that at least (n + f)/2 − f processes were correct in round rb+1 and
received 〈SEND, s, rb,m〉 in round rb+1 from ps (lines 28-29). No procedure in
PMBBC−RB allows a correct process ps to P2P-send 〈SEND, s, rb,m〉 messages
except Broadcast(m). It follows that the latter scenario occurred and process
pi was faulty in round rb+3. As a matter of fact, correct process pi P2P-received
more than 2f 〈READY, s, rb,m〉 messages from distinct processes in round rk.
For the same reasoning as in the former case, this implies that a correct pro-
cess ps sent 〈SEND, s, rb,m〉 messages but no procedure except Broadcast(m)
allows it. This leads to a contradiction and the claim follows.

(∆c = 1)-Agreement : We proved, in the Validity proof, that this property is
satisfied in the case of a correct source. Faulty processes cannot collude to make
one of the if statements at lines 31, 33, 36 and 39 verified for a message m never
sent over the P2P links of a process ps. More in detail, the attacker cannot at-
tempt to make any correct process MBBC-deliver a message m from ps without
compromising ps. We prove that if ps is faulty and P2P-sends 〈SEND, s, rb,m〉
messages in round rb, then either all ∆c-infinitely correct processes delivers
m from ps or no ∆c-infinitely correct processes delivers m from ps. For the
sake of contradiction, let us assume that all ∆c-infinitely often correct processes
but some, p1, p2, . . . , pi, MBBC-delivered a message m from ps. It follows that
there is no round rj where more than 2f correct processes concurrently P2P-
send 〈READY, s, rb,m〉. This implies that the correct processes that delivered m
are at most 2f . According to the protocol, such processes receive a quorum of
ECHO messages and at most f ABORT messages about m, to generate the re-

19

quired READY messages. More in detail, they received ECHO messages from at
least 2f +1 correct processes. At that point, the faulty processes decided which
correct processes reached the quorum of ECHO messages. Nevertheless, each
correct process that did not reach the quorum generated an ABORT message.
It follows that at most f correct processes did not reach the quorum, whereas
n− f − f processes were correct and generated the READY message, which was
disseminated by at least n − 3f of them in the subsequent round. Given that
n > 5f , at least 2f + 1 correct processes concurrently disseminate a READY
message and thus all correct processes in round rb+3 must MBBC-deliver it.
This lead to a contradiction and the claim follows.

Lemma 15. The Mobile Byzantine Broadcast Channel problem (MBBC) is
solvable in 〈SYNC, S-MOB+, OFFA〉 only if n > 5f .

Proof. The claim follows by extending the results proven by Backes and
Cachin [3] and by Raynal [25]. The former states that the BRB problem can be
solved in a static distributed system where at most t processes may fail-stop,
and at most f processes are Byzantine, if and only if n > 3f + 2t. Similarly,
Raynal proved that the BRB problem can be solved in a static distributed sys-
tem, where tl processes may not send messages, and ts processes may send
spurious messages (processes may exhibit both behaviors during the lifetime of
the system), if and only if n > 2tl + ts.

Both scenarios can be simulated by an attacker in our system: the mobile
agents can continuously alternate between two disjoint sets P1 and P2 of f
processes, namely it can turn faulty all processes in P1 in all rounds rj , j ∈ N,
and all processes in P2 in all rounds rj+1, sending spurious messages from process
in P1 and no message from peers in P2. Therefore, all processes in P1 send
spurious messages (behaving like f Byzantine faulty processes), and all the
processes in P2 send no message (like f fail-stop faulty processes), and the
claim follows.

Theorem 16. The Mobile Byzantine Broadcast Channel problem (MBBC) is
solvable in 〈SYNC, S-MOB+, OFFA〉 with OFFA if and only if n > 5f .

Proof. It follows from Lemmas 14 and 15.

The following Corollary extends the optimality of PMBBC−RB to the case
of slower agents. In other words, even if the mobile agents are slower we are not
able to tolerate more agents solving MBBC.

Corollary 17. The Mobile Byzantine Broadcast Channel problem (MBBC) is
solvable in 〈SYNC, S-MOB+, OFFA〉 if and only if n > 5f , for each ∆s ≥ 1
round. Furthermore, the actual value of ∆s can be unknown to the processes.

Proof. In the S-MOB+ model, ∆s is expressed as a (strictly positive) number of
rounds. The claim follow from the fact that whatever number of rounds is spec-
ified by ∆s, all the mobile agents can move in one of the three protocol phases
when the SEND, ECHO, or READY messages are exchanged for a broadcast
instance.

20

Furthermore, the actual value of ∆s is irrelevant solving the MBBC problem
in (SYNC, S-MOB+, OFFA): mobile agent are constrained to move only between
two consecutive rounds and the PMBBC−RB protocol is correct assuming the
minimum value for ∆s in S-MOB+ (that is, one round).

Note that MBBC and MBBR specifications do not allow processes to be
terminate, namely to eventually stop propagating messages through the P2P
primitive. Intuitively, processes need to continuously relay the messages in
order to enforce ∆c-Totality/Agreement and thus allow every temporarily faulty
process to eventually deliver a broadcast message. Furthermore, as argued in
Section 5, processes are not able to infer if a specific process has delivered a
message, and thus conclude if all processes delivered a message when correct.
Additional assumptions enabling termination can be considered, such as an
upper-bound on the time a process becomes correct when faulty.

7 MBBC with multiple deliveries

The impossibilities identified in Section 5 arise for the general specification we
defined. In fact, alternative or weaker specifications could be implementable
under weaker assumptions. More in detail, we proved that no protocol can
solve the MBBC in 〈SYNC, S-MOB+, OBFA〉. We therefore investigate the pos-
sibility of a weaker primitive that can be realized when the stringent conditions
identified in Theorem 16 are not satisfied.

We start by considering the case where no local failure detector is available,
that is, the case of ONFA. The following Theorem show that a weaker MBBC
primitive, where the No duplication property is not satisfied, is realizable in
〈SYNC, S-MOB+, ONFA〉.

Theorem 18. A weaker Mobile Byzantine Broadcast Channel primitive, not
guaranteeing the No duplication property, is realizable in 〈SYNC, S-MOB+,

ONFA〉 if ∆b = 2 rounds, ∆c = 1 round, and n > 6f .

Proof. Let us consider the PMBBC−RB protocol defined in Algorithm 1. Let
us ignore the lines that interacts with the local failure detector, namely 7, 8
and 40. Let us substitute all the occurrences of parameter f with f̄ = 2f in
Algorithm 1.

The difference with respect the setting considered in Lemma 14 is that pro-
cesses are not aware of being compromised. In particular, they may diffuse
messages with P2P-links previously generated by mobile agents. As a matter of
fact, the protocol is restored right after the mobile agent left the process.

The proof follows from the same reasoning stated in Lemma 14 except for
No duplication considering f̄ instead of f in Algorithm 1.

The following theorem show that having a slightly better oracle about fail-
ures, namely OBFA, permits to withstand more Byzantine agents, for the same
weaker problem that does not guarantees no duplication.

21

Theorem 19. A weaker Mobile Byzantine Broadcast Channel primitive, not
guaranteeing the No duplication property, is realizable in 〈SYNC, S-MOB+,

OBFA〉 if ∆b = 2 rounds, ∆c = 1 round, and n > 5f .

Proof. TheOBFA failure oracle enables a correct process just freed from a mobile
agent to take corrective actions, specifically to discard all messages queued to
be sent in the current round. As a matter of fact, the OBFA oracle does not
allow a process to know whether it was correct in a defined period in the past,
therefore the same technicality employed in PMBBC−RB and detailed in Lemma
14 in the No duplication part cannot be adopted. The claim follows combining
the argumentation provided in Theorem 12 and Lemma 14.

Abandoning the No duplication guarantee, the number of message delivered
becomes unbounded: the following theorem shows that it is not possible to
bound the number of duplicate messages that are delivered, even assuming an
intermediate oracle, namely OBFA.

Theorem 20. Given a constant k̄ ∈ N+, it is not possible to define a weaker
Mobile Byzantine Broadcast Channel primitive, not guaranteeing the No du-
plication property, in 〈SYNC, S-MOB+, OBFA〉 where a message m MBBC-
Broadcast by a process ps is MBBC-Delivered by a process pi at most k̄ time
when correct.

Proof. The proof follows by extending the argument provided in Theorem 12.
In the defined local execution histories H′1 and H′′1 , it is not possible to define an
MBBC primitive where both No duplication and Validity properties are satisfied
for a message m MBBC-Broadcast by a process ps. As a matter of fact, if the
No duplication has not to be satisfied, process pi can always deliver message m
after the cured() event generated by OBFA.

Let us extend the execution history H′′1 . At round r∆1+∆2+1 process pi
executes MBBC.Deliver(m). Subsequently, the pattern of H′′1 repeats: pro-
cess pi get faulty and subsequently correct. Process pi, again, is not able to
know whether message m from ps has been previously MBBC-Delivered, thus
it executes MBBC.Deliver(m) to satisfy the Validity property.

It follows that process pi MBBC-Deliver message m from ps every time that
a mobile agent moves away from pi with the described procedure. Therefore,
if the a mobile agent arrives and frees process pi k̄ + 1 times after the MBBC-
Broadcast, process pi MBBC-Deliver k̄ + 1 times message m from ps. Alterna-
tively, if process pi does not MBBC-Deliver m from ps when it get correct, it
may not satisfy the Validity property, and the claim follows.

Corollary 21. Suppose a solution to a weaker Mobile Byzantine Broadcast
Channel primitive, not guaranteeing the No duplication property, in 〈SYNC,
S-MOB+, OBFA〉. If a process pi gets faulty and correct k times after the MBBC-
Broadcast of a message m from ps, then pi MBBC-Delivers m from ps at least
k times.

22

Proof. It follows from the same argument provided for Theorem 20. Every time
a process pi is freed by a mobile agent after a MBBC-Broadcast, the process has
to decide whether to MBBC-Deliver or not a message m MBBC-Brodcast by a
process ps. As a matter of fact, process pi does not known how many times it
has been correct in the past, it is only aware that it has been freed by a mobile
agent. It follows that if pi decide to not MBBC-Deliver once a message m from
ps it may invalidates the Validity property and the claim follows.

Theorem 22. Suppose a solution to a weaker Mobile Byzantine Broadcast
Channel primitive, not guaranteeing the No duplication property, in 〈SYNC,
S-MOB+, ONFA〉. If a process ps MBBC-Broadcast a message m, then every
process pi must MBBC-Deliver m from ps infinitely often.

Proof. A correct process pi at round rk is not aware of its failure state at all
round rj , j ∈ N, j < k. It follows that, if pi does not MBBC-Deliver m from
ps, then it may not satisfy the Validity property. The argument hold for every
round rh, h ∈ N, h > k and the claim follows.

8 Conclusion

We provided a specification for the Byzantine Reliable Broadcast and Byzantine
Broadcast Channel problems in distributed systems affected by mobile Byzan-
tine faults. We identified some impossibilities; in particular, we showed that
both speed constraints on the mobile agents and timing assumptions on the
system evolution are required to solve the problems under investigation, and we
proved that the Byzantine Reliable Broadcast cannot be solved even in one of the
most constrained mobile Byzantine failure models presented so far. The Byzan-
tine Broadcast Channel problem proved to be solvable, assuming a stronger local
failure detector than the ones previously considered in the literature. Lastly, we
investigated a weaker Byzantine Broadcast Channel primitive, not guaranteeing
the No duplication property, in settings equivalent to the ones assumed in re-
lated works. Our results characterise the solvability of a fundamental problem in
a general dynamic process failure model, and open the path for research on addi-
tional important tasks. In particular, to understand the gap that exists between
the theoretical model (assumed in this and in related work [4, 6, 17, 24, 31, 27])
and the practical world, investigating the feasibility of the oracles and defining
solutions that are as practical as possible. Furthermore, it may be interesting
to relax the assumptions of instantaneous fault detection and recovery (of the
protocol), to investigate whether the assumption of digitally signed messages
has an impact on the solvability of the considered problems, and to analyse the
Mobile Byzantine Channel problem assuming the S-MOB agent mobility model
(which we have left open for analysis and we conjecture its solvability).

23

Appendix A The Byzantine Reliable Broadcast
and Channel Problems Specifica-
tion [12, 14]

The Byzantine Reliable Broadcast and the Byzantine Broadcast Channel prob-
lems aim at specifying a communication primitive, respectively BRB and
BBC, exposing two operations, BRB/BBC-broadcast(m) and BRB/BBC-
deliver(s,m), where m is a message and s is a process identifier.

The BRB primitive enables all correct processes of a distributed system to
agree on a single message diffused by a (potentially faulty) particular process,
the source. The BBC primitive extends BRB allowing all processes to diffuse
an arbitrary number of messages so that all correct processes eventually deliver
the same set of messages. We say that a process pi “BRB/BBC-broadcasts a
message m” when it invokes BRB/BBC-broadcast(m), and pi “BRB/BBC-
delivers a message m from ps” when it manage the BRB/BBC-deliver(s,m)
event.

We remark that both BRB and BBC primitives assume a static process
failure model where every process is permanently correct or faulty.

A.1 Byzantine Reliable Broadcast (BRB)

The BRB communication primitive guarantees the following properties:

• Validity : If a correct process ps BRB-broadcasts a message m, then every
correct process eventually BRB-delivers m from ps.

• No duplication: Every correct process BRB-delivers at most one message
from ps.

• Integrity : If some correct process BRB-delivers a message m from ps and
process ps is correct, then m was previously BRB-broadcast by ps.

• Consistency : If some correct process BRB-delivers a message m from ps
and another correct process BRB-delivers a message m′ from ps, then
m = m′.

• Totality : If some message is BRB-delivered by any correct process, every
correct process eventually BRB-delivers a message.

A.2 Byzantine Broadcast Channel (BBC)

The BBC communication primitive guarantees the following properties:

• Validity : If a correct process ps BBC-broadcasts a message m, then every
correct process eventually BBB-delivers m from ps.

• No duplication: No correct process BBC-delivers a message m from ps
more than once.

24

• Integrity : If some correct process BBC-delivers a message m from ps and
process ps is correct, then m was previously BBC-broadcast by ps.

• Agreement : If some correct process BBC-delivers a message m from ps
then every correct process eventually delivers message m from ps.

Appendix B PMBBC−RB execution examples

We detail in this Section several execution examples for the PMBBC−RB protocol
defined in Section 6. Given what claimed in Theorem 16, we assume that the
correctness conditions for our protocol, i.e. a 〈SYNC, S-MOB+, OFFA〉 system
and n > 5f , are satisfied in all of the provided examples. We detail one example
where the source is correct and two in which the source is faulty.

SEND(1,1,m)

r2

p1

p2

p3

p4

p5

p6

ECHO(1,1,m)

ECHO(1,1,m)

ECHO(1,1,m)

ECHO(1,1,m)

ECHO(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

✓m

✓m

✓m

✓m

✓m

READY(1,1,m)

✓m

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

r3 r4 r5 r6r1

Figure 2: An execution of PMBBC−RB with a correct source and f = 1.

In the execution example in Figure 2, the correct source p1 starts the MBBC-
Broadcast preparing the related SEND message in round r1, that is P2P-sent to
all processes in round r2 (∆b = 2). Process p2 is faulty in round r1, then the
mobile agent moves to process p6 in round r2. All processes but f are correct
in round r2, thus they receive the SEND message from p1 and generate the
related ECHO message. Such message is then P2P-sent to all peers by at least
n− 2f processes during the send phase in round r3 (at most f processes could
have been faulty in round r2, p6 in our example, and at most f processes could
become faulty in round r3, p1 in our example where the mobile agent moves in

25

SEND(1,1,m)

r2

p1

p2

p3

p4

p5

p6

ECHO(1,1,m)

ECHO(1,1,m)

ECHO(1,1,m)

ECHO(1,1,m)

READY(1,1,m)

READY(1,1,m)

READY(1,1,m)

ABORT(1,1,m)

r3 r4 r5 r6r1

ABORT(1,1,m)

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

READY(1,1,m)

✓m

Figure 3: An execution of PMBBC−RB with a faulty source, f = 1 and all
infinitely often correct processes delivering.

SEND(1,1,m)

r2

p1

p2

p3

p4

p5

p6

ECHO(1,1,m)

ECHO(1,1,m)

ECHO(1,1,m)

ECHO(1,1,m)

READY(1,1,m)

READY(1,1,m)

ABORT(1,1,m)

ABORT(1,1,m)

r3 r4 r5 r6r1

ABORT(1,1,m)

Figure 4: An execution of PMBBC−RB with a faulty source, f = 1 and no
infinitely often correct process delivering.

26

round r3). It follows that n− f processes reach the quorum of ECHO messages
generating the related READY message. Again, at least n − 2f processes are
correct in round r4, P2P-send the READY message and deliver the associated
payload from p1, m, during the compute phase of the same round. The processes
that were faulty in round r4, p2 in our example, deliver the message at the first
round rk > r4 they get correct, because all processes that are correct in a round
rj > r4 diffuse the associated READY message.

The only MBBC property that mobile agents may attempt to invalidate in
a execution of PMBBC−RB is the Agreement property: the No duplication is
guaranteed by the if statement at line 40 in Algorithm 1 and both Validity and
Integrity consider a correct source. Any source must P2P-send a well-formed
SEND message (i.e., with valid source id and round label) to make a correct
process proceed in the protocol to deliver a payload m. If the SEND message is
P2P-sent to all correct processes, then all ∆c-infinitely often correct processes
will eventually deliver m, as shown in the previous execution, satisfying the
MBBC specification. It follows that a Byzantine source must not P2P-send the
SEND message to some processes. This behavior has two possible outcomes in
our protocol: either all correct processes MBBC-deliver the diffused message or
no correct process does it. Let us assume that the mobile agent commands p1

to P2P-send the SEND message to b(n−f)/2c−f processes, in order to control
which ones will proceed in the PMBBC−RB protocol generating the READY
message in round r4.
In the execution depicted in Figure 3, process p1 is a faulty source that attempts
to prevent the Agreement property of MBBC from being satisfied. Specifically,
it P2P-sends the ECHO message only to part of the processes, process p2, p3,
and p4, that reach the quorum required to generate the READY message. In
this case, processes p5 and p6 generate the ABORT message but only f of them,
namely p5, P2P-send it, thus blocking no correct process from proceeding in the
MBBC-delivery of m from p1. Nonetheless, in this case more than 2f processes
are correct and P2P-send the READY message in round r4. It follows that all
∆c-infinitely often correct processes eventually deliver the associated payload
m.
Differently from the previous example, in the execution in Figure 4 process
p1 sends the ECHO message to processes p2 and p3. It follows that all other
correct processes, p4, p5, and p6, generate the ABORT message. At most f of
them, process p6 in the example, can be blocked from P2P-sending the ABORT
message. It follows that more than f processes diffuse to all correct ones the
ABORT message and thus no process delivers the associated payload m. It
follows that the specification is not violated in such execution.

27

Appendix C Additional details on PMBBC−RB
(Algorithm 1)

We provide in this Appendix an additional detailed description of the
PMBBC−RB protocol and its variables defined in Algorithm 1 for the sake of
completeness.

• The Init procedure initializes all the data structures and variables em-
ployed by the protocol. More in detail, it defines:

1. The To send set variable to collect the messages (of any type) to
P2P-send during the send phase of a round;

2. The Sends set to store the SEND messages received in a round;

3. The cured boolean variable to keep track of the occurrence of the
OFFA.cured event;

4. The rc integer variable to store the current round index;

5. The Echos, Readys, and Aborts maps to collect, for every tuple
〈s,m, r〉 associated with single MBBC-instance, the identifier of the
processes that P2P-send the ECHO, READY, and ABORT for such
tuple respectively in the current round;

6. The RC map that associates, for every process, the value of the round
index that it P2P-sends in the current round.

• The Broadcast procedure implements the Broadcast operation of MBBC by
enqueueing the SEND message to P2P-send in set Sends.

• PMBBC−RB is partitioned in three parts accordingly with the three phases
assumed in the system model.

• During the send phase of a round, all the messages that have been en-
queued to P2P-send in the previous round, stored in To send, are dis-
carded if the failure detector generated the Cured event in the current
round, they are P2P-send to all processes otherwise.

• The receive phase of a round starts by wiping all maps data structures.
The aim is to limit the capability of mobile agents to P2P-send spurious
information only from f processes in every round. Subsequently, all pro-
tocol’s messages that have been P2P-received in the current round, SEND,
ECHO, READY, and ABORT, are partitioned in the dedicated data struc-
tures. The same occurs also for the messages exchanged to implement the
fault-tolerant round counter: the P2P-received values are collected in the
dedicated data structure.

• The compute phase analyzes all information received during the receive
phase and proceeds in the computation, MBBC-delivering messages and
computing the protocol’s messages to P2P-send in the subsequent round.

28

It starts by wiping the data structure that collects the message to subse-
quently P2P-send and by updating the round index by majority (the rc
value may have been previously altered by an agent). Subsequently, if valid
SEND message is received, then the related ECHO message is computed and
enqueued to be P2P-send. For all the ECHO messages received, if a process
has received the one associated with a specific MBBC instance from a suf-
ficient number of distinct processes (a quorum), then the READY message
is computed and enqueued, if such a number is not sufficient but includes
at least a currently correct process, then the ABORT message is generated.
If it is sure that the ABORT message associated with a MBBC instance has
been sent by at least a correct process, then the received READY messages
associated with the same instance are discarded in order to preserve the
Agreement property. If a sufficient number of READY messages associated
with a MBBC instance have been received and specific conditions are met,
then the message is delivered. These conditions are met at most once for
every process, namely three rounds after the MBBC-Broadcast beginning
or at the first subsequent round when a process get correct, for the mini-
mum round label (making it irrelevant to the primitive). Furthermore, if
a sufficient amount of READY messages is received, then the same message
is enqueued to P2P-send, in order to guarantee that processes that are
faulty three rounds after the MBBC-broadcast will MBBC-deliver the as-
sociated payload when correct. Finally, the round index is increased and
its value is enqueued to P2P-send.

References

[1] Ittai Abraham, Ling Ren, and Zhuolun Xiang. Good-case and bad-case la-
tency of unauthenticated byzantine broadcast: A complete categorization.
In Quentin Bramas, Vincent Gramoli, and Alessia Milani, editors, 25th
International Conference on Principles of Distributed Systems, OPODIS
2021, December 13-15, 2021, Strasbourg, France, volume 217 of LIPIcs,
pages 5:1–5:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.OPODIS.2021.5.

[2] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia,
Zhuolun Xiang, and Haibin Zhang. Balanced byzantine reliable broadcast
with near-optimal communication and improved computation. In Alessia
Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium on Prin-
ciples of Distributed Computing, Salerno, Italy, July 25 - 29, 2022, pages
399–417. ACM, 2022. doi:10.1145/3519270.3538475.

[3] Michael Backes and Christian Cachin. Reliable broadcast in a compu-
tational hybrid model with byzantine faults, crashes, and recoveries. In
2003 International Conference on Dependable Systems and Networks (DSN
2003), 22-25 June 2003, San Francisco, CA, USA, Proceedings, pages 37–
46. IEEE Computer Society, 2003. doi:10.1109/DSN.2003.1209914.

29

https://doi.org/10.4230/LIPIcs.OPODIS.2021.5
https://doi.org/10.1145/3519270.3538475
https://doi.org/10.1109/DSN.2003.1209914

[4] Nazreen Banu, Samia Souissi, Taisuke Izumi, and Koichi Wada. An im-
proved byzantine agreement algorithm for synchronous systems with mobile
faults. International Journal of Computer Applications, 43(22):1–7, 2012.

[5] Romain Boichat and Rachid Guerraoui. Reliable and total order broadcast
in the crash-recovery model. J. Parallel Distributed Comput., 65(4):397–
413, 2005. doi:10.1016/j.jpdc.2004.10.008.

[6] François Bonnet, Xavier Défago, Thanh Dang Nguyen, and Maria Potop-
Butucaru. Tight bound on mobile byzantine agreement. Theor. Comput.
Sci., 609:361–373, 2016. doi:10.1016/j.tcs.2015.10.019.

[7] Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil’. Reliable broadcast
despite mobile byzantine faults. In 27th International Conference on Prin-
ciples of Distributed Systems, OPODIS 2023, December 6-8, 2023, Tokyo,
Japan, 2023.

[8] Silvia Bonomi, Antonella Del Pozzo, and Maria Potop-Butucaru. Tight self-
stabilizing mobile byzantine-tolerant atomic register. In Proceedings of the
17th International Conference on Distributed Computing and Networking,
Singapore, January 4-7, 2016, pages 6:1–6:10. ACM, 2016. doi:10.1145/

2833312.2833320.

[9] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien
Tixeuil. Approximate agreement under mobile byzantine faults. In 36th
IEEE International Conference on Distributed Computing Systems, ICDCS
2016, Nara, Japan, June 27-30, 2016, pages 727–728. IEEE Computer
Society, 2016. doi:10.1109/ICDCS.2016.68.

[10] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien
Tixeuil. Optimal mobile byzantine fault tolerant distributed storage: Ex-
tended abstract. In George Giakkoupis, editor, Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 269–278. ACM, 2016. doi:

10.1145/2933057.2933100.

[11] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien
Tixeuil. Optimal storage under unsynchronized mobile byzantine faults. In
36th IEEE Symposium on Reliable Distributed Systems, SRDS 2017, Hong
Kong, Hong Kong, September 26-29, 2017, pages 154–163. IEEE Computer
Society, 2017. doi:10.1109/SRDS.2017.20.

[12] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Com-
put., 75(2):130–143, 1987. doi:10.1016/0890-5401(87)90054-X.

[13] Harry Buhrman, Juan A. Garay, and Jaap-Henk Hoepman. Optimal re-
siliency against mobile faults. In Digest of Papers: FTCS-25, The Twenty-
Fifth International Symposium on Fault-Tolerant Computing, Pasadena,
California, USA, June 27-30, 1995, pages 83–88. IEEE Computer Society,
1995. doi:10.1109/FTCS.1995.466995.

30

https://doi.org/10.1016/j.jpdc.2004.10.008
https://doi.org/10.1016/j.tcs.2015.10.019
https://doi.org/10.1145/2833312.2833320
https://doi.org/10.1145/2833312.2833320
https://doi.org/10.1109/ICDCS.2016.68
https://doi.org/10.1145/2933057.2933100
https://doi.org/10.1145/2933057.2933100
https://doi.org/10.1109/SRDS.2017.20
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1109/FTCS.1995.466995

[14] Christian Cachin, Rachid Guerraoui, and Lúıs E. T. Rodrigues. Introduc-
tion to Reliable and Secure Distributed Programming (2. ed.). Springer,
2011. doi:10.1007/978-3-642-15260-3.

[15] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Commun. ACM, 17(11):643–644, 1974. doi:10.1145/361179.361202.

[16] Shlomi Dolev. Self-Stabilization. MIT Press, 2000. URL: http://www.cs.
bgu.ac.il/%7Edolev/book/book.html.

[17] Juan A. Garay. Reaching (and maintaining) agreement in the presence of
mobile faults (extended abstract). In Gerard Tel and Paul M. B. Vitányi,
editors, Distributed Algorithms, 8th International Workshop, WDAG ’94,
Terschelling, The Netherlands, September 29 - October 1, 1994, Proceed-
ings, volume 857 of Lecture Notes in Computer Science, pages 253–264.
Springer, 1994. doi:10.1007/BFb0020438.

[18] Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne Pigno-
let, Dragos-Adrian Seredinschi, and Andrei Tonkikh. Dynamic byzantine
reliable broadcast. In Quentin Bramas, Rotem Oshman, and Paolo Ro-
mano, editors, 24th International Conference on Principles of Distributed
Systems, OPODIS 2020, December 14-16, 2020, Strasbourg, France (Vir-
tual Conference), volume 184 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.OPODIS.

2020.23.

[19] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and
Dragos-Adrian Seredinschi. Scalable byzantine reliable broadcast. In Jukka
Suomela, editor, 33rd International Symposium on Distributed Comput-
ing, DISC 2019, October 14-18, 2019, Budapest, Hungary, volume 146 of
LIPIcs, pages 22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019. doi:10.4230/LIPIcs.DISC.2019.22.

[20] Damien Imbs and Michel Raynal. Trading off t-resilience for efficiency
in asynchronous byzantine reliable broadcast. Parallel Process. Lett.,
26(4):1650017:1–1650017:8, 2016. doi:10.1142/S0129626416500171.

[21] Vasilis P. Koutras and Agapios N. Platis. Chapter 3: Software rejuvenation:
Key concepts and granularity. In 2020 IEEE International Symposium on
Software Reliability Engineering Workshops, ISSRE Workshops, Coimbra,
Portugal, October 12-15, 2020, pages 321–322. IEEE, 2020. doi:10.1109/
ISSREW51248.2020.00092.

[22] Jing Li, Tianming Yu, Ye Wang, and Roger Wattenhofer. Dynamic byzan-
tine broadcast in asynchronous message-passing systems. IEEE Access,
10:91372–91384, 2022. doi:10.1109/ACCESS.2022.3202627.

[23] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan
Tung. Intrusion detection system: A comprehensive review. J. Netw. Com-
put. Appl., 36(1):16–24, 2013. doi:10.1016/j.jnca.2012.09.004.

31

https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/361179.361202
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
http://www.cs.bgu.ac.il/%7Edolev/book/book.html
https://doi.org/10.1007/BFb0020438
https://doi.org/10.4230/LIPIcs.OPODIS.2020.23
https://doi.org/10.4230/LIPIcs.OPODIS.2020.23
https://doi.org/10.4230/LIPIcs.DISC.2019.22
https://doi.org/10.1142/S0129626416500171
https://doi.org/10.1109/ISSREW51248.2020.00092
https://doi.org/10.1109/ISSREW51248.2020.00092
https://doi.org/10.1109/ACCESS.2022.3202627
https://doi.org/10.1016/j.jnca.2012.09.004

[24] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus at-
tacks (extended abstract). In Luigi Logrippo, editor, Proceedings of the
Tenth Annual ACM Symposium on Principles of Distributed Computing,
Montreal, Quebec, Canada, August 19-21, 1991, pages 51–59. ACM, 1991.
doi:10.1145/112600.112605.

[25] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An
Algorithmic Approach. Springer, 2018. doi:10.1007/978-3-319-94141-7.

[26] Michel Raynal. On the versatility of bracha’s byzantine reliable broadcast
algorithm. Parallel Process. Lett., 31(3):2150006:1–2150006:9, 2021. doi:

10.1142/S0129626421500067.

[27] Rüdiger Reischuk. A new solution for the byzantine generals problem. Inf.
Control., 64(1-3):23–42, 1985. doi:10.1016/S0019-9958(85)80042-5.

[28] Lúıs E. T. Rodrigues and Michel Raynal. Atomic broadcast in asynchronous
crash-recovery distributed systems. In Proceedings of the 20th International
Conference on Distributed Computing Systems, Taipei, Taiwan, April 10-
13, 2000, pages 288–295. IEEE Computer Society, 2000. doi:10.1109/

ICDCS.2000.840941.

[29] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
Trusted execution environment: What it is, and what it is not. In 2015
IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, August 20-22, 2015,
Volume 1, pages 57–64. IEEE, 2015. doi:10.1109/Trustcom.2015.357.

[30] Dimitris Sakavalas and Lewis Tseng. Delivery delay and mobile faults. In
17th IEEE International Symposium on Network Computing and Applica-
tions, NCA 2018, Cambridge, MA, USA, November 1-3, 2018, pages 1–8.
IEEE, 2018. doi:10.1109/NCA.2018.8548345.

[31] Toru Sasaki, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita.
Mobile byzantine agreement on arbitrary network. In Roberto Bal-
doni, Nicolas Nisse, and Maarten van Steen, editors, Principles of Dis-
tributed Systems - 17th International Conference, OPODIS 2013, Nice,
France, December 16-18, 2013. Proceedings, volume 8304 of Lecture Notes
in Computer Science, pages 236–250. Springer, 2013. doi:10.1007/

978-3-319-03850-6_17.

[32] Lewis Tseng. An improved approximate consensus algorithm in the pres-
ence of mobile faults. In Paul G. Spirakis and Philippas Tsigas, editors, Sta-
bilization, Safety, and Security of Distributed Systems - 19th International
Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceed-
ings, volume 10616 of Lecture Notes in Computer Science, pages 109–125.
Springer, 2017. doi:10.1007/978-3-319-69084-1_8.

32

https://doi.org/10.1145/112600.112605
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1142/S0129626421500067
https://doi.org/10.1142/S0129626421500067
https://doi.org/10.1016/S0019-9958(85)80042-5
https://doi.org/10.1109/ICDCS.2000.840941
https://doi.org/10.1109/ICDCS.2000.840941
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/NCA.2018.8548345
https://doi.org/10.1007/978-3-319-03850-6_17
https://doi.org/10.1007/978-3-319-03850-6_17
https://doi.org/10.1007/978-3-319-69084-1_8

	Introduction
	Related Work
	System Model
	Mobile BRB and BBC Specification
	Impossibility Results
	A Protocol for MBBC in SYNC, S-MOB+, OFFA
	PMBBC-RB: Protocol Description
	Correctness Proofs

	MBBC with multiple deliveries
	Conclusion
	The Byzantine Reliable Broadcast and Channel Problems Specification DBLP:journals/iandc/Bracha87, DBLP:books/daglib/0025983
	Byzantine Reliable Broadcast (BRB)
	Byzantine Broadcast Channel (BBC)

	PMBBC-RB execution examples
	Additional details on PMBBC-RB (Algorithm 1)

