Silvia Bonomi

Giovanni Farina

Sébastien Tixeuil

Reliable Broadcast despite Mobile Byzantine Faults *

We investigate the solvability of the Byzantine Reliable Broadcast and Byzantine Broadcast Channel problems in distributed systems affected by Mobile Byzantine Faults. We show that both problems are not solvable even in one of the most constrained system models for mobile Byzantine faults defined so far. By endowing processes with an additional local failure oracle, we provide a solution to the Byzantine Broadcast Channel problem.

Introduction

Byzantine Reliable Broadcast (BRB) is a fundamental primitive in fault-tolerant distributed systems ensuring that all correct processes eventually deliver the same message from a defined sender regardless of its correctness. Defined by Bracha [START_REF] Bracha | Asynchronous byzantine agreement protocols[END_REF] as a building block for a Byzantine-tolerant consensus protocol, BRB has been widely adopted and investigated since then, thanks to its ability to prevent arbitrarily (i.e., Byzantine) faulty processes from equivocating by sending different messages to different processes. It has been introduced as a one-shot primitive that allows a pre-defined process in the system to spread a single message and generalized as a Byzantine Broadcast Channel (BBC) primitive [START_REF] Cachin | Introduction to Reliable and Secure Distributed Programming[END_REF] to allow every process to spread an arbitrary number of messages. BRB has been used to construct several fault-tolerant distributed solutions, solving more complex problems such as register abstractions, consensus problems, and distributed ledgers. Thus, it has been analyzed in the literature from various perspectives, such as minimizing bandwidth consumption [START_REF] Alhaddad | Balanced byzantine reliable broadcast with near-optimal communication and improved computation[END_REF], or latency [START_REF] Imbs | Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast[END_REF][START_REF] Abraham | Good-case and bad-case latency of unauthenticated byzantine broadcast: A complete categorization[END_REF].

A fundamental perspective to consider is the investigation of the feasibility of BRB and BBC when assuming no permanent failures. In this paper, we are interested in analyzing BRB and BBC solvability considering a dynamic process failure model, i.e., a model in which every process may potentially fail and recover, causing a potentially continuous change in a process's failure state throughout the system's lifetime. Some examples of systems considering dynamic process failures are crash-recovery systems [START_REF] Luís | Atomic broadcast in asynchronous crash-recovery distributed systems[END_REF][START_REF] Boichat | Reliable and total order broadcast in the crash-recovery model[END_REF], self-stabilizing systems [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF][START_REF] Dolev | Self-Stabilization[END_REF], and Mobile Byzantine tolerant systems [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF]. In this work, we consider the Mobile Byzantine Failure (MBF) model, in which all processes may alternate between periods of correct behavior and periods of arbitrary behavior (i.e., Byzantine). Indeed, the failure state of processes is governed by an external attacker capable of compromising and controlling a set of processes in the system, and such a set is dynamic. The MBF model captures some of the features of the most frequent attacks targeting distributed systems and related countermeasures, where the process's faults are primarily due to external malicious causes rather than internal misbehavior, and tools such as software rejuvenation techniques [START_REF] Koutras | Chapter 3: Software rejuvenation: Key concepts and granularity[END_REF], intrusion detection systems [START_REF] Liao | Intrusion detection system: A comprehensive review[END_REF], and trusted execution environments [START_REF] Sabt | Trusted execution environment: What it is, and what it is not[END_REF] are available.

Despite several fundamental distributed problems have been analyzed in the literature considering the MBF model (i.e., Byzantine agreement [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF], approximate Byzantine agreement [START_REF] Tseng | An improved approximate consensus algorithm in the presence of mobile faults[END_REF][START_REF] Bonomi | Approximate agreement under mobile byzantine faults[END_REF], and registers emulation [START_REF] Bonomi | Tight selfstabilizing mobile byzantine-tolerant atomic register[END_REF]), to the best of our knowledge the BRB problem has never been studied so far in such settings.

Thus, our objective in this paper is the investigation of BRB and BBC in the presence of MBFs. In particular, our contributions are:

1. we formalize the Mobile Byzantine Reliable Broadcast (MBRB) and Mobile Byzantine Broadcast Channel (MBBC) as a natural extension of the BRB and BBC specifications to deal with MBFs. Indeed, the standard specifications for BRB and BBC primitives consider a static failure model, where every process is either permanently correct or faulty;

2. we prove several impossibility results, mainly showing that MBRB and MBBC cannot be implemented without additional knowledge provided by a powerful oracle reporting about processes' failure state;

3. we introduce such a powerful oracle and provide a protocol for solving MBBC in a synchronous round-based system;

4. we analyze a weaker MBBC specification that can be realized without the oracle.

Let us note that being a natural extension of BRB and BBC primitives, the MBRB and MBBC primitives prevent faulty processes from equivocating, namely from sending different information to different processes, and can be used as building block for other fault-tolerant primitives. For example, MBRB/MBBC primitives can extend mobile Byzantine fault-tolerant register abstractions to support Byzantine clients [START_REF] Bonomi | Tight selfstabilizing mobile byzantine-tolerant atomic register[END_REF]. Our work not only offers an analysis of a specific problem but also provides several insights for other distributed system problems where the failure state of a process is dynamic and partially or entirely unknown. We consider relatively strong assumptions in our system model, the same as those considered in related work, in order determine fundamental solvability conditions. Relaxation of most of these assumptions has already been partially investigated [START_REF] Bonomi | Optimal storage under unsynchronized mobile byzantine faults[END_REF].

The rest of the paper is structured as follows. After reviewing related work on implementations of the BRB primitive and contributions considering mobile Byzantine failures in Section 2, we formalize the system model in Section 3. We introduce the new specifications for the Mobile Byzantine Reliable Broadcast and the Mobile Byzantine Broadcast Channel problems in Section 4. Section 5 presents some impossibilities for the specifications we defined. To overcome some of the identified impossibilities and solve the Mobile Byzantine Broadcast Channel problem, we consider a powerful oracle, we propose a protocol in Section 6, and we analyze a weaker Mobile Byzantine Broadcast Channel specification that is realizable without any oracle in Section 7.

Related Work

The Byzantine Reliable Broadcast (BRB) abstraction has been introduced by Bracha [START_REF] Bracha | Asynchronous byzantine agreement protocols[END_REF] as a building block for a Byzantine-tolerant consensus protocol in a distributed system where at most f processes are permanently arbitrary (Byzantine) faulty. Thanks to its ability to guarantee agreement among correct processes over the set of delivered messages, a BRB primitive has been used as a building block from several fault-tolerant solutions, and has been intensely investigated under several system and failure models, with the final aim of extending its power and optimizing different performance metrics. Imbs and Raynal [START_REF] Imbs | Trading off t-resilience for efficiency in asynchronous byzantine reliable broadcast[END_REF] proposed a protocol that improves latency (in terms of the number of rounds of message exchanges) compared to Bracha. Guerraoui et al. [START_REF] Guerraoui | Scalable byzantine reliable broadcast[END_REF] relaxed the BRB specification, allowing each property to be violated with a fixed and arbitrarily small probability. Backes and Cachin [START_REF] Backes | Reliable broadcast in a computational hybrid model with byzantine faults, crashes, and recoveries[END_REF] and Raynal [START_REF] Raynal | On the versatility of bracha's byzantine reliable broadcast algorithm[END_REF] discussed extensions of the BRB problem; the former assuming both Byzantine faulty processes and fail-stop failures, the latter distinguishing between two different kinds of Byzantine behaviors, i.e. those attempting to prevent the liveness and those attempting to prevent the safety of the BRB. Recently, Guerraoui et al. [START_REF] Guerraoui | Dynamic byzantine reliable broadcast[END_REF] and Li et al. [START_REF] Li | Dynamic byzantine broadcast in asynchronous message-passing systems[END_REF] extended BRB to distributed systems with dynamic membership: in any given view (i.e. set of participating processes, governed by the processes themselves), the set of Byzantine processes remains the same; however, two consecutive views allow for different sets of Byzantine processes. By contrast, our work considers a static system membership (i.e., a fixed set of processes participating in the protocol) but a dynamic failure model, where Byzantine processes may change (that is, recover, and get Byzantine again) during the same view. To the best of our knowledge, all existing BRB protocols that assumed arbitrary process failures, except the aforementioned works by Guerraoui et al. [START_REF] Guerraoui | Dynamic byzantine reliable broadcast[END_REF] and Li et al. [START_REF] Li | Dynamic byzantine broadcast in asynchronous message-passing systems[END_REF], considered a static failure model i.e., they assumed that the set of Byzantine processes does not change.

Mobile Byzantine Failure (MBF) models have been introduced to capture various types of faults, such as external attacks, virus infections, or even arbitrary behaviors caused by software bugs, using a single model encompassing detection and rejuvenation capabilities. In all these models, failures are abstracted by an omniscient adversary that can control up to f mobile Byzantine agents. Every agent is located in a process and makes it Byzantine faulty until the omniscient adversary decides to move it to another process. The main differences between existing MBF models are in the power of the omniscient adversary (i.e., when it can move the agents) and in the awareness that every process has about its failure state. Most MBF models considered round-based computations and can be classified according to Byzantine mobility constraints: under constrained mobility [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF] the adversary can move agents only when protocol messages are sent (similarly to how viruses would propagate), while under unconstrained mobility [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF][START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF] agents do not move with messages but rather during specific phases of the round. More in detail, Reischuk [START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF] considered malicious agents stationary for a given period; Ostrovsky and Yung [START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF] introduced the notion of mobile viruses and defined the adversary as an entity that can inject and distribute faults; finally, Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF], Banu et al. [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF], Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF], and Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF] considered that processes execute synchronous rounds and mobile agents can move from one process to another in a specific phase of the round, which subsequently affects each process's ability to adhere to the algorithm. As a result, the set of Byzantine faulty processes at any given moment is limited in size; however, its composition may change from one round to the next, and the impact of past compromises may linger if not properly addressed by the protocol. The aforementioned works [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF]] also differ due to the assumption about the knowledge that processes have about their previous infection. In the Garay model [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF], a process can detect its infection after the agent leaves it. Conversely, Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] investigated a model where processes cannot detect when agents leave. Finally, Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF] considered an intermediate setting where not faulty processes control the messages they send (in particular, they send the same message to all destinations, and they do not send spurious information). Bonomi et al. [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage: Extended abstract[END_REF][START_REF] Bonomi | Optimal storage under unsynchronized mobile byzantine faults[END_REF] decoupled algorithm rounds from Mobile Byzantine agent movement (round-free model). The problems analyzed under MBF models are Byzantine agreement [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF], approximate Byzantine agreement [START_REF] Tseng | An improved approximate consensus algorithm in the presence of mobile faults[END_REF][START_REF] Sakavalas | Delivery delay and mobile faults[END_REF][START_REF] Bonomi | Approximate agreement under mobile byzantine faults[END_REF], and Byzantine-tolerant registers [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage: Extended abstract[END_REF][START_REF] Bonomi | Tight selfstabilizing mobile byzantine-tolerant atomic register[END_REF][START_REF] Bonomi | Optimal storage under unsynchronized mobile byzantine faults[END_REF]. To the best of our knowledge, no efforts have been made to investigate the BRB problem in the presence of MBFs. All existing works that assume MBFs rely on some kind of best-effort communication subsystem (i.e., no guarantees exist when a process is controlled by a Mobile Byzantine agent), potential equivocations and omissions introduced by faulty processes are directly addressed by the main investigated primitive (e.g., consensus, register). The existence of a BRB primitive can simplify the definition of other mobile Byzantine fault-tolerant primitives, similar to the case of the static failure model [START_REF] Bracha | Asynchronous byzantine agreement protocols[END_REF].

System Model

We consider a distributed system composed of a set of n processes Π = {p 1 , p 2 . . . p n }, each associated with a unique identifier. Processes communicate through message passing. We assume that a process can communicate with any other process through a reliable, authenticated, pointto-point link abstraction [START_REF] Cachin | Introduction to Reliable and Secure Distributed Programming[END_REF]. This means that messages sent over such channels cannot be altered, dropped, or duplicated, and the identity of the sender cannot be forged. A reliable authenticated point-to-point link abstraction exposes two operations: (i) P2P.send(p rcv , m) which sends the message m to the receiver process p rcv , and (ii) P2P.deliver(p snd , m) which notifies the reception of the message m from a sender process p snd .

We measure the time according to a fictional global clock T (not accessible to processes) spanning over the set of natural numbers N. We refer to the starting time of the system as t 0 , the i-th time instant since the beginning of the execution as t i , and a period of time between time t b and t e as T b,e := [t b , t e) : t b , t e ∈ T; t b < t e .

Each process executes a distributed protocol P consisting of a set of local algorithms. Each algorithm in P is represented by a finite state automaton whose transitions correspond to computation and communication steps. A computation step denotes a computation executed locally by a given process, while a communication step denotes the sending or receiving of a message. Computation steps and communication steps are generally called events. Each process maintains a set of variables. This set and the current value of those variables denote the state of a process.

Definition 1 (Local Execution History).

A local execution history is an alternating sequence s 0 , e 0 , s 1 , e 1 , . . . of states and events of a process p i , such that state s j+1 results from state s j by executing event e j .

We assume that the local algorithms composing P are stored in a tamper-proof read-only memory.

Processes may fail and we assume that they are affected by Mobile Byzantine Failures (MBF). That is, we assume the existence of an omniscient adversary that controls up to f > 0 mobile Byzantine agents and that can "move" such agents from one set of processes to another. When the adversary places a Byzantine agent on a process p i , the agent takes control of p i , letting it behave arbitrarily. For example, p i may omit to send/receive messages, alter the content of messages, alter its process state regardless of its local algorithm, and execute arbitrary code. However, we assume that the mobile Byzantine agents cannot compromise the code stored in the tamper-proof memory. Thus, when the Byzantine agent leaves p i , p i resumes executing its local algorithm correctly (albeit from a possibly corrupted state). We assume that the adversary can move each mobile agent independently of the others. Still, any agent must remain on a process for a period of time lasting at least ∆ s ∈ Q + (rational positive numbers), i.e., once arrived, an agent compromises a node for at least ∆ s consecutive time units, and when ∆ s < 1 we have that an agent can move multiple times in the same time unit. As an example, if ∆ s = 2 we have that every mobile Byzantine agent must remain on the same process for at least 2 consecutive time units, while ∆ s = 1 2 means that the agent may move 1 ∆s = 2 times in a time unit and compromise 1 ∆s = 2 different processes in the same time unit. Let us note that, in the MBF model, no single process is guaranteed to remain correct forever and we may have processes that alternate between correct and incorrect behavior infinitely often. This fundamental difference from the classical static Byzantine failure model commands to redefine the notion of correct and faulty processes (i.e., the process failure states).

Definition 2 (Faulty process). A process p i is said to be faulty at time t k if it is controlled by a mobile Byzantine agent at time t k . By extension, if at each time between t b and t e , process p i is faulty, then p i is faulty during the period T b,e .

When a process p i is faulty, it may execute a protocol P = P, and its local state may be altered arbitrarily. We denote by B(t) the set of faulty processes at time t and by B(T b,e) the set of faulty processes during the whole period T b,e (i.e., B(T b,e) = i B(t i) for b ≤ i < e).

Definition 3 (Correct process).

A process p i is correct when it is not faulty, that is, p i is correct at time t k if it is not controlled by a Byzantine agent at time t k . Similarly, a process p i is correct in the period T b,e if it remains correct between times t b and t e .

Let us remark that when a process p i is correct, it executes P but potentially it may start its execution from a compromised state (due to a previous corruption performed by a mobile Byzantine agent). We denote by C(t k) the set of correct processes at time t k and by C(T b,e) the set of correct processes throughout the period T b,e (that is, C(T b,e) = i C(t i) for b ≤ i < e).

Note that, due to the mobility of Byzantine agents, every process may potentially alternate between correct and faulty states infinitely often. To this aim, we also introduce the notion of infinitely often correct processes: Definition 4 (∆ c -Infinitely often correct process). Let ∆ c ∈ N + . A process p i is ∆ c -infinitely often correct if, for every time t j , there exists a following period T b,e lasting at least ∆ c where p i is correct. Formally:

∀t j ∈ T, ∃t b , t e such that t b > t j , t e -t b ≥ ∆ c , p i ∈ C(T b,e).
Informally, the notion of ∆ c -infinitely often correct process captures the possibility that a process is not permanently faulty, but correct for at least ∆ c units of time after mobile Byzantine agents have left it. In the following, we will consider several alternative settings for our system model:

• system timing assumptions: we consider either a synchronous (SYNC) or an asynchronous (ASYNC) system. When considering a synchronous system, we assume that there is an upper bound on the time required to perform local computation on the processes and an upper bound on the time required by a message to be delivered via a P2P link, both of them known by all processes. In addition, we assume that the computation evolves in sequential synchronous rounds r 1 , r 2 , . . . , r j , Every round r j is divided into three phases: (i) send where processes transmit messages to their intended receivers, (ii) receive where processes collect messages sent during the send phase of the current round, and (iii) compute where processes process received messages, and prepare those that need to be sent in the following round. Contrarily, in an asynchronous setting, we are not assuming any upper bound, and the computation progresses as soon as an event is generated by a process.

• mobile Byzantine agent synchronization: we consider three different types of mobility with different degrees of synchronization between mobile Byzantine agents. In particular, we will consider movement that are either synchronized (S-MOB +), synchronous (S-MOB), or asynchronous (A-MOB) that abstract MBF models existing in the literature. In the A-MOB model, mobile Byzantine agents move independently and once the movement occurs, the agent remains at the destination node for at least ∆ s , with ∆ s unknown to the processes (see ITU model in [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage: Extended abstract[END_REF]). In the S-MOB model, mobile Byzantine agents move independently, and, also in this case, once the movement happens the agent remains on the destination node for at least ∆ s . Unlike the previous case, ∆ s is known to the processes (see the ITB model in [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage: Extended abstract[END_REF]). The S-MOB + model is a particular case of the S-MOB model specific for synchronous systems where the computation evolves in synchronous rounds. Indeed, in this case ∆ s is expressed in terms of round, and mobile Byzantine agents can move only between two consecutive rounds, i.e. after the computation phase of a round r i and before the send phase of round r i+11 (see Garay's MBF model [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF]). Let us stress that in the S-MOB + setting every process is either faulty or correct for an entire round. Therefore, for ease of presentation, we say that a process is faulty or correct in the round r k in the S-MOB + systems and extend the notation of C(t) and B(t) accordingly, that is, with C(r k) and B(r k), respectively, referring to the sets of correct and faulty processes in the round r k . Furthermore, we measure the time with the number of rounds.

• failure awareness: we assume that every process p i is either aware or unaware about a mobile Byzantine agent moving away from p i . We abstract this knowledge by introducing two different local oracles that reveal information to process p i . Specifically, we consider: basic failure awareness (O BFA) and full failure awareness (O FFA). In the O BFA case, a process p i knows when (i.e., in which time unit) a mobile agent moves away from p i ; in the O FFA case, a processes p i additionally know when the agent arrived to p i (i.e., p i know the entire period T b,e in which it was faulty).

More formally:

Definition 5 (Basic Failure Awareness Oracle O BFA). If a mobile Byzantine agent leaves from a process p i at time t j , then the failure awareness oracle O BFA generates a cured() event on p i at time t j+1 .

Observe that O BFA informs p i as soon as p i becomes free from mobile Byzantine agents, and thus allows p i to take corrective actions (e.g. to avoid spreading compromised information). However, O BFA does not provide any information about the length of the period p i was faulty.

Definition 6 (Full Failure Awareness Oracle O FFA). If a mobile Byzantine agent takes control of a process p i at time t j and leaves p i at time t k , then the full failure awareness oracle O FFA generates a cured() event on p i at time t k+1 , and returns the time label t j when invoking operation faulty at().

For the sake of notation, we refer to setting where no oracle is available as O NFA .

Let us remark that both O BFA and O FFA are local oracles, i.e., they provide information to the actual process where the events occurred; thus, a process p i is not aware of the failure state of any other process p j . Note that the assumptions considered in our system model are equivalent to or less constrained than those in other works dealing with mobile Byzantine agents [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF]. The only exceptions are the O FFA oracle and the notion of ∆ c -infinitely often correct process, which have not been considered before.

In the remainder of the paper, we will characterize the specific setting considered in terms of system timing assumptions, agent synchronization, and failure awareness by specifying a triple α, β, γ where α ∈ {SYNC, ASYNC}, β ∈ {A-MOB, S-MOB, S-MOB + } and γ ∈ {O BFA , O FFA , O NFA }. With slight abuse of notation, we will use " * " in a triple when the specific dimension is not relevant to prove our claims.

Mobile BRB and BBC Specification

Informally Byzantine Reliable Broadcast (BRB) [START_REF] Bracha | Asynchronous byzantine agreement protocols[END_REF][START_REF] Cachin | Introduction to Reliable and Secure Distributed Programming[END_REF] is a communication primitive that enables all processes of a distributed system to agree on the delivery of a single message disseminated by a pre-defined process called the source, while the Byzantine Broadcast Channel (BBC) [START_REF] Cachin | Introduction to Reliable and Secure Distributed Programming[END_REF] primitive extends BRB allowing all processes to disseminate an arbitrary number of messages so that all correct processes eventually deliver the same set of messages2 .

Let us note that in the original BRB and BBC specifications the source is either always correct or always faulty in a given execution. Conversely, in our settings, it is possible that the source of a message changes its failure state multiple times (even during a single broadcast instance) making the original specification no more suitable. Thus, we extend the BRB and BBC, by formalizing the Mobile Byzantine Reliable Broadcast (MBRB) and the Mobile Byzantine Broadcast Channel (MBBC) problems to capture challenges imposed by mobile Byzantine faults. We aim to specify two communication primitives accessible by every process and exposing the MBRB/MBBC.Broadcast(m) and MBRB/MBBC.Deliver(s,m) operations, where m is a message and s is a process identifier.

We say that a process p i "MBRB/MBBCbroadcasts a message m" when it executes MBRB/MBBC.Broadcast(m), and p i "MBRB/MBBC-delivers a message m from p s " when p i generates the MBRB/MBBC.Deliver(s, m) event. Similarly to other communication primitives, the MBRB/MBBC-broadcast operation is triggered to disseminate a message, while MBRB/MBBC-deliver notifies message deliveries. We associate two additional parameters to both primitives, ∆ b ∈ N + and ∆ c ∈ N + , characterizing the length of two periods (detailed in the specifications' properties). We use the character "*" in our specifications when the actual value of the reference parameter is irrelevant.

Informally, a MBRB(∆ b , ∆ c) communication primitive guarantees that, given a source process p s and a message m generated by p s while it is correct (for at least ∆ b time units), m is reliably delivered by any ∆ c -infinitely often correct process p j in a period where p j is correct. Similarly to BRB, this primitive is specified by considering an instance for every message generated by the identified source. More formally, a MBRB(∆ b , ∆ c) communication primitive must guarantee the following properties:

• (∆ b , ∆ c)-Validity: If there exists a period T i,j lasting at least ∆ b where a process p s is correct in T i,j and executes MBRB.Broadcast(m), then at least one ∆ c -infinitely often correct process p d eventually executes MBRB.Deliver(s,m) while correct. • Consistency: If some process is correct at time t k and executes MBRB.Deliver(s, m), and another process is correct at time t l and executes MBRB.Deliver(s, m), then m = m .

• ∆ c -Totality: If some process is correct at time t k and executes MBRB.Deliver(s, *), then every ∆ c -infinitely often correct process eventually executes MBRB.Deliver(s, *).

The MBBC communication primitive is the natural extension of the BBC and its specification extends the one of the MBRB. In particular, the MBBC primitive guarantees that multiple messages generated by a source process (while it is correct for at least ∆ b consecutive time units) will be eventually delivered by any process p j that is ∆ c -infinitely often correct in a period in which p j is correct. More formally, a MBBC(∆ b ,∆ c) communication primitive must guarantee the following properties: • ∆ c -Agreement: If some process is correct at time t k and executes MBRB.Deliver(s, m), then every ∆ c -infinitely often correct process eventually executes MBRB.Deliver(s, m).

• (∆ b , ∆ c)
Note that the specifications rule the MBRB/MBBC.Deliver(s, m) operations in times when processes are correct. Operations executed when a process is faulty cannot be controlled and thus are not relevant to the specification. Furthermore, note that when a process is controlled by a mobile Byzantine agent, it may execute arbitrary code and alter its local memory. Such a process has no information about what occurred when compromised (except the fact of being previously compromised in case an oracle is available). This makes the implementation of the presented communication primitives particularly challenging and will lead to proving several impossibility results that are specific to mobile Byzantine faults in the following sections.

Impossibility Results

This section presents several impossibility results for the MBRB and MBBC problems. In particular, Theorems 7 and 9 prove the impossibility of solving both MBRB and MBBC if the system is asynchronous, or if the agents' movements are asynchronous. Then, assuming a synchronous system and synchronized agents, Theorems 10 and 12 state the impossibility of solving MBRB with the strongest failure oracle we considered, O FFA , and the impossibility of solving MBBC with the weaker failure oracle, O BFA . These latter impossibilities arise from the fact that a correct process cannot infer other processes' failure state from their behavior. Thus, they cannot distinguish messages that must be delivered from those that can be safely dropped. Table 1 provides an overview of the impossibilities proved in this Section based on the specific considered settings.

Theorem 7. There exists no protocol P implementing the Mobile Byzantine Reliable Broadcast (resp.

Mobile Byzantine Broadcast Channel) in ASYNC, S-MOB, O FFA .

Proof. In order to prove our claim we first show that it is impossible for any protocol P solving MBRB to generate an execution satisfying both (∆ b , ∆ c)-Validity and ∆ c -Totality. Then we extend our arguments to prove the claim also for MBBC, where it is impossible to satisfy both (∆ b , ∆ c)-Validity and ∆ c -Agreement.

Let us consider a process p s that is correct at a certain time t bcast , that triggers MBRB.broadcast(m) at time t bcast , and that remains correct for a period ∆ src ≥ ∆ b after t bcast . If P exists, it needs to guarantee (∆ b , ∆ c)-Validity for the message m. As a consequence, if there exists a ∆ c -infinitely often correct process p dest , P must guarantee that eventually a MBRB.deliver(s, m) event is generated from p dest . To guarantee both (∆ b , ∆ c)-Validity and ∆ c -Totality p dest must be different from p s . It is therefore necessary that in P p src sends the message m through the reliable authenticated links at least once to allow a ∆ c -infinitely often correct process p dest to become aware of the message.

Let us remark that under the ASYNC timing assumptions, there not exists any upper bound on the time required to exchange a message over a P2P link. In particular, given a message m sent by a process p i to a process p j at a certain time t using a reliable authenticated perfect point-to-point link, we can only guarantee that m will be delivered to p j at some time t > t but it is not possible to estimate its latency d = t -t (i.e., the time needed to deliver m). As a consequence, it is easily to identify a scenario where a single mobile Byzantine agent moves n times in T t,t and corrupts in sequence every processes p i in the system right after the message is P2P-delivered on p i , discarding the message when received (mimic the loss of the message) and thus preventing a process p dest = p s from delivering m.

The reasoning can be extended considering many processes p i and for a MBBC instance with respect the properties (∆ b , ∆ c)-Validity and ∆ c -Agreement, and the claim follows.

Let us note that Theorem 7 holds assuming the most constrained agent's mobility model available in an asynchronous system (i.e., S-MOB) and the most powerful failure oracle (O FFA) considered. It follows that the MBRB and MBBC problems cannot be solved in ASYNC assuming a less constrained environment, as stated in the following Corollary. Proof. The proof follow from Theorem 7 by observing that the same misbehavior occurs both in the SYNC, A-MOB, O FFA and ASYNC, S-MOB, O FFA settings. Indeed, if the latency of the communication δ is bounded due to the SYNC model, it is always possible to find a value for ∆ s < 1 such that in every period T t,t+δ a single mobile Byzantine agent can compromise n different processes. Considering that in A-MOB processes do not know the value of ∆ s they cannot leverage on it in the protocol P. Proof. For the sake of contradiction, let us assume that such a protocol P exists. Let us consider the local execution history H s of a process p s that is correct for ∆ b ≥ 2 rounds and executes MBRB.Broadcast(m) in round r 1 . Subsequently, p s remains correct for the successive ∆ 1 rounds, it gets permanently faulty from round r ∆ b +∆1+1 (namely ∀r j ∈ [r ∆ b +∆1+1 , ∞), p s ∈ B(r j)), and it executes MBRB.Broadcast(m) in round r ∆ b +∆1+1 . We remark that the failure state of any process may change unexpectedly due to the movement of a Byzantine agent. Let us consider another local execution history H s of process p s where the failure state of p s evolves in the opposite way from H s , that is process p s is faulty in rounds r j ∈ [r 1 , r ∆ b +∆1] and executes MBRB.Broadcast(m) in round r 1 ; subsequently, p s is permanently correct from round r ∆ b +∆1+1 (namely ∀r j ∈ [r ∆ b +∆1+1 , ∞), p s ∈ C(r j)) and executes MBRB.Broadcast(m) in round r ∆ b +∆1+1 . Notice that in both histories p s executes the MBRB.Broadcast operation only once while correct. We provide a graphical representation of the two histories in Figure 1a. Let us consider a process p 1 = p s that is correct for the entire lifetime of the system (i.e. ∀r j , p 1 ∈ C(r j)), thus p 1 is also an ∆ c -infinitely often correct process for any value of ∆ c ∈ N. The two execution histories H s and H s are indistinguishable to p 1 because the same operations and events occurred on p s . Process p 1 is not aware of the failure state of p s (i.e. it has no access to the failure oracle on p s). Even defining an algorithm A that allows process p s to share the information

… … … Δ b Δ 1 H' s m' m'' … … … Δ b Δ 1 m' m'' H'' s X X X X X X X X X X X r 1 r 1
(a) Graphical representations for Theorem 10 obtained from O FFA with process p 1 through the point-to-point primitive, process p 1 cannot distinguish an execution of A where p s is correct and reveals a previous faulty state, from another where p s is faulty, and maliciously reports the same information.

… Δ 1 Δ 2 H' 1 m Ø … … Δ 1 Δ 2 H'' 1 Ø … CURED() CURED() X X X X X r Δ1 r Δ1 X X X X X X X (
According to the Validity property of the MBRB specification, process p 1 executing P must MBRB-deliver a message from p s considering both histories because process p s MBRB-broadcasts a message when correct. If P makes process p 1 eventually MBRB-deliver message m , then the Validity property is violated in H s , because process p 1 never MBRB-delivers m (according to the No-duplication property) that is broadcast when p s is correct. If P makes process p 1 eventually MBRB-deliver message m , then the Validity property is violated in H s for the same reason. This is a contradiction and the claim follows regardless of the value of ∆ b and ∆ c .

Theorem 10 states the impossibility in solving MBRB assuming the most constrained assumptions we considered. Corollary 11 extends the result to less constrained settings. Proof. For the sake of contradiction, let us assume that such a protocol P exists. Let us assume a permanently correct process p s (i.e. ∀r j , p s ∈ C(r j)) that

∀r i ∈ [r ∆1+∆2+1 , ∞), p 1 ∈ C(r i)).
Let us consider another local execution history H 1 of process p 1 that is faulty in rounds r j ∈ [r 1 , r ∆1+∆2] and it wipes its local state in round r ∆1+∆2 ; subsequently, p 1 gets permanently correct from round r ∆1+∆2+1 (namely ∀r j ∈ [r ∆1+∆2+1 , ∞), p 1 ∈ C(r j)). We provide a graphical representation in Figure 1b. In round r ∆1+∆2+1 , process p 1 has the same local state in both histories and the O BFA oracle generates the same cured() event on process p 1 . Process p 1 does not know what happened during the previous rounds. It is even defining an algorithm A that allows any process p i to share and retrieve the state and events occurred on the process through the point-to-point primitive: process p i can execute such a protocol either as correct or as faulty, and the two executions would be indistinguishable by any other process.

According to the Validity property of the MBBC specification, process p 1 executing P must MBBC-deliver message m from p s in both histories. In round r ∆1+∆2+1 process p 1 has the same local state on both histories, thus it can act in one only way, specifically it can command or not process p i to deliver message m from p s . In the positive case, the protocol violates the No duplication property in history H 1 , in the negative case the Validity property is violated by the protocol in H 1 . This leads to a contradiction and the claim follows regardless to the value of ∆ 1 ,∆ 2 , and ∆ c .

Discussion.

Contrarily to what we could expect, the MBRB and MBBC problems are impossible to solve in settings (e.g., SYNC, S-MOB + , O NFA/BFA) where the register abstraction and consensus problems are solvable [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage: Extended abstract[END_REF][START_REF] Bonomi | Tight selfstabilizing mobile byzantine-tolerant atomic register[END_REF][START_REF] Bonomi | Optimal storage under unsynchronized mobile byzantine faults[END_REF]. The intuition behind this is that other problems addressed under the MBF model have a semantics that do not require to execute a particular operation (the delivery of a message in our case) at most once and depending on a precedent failure state of the process. Indeed, both the register abstractions and consensus set constraints on a local value stored by the processes (respectively, the shared value and the decided value) but no primitive operation is associated with their update in their specification. Contrarily, MBRB and MBBC introduce constraints on the deliveries of messages that depend on the actual and previous failure states of the processes, generating thus symmetry conditions that are impossible to break without violating one of the properties characterizing the specification. In particular, the main challenge is to ensure that a single broadcast instance does not generate multiple deliveries to the same process while it is correct. Another counter-intuitive result is that considering a setting stronger than the one considered in related works (e.g., SYNC, S-MOB + , O FFA), the MBRB problem is impossible to solve while the MBBC one is possible (see Section 6). In the static Byzantine failure model (where every process is always either correct or faulty in a given execution), the channel specification extends the broadcast one allowing multiple broadcast from the same source. As a matter of fact, in the mobile Byzantine failure model such an extension is less constrained with respect to the broadcast: in MBRB, every process can execute only one broadcast operation for the entire lifetime of the system, whereas MBBC allows multiple broadcasts from the same source; if a process is faulty and executes a broadcast, then it is not allowed to execute a subsequent broadcast when correct in the future in the MBRB specification (No duplication property), while it is in MBBC. Finally, note that other primitives, such as consensus or register abstractions, are not useful in solving the MBRB/MBBC problems. Consider again the execution depicted in Figure 1a, correct process may agree or may store a set of delivered messages (according to the MBRB/MBBC specifications) but a single process (p s in the example), in the settings we characterized, cannot infer if it has already delivered or not a message if it was previously compromised. Specifically, we start by defining P M BBC-RB , a protocol implementing the MBBC(∆ b , ∆ c) communication primitive. Then, we prove its correctness and fault-tolerance optimality.

6.1 P M BBC-RB : Protocol Description P M BBC-RB is an extension of Bracha's algorithm [START_REF] Bracha | Asynchronous byzantine agreement protocols[END_REF] aimed to solve the MBBC problem. It inherits Bracha's diffusion mechanism: a payload message m is exchanged inside three protocol messages, SEND, ECHO, and READY. The former is initially sent by the source process to all peers, and the latter are subsequently diffused by all correct processes to all peers if certain conditions are met, namely certain quorums are reached. The pseudo-code of P M BBC-RB is shown in Algorithm 1. This solution overcomes the impossibility stated in Theorem 12 by leveraging on O F F A and by fixing the round index (i.e., the moment in time) where MBBC-deliveries must occur. Every protocol's message contains the information about a specific MBBC-broadcast instance, specifically the source process label s, the message (payload) m, and the round counter r b when the broadcast instance started. An MBBC-broadcast instance proceeds in four consecutive rounds in P M BBC-RB .

In the first round r b , the protocol's message SEND is computed by p s and enqueued to P2P-send to all processes in the subsequent round. Every process that P2P-receives a SEND message in round r b+1 from p s computes the ECHO protocol's message for s, r b , m and enqueues it to P2P-send to all peers. In round r b+2 , the processes that receive sufficiently many ECHO messages (more than (n + f)/2) for an MBBC-broadcast instance from distinct peers generate the related READY protocol's message to P2P-send to all processes. Finally, in round r b+3 , the processes that receive a sufficient number of READY messages (more than 2f) for an MBBC-broadcast instance from distinct peers MBBCdeliver the associated message m from p s . An additional protocol's message with respect to Bracha [START_REF] Bracha | Asynchronous byzantine agreement protocols[END_REF], i.e. ABORT, is exchanged in P M BBC-RB to guarantee the Agreement property in case of a faulty source. In P M BBC-RB , if a correct process p s executes MBBC.Broadcast(m) in round r b , then every process that is correct in round r b+3 triggers MBBC.Deliver(s,m) in the compute phase of that round; every process that is faulty in round r b+3 MBBC-delivers the message m from p s at the first round r k > r b+3 it is correct. We plug the fault-tolerant round counter defined by Bonnet at al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF] inside the P M BBC-RB protocol, enabling all correct processes to share the same value for the round index (that is assumed as an integer value). Its purpose is to fix the single round where the delivery of a certain message can take place. The round counter features are summarised in the following remark.

Remark 13 (Round counter correctness [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF]). In SYNC, S-MOB + , O BFA/FFA , if n > 3f then every correct process p i in round r j stores the same value for the round index (namely the variable rc in Algorithm 1) during compute phase.

We stress the fact that protocol's messages in P M BBC-RB (SEND, ECHO, READY, and ABORT) must be propagated in specific rounds with respect to the beginning of the MBBC-broadcast, in order to progress till the delivery of the associated message m.

For ease of better understanding, we give a detailed description of P M BBC-RB in Appendix C, and we illustrate some examples of its execution in Appendix B and within the proof of Lemma 14.

Algorithm 1 P M BBC-RB 1: procedure Init 2:

To send ← ∅, Sends ← ∅, cured ← False, rc ← 1

3:

Echos ← {}, Readys ← {}, Aborts ← {} map, s, r, m : set of process ids

4:

RC ← {} map, process id : round value 5: procedure Broadcast(m) 6:

be exchange by freed processes in round r j). This capability can partially be mitigated by the local failure detector O FFA : a process can discard all messages queued to be send right after the failure detector notifies the cured() event. It follows that, at the beginning of a round, at most f processes may not participate in the protocol and at most f may have a Byzantine behavior.

The following Lemmas and Theorem state the correctness of P M BBC-RB in solving the MBBC problem and its fault-tolerance optimality with respect to the number of tolerated mobile agents. Proof. For simplicity, we give the proof assuming the minimum values for ∆ b and ∆ c . The arguments extend to higher values.

(∆ b = 2 rounds, ∆ c = 1 round)-Validity: We prove that if we assume ∆ b = 2 rounds, ∆ c = 1 round, and a process p s is correct in round r b when it executes MBBC.Broadcast(m), then every process that is ∆ c -infinitely often correct eventually triggers MBBC.Deliver(s,m), that implies the (∆ b , ∆ c)-Validity property. The MBBC-delivery of a message m from a process p s may occur either because p s was correct in round r b and executed MBBC.Broadcast(m) or since p s was faulty at some round r d < r b and P2P-sent a SEND message with payload m. Let us assume that process p s has not P2P-sent yet the SEND message with payload m neither as correct or faulty before round r b , that it is correct in rounds r b and r b+1 (∆ b = 2) and executes the procedure Broadcast with parameter m in round r b . The SEND, s, r b , m message is then prepared (line 6) to be relayed to all other processes (lines 11-13). In round r b+1 , the SEND, s, r b , m message is P2P-sent by p s to all processes and it is received by all but f (the ones controlled by mobile agents); it follows that n -f processes executes lines 15-17 during the receive phase in round r b+1 and lines 27-29 in the compute phase, preparing the ECHO, s, r b , m message to P2P-send in round r b+2 . In round r b+2 , at least n -2f processes relay the message ECHO, s, r b , m (f process may be faulty in round r b+2 and f process may have been faulty in round r b+1) and it is received by n -f processes (again, the ones not controlled by mobile agents). These processes execute lines 15, 18 and 19 in the receive phase and lines 31 and 32 in the compute phase. In particular, the condition inside the if statement at line 31 is verified due to the assumption n > 5f , given that n -2f > (n + f)/2, and line 32 is executed preparing READY, s, r b , m message to P2P-send in round r b+3 . Finally, in round r b+3 , the same reasoning given for round r b+2 applies and n -f processes execute lines 39-41, given n -2f > 2f and Remark 13, and thus they trigger Deliver with parameters s and m. At every round r j > r b+3 the READY, s, r b , m message is P2Psent by all the correct processes not faulty in round r j-1 (that are at least n -f). The if statement at line 40 guarantees that every process that was faulty in round r b+3 delivers message m from p s at the first round r k > r b+3 it is correct. Finally, in case (i) process p s was faulty and P2P-sent the SEND message with payload m in round r k < r b , (ii) every ∆ c -infinitely correct process MBBC-delivered m from p s , and (iii) process p s is correct in round r b > r k and executes MBBC.Broadcast(m), then the claim still follows: the message m has been already MBBC-delivered (further details can be found in the Agreement property's proof).

No duplication: The second sub-condition of the if statement at line 40 guarantees that the entire if statement is verified only for the minimum r j among all the tuples s, * , m (i.e. the MBBC-delivery is independent from the r b parameter). The first sub-condition inside the if statement at line 40 is verified only once among all the rounds a mobile agent does not control the process. More in detail, if the cured variable is False, the condition is verified only in round r b+3 for the tuple s, r b , m . Otherwise, the if statement in line 40 is verified in round r k > r b+3 when a mobile agent, arrived on the process in round r j ≤ r b+3 , leaves the process, that occurs only once on a process during the entire lifetime of the system given Remark 13. The condition rc > r b+3 in line 40 is not required but simplifies this proof.

(∆ b = 2)-Integrity: For the sake of contradiction, let us assume that a process p i is correct in round r k and executes MBBC.Deliver(s,m), that process p s is correct in rounds r b and r b+1 (that is, ∆ b = 2), and that it does not execute MBBC.Broadcast(m) in round r b . Process p i MBBC-delivers m from p s either in round r k = r b+3 if p i is correct, or at the first round r k > r b+3 when p i is correct. In the former case, more than 2f processes sent message READY, s, r b , m in round r b+3 , therefore more than (n + f)/2 processes sent message ECHO, s, r b , m in round r b+2 , that implies that at least (n + f)/2 -f processes were correct in round r b+1 and received SEND, s, r b , m in round r b+1 from p s (lines [START_REF] Luís | Atomic broadcast in asynchronous crash-recovery distributed systems[END_REF][START_REF] Sabt | Trusted execution environment: What it is, and what it is not[END_REF]. No procedure in P M BBC-RB allows a correct process p s to P2P-send SEND, s, r b , m messages except Broadcast(m). It follows that the latter scenario occurred and process p i was faulty in round r b+3 . As a matter of fact, correct process p i P2P-received more than 2f READY, s, r b , m messages from distinct processes in round r k . For the same reasoning as in the former case, this implies that a correct process p s sent SEND, s, r b , m messages but no procedure except Broadcast(m) allows it. This leads to a contradiction and the claim follows.

(∆ c = 1)-Agreement: We proved, in the Validity proof, that this property is satisfied in the case of a correct source. Faulty processes cannot collude to make one of the if statements at lines 31, 33, 36 and 39 verified for a message m never sent over the P2P links of a process p s . More in detail, the attacker cannot attempt to make any correct process MBBC-deliver a message m from p s without compromising p s . We prove that if p s is faulty and P2P-sends SEND, s, r b , m messages in round r b , then either all ∆ c -infinitely correct processes delivers m from p s or no ∆ c -infinitely correct processes delivers m from p s . For the sake of contradiction, let us assume that all ∆ c -infinitely often correct processes but some, p 1 , p 2 , . . . , p i , MBBC-delivered a message m from p s . It follows that there is no round r j where more than 2f correct processes concurrently P2Psend READY, s, r b , m . This implies that the correct processes that delivered m are at most 2f . According to the protocol, such processes receive a quorum of ECHO messages and at most f ABORT messages about m, to generate the re-quired READY messages. More in detail, they received ECHO messages from at least 2f + 1 correct processes. At that point, the faulty processes decided which correct processes reached the quorum of ECHO messages. Nevertheless, each correct process that did not reach the quorum generated an ABORT message. It follows that at most f correct processes did not reach the quorum, whereas n -f -f processes were correct and generated the READY message, which was disseminated by at least n -3f of them in the subsequent round. Given that n > 5f , at least 2f + 1 correct processes concurrently disseminate a READY message and thus all correct processes in round r b+3 must MBBC-deliver it. This lead to a contradiction and the claim follows.

Lemma 15. The Mobile Byzantine Broadcast Channel problem (MBBC) is solvable in SYNC, S-MOB + , O FFA only if n > 5f .
Proof. The claim follows by extending the results proven by Backes and Cachin [START_REF] Backes | Reliable broadcast in a computational hybrid model with byzantine faults, crashes, and recoveries[END_REF] and by Raynal [START_REF] Raynal | Fault-Tolerant Message-Passing Distributed Systems -An Algorithmic Approach[END_REF]. The former states that the BRB problem can be solved in a static distributed system where at most t processes may fail-stop, and at most f processes are Byzantine, if and only if n > 3f + 2t. Similarly, Raynal proved that the BRB problem can be solved in a static distributed system, where t l processes may not send messages, and t s processes may send spurious messages (processes may exhibit both behaviors during the lifetime of the system), if and only if n > 2t l + t s .

Both scenarios can be simulated by an attacker in our system: the mobile agents can continuously alternate between two disjoint sets P 1 and P 2 of f processes, namely it can turn faulty all processes in P 1 in all rounds r j , j ∈ N, and all processes in P 2 in all rounds r j+1 , sending spurious messages from process in P 1 and no message from peers in P 2 . Therefore, all processes in P 1 send spurious messages (behaving like f Byzantine faulty processes), and all the processes in P 2 send no message (like f fail-stop faulty processes), and the claim follows. Proof. In the S-MOB + model, ∆ s is expressed as a (strictly positive) number of rounds. The claim follow from the fact that whatever number of rounds is specified by ∆ s , all the mobile agents can move in one of the three protocol phases when the SEND, ECHO, or READY messages are exchanged for a broadcast instance.

Furthermore, the actual value of ∆ s is irrelevant solving the MBBC problem in (SYNC, S-MOB + , O FFA): mobile agent are constrained to move only between two consecutive rounds and the P M BBC-RB protocol is correct assuming the minimum value for ∆ s in S-MOB + (that is, one round).

Note that MBBC and MBBR specifications do not allow processes to be terminate, namely to eventually stop propagating messages through the P2P primitive. Intuitively, processes need to continuously relay the messages in order to enforce ∆ c -Totality/Agreement and thus allow every temporarily faulty process to eventually deliver a broadcast message. Furthermore, as argued in Section 5, processes are not able to infer if a specific process has delivered a message, and thus conclude if all processes delivered a message when correct. Additional assumptions enabling termination can be considered, such as an upper-bound on the time a process becomes correct when faulty.

MBBC with multiple deliveries

The impossibilities identified in Section 5 arise for the general specification we defined. In fact, alternative or weaker specifications could be implementable under weaker assumptions. More in detail, we proved that no protocol can solve the MBBC in SYNC, S-MOB + , O BFA . We therefore investigate the possibility of a weaker primitive that can be realized when the stringent conditions identified in Theorem 16 are not satisfied.

We start by considering the case where no local failure detector is available, that is, the case of O NFA . The following Theorem show that a weaker MBBC primitive, where the No duplication property is not satisfied, is realizable in SYNC, S-MOB + , O NFA . The difference with respect the setting considered in Lemma 14 is that processes are not aware of being compromised. In particular, they may diffuse messages with P2P-links previously generated by mobile agents. As a matter of fact, the protocol is restored right after the mobile agent left the process.

The proof follows from the same reasoning stated in Lemma 14 except for No duplication considering f instead of f in Algorithm 1.

The following theorem show that having a slightly better oracle about failures, namely O BFA , permits to withstand more Byzantine agents, for the same weaker problem that does not guarantees no duplication. Proof. The O BFA failure oracle enables a correct process just freed from a mobile agent to take corrective actions, specifically to discard all messages queued to be sent in the current round. As a matter of fact, the O BFA oracle does not allow a process to know whether it was correct in a defined period in the past, therefore the same technicality employed in P M BBC-RB and detailed in Lemma 14 in the No duplication part cannot be adopted. The claim follows combining the argumentation provided in Theorem 12 and Lemma 14.

Abandoning the No duplication guarantee, the number of message delivered becomes unbounded: the following theorem shows that it is not possible to bound the number of duplicate messages that are delivered, even assuming an intermediate oracle, namely O BFA .

Theorem 20. Given a constant k ∈ N + , it is not possible to define a weaker Mobile Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property, in SYNC, S-MOB + , O BFA where a message m MBBC-Broadcast by a process p s is MBBC-Delivered by a process p i at most k time when correct.

Proof. The proof follows by extending the argument provided in Theorem 12. In the defined local execution histories H 1 and H 1 , it is not possible to define an MBBC primitive where both No duplication and Validity properties are satisfied for a message m MBBC-Broadcast by a process p s . As a matter of fact, if the No duplication has not to be satisfied, process p i can always deliver message m after the cured() event generated by O BFA .

Let us extend the execution history H 1 . At round r ∆1+∆2+1 process p i executes MBBC.Deliver(m). Subsequently, the pattern of H 1 repeats: process p i get faulty and subsequently correct. Process p i , again, is not able to know whether message m from p s has been previously MBBC-Delivered, thus it executes MBBC.Deliver(m) to satisfy the Validity property.

It follows that process p i MBBC-Deliver message m from p s every time that a mobile agent moves away from p i with the described procedure. Therefore, if the a mobile agent arrives and frees process p i k + 1 times after the MBBC-Broadcast, process p i MBBC-Deliver k + 1 times message m from p s . Alternatively, if process p i does not MBBC-Deliver m from p s when it get correct, it may not satisfy the Validity property, and the claim follows. Proof. It follows from the same argument provided for Theorem 20. Every time a process p i is freed by a mobile agent after a MBBC-Broadcast, the process has to decide whether to MBBC-Deliver or not a message m MBBC-Brodcast by a process p s . As a matter of fact, process p i does not known how many times it has been correct in the past, it is only aware that it has been freed by a mobile agent. It follows that if p i decide to not MBBC-Deliver once a message m from p s it may invalidates the Validity property and the claim follows.

Theorem 22. Suppose a solution to a weaker Mobile Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property, in SYNC, S-MOB + , O NFA . If a process p s MBBC-Broadcast a message m, then every process p i must MBBC-Deliver m from p s infinitely often.

Proof. A correct process p i at round r k is not aware of its failure state at all round r j , j ∈ N, j < k. It follows that, if p i does not MBBC-Deliver m from p s , then it may not satisfy the Validity property. The argument hold for every round r h , h ∈ N, h > k and the claim follows.

Conclusion

We provided a specification for the Byzantine Reliable Broadcast and Byzantine Broadcast Channel problems in distributed systems affected by mobile Byzantine faults. We identified some impossibilities; in particular, we showed that both speed constraints on the mobile agents and timing assumptions on the system evolution are required to solve the problems under investigation, and we proved that the Byzantine Reliable Broadcast cannot be solved even in one of the most constrained mobile Byzantine failure models presented so far. The Byzantine Broadcast Channel problem proved to be solvable, assuming a stronger local failure detector than the ones previously considered in the literature. Lastly, we investigated a weaker Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property, in settings equivalent to the ones assumed in related works. Our results characterise the solvability of a fundamental problem in a general dynamic process failure model, and open the path for research on additional important tasks. In particular, to understand the gap that exists between the theoretical model (assumed in this and in related work [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults (extended abstract)[END_REF][START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF][START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF]) and the practical world, investigating the feasibility of the oracles and defining solutions that are as practical as possible. Furthermore, it may be interesting to relax the assumptions of instantaneous fault detection and recovery (of the protocol), to investigate whether the assumption of digitally signed messages has an impact on the solvability of the considered problems, and to analyse the Mobile Byzantine Channel problem assuming the S-MOB agent mobility model (which we have left open for analysis and we conjecture its solvability).

• Integrity: If some correct process BBC-delivers a message m from p s and process p s is correct, then m was previously BBC-broadcast by p s .

• Agreement: If some correct process BBC-delivers a message m from p s then every correct process eventually delivers message m from p s .

Appendix B P M BBC-RB execution examples

We detail in this Section several execution examples for the P M BBC-RB protocol defined in Section 6. Given what claimed in Theorem 16, we assume that the correctness conditions for our protocol, i.e. a SYNC, S-MOB + , O FFA system and n > 5f , are satisfied in all of the provided examples. We detail one example where the source is correct and two in which the source is faulty. In the execution example in Figure 2, the correct source p 1 starts the MBBC-Broadcast preparing the related SEND message in round r 1 , that is P2P-sent to all processes in round r 2 (∆ b = 2). Process p 2 is faulty in round r 1 , then the mobile agent moves to process p 6 in round r 2 . All processes but f are correct in round r 2 , thus they receive the SEND message from p 1 and generate the related ECHO message. Such message is then P2P-sent to all peers by at least n -2f processes during the send phase in round r 3 (at most f processes could have been faulty in round r 2 , p 6 in our example, and at most f processes could become faulty in round r 3 , p 1 in our example where the mobile agent moves in round r 3). It follows that n -f processes reach the quorum of ECHO messages generating the related READY message. Again, at least n -2f processes are correct in round r 4 , P2P-send the READY message and deliver the associated payload from p 1 , m, during the compute phase of the same round. The processes that were faulty in round r 4 , p 2 in our example, deliver the message at the first round r k > r 4 they get correct, because all processes that are correct in a round r j > r 4 diffuse the associated READY message.

The only MBBC property that mobile agents may attempt to invalidate in a execution of P M BBC-RB is the Agreement property: the No duplication is guaranteed by the if statement at line 40 in Algorithm 1 and both Validity and Integrity consider a correct source. Any source must P2P-send a well-formed SEND message (i.e., with valid source id and round label) to make a correct process proceed in the protocol to deliver a payload m. If the SEND message is P2P-sent to all correct processes, then all ∆ c -infinitely often correct processes will eventually deliver m, as shown in the previous execution, satisfying the MBBC specification. It follows that a Byzantine source must not P2P-send the SEND message to some processes. This behavior has two possible outcomes in our protocol: either all correct processes MBBC-deliver the diffused message or no correct process does it. Let us assume that the mobile agent commands p 1 to P2P-send the SEND message to (n -f)/2 -f processes, in order to control which ones will proceed in the P M BBC-RB protocol generating the READY message in round r 4 . In the execution depicted in Figure 3, process p 1 is a faulty source that attempts to prevent the Agreement property of MBBC from being satisfied. Specifically, it P2P-sends the ECHO message only to part of the processes, process p 2 , p 3 , and p 4 , that reach the quorum required to generate the READY message. In this case, processes p 5 and p 6 generate the ABORT message but only f of them, namely p 5 , P2P-send it, thus blocking no correct process from proceeding in the MBBC-delivery of m from p 1 . Nonetheless, in this case more than 2f processes are correct and P2P-send the READY message in round r 4 . It follows that all ∆ c -infinitely often correct processes eventually deliver the associated payload m. Differently from the previous example, in the execution in Figure 4 process p 1 sends the ECHO message to processes p 2 and p 3 . It follows that all other correct processes, p 4 , p 5 , and p 6 , generate the ABORT message. At most f of them, process p 6 in the example, can be blocked from P2P-sending the ABORT message. It follows that more than f processes diffuse to all correct ones the ABORT message and thus no process delivers the associated payload m. It follows that the specification is not violated in such execution.

It starts by wiping the data structure that collects the message to subsequently P2P-send and by updating the round index by majority (the rc value may have been previously altered by an agent). Subsequently, if valid SEND message is received, then the related ECHO message is computed and enqueued to be P2P-send. For all the ECHO messages received, if a process has received the one associated with a specific MBBC instance from a sufficient number of distinct processes (a quorum), then the READY message is computed and enqueued, if such a number is not sufficient but includes at least a currently correct process, then the ABORT message is generated. If it is sure that the ABORT message associated with a MBBC instance has been sent by at least a correct process, then the received READY messages associated with the same instance are discarded in order to preserve the Agreement property. If a sufficient number of READY messages associated with a MBBC instance have been received and specific conditions are met, then the message is delivered. These conditions are met at most once for every process, namely three rounds after the MBBC-Broadcast beginning or at the first subsequent round when a process get correct, for the minimum round label (making it irrelevant to the primitive). Furthermore, if a sufficient amount of READY messages is received, then the same message is enqueued to P2P-send, in order to guarantee that processes that are faulty three rounds after the MBBC-broadcast will MBBC-deliver the associated payload when correct. Finally, the round index is increased and its value is enqueued to P2P-send.

Corollary 8 .Theorem 9 .

 89 There exists no protocol P implementing the Mobile Byzantine Reliable Broadcast (resp. Mobile Byzantine Broadcast Channel) in ASYNC, M, O , with M ∈ {A-MOB, S-MOB} and O ∈ {O FFA , O BFA }. Proof. The claim follows from the same argument provided as in Theorem 7, given that the ASYNC, S-MOB, O FFA setting is the strongest possible for the parameters M and O. There exists no protocol P implementing the Mobile Byzantine Reliable Broadcast (resp. Mobile Byzantine Broadcast Channel) in SYNC, A-MOB, O FFA .

Theorem 10 .

 10 If ∆ b ∈ N + and ∆ b ≥ 2 rounds, then there exists no protocol P implementing a Mobile Byzantine Reliable Broadcast primitive in SYNC, S-MOB + , O FFA .

 b) Graphical representations for Theorem 12.

Figure 1 :

 1 Figure 1: Graphical representations for Theorems' proof.

Corollary 11 .

 11 If ∆ b ∈ N + and ∆ b ≥ 2 rounds, then there exists no protocol P implementing a Mobile Byzantine Reliable Broadcast primitive in SYNC, S-MOB + , O BFA or in SYNC, S-MOB, * . Proof. The claim follows from the same argument provided in Theorem 10 give that the considered settings assume either a less constrained agent mobility model (S-MOB) or a failure oracle providing less knowledge (O BFA). Theorem 12. If ∆ b ∈ N + and ∆ b ≥ 2 rounds, then there exists no protocol P implementing a Mobile Byzantine Reliable Channel primitive in SYNC, S-MOB + , O BF A .

6 A

 6 Protocol for MBBC in SYNC, S-MOB + , O FFA Theorem 12 and Corollary 11 motivate the definition of a stronger local oracle than those considered in related work dealing with mobile Byzantine faults, O F F A : both MBRB and MBBC are impossible to solve in the (SYNC, S-MOB + , O NFA/BFA) settings. Theorem 10 states the impossibility in solving MBRB even in (SYNC, S-MOB + , O FFA). This Section investigates the remaining open problem-setting: the solvability of MBBC in (SYNC, S-MOB + , O FFA).

Lemma 14 .

 14 If ∆ b ≥ 2 rounds and ∆ c ≥ 1 round, then P M BBC-RB solves the Mobile Byzantine Broadcast Channel problem (MBBC) in SYNC, S-MOB + , O FFA if n > 5f .

Theorem 18 .

 18 A weaker Mobile Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property, is realizable in SYNC, S-MOB + , O NFA if ∆ b = 2 rounds, ∆ c = 1 round, and n > 6f . Proof. Let us consider the P M BBC-RB protocol defined in Algorithm 1. Let us ignore the lines that interacts with the local failure detector, namely 7, 8 and 40. Let us substitute all the occurrences of parameter f with f = 2f in Algorithm 1.

Theorem 19 .

 19 A weaker Mobile Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property, is realizable in SYNC, S-MOB + , O BFA if ∆ b = 2 rounds, ∆ c = 1 round, and n > 5f .

Corollary 21 .

 21 Suppose a solution to a weaker Mobile Byzantine Broadcast Channel primitive, not guaranteeing the No duplication property, in SYNC, S-MOB + , O BFA . If a process p i gets faulty and correct k times after the MBBC-Broadcast of a message m from p s , then p i MBBC-Delivers m from p s at least k times.

Figure 2 :

 2 Figure 2: An execution of P M BBC-RB with a correct source and f = 1.

Figure 3 :

 3 Figure 3: An execution of P M BBC-RB with a faulty source, f = 1 and all infinitely often correct processes delivering.

Figure 4 :

 4 Figure 4: An execution of P M BBC-RB with a faulty source, f = 1 and no infinitely often correct process delivering.

 -Validity: If there exists a period T i,j lasting at least ∆ b where a process p s is correct in T i,j and executes MBRB.Broadcast(m), then at least one ∆

c -infinitely often correct process p d eventually executes MBRB.Deliver(s,m) while correct. • No duplication: Every process p d executes MBBC.Deliver(s,m), with message m and source s, at most once when correct, namely, it MBBC-delivers a message m from p s at most once among all times t k such that p d ∈ C(T k,k+1). • ∆ b -Integrity: If a process p d is correct at time t k and executes MBRB.Deliver(s,m), then either p s was correct in T i,j = [t i , t i+∆ b), with t i ≤ t k , and executed MBRB.Broadcast(m) at time t i , or p s was faulty at some t i ≤ t k .

Table 1 :

 1 Summary of the solvability results.

		ASYNC	SYNC			ASYNC	SYNC
			O BFA	O FFA			O BFA	O FFA
	S-MOB +				S-MOB +	(* Sec 7)
		(Cor. 11) (Th. 10)			(Th. 12)	(Th. 16)
			O BFA	O FFA			O BFA	O FFA
	S-MOB				S-MOB	
		(Cor. 8) (Cor. 11) (Cor. 11)		(Cor. 8)	?
	A-MOB	(Cor. 8)	(Th. 9)	A-MOB	(Cor. 8)	(Th. 9)
		(a) MBRB				(b) MBBC

executes MBBC.Broadcast(m) in rounds r 1 . Let us consider the local execution history H 1 of a process p 1 that is correct in rounds r j ∈ [r 1 , r ∆1], ∆ 1 ∈ N, and executes MBBC.Deliver(m) in round r ∆1 ; subsequently, p 1 gets faulty for ∆ 2 consecutive rounds, ∆ 2 ∈ N, it wipes its local state (i.e. initialises all the process variables) in round r ∆1+∆2 , and it gets permanently correct from round r ∆1+∆2+1 (namely

 Theorem 16. The Mobile Byzantine Broadcast Channel problem (MBBC) is solvable in SYNC, S-MOB + , O FFA with O FFA if and only if n > 5f . Proof. It follows from Lemmas 14 and 15. The following Corollary extends the optimality of P M BBC-RB to the case of slower agents. In other words, even if the mobile agents are slower we are not able to tolerate more agents solving MBBC. Corollary 17. The Mobile Byzantine Broadcast Channel problem (MBBC) is solvable in SYNC, S-MOB + , O FFA if and only if n > 5f , for each ∆ s ≥ 1 round. Furthermore, the actual value of ∆ s can be unknown to the processes.

The agents' movements are thus synchronized with the synchronous rounds.

The formal specification of BRB and BBC primitives are provided in the Appendix A.

To send ← To send ∪ { SEND, s, rc, m } 7: upon OFFA.cured do 8:

cured ← True Send Phase 9: if cured then 10:

To send ← ∅ 11: for pk ∈ To send do 12:

for q ∈ Π do 13:

P2P.send(q, pk) Receive Phase 14: Sends ← ∅, Echos ← {}, Readys ← {}, Aborts ← {}, RC ← {} 15: upon P2P.deliver(q, Type, s, r b , m) do 16:

if s = q and Type = SEND then

17:

Sends ← Sends ∪ { s, r b , m }

18:

if Type = ECHO then 19:

20:

if Type = READY then 21:

22:

if Type = ABORT then 23:

24: upon P2P.deliver(q, ROUND, j) do 25:

26:

To send ← ∅, rc ← getMajority(RC.values) 27: for s, r b , m ∈ Sends do 28:

29:

To send ← To send ∪ { ECHO, s, r b , m } 30: for s, r b , m ∈ Echos do 31:

32:

To send ← To send ∪ { READY, s, r b , m } 33:

41:

Deliver(s,m)

42:

To send ← To send ∪ { READY, s, r b , m } 43: cured ← False, rc ← rc+1, To send ← To send ∪ { ROUND, rc }

Correctness Proofs

We remark that in S-MOB + mobile agents can move only between the compute and send phase of two consecutive rounds. This implies that ∆ s is assumed greater than or equal to one round. Such mobility model has the following effects to the agents' capabilities: at the beginning of a round r j , mobile agents can potentially control the messages that are diffused by 2f processes, the ones where the mobile agents are placed in r j and the others where they were in the previous round r j-1 (they can set in round r j-1 the messages that will

Appendix A The Byzantine Reliable Broadcast and Channel Problems Specification [START_REF] Bracha | Asynchronous byzantine agreement protocols[END_REF][START_REF] Cachin | Introduction to Reliable and Secure Distributed Programming[END_REF] The Byzantine Reliable Broadcast and the Byzantine Broadcast Channel problems aim at specifying a communication primitive, respectively BRB and BBC, exposing two operations, BRB/BBC-broadcast(m) and BRB/BBCdeliver(s, m), where m is a message and s is a process identifier.

The BRB primitive enables all correct processes of a distributed system to agree on a single message diffused by a (potentially faulty) particular process, the source. The BBC primitive extends BRB allowing all processes to diffuse an arbitrary number of messages so that all correct processes eventually deliver the same set of messages. We say that a process p i "BRB/BBC-broadcasts a message m" when it invokes BRB/BBC-broadcast(m), and p i "BRB/BBCdelivers a message m from p s " when it manage the BRB/BBC-deliver(s, m) event.

We remark that both BRB and BBC primitives assume a static process failure model where every process is permanently correct or faulty.

A.1 Byzantine Reliable Broadcast (BRB)

The BRB communication primitive guarantees the following properties:

• Validity: If a correct process p s BRB-broadcasts a message m, then every correct process eventually BRB-delivers m from p s .

• No duplication: Every correct process BRB-delivers at most one message from p s .

• Integrity: If some correct process BRB-delivers a message m from p s and process p s is correct, then m was previously BRB-broadcast by p s .

• Consistency: If some correct process BRB-delivers a message m from p s and another correct process BRB-delivers a message m from p s , then m = m .

• Totality: If some message is BRB-delivered by any correct process, every correct process eventually BRB-delivers a message.

A.2 Byzantine Broadcast Channel (BBC)

The BBC communication primitive guarantees the following properties:

• Validity: If a correct process p s BBC-broadcasts a message m, then every correct process eventually BBB-delivers m from p s .

• No duplication: No correct process BBC-delivers a message m from p s more than once.

Appendix C Additional details on P M BBC-RB (Algorithm 1)

We provide in this Appendix an additional detailed description of the P M BBC-RB protocol and its variables defined in Algorithm 1 for the sake of completeness.

• The Init procedure initializes all the data structures and variables employed by the protocol. More in detail, it defines:

1. The To send set variable to collect the messages (of any type) to P2P-send during the send phase of a round;

2. The Sends set to store the SEND messages received in a round;

3. The cured boolean variable to keep track of the occurrence of the O FFA .cured event;

4. The rc integer variable to store the current round index;

5. The Echos, Readys, and Aborts maps to collect, for every tuple s, m, r associated with single MBBC-instance, the identifier of the processes that P2P-send the ECHO, READY, and ABORT for such tuple respectively in the current round;

6. The RC map that associates, for every process, the value of the round index that it P2P-sends in the current round.

• The Broadcast procedure implements the Broadcast operation of MBBC by enqueueing the SEND message to P2P-send in set Sends.

• P M BBC-RB is partitioned in three parts accordingly with the three phases assumed in the system model.

• During the send phase of a round, all the messages that have been enqueued to P2P-send in the previous round, stored in To send, are discarded if the failure detector generated the Cured event in the current round, they are P2P-send to all processes otherwise.

• The receive phase of a round starts by wiping all maps data structures. The aim is to limit the capability of mobile agents to P2P-send spurious information only from f processes in every round. Subsequently, all protocol's messages that have been P2P-received in the current round, SEND, ECHO, READY, and ABORT, are partitioned in the dedicated data structures. The same occurs also for the messages exchanged to implement the fault-tolerant round counter: the P2P-received values are collected in the dedicated data structure.

• The compute phase analyzes all information received during the receive phase and proceeds in the computation, MBBC-delivering messages and computing the protocol's messages to P2P-send in the subsequent round.