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2CLS, Plouzané France

I. INTRODUCTION

The maritime trafc illustrates multiple types of activities

ranging from economical to leasure activities. This trafc

induces the need of surveillance by local authorities to address

the challenges of maritime safety, maritime security, law

enforcement and sheries control [1]. Far off the coast, satellite

observations allow collecting valuable information on the on-

going activities using a wide range of sensors, including SAR

sensors and AIS data collection. A large litterature is available

on the use of a single source of data for the surveillance of

maritime trafc for instance using SAR imagery [2][3] or AIS

information [4] alone. The synergetic use of multiple source

of data is however rapidely progressing [5]. Merging multiple

type of data allows either to derive better processing for each

data type separately [6] or a real merging of data information

to improve the overal martime domain awareness [7].

Commercial SAR satellites deliver very high-resolution im-

agery [8][9] that can be aquired on specic regions of interest

for instance for vessel detection. High-resolution observations

make the classication of vessel types straightforward as

illustrated by a large litterature on vessel classication for

high-resolution satellite imagery [10]. However, few studies

have addresse medium-resolution SAR imagery like the one

of the Copernicus Sentinel-1 SAR constellation [11]. Sentinel-

1 allows regular access to large dataset on European waters

and large areas worldwide. Delivering automated vessel clas-

sication tools on such imagery would benet to the analysis

the maritime trafc and activities at sea.

This paper specically adresses the vessel classication on

medium resolution SAR images from the Sentinel-1 SAR

mission and investigates the possibility to jointly exploit such

satellite imagery datasets with AIS data streams to develop a

learning-based classication framework.

In section II we present the data considered for the study. In

section III we present the overall methodology of classica-

tion. In section IV we present the evaluation of performances.

In section V we present the conclusion and proposition of

applications of the results.

II. PRESENTATION OF DATA

The obsevation plan of the Sentinel-1 SAR constellation al-

lows to collect over ocean mainly medium resolution imagery

using the Interferometric Wide Swath (IW) acquisition mode.

This data can be made available as detected images on two

avours being GRDM (medium) and GRDH (high) resolution.

While the GRDH products are nominally processed by the

ESA ground segment, the Collaborative ground stations can

generate as well the GRDM avour products [2].

In this study, we make use of the GRDH products, which

has the following characteristics : a swath (rg x az [km]) of

250 x 170, a resolution (rg x az [m]) of 20 x 22 and a pixel

spacing (rg x az [m]) of 10 x 10.

CLS made available series of AIS data collected from

ground and space receivers. The AIS data collect the location

of vessels reporting their positions and information on their

speed, route, and type [12]. While the data broadcasted by

AIS can be switched off or altered, it is broadly used by the

Earth observation community as a proxy of vessel location and

type [13].

With a view to implementing deep learning strategies, we

created reference datasets using the synergy between AIS data

and Sentinel-1 SAR data. Thanks to AIS data, we estimate

the precise location of the ships in the SAR image and extract

related information contained in AIS messages metadata (in

our case, length and type). Based on this position and the

positions of ships detected automatically on SAR satellite

images (algorithm described in [14]), we extract the image

of the ship by cropping the SAR image in the area where the

ship is located.

III. CONSIDERED LERANING-BASED METHOLOGY

In this section, we detail our deep learning scheme for ship

classication method and the associated rationale.

A. Vessel classication case-study

We focused on the categories ”Tanker”, ”Cargo”, and ”Oth-

ers”. The ”Others” category encompasses every other type of

vessels. The motivations of this choice relate to the following

facts:

• Neural networks are known to require large amounts of

data in order to be effective. As a result, we selected the

types of vessels that make up the majority of the data.

Table I shows the most represented categories.

• The classication of vessels on medium-resolution radar

images using deep learning techniques is a relatively

new and under-explored eld of research. For instance,

the results presented in [6] are difcult to reproduce.

In [15], the training was not done on a large dataset.



Therefore, the choice of a three-class problem offers a

good starting testbed, as well as a perspective for more

complex problems.

Vessel type Tanker Cargo Fishing Passenger Others

# images 22569 37250 6981 3531 24678

TABLE I: Description of Data. The category “Others” includes every
other type of vessel

B. Training and test datasets

The performance and accuracy of deep learning networks

depend heavily on the quality of the data used for training

and testing. The quality of the labeling issued from AIS data

poses a signicant challenge for our dataset. To reduce the

impact of this quality shortage, we removed all the products

that have the type of vessel ”Unitised”. These products contain

a large amount of cargo, in addition to other types of vessels.

Additionally, we removed the products that have a vessel

size of zero or greater than 400 meters, as this data is

likely to be falsied. The training is carried out on 80% of

the data, while the test is done on 20% of the data. The

data augmentation methods used includes oversampling and

horizontal and vertical ips. Using other methods such as

Gaussian noise or rotation proved to be disruptive for the

models used. Table II represents the training and test sets.

Classes Tanker Cargo Others

Number of images 22474 37173 20805

Training set 29739 29739 29739

Test set 4494 7435 4161

TABLE II: Description of training/Test data. The data augmentation
is carried out on the categories “Tanker” and “Others”

C. Data preprocessing and choice of input

Due to nature of the SAR data, especially the range of ob-

served pixel values and the occurence of outliers, we applied a

logarithmic transformation to the data. This technique helps to

minimize the effect of outliers and leads to faster convergence

of the loss function.

Fig. 1: A comparison of the effect of logarithmic transformation on
a vessel image which has a very retro-diffusing point is shown. On
the left is the original image, and on the right is the image with the
logarithmic transformation applied

In terms of the input for our model, we chose to use a

two-band image, which includes backscatter intensity and in-

cidence angle. This selection was made because the incidence

angle has a signicant impact on the backscatter intensity and

then on the contrast between vessel and sea surface. As a

result, we did not use any pre-trained network, as we believed

that they would not be able to handle these features relevantly.

D. Neural network architectures

To address the classication problem, we developed en-

semble convolutional neural networks (CNNs). The overall

architectures of the CNNs used in this work are illustrated in

Table III. We used the most well-known concepts in the state-

of-the-art in our models. In Model A, we used a Convolutional

Block Attention Module [16], in Model D, we used residual

layers [17], and in Model E, we used the inception module

[18]. One can see that all models resemble more or less

Model A. In fact, Model A is our main model. After many

experiments, we believe that this is the best model compared

to our data and problem.

We used the same parameters in all models. We exploited

a categorical cross-entropy loss as a training loss function.

We applied an end-to-end training using Adam Optimizer. We

used batches of size 64 and a learning rate of 1e-4. This

parametrization has shown good results for our classication

task.

In our nal model, we combined the output of the ensemble

of CNN models using an ”Averaging” merging. This congu-

ration proved to be the best not only in terms of precision but

also in terms of model calibration. It is worth mentioning that

Model A is perfectly calibrated, while our nal model is well

calibrated, especially for large condence values (> 0.8).

IV. RESULTS

The experiments were conducted to evaluate the perfor-

mance models A, B, C, D, and E, on the classication task.

Table IV presents the total accuracy scores for each model,

as well as our nal model that was constructed by taking the

average of the outputs from all ve models. The results of the

overall test dataset indicate that the total accuracy of our nal

model was 79%.

In this study, our objective is to attain an optimal balance

between recall and precision for all classes, as there is no

preference for classifying one class over another. However,

some parts of our data pose a challenge in clearly distin-

guishing between cargo and tanker ships, causing a minor bias

towards either the cargo or tanker class. To address this, we

have chosen to lean slightly towards the cargo class as it is

the most commonly encountered class in practical applications.

The table V presents the confusion matrix and detailed metrics

for each class.

V. CONCLUSION

This paper has studied the classication of vessels on

medium resolution SAR images. To the best of our knowledge,

this is the rst time a Deep learning network has been trained

to make this task on a relatively large dataset, and which

provides a relatively good results.

A pratical use case for our network is the identication of

discrepancies between a vessel’s declared information and the

network’s predictions when those predictions are superior to
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Block Model A Model B Model C Model D Model E

1 128 - Conv 256 - Conv 128 - Conv Concatenate(32 - Conv(k-
s :1), 32 - Conv(k-s :2), 64
- Conv(k-s :3))

Concatenate(32 - Conv(k-
s :1), 32 - Conv(k-s :2), 32
- Conv(k-s :3))

2 CBAM CBAM CBAM 256 - Conv 128 - Conv

3 256 - Conv 512 - Conv 256 - Conv 256 - Conv 128 - Conv

4 Average pooling Average pooling Average pooling Dropout 128 - Conv

5 Dropout Dropout Dropout . Concatenate(Block 1 and
4)

6 . . 256 - Conv . 256 - Conv

7 . . 512 - Conv . Average pooling

8 512 - Conv / Dropout / 128 - Conv / 256 - Conv / Average pooling / Dropout / 256 - Conv / 512 - Conv / 256 - FC / 3 - FC (Softmax)

TABLE III: Structures of the models. In this table, ”Conv” denotes a convolutional layer, ”CBAM” denotes a convolutional block
attention module using the same parameters cited in reference [16], ”FC” denotes a fully-connected layer, ”k-s” denotes kernel size, and
”Concatenate” denotes a concatenation operation. Unless otherwise stated, we use in the convolution operations a kernel size of size 3,
strides = 1, and padding = ”same”, we use in the pooling operations a pool size = 2, stride =1, and padding =”valid”. We use a dropout
rate of 0.3. All convolution and FC layers are followed by a RELU activation. Note that Block 8 is the same for all models

Models A B C D E Averaging

Total Accuracy 77.8% 77% 76% 77.4% 77.5% 79%

TABLE IV: Total Accuracy of Models A, B, C, D, E

TABLE V: Confusion matrix and evaluation metrics

0.9, which can trigger an alert for potentially-false AIS data.

A large attention is placed in the eld of maritime safety on

dark vessels not reporting their location through AIS, while

we believe that other alterations of AIS data are possible and

under considered, including eroneous declaration of vessel’s

type (we could call them bright vessels).

This paper paves the way for future work to automatic vessel

classication on medium-resolution SAR imagery without the

need for AIS data. To our knowledge, the SAR imagery

is more difcult to alter than the AIS information. This

breakthrough could be achieved through the collection of more

data and the development of deep learning methods.
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[6] C. Dechesne, S. Lefèvre, R. Vadaine, G. Hajduch, and R. Fablet, “Ship

identication and characterization in sentinel-1 sar images with multi-
task deep learning,” Remote Sensing, vol. 11, no. 24, p. 2997, 2019.

[7] Z. Paladin, N. Kapidani, P. Scrima, G. Vosinakis, G. Hajduch, M. Mout-
zouris, C. Bolakis, and A. Astyakopoulos, “Maritime information shar-
ing environment deployment using the advanced multilayered data lake
capabilities: Effector project case study,” Pomorstvo, vol. 36, no. 2,
pp. 291–304, 2022.

[8] Airbus, “Terrasar-x image product guide: Basic and enhanced radar
satellite imagery,” Airbus Defence Space.

[9] D. MDA (MacDonald and A. Ltd.), “Radarsat-2 product description,”
2016.

[10] C. Lu and W. Li, “Ship classication in high-resolution sar images via
transfer learning with small training dataset,” Sensors, vol. 19, no. 1,
2019.

[11] ESA, “Sentinel-1 what is it ?.” https://sentinel.esa.int.
[12] “Automatic identication system,” Jan 2023.
[13] P. W. Vachon, R. A. English, and J. Wolfe, “Validation of radarsat-

1 vessel signatures with aislive data,” Canadian Journal of Remote

Sensing, vol. 33, no. 1, pp. 20–26, 2007.
[14] G. Hajduch, V. Kerbaol, and R. de Joux, “Ship detection: From pro-

cessing to instrument characterization,” in Proceedings of SeaSAR 2008

workshop, 2008.
[15] J. He, Y. Wang, and H. Liu, “Ship classication in medium-resolution

sar images via densely connected triplet cnns integrating sher discrim-
ination regularized metric learning,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 59, no. 4, pp. 3022–3039, 2021.
[16] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional

block attention module,” in Computer Vision – ECCV 2018 (V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, eds.), (Cham), pp. 3–19,
Springer International Publishing, 2018.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770–778, 2016.
[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1–9, 2015.

SeaSAR 2023, 02-06 May 2023, Svalbard Norway 3


