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ABSTRACT

Genomic selection was deployed in Lacaune dairy 
breed in 2015. Lacaune population split in 1972 into 2 
breeding companies with associated flocks, and there 
have been very few exchanges of animals between the 
subpopulations, leading to divergence of the 2 sub-
populations. In spite of that, there is a joint genomic 
prediction. The objective of this study is to understand 
how this structuring affects prediction accuracy. We 
analyzed all the data available from Lacaune breeding 
program for milk yield: around 6 million phenotypes, 2 
million animals in the pedigree and more than 29,000 
genotyped animals, including 3,434 and 2,868 AI rams 
for each company. To consider missing pedigree, we set 
up genetic groups using the theory of metafounders. 
First, we studied the pedigree and genomic structures 
of the 2 subpopulations calculating Fst, evolution of 
average pedigree relationships across time and princi-
pal components analysis of genomic relationships. In a 
second part, we compared the reliability between dif-
ferent scenarios: an evaluation with a single reference 
population (Alone), an evaluation with a joint refer-
ence population (Together) and an evaluation of one 
subpopulation based on the reference population of the 
other group (Indirect). The low Fst value (0.02) reveals 
that the 2 subpopulations are still genetically close. 
Nevertheless, a low and constant average relationship 
between the animals of the 2 subpopulations confirms 
the absence of recent connections between them. We 
can see with principal component analysis results that 
even if they are close, they diverge over time. Finally, 
we observe small gains in accuracy of Together versus 
Alone, in spite of whereas doubling the reference popu-
lation size in Together. These gains vary across years 
and subpopulations: less than 0.08 (0.46 to 0.54; ratio 

of accuracy for the partial and whole evaluations—
corresponding to the greatest change in this ratio for 
breeding company 1, observed for the cohort 2016) for 
one subpopulation and between 0.03 (0.55 to 0.58) and 
0.17 (0.48 to 0.65) for the other. To conclude, the 2 
subpopulations remain close enough genetically so that 
their combined evaluation is advantageous, even if only 
slightly.
Key words: genomic prediction, accuracy, population 
structure, reference population

INTRODUCTION

Genomic evaluation aims at predicting the genetic 
value of an individual from phenotypic data, pedigree, 
and genotypes at SNP markers. These genomic predic-
tions are used in animal breeding to classify the animals 
and manage matings to create genetic gain, under the 
concept of genomic selection.

Genomic selection in French Lacaune dairy sheep 
started in 2015. Each year, 250 young AI rams are 
selected among ~2,000 genotyped prospective rams, 
based on their genomic EBV (GEBV) and used to 
inseminate females. Compared with pedigree-based 
selection, the increase in genetic gains from genomic 
selection has been estimated to be 57% (Astruc et 
al., 2022). The accuracy of milk yield (MY) breed-
ing values of young genotyped rams (AI candidates) 
increased from 0.32 to 0.47 (i.e., a relative increase 
of 47%), when transitioned from pedigree-based to 
genomic-based selection (Baloche et al., 2014; Macedo 
et al., 2022). However, this genomic accuracy is lower 
than the genomic accuracy observed in some large 
dairy cattle breeds as Holstein (VanRaden et al., 2009), 
which indicates (perhaps, as Holstein and Lacaune are 
very different populations in numbers and structure) 
room for improvement. Improving the GEBV accuracy 
would result in an increase in the genetic gain provided 
by genomic selection.

Several factors have already been identified as in-
fluencing the reliability of the genomic prediction: the 
trait architecture [heritability of the trait, number and 
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minor allele frequency of the QTL (Daetwyler et al., 
2008), linkage disequilibrium between SNP markers 
and QTL (Habier et al., 2007), effective population 
size (Goddard, 2009), marker density, minor allele 
frequency for markers, number of independent chromo-
some segments]. In addition, the properties of the refer-
ence population, and in particular its size, influence 
the GEBV accuracy. It has been demonstrated that 
the GEBV accuracy is dependent on the number of 
phenotyped individuals (Liu et al., 2011). The relation-
ships of animals within the reference population and 
the relationships between candidates to selection and 
training population also influence the GEBV accuracy. 
It has been shown that the accuracy decreases when 
the average relationship within the reference population 
increases (Pszczola et al., 2012). However, the more the 
selection candidates are related to the animals of the 
reference population, the more accurate their GEBV 
are (Habier et al., 2013).

Questions arise regarding the set up and the opti-
mization of the reference populations. Some studies 
have focused on the interest of setting up exchanges 
between populations to increase the reference popula-
tion size. They have shown that combining genetically 
close populations (same breed or related breeds) in the 
reference population increases the reliability (Brøndum 
et al., 2011; Lund et al., 2011) and the gain in ac-
curacy increases with the relationship between popula-
tions (Zhou et al., 2014). However, other studies have 
shown no improvement in accuracy of the evaluation by 
combining multiple populations (Legarra et al., 2014). 
Combining data from distant populations, for example 
including crossbred animals, may even have a negative 
effect on accuracy (Moghaddar et al., 2014).

In French Lacaune dairy sheep, the breeding program 
is organized into 2 tiers: a number (roughly 450) of 
breeding flocks that create genetic progress (nucleus 
flocks) through performance recording and selection, 
and a larger number (roughly 1,500) of commercial 
flocks that only receive genetic material (mostly semen) 
from the nucleus flocks, but do not contribute genetic 
material to them. In turn, in 1972, nucleus flocks split 
into 2 nuclei, each managed by a breeding company 
(BC). The 2 BC are Confederation and Ovitest; their 
names are anonymized in the following. In fact, each 
BC manages its AI center, which collects rams from 
nucleus flocks and redistributes semen to “their” nucle-
us flocks and commercial flocks. Assignation of nucleus 
flocks to either of the BC is rigid. Thus, for the last 
decades, nucleus flocks have been contributing rams 
to a single BC and receiving semen from a single BC. 
Since this date, there were very few genetical exchanges 
between the 2 nuclei, although all animals benefit from 
a common genetic evaluation with a single reference 

population. In the following, we will use the wording 
“subpopulation” to indicate the set of animals belong-
ing to nucleus flocks attached to a given BC.

Therefore, the 2 subpopulations, one per BC, have 
diverged over time, but the extent of this divergence 
and its effects on genomic predictions are not known. 
The objectives of our study are therefore (1) to assess 
the genetic and genomic structure of the Lacaune popu-
lation based on pedigree and genomic data and (2) to 
study the accuracy and bias of GEBV according to dif-
ferent reference population compositions including one, 
the other, or both breeding subpopulations, focusing on 
the trait MY. Previous studies by Baloche et al. (2014) 
and Macedo et al. (2022) did not address these points.

MATERIALS AND METHODS

Records, Pedigree, and Genotypes

Milk recording was performed by the breeding scheme 
according to the International Committee for Animal 
Recording Rules.

We studied all the data available in Lacaune dairy 
sheep until 2021 for MY. Regular performance record-
ing for MY started in 1978 with pedigree recording 
starting in the 1960s. The number of animals in pedi-
gree, the number of records, the number of animals with 
records, and the percentage of animals with unknown 
parents are summarized in Table 1 considering each or 
both subpopulations. Considering both subpopulations, 
there are 1,974,901 animals in the pedigree with ~11% 
missing pedigree and around 1 million animals for each 
subpopulation. Note that there is overlap of pedigrees of 
each subpopulation, because of the common ancestors 
before the time of split which explains that the number 
of animals in the pedigree considering both subpopula-
tions is less than the sum of the animals in pedigree 
for each subpopulation. The number of animals with 
records was 1,782,445 with 6,010,370 phenotypes for 
the complete data set and, again, is roughly split into 2 
halves, one per subpopulation.

To account for the missing pedigree, we used the the-
ory of metafounders (Legarra et al., 2015), which can 
be seen as a generalization of unknown-parent groups. 
The missing parents were assigned to metafounders 
according to the year of birth of the animal whose par-
ent is unknown. At the beginning (beginning of the 
pedigree recording, before 1978) many animals have 
both parents unknown, but later (after 1978) pedigree 
recording was consolidated and most animals have only 
the sire unknown. The same metafounder was assigned 
to all unknown parents of animals born before 1978, 
moreover because performance recording for MY start-
ed in 1978. Then, from 1978 to 2018, the metafounders 
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changed every 2 yr. Finally, the last metafounder was 
assigned to the unknown parents of animals born af-
ter 2018. According to the scenario, the attribution of 
metafounders was separated per subpopulation, except 
for the pre-1978 metafounder, which was the same.

This study examined 29,138 genotyped (50K Illu-
mina chip OvineSNP50) animals including 6,302 AI 
males with offspring (3,434 for BC1 and 2,868 for BC2) 
born from 1996 to 2019, whereas the remaining 22,836 
genotyped individuals were 18,541 genotyped but not 
selected young males (thus with no progeny) and 4,295 
females (mostly genotyped in research projects). We 
included only autosomal SNPs. The quality control 
criteria applied included keeping animals and markers 
with call-rate higher than 0.90, minor allele frequency 
higher than 0.05, removal of Mendelian conflicts, and 
removal of loci with deviation higher than 15% from 
Hardy-Weinberg equilibrium. We obtained 37,312 effec-
tive SNPs after quality control.

Population Structure and Genetic Diversity

To infer the degree of divergence of the 2 subpopula-
tions over time, we estimated different statistics based 
on pedigree and genomic analysis. The pedigree-based 
statistic that we computed was the change of average 
pedigree relationship across time cohorts (defined every 
4 yr), within and between subpopulations.

The genomics-based statistics we computed were, 
first, the Hudson’s fixation index Fst (Hudson et al., 
1992), which measures divergence of 2 populations b 

and b′ based on allele frequencies pi across n loci. We 
used the 2 estimators: the average of ratios and the 
ratio of averages (Bhatia et al., 2013), such as 
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 A further genomic 

analysis was by principal component analysis (PCA) 
of the genomic relationship matrix.

Scenarios

The 2 subpopulations (1 and 2) were studied together 
or separately according to 6 scenarios. The information 
considered for each scenario is summarized in Table 2. 
The same genomic prediction model was applied for 
each of these scenarios. In scenarios Alone1 and Alone2, 
only the pedigree, phenotypes, and the reference popu-
lation of the subpopulation 1 or 2, respectively, was 
included in the statistic model.

In the scenarios TogetherSameMF, information of 
both subpopulations was included, and the attribu-
tion of the metafounders did not depend on the sub-
population but only on the year of birth. A total of 22 
metafounders were used in this scenario. The Togeth-
erDifferentMF is a similar scenario, but we assigned 
different metafounders according to the subpopulation 
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Table 1. Number of animals in pedigree, number of records, and animals in records

Population1
Animals in  
the pedigree

Animals with  
unknown parent(s) (%) No. of records

Animals  
with records

BC1 1,087,161 11.5 2,968,758 908,116
BC2 1,060,862 13.5 3,041,612 874,329
BC1+2 1,974,901 10.8 6,010,370 1,782,445
1BC = breeding company associated with each subpopulation.

Table 2. Pedigree, phenotypes, genotypes, and criteria for the allocation of metafounders (MF) and number of AI males in the pedigree for 
each scenario1

Scenario
Pedigree of 

subpopulation
Phenotypes of 
subpopulation

Genotypes of 
subpopulation

 
MF attribution (n)

Size of reference 
population2

Alone1 1 1 1 YOB (22) 3,434
Alone2 2 2 2 YOB (22) 2,868
TogetherSameMF 1+2 1+2 1+2 YOB (22) 6,302
TogetherDifferentMF 1+2 1+2 1+2 YOB + subpopulation (43) 6,302
Indirect1 2 2 2 for ssGBLUP and 1 

for indirect prediction
YOB (22) 2,868

Indirect2 1 1 1 for ssGBLUP and 2 
for indirect prediction

YOB (22) 3,434

1YOB = year of birth; ssGBLUP = single-step genomic BLUP. 
2Size of reference population = number of genotyped AI males with offspring.
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after 1978, resulting in a total of 43 metafounders. The 
same metafounder was assigned for the 2 subpopula-
tions before 1978 because we considered that, even if 
the 2 subpopulations were created in 1972, there is no 
real differentiation for a few years.

In the scenario Indirect1, we back-solved SNPs ef-
fects from model used in Alone2 (“only subpopulation 2 
information”) and then we computed the direct genom-
ic value of animals of subpopulation 1. The scenario 
Indirect2 was the reverse of Indirect1 (use of “only sub-
population 1 information” to predict “subpopulation 2 
direct genomic values”).

Model

For all the genetic evaluations the following linear 
model was fitted:

 y = Xβ + Wuu + Wpp + e, 

where y is the vector of records for MY (on average 160 
DIM), β is the vector of fixed effects, u ~ N 0 H, σu

2( ) is 
the vector of animal breeding values, p ~ N 0 Ip, σp

2( ) is 
the vector of permanent environmental effects, and e ~ 
N 0 Ie, σe

2( ) is the vector of residuals, where σu
2, σp

2, and 

σe
2 are the genetic, permanent environmental, and re-

sidual variances, respectively. We estimated these vari-
ances at 133,334, 88,889, and 222,223, respectively. 
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based on genomic and pedigree information with A Γ( ) 
including metafounders and genomic relationships ob-

tained as G MM05
2
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', where m is the number of 

markers and M contains {−1,0,1} for the 3 different 
genotypes. The variance component σu

2  was scaled as in 
Legarra et al. (2015). Ip is the identity matrix of order 
equal to the number of animals with records and Ie is 
the identity matrix of order equal to the number of re-
cords. X, Wu, and Wp are the incidence matrices for 
fixed effects, breeding values, and permanent environ-
mental effects, respectively. The fixed effects were the 
interactions of herd × year × parity, age-parity × year 
× parity, month-parity × year × parity, and interval 
parity-first recording × year × parity.

Using this model, we realized single-step genomic 
BLUP evaluations for all the scenarios described using 
the software blup90iod2. We used, postGSf90 to com-
pute SNP effects and then predf90 to compute direct 
genomic values of the scenarios Indirect (Tsuruta et al., 
2001; Aguilar et al., 2010). We used the Γ matrix con-

taining the relationship between metafounders (Legarra 
et al., 2015) in a similar manner (but with some differ-
ences) to the “Trend” method in Macedo et al. (2022), 
as follows. For a closed population, with an assumed 
linear trend of increasing inbreeding we hypothesize the 
following form for Γ (Sorensen and Kennedy, 1983):
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To consider 2 populations drifting from a common base, 
we considered the following structure:
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This matrix has size (1 + n1 + n2), with 1 for the 
population between split, and subsequent n1 (n2) 2-yr 
interval metafounders within subpopulation 1 (2). In 
this case n1 = n2. This structure considers that the 
relationship between the 2 subpopulations (in the block 
n1, n2) is identical to the relationship before split 
(block 1,1), and differential increases of relationships 
within blocks (n1,n1) and (n2,n2).

Using the GLS method of Garcia-Baccino et al. 
(2017) we estimated the first value Γ0 of the matrix Γ 
corresponding to the metafounder assigned before year 
of birth 1978. This value is estimated with accuracy 
because the pedigree of rams is very complete. Next, we 
computed the increase of inbreeding per year as a re-
gression of inbreeding on year of birth, either within the 
whole breed or per subpopulation. Finally, we obtained 
∆F γ( ), that is, the increase of inbreeding from one meta-
founder to the next, as ∆F Fγ( ) = −( )∆ Γ1 20 /  (Legarra 
et al., 2015), again, within subpopulation or across the 
whole breed. The value of ΔF was estimated as the 
regression of individual pedigree-based inbreeding coef-
ficients on year of birth.

Depending on whether we considered Lacaune as a 
single population or as 2 populations, we obtained 4 Γ 
matrices:
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• A matrix calculated based on the animals of BC1 
(dimensions 22 × 22).

• A matrix for the animals of BC2 (dimensions 22 
× 22).

• A matrix (dimensions 22 × 22) for the case of 
metafounders were assigned independently of the 
BC as in TogetherSameMF.

• A matrix combining the information calculated 
for each subpopulation (dimensions 43 × 43). This 
matrix was used in scenario TogetherDifferentMF 
where the animals of both subpopulations were 
considered and metafounders varied according to 
the subpopulation.

Validation

The scenarios were compared using the linear regres-
sion method (Legarra and Reverter, 2018). This method 
focuses on a particular group of individuals called focal 
individuals. Focal individuals correspond to genotyped 
individuals of interest, for whom we want to calculate 
the predictivity of genomic predictions (i.e. their evalu-
ation when they were candidates for selection for the 
first time and when they did not have phenotypes or 
offspring) by comparison with predictions after they 
have been evaluated based on progeny records. In our 
case, these individuals correspond to the rams selected 
each year for AI and that have offspring with pheno-
types. Groups constituted of focal individuals were se-
lected according to their year of birth; for inclusion, 
rams must be genotyped and have at least 10 daughters 
with performances in the whole data set. For all the 
studied cohorts, the number of focal individuals (AI 
rams, in our case) was between 142 and 151 for BC1 
and between 96 and 127 for BC2. For these groups of 
animals, we compared 2 values: the GEBV calculated 
with the “whole” data (i.e., the daughter’s performanc-
es; GEBVw) available at the end of the studied period 
that is in 2021 ˆ ;uw( )  and GEBV calculated with “par-
tial” data (GEBVp), that is by eliminating phenotypes 
recorded after the year of birth of the Focal Individuals 
ˆ .up( )  This “partial” evaluation mimics the genetic evalu-

ation done when focal individuals were candidates to 
selection for the first time. We considered 5 groups of 
focal individuals, from 2015 to 2019.

For each scenario we compared the partial value ûp to 
a reference value (the benchmark), that was the value 
ûw  for TogetherDifferentMF scenario, which we con-
sider to be the most accurate scenario. This comparison 
was made using 3 estimators: bias, dispersion, and ratio 
of accuracies (Legarra and Reverter, 2018). The bias 
was estimated by the difference of GEBV means be-
tween partial and whole evaluations: ˆ ˆ ˆ .∆p p wu u= ( )−( )  

We expect a value close to 0 for this estimator. The 
dispersion was studied using the slope of regression of 

“whole” on “partial” GEBV: ˆ
ˆ ˆ

ˆ

,
.b

Cov u u

Var up
w

p

p=
( )
( )

 This es-

timator is supposed to be close to 1. Finally, the esti-

mator for ratio of accuracies 
acc
acc

p

w
 was the correlation 

between partial and whole values: 
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RESULTS

Genetic Diversity and Population Structure

We obtained very close values for the 2 Fst estima-
tors, respectively 0.024 and 0.023 for the ratio of aver-
ages and the average of ratios. These low values reveal 
that the 2 Lacaune subpopulations are genetically close 
to each other. The results of the principal component 
analysis (Figure 1) show 2 distinct groups correspond-
ing to the 2 BC, which confirm very low genetical 
exchanges between them. The percentage of variance 
explained is 35.6% for the first component (which 
clearly separates a few very old individuals from the 
rest) and 1.6% for the second component (which may 
be attributed to across-breed separation). When the old 
individuals were removed (not shown) the percentage of 
variance explained did not change. This small value of 
1.6% implies that most variation is within subpopu-
lation, not across-subpopulations (as also shown by 
the Fst coefficient), and thus the 2 subpopulations are 
indeed very similar. In addition, and even if the sub-
populations are not very distant from each other, they 
seem to diverge over time, as we can see, for the second 
principal component, the oldest animals (darkest blue) 
in the middle of the graph and the youngest (lightest 
blue) toward the extreme. Some young individuals are 
located between the 2 clouds. We do not have a clear 
explanation for this, but to the best of our knowledge, 
it is neither DNA sample mislabeling nor genetic ex-
change. A possible hypothesis (very hard to verify) is 
that because both populations are selected toward the 
same objectives, moreover in a genomic manner, there 
is de facto convergence in their genetic background.

Average Pedigree Relationship

Figure 2 represents the average pedigree relationship 
according to the BC and the year of birth (by groups 
of 4 yr) for all the AI males (genotyped or not). The 
bottom left-hand and upper right-hand parts of the 
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graph contains average relationships, respectively for 
subpopulations 1 and 2. The 2 other parts show the 
relationship between the subpopulations. We observe a 
progressive increase of the relationship within the sub-
populations over time from 0.0116 to 0.0714 (0.15% per 
year) for the subpopulation 1 and from 0.035 to 0.0651 
(0.15% per year) for the subpopulation 2. On the other 
parts of the graph, we see a constant relationship, close 
to the initial value for the animals born before 1978. 
This result confirms the disconnection between the 
subpopulations since their creation. We obtain similar 
results for the females (not shown).

Estimates of Metafounder Relationships

The ancestral metafounder relationship Γ0 obtained 
was 0.4638. This is not in the usual scale which assumes 

pedigree founders as unrelated; this is the average rela-
tionship relative to a (nonexisting) conceptual popula-
tion with all markers at p = 0.5 (i.e., of maximum 
heterozygosity). For instance, if the genetic variation in 
the conceptual population with maximum heterozygos-
ity would be 100, the genetic variation in the founders 

of Lacaune is 100 1
2

76 810−








 =

Γ
. . This value was used 

for all the scenarios since we assume that the subpopu-
lations were not yet disconnected before 1978. The av-
erage increase of inbreeding from one metafounder to 
the next in the metafounder scale, applying 

∆
Γ

F Fγ( ) = −








∆ 1
2
0 ,  ΔF(γ) were, respectively, 0.00185, 

0.00145, and 0.00085 for subpopulation 1 (1), subpopu-
lation 2 (2), and the animals of both subpopulations 
considered together. Finally, the matrix used in the 
scenario TogetherDifferentMF was a combination of 
the matrices (1) and (2). These values are shown in the 
Supplemental Material (Wicki et al., 2023; https: / / 
data .mendeley .com/ datasets/ smx65dvkgp/ draft ?a = 
df6774bd -5129 -4f76 -bca7 -a337ce5012da). Note that the 
diagonals of the Metafounders relationships contain 

functions of homozygosity, e.g., 
Γ0
4

0 5 2= −.  pq  (Garcia-

Baccino et al., 2017), in which 0.5 is the maximum 
possible heterozygosity (all alleles are at p = 0.05) and 
2pq is the average heterozygosity of the founders of 
Lacaune. Thus, we do not expect diagonals of Γ to be 
1.

Bias and Accuracy When Transitioning from Single 
to Combined Evaluation

Table 3 shows the bias ∆̂p of early (at selection time) 
predictions ûp (GEBVp), expressed in genetic standard 
deviations, according to the scenarios. We did not ob-
tain the expected value of 0, but this bias is small and 
corresponds to 1 to 2 yr of genetic progress. Bias ap-
pears to be higher in the scenarios with combined 
evaluation of the 2 subpopulations (TogetherSameMF 
and TogetherDifferentMF) than in the Alone scenarios. 
It also seems that Alone1 is less biased than Alone2. 
For the scenario Indirect, and in the particular case of 
metafounders, the software predf90 does not correctly 
include the shift (a constant identical for all animals) 
between pedigree and genomic relationships; this is a 
current limitation of the software. Thus, indirect pre-
dictions are shifted by an unknown constant compared 
with the Alone and Together evaluations, that is why 
we cannot estimate bias for Indirect scenarios.

The estimators of dispersion b̂p (the slope of the re-
gression of GEBVw in TogetherDifferentMF on GEB-
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Figure 1. Principal component analysis for the 2 Lacaune sub-
populations. YOB = year of birth; BC = breeding company associated 
with the subpopulation; PC = principal component.

https://data.mendeley.com/datasets/smx65dvkgp/draft?a=df6774bd-5129-4f76-bca7-a337ce5012da
https://data.mendeley.com/datasets/smx65dvkgp/draft?a=df6774bd-5129-4f76-bca7-a337ce5012da
https://data.mendeley.com/datasets/smx65dvkgp/draft?a=df6774bd-5129-4f76-bca7-a337ce5012da
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Vp), are presented in Table 4. This value is expected to 
be close to 1. We observe in most scenarios and for the 
different focal individuals slopes lower than 1 so an 
overdispersion. The slopes are closer to 1 for the 2 sce-
narios with records from both BC (TogetherSameMF 
and TogetherDifferentMF). We also observe very simi-
lar slopes between these 2 scenarios. Therefore, the 
modeling of metafounders according to the BC has no 
influence on the dispersion. Also, both “Together” sce-
narios slightly improve the slope b̂p and slightly deterio-
rate the bias ˆ .∆p  Finally, indirect predictions show 
rather high overdispersions.

Figure 3 shows the ratio of accuracies ˆ ,ρp w for each 
BC, according to the focal individuals’ groups and to 
the scenarios Alone, Indirect, and Together, (which in-

cludes TogetherSameMF and TogetherDifferentMF). 
The closer the ratio is to 1, the closer is the predictive 
capacity from early genomic information to progeny 
information (i.e., the more accurate the genomic pre-
diction). For this statistic we obtained exactly the same 
values for the scenarios TogetherSameMF and Togeth-
erDifferentMF. We can see that the scenario Together 
is always the most accurate (with all ratios above 0.45). 
Considering the scenarios Alone, it seems that BC1 is 
better predicted than BC2 by at least 0.04. Indirect 
predictions based on the “other” population generally 
have low accuracy, sometimes with values close to 0.

To investigate the contribution of one subpopulation 
to the genomic prediction of the other, the most im-
portant result in Figure 3 is the difference of accuracies 
between the scenarios Alone and Together, for each 
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Figure 2. Evolution of average relationship by cohort (defined by time, animals born every 4 yr) and subpopulation in males. BC = breeding 
company associated with the subpopulation.

Table 3. Bias ∆̂p( ) between whole and partial genomic EBV for the different scenarios for the focal individuals 2015 to 20191

Subpopulation

Focal individuals

2015

 

2016

 

2017

 

2018

 

2019

BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2

Alone −0.04 0.34 −0.10 0.26 −0.03 0.29 0.02 0.26 −0.06 0.26
TogetherSameMF 0.31 0.43 0.23 0.42 0.33 0.44 0.41 0.44 0.29 0.38
TogetherDifferentMF 0.32 0.33 0.24 0.33 0.35 0.34 0.43 0.32 0.34 0.25
1MF = metafounders; BC = breeding company associated with each subpopulation.
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subpopulation, across years. This difference is globally 
low (less than 0.08) for BC1 in spite the fact that the 
reference population size doubles from Alone to To-
gether. For BC2, the differences are more variable from 
one year to the other: from 0.03 for focal individuals 
2015 to 0.17 for focal individuals 2018.

Correlations of Estimated SNPs Effects

The correlations between estimated SNPs effects 
across different reference populations and truncation 

years are presented in Figure 4. In this figure, the ref-
erence population differs according to the subpopula-
tion considered (BC1, BC2, or both of them) and the 
phenotypic records included in the evaluation (i.e., 
including all available phenotypes or deleting pheno-
types after the years 2015 to 2019). We observe very 
high correlations across years within each reference 
population, especially when the reference population 
is only one subpopulation. The correlations are greater 
than 0.77 for BC1, 0.87 for BC2, and 0.77 for reference 
population Together composed of BC1 and BC2.

Wicki et al.: GENOMIC EVALUATION ACCURACY OF LACAUNE DAIRY SHEEP

Table 4. Slope b̂p( ) of regression of the genomic EBV calculated with “whole” data (GEBVw) on the genomic EBV calculated with “partial” 
data (GEBVp) for the different scenarios for the cohorts 2015 and 20191

Subpopulation

Focal individuals

2015

 

2016

 

2017

 

2018

 

2019

BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2

Alone 0.82 0.98 0.77 0.52 0.90 0.87 0.66 0.90 0.81 0.56
TogetherSameMF 0.90 1.03 0.87 0.69 0.93 0.96 0.83 0.90 0.89 0.82
TogetherDifferentMF 0.89 1.04 0.87 0.67 0.93 0.97 0.82 0.90 0.89 0.82
Indirect 0.08 0.4 0.28 0.03 0.09 1.60 0.06 0.21 0.09 0.12
1MF = metafounders; BC = breeding company associated with each subpopulation.

Figure 3. Ratios of accuracies according to focal individuals’ groups and subpopulation (BC = breeding company associated with the sub-
population). Alone scenario = genetic evaluation based on single reference population (BC1 or BC2); Together scenario = genetic evaluation 
based on joined reference population (BC1 and BC2); Indirect scenario = indirect genetic evaluation of training population of one subpopulation 
based on the reference of the other one.
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The correlations are slightly lower between reference 
population Alone and Together but still high: from 0.60 
to 0.77 between Together and BC1, and from 0.57 to 
0.74 between Together and BC2. However, we observe 
very low correlations between the 2 reference popula-
tions (BC1 and BC2) in scenarios Alone; all correla-
tions are below 0.28 between BC1 and BC2.

Finally, we do not observe any difference in correla-
tions from one truncation year to the other.

DISCUSSION

Genetic Diversity and Population Structure

For the 2 Fst estimators computed and considering 
all the available genotypes, we obtained a value of 0.02. 
Kijas et al. (2009) studied the Fst between different 
sheep breeds. They found highly variable values rang-
ing from 0.053 between the breeds Merino and Sarda 
(both originally from Europe) to 0.349 between the 
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Figure 4. Correlation of estimated SNPs effects between all the studied reference populations. BC1 = breeding company 1 in reference popu-
lation; BC2 = breeding company 2 in reference population; T = companies 1 and 2 in reference populations; W = all the phenotypic records 
available considered; 2015 to 2019 = phenotypic records after this year deleted.
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breeds Namaqua Afrikaners and Soay (respectively 
African and European origins). Concerning Pyrenean 
dairy sheep breeds who are supposed to be genetically 
close populations, Garcia-Baccino et al. (2022) found 
a value of 0.053 between the Manech Tête Noire and 
Laxa Cara Negra and a very low value of 0.014 between 
the breeds Manech Tête Rousse (MTR) and Laxa Cara 
Rubia (LCR). It is known that MTR started as an im-
portation of LCR animals into France in the 1960s and 
1970s, and there is use of MTR in the LCR breeding 
program. All in all, the 2 Lacaune subpopulations thus 
seem genetically close.

As for our PCA results, we can see quite distinct 
groups for each subpopulation. In Garcia-Baccino et 
al. (2022) the groups for LCR and MTR overlap, as 
explained by the use of LCR AI rams that are offspring 
of MTR AI rams. In our PCA we can see that there are 
very few connections between the 2 Lacaune subpopu-
lations compared with the LCR and MTR breeds.

We can also see in our PCA plot, on which the color 
of the individuals changes according to their year of 
birth, that the divergence between the 2 subpopulations 
tends to increase over time. However, this observation 
must be tempered in view of other work considering 
the 2 Lacaune subpopulations as well as other breeds; 
for instance the 2 Lacaune populations are very close 
when shown together with the Pyrenean dairy breeds 
(Legarra et al., 2014).

Average Pedigree Relationship

The progressive increase in the average relatedness 
observed within each subpopulation (in Figure 2) was 
expected. Indeed, because these subpopulations are 
closed, relatedness can only increase over generations. 
On the opposite, the relatedness between subpopula-
tions remains constant and equal to the original re-
latedness observed before the split between BC1 and 
BC2. This confirms that the subpopulations have not 
used reproducers from the other subpopulation (or very 
few), so there were very few exchanges between them. 
This was our expectation based on current knowledge 
of how flocks work and it has been confirmed with ac-
tual data.

Bias, Dispersion, and Accuracy

The biases obtained in our study (Table 3) are slightly 
higher than those obtained by Macedo et al. (2022) for 
the Lacaune breed, who performed the genetic evalua-
tions and the linear regression method without consid-
ering a structuring of the breed in 2 subpopulations.

The regression slopes (Table 4) and correlations (Fig-
ure 3) are broadly similar to those obtained in Macedo 

et al. (2022) except for the Indirect scenarios for which 
the indices are more dispersed and the predictions less 
accurate. Many studies have shown that prediction ac-
curacy is strongly dependent on genetic relationship. 
Indeed, we observed very few relationships between 
subpopulations (Figures 1 and 2), so it seems logical 
that the indirect prediction of one subpopulation by 
the other is little accurate. In our case, this indirect 
prediction seems extremely inaccurate for some years 
where we obtain correlations very close to 0 (Figure 
3). Studies in dairy cattle have shown that evaluations 
of one breed based on the reference of another breed 
were less accurate than the evaluation of candidates 
of the same breed, but accuracies remained above 0.4 
(Wientjes et al., 2015). However, in Wientjes et al. 
(2015), the accuracy of within-breed evaluations were 
higher (>0.9) than those observed in our study for the 
Alone and Together scenarios.

Another result that may seem surprising is the fact 
that, in some cases, we obtain an improvement in ac-
curacy from Alone to Together, whereas Indirect is very 
inaccurate (e.g., focal individuals of BC2 born in 2018). 
This result can be explained by the results concerning 
correlations of SNPs effects as we discuss below.

Regarding the attribution of metafounders, we ob-
tained very close (Tables 3 and 4) or even identical 
results (Figure 3) between the scenarios TogetherS-
ameMF and TogetherDifferentMF for the 3 estimators 
and all the cohorts. The assignment of metafounders 
independently of the subpopulation did not affect the 
results. This makes sense because the 2 subpopulations 
have a similar genetic trend.

The pooling of subpopulations in the evaluation 
showed a clear, although variable across years, interest 
in terms of accuracy gain because we observe higher 
accuracies moving from scenarios Alone to Together 
(Figure 3). These accuracies are lower than expected as 
the reference population size in fact doubles between 
these scenarios. The increase in the ratios ˆ ,ρp w  appears 
to be greater for subpopulation 2 than subpopulation 1 
(Figure 3); therefore, it seems more interesting to join 
subpopulations 1 and 2 for the prediction of 2, than for 
prediction of 1. Zhou et al. (2014) explain the observed 
nonreciprocal contribution between the Danish Red, 
Finnish Ayrshire, and Swedish Red composite breed 
and the Norwegian Red breed by the nonequivalent 
reference populations sizes: 3,300 and 2,353 bulls, re-
spectively. In our case, we also study reference popula-
tions with sizes that are not exactly equivalent: 3,434 
AI rams for BC1 and 2,868 for BC2.

We can wonder what would be the gain in accuracy 
observed between the scenarios Alone and Together 
if the population was not structured (i.e., if it was a 
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single population with no subpopulations). In their 
study, Lourenco et al. (2017) simulated the genomic 
evaluations of a dairy trait with a heritability of 0.3 
that could correspond to MY. They obtain an increase 
in accuracy approximatively from 0.65 to 0.80 between 
a training population with 2,000 and 5,000 animals. We 
can think that a higher gain would be obtained with 
our reference population size but we would perhaps ob-
serve differences in dairy sheep for example due to the 
much lower number of offspring per AI sires.

Finally, we can say that today the 2 subpopulations 
remain close enough genetically so that their combined 
evaluation is slightly advantageous, because we do see 
an increase in accuracy from the scenarios Alone to 
Together, unlike the case observed between distant 
breeds where accuracy does not increase (Brøndum et 
al., 2011).

Correlations of Estimated SNPs Effects

For the 3 reference populations studied (BC1, BC2, 
and Together), the high correlations of estimated SNPs 
effects obtained within a subpopulation, from one year 
to the other, are reassuring about the correctness of 
the model and the stability of the genomic predictions, 
especially for the combined reference population.

The low correlations between BC1 and BC2 are on 
line with previous studies dealing with combined ge-
nomic evaluations where differences in SNPs effects are 
observed according to the reference population design 
(Pryce et al., 2011). Note that these correlations un-
derestimate the genetic correlation as SNP effects are 
shrunken. In fact, the model imposes that SNP effect 
are defined within subpopulation, so this explains the 
inability to predict one subpopulation from the other.

In particular, these results show that when analyz-
ing both subpopulations together, the model forces the 
SNP effects to be “portable” across breeds, whereas the 
analysis of populations alone does not impose this. In 
addition, the Together model increases in the reference 
population size. That explains our gain in accuracy 
from the scenario Alone to Together. There must be a 
threshold beyond which too much distance implies that 
“portable” SNP effects are in fact not that portable 
and yield less accurate GEBVs, but this is not the case 
here.

Thus, there seems to be an interest in pursuing a 
joint evaluation for both subpopulations because this 
allows a larger reference population size, even if the 
corresponding gain in accuracy is small. In addition, 
we hypothesize that a greater genetic connectedness 
between the 2 subpopulations, for example by setting 
up systematic exchanges between the 2 subpopulations, 

would be a way to improve the reliability and increase 
the value of the joint evaluation currently performed. 
Furthermore, in the current situation with no exchange, 
the 2 subpopulations will continue to diverge, and we 
wonder if the joint evaluation would eventually become 
disadvantageous.

CONCLUSIONS

Our study has shown that the 2 Lacaune subpopula-
tions are still genetically close but they diverge over 
time. The contribution in terms of accuracy of one 
subpopulation to the other is positive but fluctuating 
across years. We have also seen that the contribution 
between subpopulations is not always symmetrical. 
Globally, the increase in accuracy when information of 
both subpopulations was included is small given the 
doubling of the reference population, but the benefit 
is consistent and this implies that a joint evaluation is 
beneficial.
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