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Abstract This paper proposes an adversary resilient communication-efficient
distributed estimation algorithm for time-varying networks. It is a general-
ization of the doubly-compressed Diffusion Least Mean Square (DLMS) algo-
rithm that isn’t adversary-resilient. The major drawback in existing adversary
detectors in the literature is that they suggested the detection criterion heuris-
tically. In this paper, an adversary detector is suggested theoretically based
on a Bayesian Hypothesis Test (BHT). It is proved that the test statistics of
the detectors is a distance metric compared to a threshold similarly to related
papers in the literature. Hence, we prove the validity of the detection criterion
based on BHT. The other difficulty encountered in existing works is the de-
termination of thresholds. In this paper, the optimum thresholds are derived
in closed-form. Since the optimum thresholds need the values of unknown pa-
rameters, it is not feasible to derive them. Hence, suboptimal procedures for
determining the thresholds are provided. Moreover, convergence of the mean of
the algorithm is investigated analytically. In addition, the Cramer-Rao Bound
(CRB) of the problem of distributed estimation based on all nodes observations
in the presence of adversaries is calculated. The simulation results show the
effectiveness of the proposed algorithms and demonstrate that the proposed
algorithms reach the performance of the algorithm when the adversaries are
ideally known in advance, with some delay.
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1 Introduction

Distributed estimation problems have been vastly investigated in recent years
[1]-[32], with potential applications in networks such as Wireless Sensor Net-
works (WSN) [33] and Internet of Things (IoT) networks [29]. In most dis-
tributed estimation problems, a collection of physically distributed nodes aim
to collaboratively estimate an unknown vector parameter (of an underlying
physical phenomenon) from linear measurements observed by all nodes. There
are three methods: incremental, consensus and diffusion strategies for dis-
tributed estimation where diffusion strategy is reported to have more advan-
tages [1]. Diffusion-based algorithms for distributed estimation are used ex-
tensively in the literature [1]-[32] in which the neighboring nodes diffuse their
estimates and measurements to adapt and combine their estimates.

In these networks, energy consumption [34], [35] is an important issue. To
reduce the energy consumption, distributed estimation algorithms can reduce
the amount of data to be communicated as suggested in [6]-[18]. In pioneering
works [6], [7], a partial diffusion algorithm is suggested in which a partial part
of intermediate estimations are sent to the neighbors. In [8], a random sub-
set of neighboring nodes are omitted to communicate with the corresponding
node and they are substituted with the own estimate of the node. Moreover,
[9] devised a data-selective diffusion-LMS algorithm to reduce the communica-
tion overhead in which a dynamic diffusion method is presented which shares
only the dynamic neighborhood information. Besides the selective approaches
described above, in [10] and [11], the authors suggested a compressive diffusion
strategy to reduce the communication load. In addition, [12] uses motifs which
are local structural patterns common in wireless sensor networks. In [13], the
probabilities of data fusion from neighboring nodes is controlled by minimizing
the Mean-Square-Deviation (MSD) to reduce the communication cost. Also,
[14] suggested a new version of sparse diffusion LMS algorithm taking both
communications and error cost into account. Furthermore, a data reserved pe-
riodic diffusion LMS is presented in [15] which has a low communication cost.
Recently, a doubly compressed diffusion LMS was proposed using compres-
sion by removing the entries in both adaptation and combination steps [16].
Moreover, a neighbor-partial diffusion LMS was recently derived using a ran-
dom neighbor node estimation to replace the estimation of random removing
nodes [17]. Also, an smart selection of nodes is suggested for communication
reduction in which an optimum linear combination of available estimates is
used instead of removing node estimates [18].

In wireless and IoT networks, security issues should be considered in de-
signing the signal processing tasks such as distributed estimation. So, design-
ing adversary-resilient distributed estimation algorithms is a necessity [36]. To
this end, some distributed estimation algorithms are suggested in the literature
[37]-[44]. In [37], a flag raising distributed estimator is proposed that allows the
agents under attack to perform accurate parameter estimation and detect the
adversarial agents simultaneously. [38] suggests a hybrid algorithm composed
of a non-cooperative LMS (nc-LMS) algorithm and a correction-based diffu-
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sion LMS. Also, [40] proposes a distributed algorithm based on the Kullback-
Leibler divergence to detect false data injection attacks. Moreover, in a recent
work [41], a resilient distributed diffusion algorithm is suggested which is ro-
bust to any data falsification attack when the number of compromised agents
in the local neighborhood of a normal agent is bounded. In addition, in [42], by
determining an adaptive threshold, a distributed detection algorithm is pro-
posed based on the correlation between tasks and a safe multi-task diffusion
least mean square, SM-DLMS. Not only do the authors reduce communica-
tion costs, they also effectively decrease the impact of attacks. Furthermore,
a secure diffusion least mean squares (S-DLMS) algorithm is proposed which
can be considered as a hybrid system, i.e. a nc-LMS subsystem and a DLMS
subsystem [43]. [44] proposed an attack detection mechanism and also a rep-
utation model which is utilized by the agents to estimate the other agents’
trustworthiness based on their past interactions. Recent papers are dedicated
to the influence of disturbances, modeling errors, various uncertainties in real
world systems as well as robust and filtering techniques [45]-[48].

In this paper, an adversary-resilient yet communication reduced distributed
estimation algorithm is devised. We modify the doubly-compressed diffusion
LMS (DC-DLMS) algorithm in [16] to become robust to adversary agents.
This paper is different from our past papers on one bit distributed estimation
[49], robust distributed estimation against impulsive noise [49], [30], [28], [25]
and communication reducing distributed estimation [18], in that it is our first
attempt in secure distributed estimation problem [37]-[44]. The strategy of
communication reduction in [18] is different from this paper because [18] uses
an smart node selection rather than random node selection strategy is used in
this paper. In the proposed Adversary-Resilient DC-DLMS (AR-DC-DLMS)
algorithm, an adaptation-detection-combination strategy is derived in which
the adversary detection is performed by a Bayesian Hypothesis Test (BHT).
The BHT adversary detector compares a test statistics to an optimal threshold.
The test statistics is a distance metric and the optimal threshold depends
on adversary attack parameters which are not available. So, a suboptimal
procedure to select the threshold is proposed. In this paper, two adversary false
data injection attack models are considered. The first attack model, injects the
false data into the measurements at the nodes. The second attack model injects
the false data into the intermediate estimations exchanged between nodes in
the network. The adversary detector based on the measurements is performed
in a centralized manner since all the measurements are needed for detection.
The adversary detector based on intermediate estimations is performed in a
decentralized manner and each node detects its own neighboring’s adversaries.
In addition, a theoretical mean convergence analysis of the proposed AR-DC-
DLMS algorithm is provided. Moreover, an approximated closed form CRB
formula for the distributed estimation problem in the presence of adversaries
is provided. Simulation results show that the proposed algorithm reaches the
final error performance of the ideal algorithm when the adversaries are known
in advance.

In brief, the main contributions and novelties of the paper are:
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– Proposing a BHT for adversary detection in two false data injection attack
models,

– Calculating analytically the optimum thresholds of BHT and proposing a
suboptimal procedure to determine the thresholds practically,

– Proposing the AR-DC-DLMS algorithm for a distributed estimation re-
silient to adversaries,

– Calculating the CRB of the distributed estimation problem in presence of
adversaries,

– Providing the mean convergence analysis of the proposed algorithm.

The organization of the remaining of the paper is as follows. Section 2
introduces the problem and model used in the paper. Section 3 reviews the
basics of diffusion LMS and doubly compressed diffusion LMS algorithm. In
section 4, the proposed adversary-resilient distributed estimation algorithm is
derived. In section 5, the convergence analysis of the proposed algorithm is de-
rived. Section 6 calculates the closed form CRB for the problem in presence of
adversaries. Simulation results are presented in Section 7. Finally, conclusions
are drawn in Section 8.

2 Distributed system model and problem formulation

2.1 Distributed estimation problem

Consider a network consisting of N sensors observing a linear scalar measure-
ment of a common L× 1 unknown vector wo. The measurements are

xk,i = uTk,iwo + nk,i, (1)

where 1 ≤ k ≤ N is the index of the sensor, 1 ≤ i ≤ I is the index of time,
uk,i is the L × 1 zero-mean regression vector of sensor k at time index i and
is known, and nk,i is the zero-mean measurement noise. The noise and the
regression vectors are assumed to be independent of each other. The objective
of the distributed estimation is to collaboratively and adaptively estimate the
unknown vector wo using the known sequences of measurements and regression
vectors {xk,i,uk,i} for 1 ≤ k ≤ N and 1 ≤ i ≤ I. Each node k can communicate
the data with its neighboring nodes collected in the set Nk.

In this paper, we assume that some of the sensors are attacked by adver-
saries whose attack models are presented in the following.

2.2 Adversary attack models

Although there are some important practical attacks such as denial of service
attacks in WSN [50], we only consider the false data injection attacks discussed
in [37]-[44]. There are weak and strong false data injection attacks knowing
partially or completely the information of the network and the compromised
agent, respectively [41]. In [41], the single node attack model and the network
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attack model are designed. In this paper, since the focus is not on designing
attacks, we use two simple false data injection models for the attacks [37]-[44].
In the first one, an adversary attacker drifts the unknown vector w by an error
qk,i. So, the attack hypothesis (H1) can be defined as

xk,i =

{
uTk,i(w + qk,i) + nk,i γlk,i = 1 (H1)

uTk,iw + nk,i γlk,i = 0 (H0)
(2)

where the attack error q is independent of the measurements vector, and H0 is
the no-attack hypothesis. In the first model of adversary, we should resort to an
adversary detector based on the measurements. In the second attack model,
the adversary takes control of the communication link and injects the false
data into intermediate estimations ψl,i by an error equal to el,i. Therefore,
the attack hypothesis is defined as

Ψ l,i =

{
ψl,i + el,i + vl,i γlk,i = 1 (H̃1),

ψl,i + vl,i γlk,i = 0 (H̃0),
(3)

where the intermediate estimation ψl,i are used as in the DLMS (4) as de-
scribed in section 3. In Section 4, we derive the adversary detector based on
the measurements and the detector based on the intermediate estimations.

3 Diffusion LMS and Doubly-compressed diffusion LMS algorithms

3.1 Diffusion LMS

In the Diffusion LMS (DLMS), a mean square error convex cost function is
considered at each node. For the kth node, it is Jk(w) = E{|xk,i − uTk,iw|2}.
DLMS seeks the minimization of the aggregate global cost function defined
as Jglob(w) =

∑N
k=1 Jk(w). In the Adapt-Then-Combine (ATC) strategy of

DLMS, this is obtained cooperatively by updating the local estimations in
the adaptation step and then combining the local estimations to yield a new
estimation. Hence, the overall DLMS algorithm is a two-step algorithm as
follows [1]: {

ψk,i+1 = wk,i + µk
∑
l∈Nk

clkĝl(wk,i),
wk,i+1 =

∑
l∈Nk

alkψl,i+1,
(4)

where ĝl(wk,i) = [xl,i − uTl,iwk,i]ul,i = −∇w(Jl(wk,i)) is the negative of the
gradient of Jl(w) with w replaced by the locally estimated wk,i. Nk is the
neighborhood set of the k’th sensor. ψk,i+1 is the intermediate estimation of
the k’th sensor at the next time index. It is calculated through the adaptation
step of the algorithm. clk and alk are the combination coefficients from node
l to node k in the adaptation and combination steps, respectively.
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3.2 Doubly-compressed DLMS

DC-DLMS [16] is a variant of the DLMS algorithm where two random diagonal
entry-selective matrices Hk,i and Qk,i are used at node k and time index i.
Matrices Hk,i and Qk,i have M and M∆ ones on their diagonals. The other
diagonal entries are set to zero. The ones select the entries and the zeros
remove the entries. The matrix Hk,i selects the entries of the estimation and
the matrix Qk,i selects the entries of the gradient. The overall DC-DLMS
algorithm is as follows [16]:

{ ψk,i+1 = wk,i + µk
∑
l∈Nk

clkgl,i,
wk,i+1 = akkψk,i+1+∑

l∈N−k
alk

[
Hl,iwl,i + (I−Hl,i)ψk,i+1

]
,

(5)

where gl,i, the negative of the gradient is defined as [16]:

gl,i = Ql,iul,i

[
xl,i − uTl,i

(
Hk,iwk,i + (I−Hl.i)wl,i

)]
+(IL −Ql,i)uk,i

[
xk,i − uTk,iwk,i

]
, (6)

and N−k stands for the neighborhood set of node k except k itself. The false
measurement data (in first false data injection model) and false intermediate
estimate (in second false data injection model) deviates the common estimate
of the parameter vector in aforementioned DLMS and DC-DLMS algorithms.
So, unfortunately, the DLMS and DC-DLMS algorithms are sensitive to at-
tacks of the adversaries and their performances are degraded in the presence
of adversaries. Therefore, the main aim of this paper is to devise an adversary
resilient yet communication reduced diffusion algorithm. This is accomplished
in the next sections.

4 The proposed adversary-resilient doubly-compressed DLMS
algorithm

4.1 Basic idea

The main purpose of this paper is to modify the DC-DLMS [16] to be re-
silient to adversary. In the adaptation and combination steps, we suggest to
exclude the nodes attacked by adversaries. So, we propose the AR-DC-DLMS
algorithm described as follows:

{ψk,i+1 = wk,i + µk
∑
l∈Nk

clk(1− γlk,i)gl,i,
wk,i+1 = akkψk,i+1+∑

l∈N−k
alk

[
(1− γlk,i)ϕlk,i + γlk,iwk,i−1

]
,

(7)
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where γlk,i = 0 or 1 is the adversary l indicator of node k coefficient at instant
i and ϕlk,i is defined as

ϕlk,i = Hl,iwl,i−1 + (IL −Hl,i)ψk,i. (8)

To design the γlk,i, we should detect the adversary nodes. To do this, we
suggest to use a Bayesian Hypothesis Test (BHT). To devise the detectors, we
need to assume some attack model for the adversaries. Two different attack
models can be considered as will be discussed in the next subsections.

4.2 Node adversary detector based on measurements

Next, we should consider the hypothesis testing. BHT selects γ̂lk,i = 1 if
the a posteriori probabilities satisfy p(H1|xk) ≥ p(H0|xk) and γ̂lk,i = 0
otherwise where xk = [xk,1, ..., xk,i]

T . We have p(H1|xk) ∝ p(H1)p(xk|H1)
and P (H0|xk) ∝ p(H0)p(xk|H0). If the prior probability is assumed to be
p(H1) = pa, then p(H0) = 1−pa. Also, the likelihoods p(xk|H1) and p(xk|H0)
are equal to

p(xk|H1) = p(xi−1,k|H1)p(xk,i|H1,xi−1,k)

p(xk|H0) = p(xi−1,k|H0)p(xk,i|H0,xi−1,k) (9)

where we denote xi−1,k = [xk,1, ..., xk,i−1]T . Assuming that uk,i−1 is indepen-
dent of uk,i, and qk,i is independent of qk,i−1, then we have p(xk,i|H1,xi−1,k) =
p(xk,i|H1) and p(xk,i|H0,xi−1,k) = p(xk,i|H0). So that, we have log(p(xk|H1)) =∑i
j=1 log(p(xk,j |H1)). Similarly, we have log(p(xk|H0)) =

∑i
j=1 log(p(xk,j |H0)).

The hypothesis in (2) can be written as:

xk,i =

{
uTk,iw + ñk,i If k is adversary (H1)

uTk,iw + nk,i otherwise (H0)
(10)

where ñk,i = uTk,iqk,i + nk,i. If the length of the unknown vector w, equal to
L, is large, then from the Central Limit Theorem (CLT), the distribution of
ñk,i is Gaussian with zero mean and variance σ̃2

n = Lσ2
uσ

2
q + σ2

n, in which it is
assumed that the elements of qk,i are identically distributed with zero mean
and variance σ2

q and are independent of nk,i. So, we have

p(xk,j |H1) =
1

σ̃n
√

2π
exp(

−1

2σ̃2
n

(xk,j − uTk,jw)2), (11)

and

p(xk,j |H0) =
1

σn
√

2π
exp(

−1

2σ2
n

(xk,j − uTk,jw)2). (12)

So, we have log(p(xk|H1)) =
∑i
j=1−

1
2 log(2πσ̃2

n) − 1
σ̃2
n

(xk,j − uTk,jw)2 and

log(p(xk|H0)) =
∑i
j=1−

1
2 log(2πσ2

n) − 1
σ2
n

(xk,j − uTk,jw)2. Back to the detec-

tor, with some calculations, the BHT detector decides the hypothesis H1 of
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presence of an adversary when we have

i∑
j=1

(xk,j − uTk,jw)2 ≥ Thi, (13)

where the optimum threshold is equal to Thi ,
σ2
nσ̃

2
n

σ̃2
n−σ2

n

[
log( 1−pa

pa
)+ i log( σ̃nσn )

]
.

So, the adversary detector based on BHT needs the prior probability of ad-
versary. This can be circumvented by a suboptimal procedure for determining
the threshold which will be discussed later. Replacing σ̃2

n = Lσ2
uσ

2
q +σ2

n in the
above formula leads to the following final formula for the threshold which is
increasing with the time index i:

Thi = σ2
n(1 +

σ2
n

Lσ2
qσ

2
u

)
[

log(
1− pa
pa

) + i log(
σ̃n
σn

)
]

(14)

To simplify the final detector, from (13), we decide on the presence of the
adversary if we have

||xk −UT
kw||2 ≥ Thi (15)

where Uk = [uk,1|uk,2|...|uk,i]T in which uk,j is the column of Uk. The disad-
vantage of the adversary detector in (15) is that the computational complexity
grows with the increasing the time index i. So, we can confine our observa-
tion vector to x̃k,i = [xk,i−R+1, ..., xk,i]

T which consists of last R terms of the
observations. Similar derivations lead to the final adversary detection criterion

||x̃k − Ũ
T

kw||2 ≥ ThR, (16)

where Ũk = [uk,i−R+1|...|uk,i]T , the threshold ThR is equal to:

ThR = σ2
n(1 +

σ2
n

Lσ2
qσ

2
u

)
[

log(
1− pa
pa

) +R log(
σ̃n
σn

)
]

(17)

The problem of the detectors in (15) and (16) is that we do not know the
unknown vector w in advance. Therefore, we use the estimated ŵ instead of
the w. So, the detection criterion is equivalent to

||x̃k − Ũ
T

k ŵ||2 ≥ Thf , (18)

where Thf is a threshold which should be determined. So, we resort to a
suboptimal practical approach for finding the threshold Thf . Let’s set the test
statistics as

T = ||x̃k − Ũ
T

k ŵ||2. (19)

Next, we assume that the above test statistics are distributed as a mixture of
Gaussian as below

p(T ) = (1− pa)N(µ0, σ
2
0) + paN(µ1, σ

2
1), (20)
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where p(T |H0) = N(µ0, σ
2
0) and p(T |H1) = N(µ1, σ

2
1). This assumption is

verified in practice by the simulations. To determine the threshold Thf , the
means µ0 and µ1 can be determined by finding the peaks of the pdf p(T ).
The optimum threshold can be determined by minimizing the detection error
probability. The probability of binary error detection is equal to

pe = (1− pa)p(T > Th|H0) + pap(T < Th|H1)

= (1− pa)Q(
Th− µ0

σ0
) + pa(1−Q(

Th− µ1

σ1
)), (21)

where Q(.) is the Q-function [51]. Taking the derivative of the probability of
error with respect to the threshold and enforce it to be equal to zero, leads to
the following quadratic equation

(Th− µ0)2

2σ2
0

− (Th− µ1)2

2σ2
1

= log(
1− pa
pa

σ1
σ0

). (22)

To derive a simple solution, we assume σ0 = σ1. Then, the final threshold is
obtained as

Tho =
µ2
1 − µ2

0 + 2σ2
0 log( 1−pa

pa
)

2(µ1 − µ0)
. (23)

If we assume that µ2
1− µ2

0 � 2σ2
0 log( 1−pa

pa
) i.e. the two Gaussian are far apart

from each other and that σ2
0 is small with respect to µ2

1−µ2
0, a straightforward

formula for the threshold is Tho ≈ µ0+µ1

2 . It is equivalent to tell that the
two Gaussian distribution should be separated enough with respect to their
variances to enable detecting the peaks of the Gaussian mixture as a valid
estimate of the mean values. It is shown in the simulation results that this is
sufficient for reaching acceptable results. Since we need to compute the pdf of
the test statistics for both adversary and non-adversary measurements, we use
this detector in the centralized version of the proposed method. The details
of the procedure is shown in Algorithm 1 (Centralized AR-DLMS algorithm)
in which the adversary detection based on measurements is demonstrated in
Algorithm 2.

4.3 Link adversary detector based on intermediate estimations

Following the model in (3), the BHT detector decides on adversary link if we
have

p(H̃1)p(Ψ l|H̃1) ≥ p(H̃0)p(Ψ l|H̃0), (24)

where index i is omitted for the sake of brevity. Denoting p(H̃1) = pa, p(H̃0) =
1− pa, and the likelihoods are as

p(Ψ l|H̃1) =
1

(2πσ2
1)

L
2

exp(
−1

2σ2
1

||Ψ l −ψl||2) = N(ψl, σ
2
1I), (25)
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and

p(Ψ l|H̃0) =
1

(2πσ2
0)

L
2

exp(
−1

2σ2
0

||Ψ l −ψl||2) = N(ψl, σ
2
0I), (26)

where the error vector el in (3) is assumed to be a zero-mean Gaussian ran-
dom variable with variance σ2

e and independent from vl which is a zero-mean
Gaussian noise with variance σ2

v , σ2
0 = σ2

v , and σ2
1 = σ2

v + σ2
e . Hence, with

some calculations and simplifications, (24) results in the final link adversary
detection criterion as

||Ψ l −ψl||2 ≥ ThL, (27)

where the optimum threshold is equal to

ThL = 2σ2
v(1 +

σ2
v

σ2
e

)
[

log(
1− pa
pa

) + L log(
σ1
σ0

)
]
. (28)

The issue in the detector of (27) is that we do not know ψl in advance and
the threshold value depends on parameters which are not known beforehand.
Moreover, if the node l is not a link adversary and knows that it is not,
then we can resort to ψl = Ψ l = ψ0. But, we can not really know that
the link is not captured by the adversary before detection. So, if we wait
for a fixed delay of D samples to be sure that we have a rough estimate of
the unknown vector, and if the intermediate estimations of adversaries are
far apart from the true estimation, we can detect the adversaries by outlier
detection. Therefore, if we find the most distant values of the test statistics
and detect to which nodes they belong, we can detect the adversaries. The
details of the proposed AR-DC-DLMS is shown in Algorithm 3 (Decentralized
algorithm) in which the adversary detection based on intermediate estimations
is explained in Algorithm 4.

4.4 The proposed Algorithms

The general pseudocode of centralized adversary-resilient distributed estima-
tion algorithm AR-DLMS is shown in Algorithm 1. In this algorithm, the
detected adversary nodes are excluded in updating the centralized estimation.
In algorithm 1, the adversary detection is done via Algorithm 2. Moreover, the
proposed decentralized AR-DC-DLMS algorithm is provided in Algorithm 3.
This is a three step adaptation-detection-combination algorithm in which the
adversary detection is done in Algorithm 4. The total communication reduc-

tion ratio is equal to 1
N

∑
k

(|Nk|−Nmax)
|Nk| and communication reduction ratio

at node k is equal to |Nk|−Nmax

|Nk| . This communication reduction ratio leads to

lower energy consumption of the entire network.

5 Convergence analysis

In this section, the convergence of the mean of the algorithm is discussed. The
matrices Hl,i and Ql,i are assumed to be random with M and M∆ nonzero
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Algorithm 1 Centralized adversary-resilient distributed estimation AR-
DLMS
Input: Observations xl,i; Regression vectors ul,i.
Parameters: Step-size µglob, Fixed-delay D.
Initialize i = 0, ŵi = 0L×1.

repeat
– i=i+1;
– For k = 1 : N
– Compute Tk,i = ||x̃k − Ũ

T
k ŵi||.

– if i ≥ D
– Adversary detection based on measurements based on algorithm 2.
– end if;
– end for;
– Update: ŵi = ŵi−1 + µglob

∑
l∈Non−Adv ul,i(dl,i − uTl,iŵi−1)

until A stopping criterion is reached

Algorithm 2 Adversary detection based on measurements
– Calculate the mixture of Gaussian pdf of T.
– Calculate the means of two Gaussian variables by peak finding (µ0, µ1) in the p(T ).

– Calculate the threshold Tho,f ≈ µ0+µ1
2

.
– Adversary-detector: Tk,i ≥ Tho,f .

Algorithm 3 Decentralized adversary-resilient doubly-compressed diffusion
LMS (AR-DC-DLMS)
Input: Observations xl,i; Regression vectors ul,i.
Parameters: Step-sizes µk, Fixed-delay D, Parameters nmax, Nmax.
Initialize i = 0, ŵk,i = 0L×1.

repeat
– i=i+1;
– For k = 1 : N
– Generate random Hk,i and Qk,i

Adaptation:
– Compute ϕk,i = wk,i−1 + µk

∑
l∈Nk clk(1− γ̂lk,i)gl,i where gl,i is given by (6).

Adversary-detection:
– if i ≥ D
– Determine γ̂lk,i based on algorithm 4.

Combination:
– ŵk,i = akkψk,i +

∑
l∈N−

k
alk

[
(1− γ̂lk,i)ϕlk,i + γ̂lk,iwk,i−1

]
where ϕlk,i is given by

(8)
– end for.

until A stopping criterion is reached

entries on their diagonal. Hence, we have E{Hl,i} = M
L IL and E{Ql,i} =

M∆

L IL. We shall now analyze the stochastic mean convergence of the AR-DC-
DLMS algorithm. We follow the approach of [16] with the difference that we
exclude the adversaries in the AR-DC-DLMS algorithm. We shall investigate
the effect of this exclusion on the condition of the mean convergence. In this
regard, we consider three assumptions, the first and second assumptions being
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Algorithm 4 Adversary detection based on intermediate estimations

– Calculate Tk,l,i = ||ϕl,i − ŵk,i−1||2.

– Calculate T̃k,l,i = Sort{Tk,l,i}.
– Detect nmax of greatest T̃k,l,i (Farthest outliers).
– Detect maximum Nmax non-repetitive Adversaries from nmax previous items (Farthest

outliers belong to what nodes).
– Determine γ̂lk,i based on previous items.

the same as in [16]. The assumptions on the regression data, selection matrices,
and the false data injections are as follows:

Assumption 1: The regression vectors uk,i are independent zero-mean
white random processes.

Assumption 2: The matrices Hk,i and Ql,i are spatially independent
white random processes and are independent from each other as well as any
other processes.

Assumption 3: The false data injection vectors qk,i are independent from
the regression vectors uk,i, selection matrices Hk,i, Qk,i, and noise nk,i.

The error vector is defined as w̃k,i = wo −wk,i. Also, we collect all error
vectors across all nodes into the w̃i = col{w̃1,i, w̃2,i, ..., w̃N,i}. We show in
the Appendix A that a sufficient condition of convergence of the mean of the
proposed algorithm is

µk <
2

λmax,k
, (29)

where we have:

λmax,k = (
MM∆

L2
+ pa)λmax(Rk) + (1− M∆

L
)(1 + pa)λmax(Ruk)

+
M∆

L
(1− M

L
)(1 + pa)maxl∈Nkclkλmax(Rul), (30)

where Rk and Ruk are defined in the Appendix A and λmax(.) denotes the
maximum eigenvalue of the matrix argument. Obviously, the above maximum
eigenvalue is greater than that obtained in [16] for the DC-DLMS algorithm.
So, the sufficient convergence condition of µk of the AR-DC-DLMS is more
stringent than that of the DC-DLMS algorithm. Increasing the percentage of
adversaries pa, the step size parameters µk should be selected smaller and the
convergence condition is tighter.

6 Cramer-Rao bound for distributed estimation with adversaries

In this section, we calculate the CRB [52] for the problem of distributed esti-
mation with adversaries. All the observations can be modeled as

xk,i = uTk,i(w + q̃k,i) + nk,i (31)
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where q̃k,i is the false data injection and can be modeled as a Bernoulli-
Gaussian variable as follows

q̃k,i =

{
qk,i with probability pa

0 otherwise,
(32)

where the qk,i are assumed to be white zero-mean random processes1 with
variance σ2

q . Then, the observation vector of the k’th node which is defined as

xk = [xk,1, xk,2, ..., xk,I ]
T , can be written as:

xk = Ukw + zk (33)

where UT
k = [uk,1|uk,2|...|uk,I ], and zk = [zk,1, zk,2, ..., zk,I ]

T with zk,i =
uTk,iq̃k,i + nk,i. All the measurements are X = [x1|x2|..., |xN ]. The Fisher-
Information Matrix (FIM) elements are defined as

Fl,j = −E{∂
2 log p(X|w)

∂wlwj
} (34)

The closed form formula of the FIM is derived in the Appendix B and is equal
to:

F =

N∑
k=1

UT
kP−1k Uk (35)

where Pk = diag(σ2
zk,i

) in which σ2
zk,i

= paσ
2
q ||uk,i||2 + σ2

k,n is defined in the
Appendix B. Then, the CRB is as follows:

E{(wj − ŵj)2} ≥ CRBj =
[
F−1

]
jj

(36)

To find a closed form formula for the CRB as well, we assume for simplicity
that σ2

k,n = σ2
n and assume that L is large. We can deduce that σ2

zk,i
≈ σ2

z =

Lpaσ
2
qσ

2
u + σ2

n. Then, we have F ≈ 1
σ2
z

∑N
k=1 UT

kUk. The term UT
kUk can be

approximated by Iσ2
uIL. Finally, the CRB is approximated as

E{(wj − ŵj)2} ≥ CRBj ≈
σ2
z

NIσ2
u

=
Lpaσ

2
qσ

2
u + σ2

n

NIσ2
u

(37)

1The false data injection error qk,i for various adversary nodes and for various time
indexes will be more covert (if it is biased in one direction, the adversary can be detected
from this bias) if they are assumed to be positive and negative equiprobably. So, we assume
such distribution for qk,i. We could assume other distribution for qk,i and find the CRB
under that assumption.
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7 Simulation Results

In this section, the performance of the proposed AR-DC-DLMS algorithm for
distributed estimation is evaluated with respect to state-of-the-are techniques.
For the performance metric, there are mean square deviation (MSD), normal-
ized MSD, or Signal to Noise Ratio (SNR). Because of the versatility of MSD,
the performance of the proposed method is evaluated by calculating the MSD
defined as

MSD(dB) = 20log(||w−wo||2).

The number of Monte Carlo simulations are selected as 50 and the results
are averaged over these 50 random independent run of the experiment. The
programming tool is MATLAB which is run on a laptop with corei7. The recon-
struction quality performance of the proposed algorithm is compared with the
three approaches mentioned earlier. In all the experiments, L = 50. The sensor
network size is chosen with N = 16 sensors and is shown in Fig 1. The chan-
nels between the nodes are assumed to be AWGN with a background noise.
Also, the standard deviation of the Gaussian background noise is σn = 0.025.
The elements of the 50 × 1 parameter vector wo are selected as Gaussian iid
random variables with zero mean and variance equal to 1. Also, the 50 × 1
regression vectors uk,i are exactly generated as the unknown parameter vec-
tor. At first, we investigate the effect of parameters of the proposed algorithm
which are delay D, nmax, and Nmax. Since the effect of step-sizes is well-known
in the literature, we exclude to inspect the effect of step-sizes and they are se-
lected as µglob = 0.005 and µk = µ = 0.07 in all experiments hereafter. The
explanation for the adversaries and details of false data injection attacks are
the same as the following first experiment that will be presented in sequel.
Figure 2 shows the effect of the delay parameter D on the MSD curve versus
iteration. Figure 3 demonstrates the effect of nmax, and Figure 4 depicts the
effect of parameter Nmax. The mentioned figures show that the sensitivity of
the performance of the proposed algorithm with respect to D and nmax is low.
So, we select the values of D = 100 and nmax = 10 in all experiments. Also,
Figure 4 shows that the best value for parameter Nmax is equal to 2. Hence,
we choose Nmax = 2 in the following experiments. After adjusting the value
of parameters, three experiments are performed and discussed next.
In the first and second experiments, the performance of the proposed cen-
tralized AR-DLMS and decentralized AR-DC-DLMS algorithm are compared
with the centralized DLMS without adversary detection, the centralized DLMS
with ideally known adversaries, the AR-DC-DLMS with known adversaries,
DC-DLMS algorithm and Cramer-Rao bound. In the first experiment, we use
only the first type of attack for the adversaries. The elements of the false
data qk,i are assumed to be iid Gaussian random variables with zero mean
and variance σ2

q = 0.36. The parameters of AR-DC-DLMS are selected as
D = 100, Nmax = 2, and nmax = 10. To fairly compare the proposed method
to other communication reducing algorithms, we use the same communication
reduction ratio at each node for all algorithms. We assume to have 4 attacked
nodes among the 16 nodes in the network. The adversaries are assumed to be
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Fig. 1 The network used in the simulations.

fixed and are the 2nd, 5th, 10th, and 12th node in the network. The MSD is
displayed in Fig. 5 versus the iteration number. Seven curves are depicted in
the mentioned figure. The first is the classic DC-DLMS algorithm which have
not any adversary detector. The second is the DC-DLMS with ideal adversary
detector which means that we know the adversaries beforehand and exclude
them from the algorithm. The third is the proposed AR-DC-DLMS algorithm.
The fourth is the centralized algorithm without adversary detection. The fifth
is the centralized with ideal adversary detection which means the adversaries
are known in advance. The sixth is the centralized AR-DC-DLMS algorithm.
The last curve is the CRB which is calculated in Section 6. It shows that the
final MSD of the centralized AR-DLMS with adversary detection reaches the
final MSD of the centralized AR-DLMS with ideal adversary detection but
with a delay due to detection processing. Similarly, the final MSD of the de-
centralized AR-DC-DLMS reaches the final MSD of the AR-DC-DLMS with
ideal adversary detection. Also, the proposed AR-DC-DLMS algorithm is 15dB
better than the DC-DLMS algorithm.
In the second experiment, we use a similar experiment to the first experiment.
But, we use both first and second attack models simultaneously. In this second
experiment, the adversaries not only inject false data into the measurements
but also injects false data into the intermediate estimations. For the elements
of the false data vector el,i, we use an iid Gaussian random variable with zero
mean and variance σ2

e = 0.36.

For the second experiment, the MSD versus iteration number is depicted
in Fig. 6. The curves are similar to the previous figure. It can be seen that
the results are somehow similar to these of the first experiment. However,
the convergence of the proposed AR-DC-DLMS is slower than in the first
experiment and the final MSD of the DC-DLMS is higher than before. The
second experiment shows that the proposed AR-DC-DLMS algorithm works
well for both attack models when the attackers take control of communication
link in addition to taking control of the measurements.
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Fig. 2 MSD versus iteration number for the proposed algorithm for different values of delay
parameter D. The other parameters are selected as nmax = 10 and Nmax = 2.

In the next experiment, we use only the first attack model.
In the third experiment, we compare the AR-DC-DLMS algorithm with some
state-of-the-art algorithms. The other algorithms are DLMS [1]-[4], Correction-
based DLMS (CDLMS) [38], resilient distributed diffusion under F-local bounds
(R-DLMSAW) [41], DC-DLMS [16] and Reduced Communication DLMS (RC-
DLMS) [8]. The MSD is displayed in Fig. 7 versus the iterations’ number. It
shows that the proposed AR-DC-DLMS outperforms the other algorithms with
respect to final MSD. However, the lower final MSD is obtained with a slower
rate of convergence. Table 1 shows the final MSD of various algorithms. It
demonstrates that the proposed AR-DC-DLMS has at least a 5dB lower final
MSD with respect to others.

8 Conclusion and future works

In this paper, an adversary-resilient doubly-compressed diffusion LMS, called
AR-DC-DLMS, is proposed for the distributed estimation problem. The re-
siliency to adversaries is obtained by detecting adversaries using a BHT. We
proved that the test statistics is a distance metric which should be compared
to a threshold which is obtained in closed form. Since its calculation requires
the adversary statistics that are not available beforehand, a suboptimal pro-
cedure for calculating the threshold is proposed. Based on the attack model,
the adversary detection is performed using measurements or using interme-
diate estimations. Direct measurements are used in the centralized version of
the proposed algorithm, the AR-DLMS, while intermediate estimations are
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Fig. 3 MSD versus iteration number for the proposed algorithm for different values of
parameter nmax. The other parameters are D = 100 and Nmax = 2.

used in the decentralized version of the algorithm, the AR-DC-DLMS. The
proposed algorithm is a three-step adaptation-detection-combination strategy
in which the detected adversaries are excluded in the adaptation and combi-
nation steps. Moreover, the mean convergence analysis of the AR-DC-DLMS
is provided in the paper. We also derived the CRB for the distributed esti-
mation problem in presence of adversaries. The simulation results show the
effectiveness of the proposed algorithms in comparison to the ideal case where
the adversaries are known in advance and also in comparison to some state-of-
the-art algorithms. The main limitation of the proposed method which limits
the use of this algorithm in practical scenarios is the usage of simple false
data injection models. For example, an adversary may inject false data for a
short duration and then stop the false data injection. So, more sophisticated
false data injection models (e.g. non-stationary) should be used in practical
situations. It will be addressed in future works.

Appendix A The convergence of the mean condition

For calculating the sufficient condition of mean convergence of the weight
vectors, we shall define some notations. We define ψ̃k,i = wo−ψk,i. Then, we

collect them in a vector as ψ̃i = col{ψ̃1,i, ψ̃2,i, ..., ψ̃N,i}. Let Rul,i = ul,iu
T
l.i.

The other notations are defined as follows:

M = diag{µ1IL, µ2IL, ..., µNIL} (38)

Ru,i = diag{Ru1,i, ...,RuN ,i} (39)
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Fig. 4 MSD versus iteration number for the proposed algorithm for different values of
Nmax. The other parameters are D = 100 and nmax = 10

C = C⊗ IL (40)

RQ,i = diag
{ ∑
l∈N1

cl1Ql,iRul,i, ...,
∑
l∈NN

clNQl,iRul,i

}
(41)

RγQ,i = diag
{ ∑
l∈N1

cl1γl1Ql,iRul,i, ...,
∑
l∈NN

clNγlNQl,iRul,i

}
(42)

Hi = diag{H1,i,H2,i, ...,HN,i} (43)

Q
′

i = diag
{ ∑
l∈N1

cl1(IL −Ql,i), ...,
∑
l∈NN

clN (IL −Ql,i)
}

(44)

Q
′

γ,i = diag
{ ∑
l∈N1

cl1γl1(IL −Ql,i), ...,
∑
l∈NN

clNγlN (IL −Ql,i)
}

(45)

Ru,i = diag{Ru1,i,Ru2,i, ...,RuN ,i} (46)

Qi = diag{Q1,i,Q2,i, ...,QN,i} (47)

F = diag
{ ∑
l∈N1

al1γl1,i(IL −Hl,i), ...,
∑
l∈NN

alNγlN ,i(IL −Hl,i)
}

(48)

F
′

= diag
{ ∑
l∈N1

al1γl1,iHl,i, ...,
∑
l∈NN

alNγlN ,iHl,i

}
(49)

[
RQ(I−H),i

]
kl

= clkQl,iRul,i(IL −Hk,i) (50)
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Fig. 5 MSD versus iteration number for centralized and decentralized algorithms with 4
adversaries. Only the first attack model is used.

[
RγQ(I−H),i

]
kl

= clkγlk,iQl,iRul,i(IL −Hk,i) (51)

D = Di ⊗ IL, dkl,i =
∑
l∈N

alk(1− γlk,i) (52)

RqQ,i = diag
{ ∑
l∈N1

cl1Ql,iRul,iql,i, ...,
∑
l∈NN

clNQl,iRul,iql,i

}
(53)

RγqQ,i = diag
{ ∑
l∈N1

cl1γl1Ql,iRul,iql,i, ...,

∑
l∈NN

clNγlNQl,iRul,iql,i

}
(54)

Aq,i = diag
{ ∑
l∈N1

cl1(IL −Ql,i)Rul,iql,i, ...,

∑
l∈NN

clN (IL −Ql,i)Rul,iql,i

}
(55)

Aγq,i = diag
{ ∑
l∈N1

cl1γl1(IL −Ql,i)Rul,iql,i, ...,

∑
l∈NN

clNγlN (IL −Ql,i)Rul,iql,i

}
(56)

Si = col{u1,in1,i, ...,uN,inN,i} (57)
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false data injection attack models are used.

After the above definitions, some manipulations show that we have:

w̃i = (INL + F)ψ̃i + F
′
w̃i−1 +Dw̃i−1 (58)

For investigating the mean convergence, we take expectation from the above
equation. So, we reach:

E{w̃i} = E{(INL + F)}E{ψ̃i}+ (E{F
′
}+ E{D})E{w̃i−1} (59)

In the above formula, the term of E{ψ̃i} is difficult to compute. It needs to
calculate a recursion formula for w̃i. It is done and for brevity we omit the
details of the derivation. We have:

ψ̃i =
(
INL −MRQ,iHi −MQ

′

iRu,i −MRQ(I−H),i

−MRγQ,iHi −MQ
′

γ,iRu,i −MRγQ(I−H),i

)
w̃i−1

−
(
MCTQi +MQ

′

i +MCTQγ,i +MQ
′

γ,i

)
Si

−MRqQ,i −MRγqQ,i −MAq,i −MAγq,i (60)

Since we assume that E{qk,i} = 0 and expectation of noise vectors are zero,
the expectations of the above terms in the forth row of (60) are zero. Then,
some calculations lead to the following formula:

E{ψ̃i} =
(
INL −

MM∆

L2
MR− (1− M∆

L
)MRu
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Fig. 7 MSD versus iteration number for decentralized algorithms of AR-DC-DLMS, DC-
DLMS, R-DLMSAW, DLMS, CDLMS, and CR-DLMS.

Table 1 Final MSD of various diffusion algorithms

Algorithm DLMS CR-DLMS R-DLMSAW AR-DC-DLMS DC-DLMS CDLMS

MSD (dB) -18 -17.3 -22.6 -27.7 -15 -19

−M∆

L
(1− M

L
)MCTRu − pa

MM∆

L2
MR− pa(1− M∆

L
)MRu

−pa
M∆

L
(1− M

L
)MCTRu

)
E{w̃i−1} = BE{w̃i−1}, (61)

where

Ru = E{Ru,i} = diag{Ru1
, ...,RuN } (62)

R = diag{R1, ...,RN} (63)

with

Rk =
∑
l∈Nk

clkRul . (64)

Then, replacing (61) into (59), and with some calculations, we reach to

E{w̃i} =
(

1 + pa(1− M

L
)
)
BE{w̃i−1}

+
(
pa
M

L
+ (1− pa)

)
E{w̃i−1} = (B

′
+ Y)E{w̃i−1}, (65)
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where B′ = (1 + pa(1 − M
L )
)
B and Y = [pa

M
L + (1 − pa)]IN . Then, (65) can

be written in the following recursive form

E{w̃i} = (B
′
+ Y)E{w̃i−1} (66)

Therefore, similar to [16], the proposed AR-DC-DLMS asymptotically con-
verges in the mean toward wo if, and only if ρ(B′ + Y) < 1 where ρ(.) stands
for the spectral radius of the matrix argument. From matrix algebra, we have
ρ(X) ≤ ||X|| for any induced norm. So, we have:

ρ(B
′
+ Y) ≤ ||B

′
+ Y||b,∞ ≤ max||

[
B
′
+ Y

]
kl
|| (67)

where ||.||b,∞ is the block maximum norm. Deducing from (67), we will have:

ρ(B
′
+ Y) ≤ maxk,l||IL − µk

[MM∆

L2
+ (1− M∆

L
)Ruk

+
M∆

L
(1− M

L
)clkRul − pa[

MM∆

L2
Rk + (1− M∆

L
)Ruk

+
M∆

L
(1− M

L
)clkRul ] + pa

M

L
+ (1− pa)

]
|| < 1 (68)

Similar to [16], as a linear combination with positive coefficients of positive
definite matrices Rk, Ruk , and Rul , the matrix in square brackets on the RHS
of (68) is positive definite. Then, the condition in right side of (68) holds if
(29) is satisfied. Then, the λmax,k is given by (30) and the proof is completed.

Appendix B Calculating the Fisher-information matrix

For calculating the FIM, the total likelihood can be computed as

p(X|w) =

N∏
k=1

p(xk|w) =

N∏
k=1

pzk(xk −Ukw). (69)

Since zk = [zk,1, zk,2, ..., zk,T ]T with zk,i = uTk,iq̃k,i + nk,i, the zk,i is Gaus-

sian with zero mean and variance σ2
zk,i

= E(z2k,i). Since nk,i and q̃k,i are

assumed to be independent and uncorrelated with mean zero, we have σ2
zk,i

=

E{(uTk,iq̃k,i)2}+E{n2k,i}. This would be equal to σ2
zk,i

= E{uTk,iq̃k,iq̃
T
k,iuk,i}+

σ2
k,n where σ2

k,n is the variance of noise at node k. Some simple calculations
lead to the following formula

σ2
zk,i

= uTk,iE{q̃k,iq̃Tk,i}uk,i + σ2
k,n = paσ

2
q ||uk,i||2 + σ2

k,n, (70)

where it is assumed the elements of q̃k,i are uncorrelated. Since the ele-
ments of zk is independent of each other, the vector zk is Gaussian with
zero mean and diagonal covariance matrix equal to Pk = diag(σ2

zk,i
). So, from

(69), we can write the log-likelihood as log p(X|w) =
∑N
k=1

[
− I

2 log(2π) −
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1
2

∑
i log(σ2

zk,i
)− 1

2

(
xk −Ukw

)T
P−1k

(
xk −Ukw

)]
. So, the partial derivative

will be equal to ∂ log p(X|w)
∂wj

= − 1
2

∑N
k=1

∂
∂wj

[
eTkP−1k ek

]
where ek = xk−Ukw.

We can write B = eTkP−1k ek =
∑I
i=1 P

−1
k,iie

2
k,i. So, the partial derivative is

equal to ∂B
∂wj

=
∑I
i=1 2P−1ii ek,i

∂ek,i
∂wj

. Also, we have
∂ek,i
∂wj

= −Uk,i,l. Taking

the second partial derivative and doing some simple manipulations, we reach

Fl,j = −E{∂
2 log p(X|w)
∂wlwj

} = −
∑N
k=1

∑T
i=1 P

−1
k,iiUk,i,jUk,i,l, where the this for-

mula leads to (35).
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