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I. INTRODUCTION

The maritime traffic illustrates multiple types of activities
ranging from economical to leasure activities. This traffic
induces the need of surveillance by local authorities to address
the challenges of maritime safety, maritime security, law
enforcement and fisheries control [1]. Far off the coast, satellite
observations allow collecting valuable information on the on-
going activities using a wide range of sensors, including SAR
sensors and AIS data collection. A large litterature is available
on the use of a single source of data for the surveillance of
maritime traffic for instance using SAR imagery [2][3] or AIS
information [4] alone. The synergetic use of multiple source
of data is however rapidely progressing [5]. Merging multiple
type of data allows either to derive better processing for each
data type separately [6] or a real merging of data information
to improve the overal martime domain awareness [7].

Commercial SAR satellites deliver very high-resolution im-
agery [8][9] that can be aquired on specific regions of interest
for instance for vessel detection. High-resolution observations
make the classification of vessel types straightforward as
illustrated by a large litterature on vessel classification for
high-resolution satellite imagery [10]. However, few studies
have addresse medium-resolution SAR imagery like the one
of the Copernicus Sentinel-1 SAR constellation [11]. Sentinel-
1 allows regular access to large dataset on European waters
and large areas worldwide. Delivering automated vessel clas-
sification tools on such imagery would benefit to the analysis
the maritime traffic and activities at sea.

This paper specifically adresses the vessel classification on
medium resolution SAR images from the Sentinel-1 SAR
mission and investigates the possibility to jointly exploit such
satellite imagery datasets with AIS data streams to develop a
learning-based classification framework.

In section II we present the data considered for the study. In
section III we present the overall methodology of classifica-
tion. In section IV we present the evaluation of performances.
In section V we present the conclusion and proposition of
applications of the results.

II. PRESENTATION OF DATA

The obsevation plan of the Sentinel-1 SAR constellation al-
lows to collect over ocean mainly medium resolution imagery
using the Interferometric Wide Swath (IW) acquisition mode.
This data can be made available as detected images on two

flavours being GRDM (medium) and GRDH (high) resolution.
While the GRDH products are nominally processed by the
ESA ground segment, the Collaborative ground stations can
generate as well the GRDM flavour products [2].

In this study, we make use of the GRDH products, which
has the following characteristics : a swath (rg x az [km]) of
250 x 170, a resolution (rg x az [m]) of 20 x 22 and a pixel
spacing (rg x az [m]) of 10 x 10.

CLS made available series of AIS data collected from
ground and space receivers. The AIS data collect the location
of vessels reporting their positions and information on their
speed, route, and type [12]. While the data broadcasted by
AIS can be switched off or altered, it is broadly used by the
Earth observation community as a proxy of vessel location and
type [13].

With a view to implementing deep learning strategies, we
created reference datasets using the synergy between AIS data
and Sentinel-1 SAR data. Thanks to AIS data, we estimate
the precise location of the ships in the SAR image and extract
related information contained in AIS messages metadata (in
our case, length and type). Based on this position and the
positions of ships detected automatically on SAR satellite
images (algorithm described in [14]), we extract the image
of the ship by cropping the SAR image in the area where the
ship is located.

III. CONSIDERED LERANING-BASED METHOLOGY

In this section, we detail our deep learning scheme for ship
classification method and the associated rationale.

A. Vessel classification case-study

We focused on the categories ”Tanker”, ”Cargo”, and ”Oth-
ers”. The ”Others” category encompasses every other type of
vessels. The motivations of this choice relate to the following
facts:

• Neural networks are known to require large amounts of
data in order to be effective. As a result, we selected the
types of vessels that make up the majority of the data.
Table I shows the most represented categories.

• The classification of vessels on medium-resolution radar
images using deep learning techniques is a relatively
new and under-explored field of research. For instance,
the results presented in [6] are difficult to reproduce.
In [15], the training was not done on a large dataset.



Therefore, the choice of a three-class problem offers a
good starting testbed, as well as a perspective for more
complex problems.

Vessel type Tanker Cargo Fishing Passenger Others
# images 22569 36822 6981 3531 24678

TABLE I: Description of Data. The category “Others” includes every
other type of vessel

B. Training and test datasets

The performance and accuracy of deep learning networks
depend heavily on the quality of the data used for training
and testing. The quality of the labeling issued from AIS data
poses a significant challenge for our dataset. To reduce the
impact of this quality shortage, we removed all the products
that have the type of vessel ”Unitised”. These products contain
a large amount of cargo, in addition to other types of vessels.
Additionally, we removed the products that have a vessel
size of zero or greater than 400 meters, as this data is
likely to be falsified. The training is carried out on 80% of
the data, while the test is done on 20% of the data. The
data augmentation methods used includes oversampling and
horizontal and vertical flips. Using other methods such as
Gaussian noise or rotation proved to be disruptive for the
models used. II represents the training and test sets.

Classes Tanker Cargo Others
Number of images 22474 37173 20805

Training set 29739 29739 29739
Test set 4494 7435 4161

TABLE II: Description of training/Test data. The data augmentation
is carried out on the categories “Tanker” and “Others”

C. Data preprocessing and choice of input

Due to nature of the SAR data, especially the range of ob-
served pixel values and the occurence of outliers, we applied a
logarithmic transformation to the data. This technique helps to
minimize the effect of outliers and leads to faster convergence
of the loss function.

Fig. 1: A comparison of the effect of logarithmic transformation on
a vessel image which has a very retro-diffusing point is shown. On
the left is the original image, and on the right is the image with the
logarithmic transformation applied

In terms of the input for our model, we chose to use a
two-band image, which includes backscatter intensity and in-
cidence angle. This selection was made because the incidence
angle has a significant impact on the backscatter intensity and

then on the contrast between vessel and sea surface. As a
result, we did not use any pre-trained network, as we believed
that they would not be able to handle these features relevantly.

D. Neural network architectures

To address the classification problem, we developed en-
semble convolutional neural networks (CNNs). The overall
architectures of the CNNs used in this work are illustrated in
Table III. We used the most well-known concepts in the state-
of-the-art in our models. In Model A, we used a Convolutional
Block Attention Module [16], in Model D, we used residual
layers [17], and in Model E, we used the inception module
[18]. One can see that all models resemble more or less
Model A. In fact, Model A is our main model. After many
experiments, we believe that this is the best model compared
to our data and problem.
We used the same parameters in all models. We exploited
a categorical cross-entropy loss as a training loss function.
We applied an end-to-end training using Adam Optimizer. We
used batches of size 64 and a learning rate of 1e-4. This
parametrization has shown good results for our classification
task.
In our final model, we combined the output of the ensemble
of CNN models using an ”Averaging” merging. This configu-
ration proved to be the best not only in terms of precision but
also in terms of model calibration. It is worth mentioning that
Model A is perfectly calibrated, while our final model is well
calibrated, especially for large confidence values (> 0.8).

IV. RESULTS

The experiments were conducted to evaluate the perfor-
mance models A, B, C, D, and E, on the classification task.
Table IV presents the total accuracy scores for each model,
as well as our final model that was constructed by taking the
average of the outputs from all five models. The results of the
overall test dataset indicate that the total accuracy of our final
model was 79%.
In this study, our objective is to attain an optimal balance
between recall and precision for all classes, as there is no
preference for classifying one class over another. However,
some parts of our data pose a challenge in clearly distin-
guishing between cargo and tanker ships, causing a minor bias
towards either the cargo or tanker class. To address this, we
have chosen to lean slightly towards the cargo class as it is
the most commonly encountered class in practical applications.
The table V presents the confusion matrix and detailed metrics
for each class.

V. CONCLUSION

This paper has studied the classification of vessels on
medium resolution SAR images. To the best of our knowledge,
this is the first time a Deep learning network has been trained
to make this task on a relatively large dataset, and which
provides a relatively good results.
A pratical use case for our network is the identification of
discrepancies between a vessel’s declared information and the
network’s predictions when those predictions are superior to
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Block Model A Model B Model C Model D Model E
1 128 - Conv 256 - Conv 128 - Conv Concatenate(32 - Conv(k-

s :1), 32 - Conv(k-s :2), 64
- Conv(k-s :3))

Concatenate(32 - Conv(k-
s :1), 32 - Conv(k-s :2), 32
- Conv(k-s :3))

2 CBAM CBAM CBAM 256 - Conv 128 - Conv
3 256 - Conv 512 - Conv 256 - Conv 256 - Conv 128 - Conv
4 Average pooling Average pooling Average pooling Dropout 128 - Conv
5 Dropout Dropout Dropout . Concatenate(Block 1 and

4)
6 . . 256 - Conv . 256 - Conv
7 . . 512 - Conv . Average pooling
8 512 - Conv / Dropout / 128 - Conv / 256 - Conv / Average pooling / Dropout / 256 - Conv / 512 - Conv / 256 - FC / 3 - FC (Softmax)

TABLE III: Structures of the models. In this table, ”Conv” denotes a convolutional layer, ”CBAM” denotes a convolutional block
attention module using the same parameters cited in reference [16], ”FC” denotes a fully-connected layer, ”k-s” denotes kernel size, and
”Concatenate” denotes a concatenation operation. Unless otherwise stated, we use in the convolution operations a kernel size of size 3,
strides = 1, and padding = ”same”, we use in the pooling operations a pool size = 2, stride =1, and padding =”valid”. We use a dropout
rate of 0.3. All convolution and FC layers are followed by a RELU activation. Note that Block 8 is the same for all models

Models A B C D E Averaging

Total Accuracy 77.8% 77% 76% 77.4% 77.5% 79%

TABLE IV: Total Accuracy of Models A, B, C, D, E

TABLE V: Confusion matrix and evaluation metrics

0.9, which can trigger an alert for potentially-false AIS data.
A large attention is placed in the field of maritime safety on
dark vessels not reporting their location through AIS, while
we believe that other alterations of AIS data are possible and
under considered, including eroneous declaration of vessel’s
type (we could call them bright vessels).
This paper paves the way for future work to automatic vessel
classification on medium-resolution SAR imagery without the
need for AIS data. To our knowledge, the SAR imagery
is more difficult to alter than the AIS information. This
breakthrough could be achieved through the collection of more
data and the development of deep learning methods.
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