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This paper proposes an adversary resilient communication-efficient distributed estimation algorithm for time-varying networks. It is a generalization of the doubly-compressed Diffusion Least Mean Square (DLMS) algorithm that isn't adversary-resilient. The major drawback in existing adversary detectors in the literature is that they suggested the detection criterion heuristically. In this paper, an adversary detector is suggested theoretically based on a Bayesian Hypothesis Test (BHT). It is proved that the test statistics of the detectors is a distance metric compared to a threshold similarly to related papers in the literature. Hence, we prove the validity of the detection criterion based on BHT. The other difficulty encountered in existing works is the determination of thresholds. In this paper, the optimum thresholds are derived in closed-form. Since the optimum thresholds need the values of unknown parameters, it is not feasible to derive them. Hence, suboptimal procedures for determining the thresholds are provided. Moreover, convergence of the mean of the algorithm is investigated analytically. In addition, the Cramer-Rao Bound (CRB) of the problem of distributed estimation based on all nodes observations in the presence of adversaries is calculated. The simulation results show the effectiveness of the proposed algorithms and demonstrate that the proposed algorithms reach the performance of the algorithm when the adversaries are ideally known in advance, with some delay.

Introduction

Distributed estimation problems have been vastly investigated in recent years [START_REF] Sayed | Adaptation, Learning and Optimization over networks[END_REF]- [START_REF] Bershad | Stochastic analysis of the diffusion LMS algorithm for cyclostationary white Gaussian inputs[END_REF], with potential applications in networks such as Wireless Sensor Networks (WSN) [START_REF] Shirazi | On Distributed Estimation in Hierarchical Power Constrained Wireless Sensor Networks[END_REF] and Internet of Things (IoT) networks [START_REF] Chen | A Robust Diffusion Estimation Algorithm for Asynchronous Networks in IoT[END_REF]. In most distributed estimation problems, a collection of physically distributed nodes aim to collaboratively estimate an unknown vector parameter (of an underlying physical phenomenon) from linear measurements observed by all nodes. There are three methods: incremental, consensus and diffusion strategies for distributed estimation where diffusion strategy is reported to have more advantages [START_REF] Sayed | Adaptation, Learning and Optimization over networks[END_REF]. Diffusion-based algorithms for distributed estimation are used extensively in the literature [START_REF] Sayed | Adaptation, Learning and Optimization over networks[END_REF]- [START_REF] Bershad | Stochastic analysis of the diffusion LMS algorithm for cyclostationary white Gaussian inputs[END_REF] in which the neighboring nodes diffuse their estimates and measurements to adapt and combine their estimates.

In these networks, energy consumption [START_REF] Abkenar | Energy Optimization in Association-Free Fog-IoT Networks[END_REF], [START_REF] Amarlingam | A Novel Low-Complexity Compressed Data Aggregation Method for Energy-Constrained IoT Networks[END_REF] is an important issue. To reduce the energy consumption, distributed estimation algorithms can reduce the amount of data to be communicated as suggested in [START_REF] Arablouei | Distributed Least Mean-Square Estimation With Partial Diffusion[END_REF]- [START_REF] Zayyani | Communication Reducing Diffusion LMS Robust to Impulsive Noise Using Smart Selection of Communication Nodes[END_REF]. In pioneering works [START_REF] Arablouei | Distributed Least Mean-Square Estimation With Partial Diffusion[END_REF], [START_REF] Arablouei | Adaptive Distributed Estimation Based on Recursive Least-Squares and Partial Diffusion[END_REF], a partial diffusion algorithm is suggested in which a partial part of intermediate estimations are sent to the neighbors. In [START_REF] Arablouei | Analysis of a reducedcommunication diffusion LMS algorithm[END_REF], a random subset of neighboring nodes are omitted to communicate with the corresponding node and they are substituted with the own estimate of the node. Moreover, [START_REF] Lee | Data-selective diffusion LMS for reducing communication overhead[END_REF] devised a data-selective diffusion-LMS algorithm to reduce the communication overhead in which a dynamic diffusion method is presented which shares only the dynamic neighborhood information. Besides the selective approaches described above, in [START_REF] Sayin | Compressive Diffusion Strategies Over Distributed Networks for Reduced Communication Load[END_REF] and [START_REF] Sayin | Single Bit and Reduced Dimension Diffusion Strategies Over Distributed Networks[END_REF], the authors suggested a compressive diffusion strategy to reduce the communication load. In addition, [START_REF] Chen | Broken-motifs diffusion LMS algorithm for reducing communication load[END_REF] uses motifs which are local structural patterns common in wireless sensor networks. In [START_REF] Huang | Communication-reducing diffusion LMS algorithm over multitask networks[END_REF], the probabilities of data fusion from neighboring nodes is controlled by minimizing the Mean-Square-Deviation (MSD) to reduce the communication cost. Also, [START_REF] Shiri | Distributed sparse diffusion estimation with reduced communication cost[END_REF] suggested a new version of sparse diffusion LMS algorithm taking both communications and error cost into account. Furthermore, a data reserved periodic diffusion LMS is presented in [START_REF] Lee | Data-Reserved Periodic Diffusion LMS With Low Communication Cost Over Networks[END_REF] which has a low communication cost. Recently, a doubly compressed diffusion LMS was proposed using compression by removing the entries in both adaptation and combination steps [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF]. Moreover, a neighbor-partial diffusion LMS was recently derived using a random neighbor node estimation to replace the estimation of random removing nodes [START_REF] Chen | Communication-Reducing Algorithm of Distributed Least Mean Square Algorithm with Neighbor-Partial Diffusion[END_REF]. Also, an smart selection of nodes is suggested for communication reduction in which an optimum linear combination of available estimates is used instead of removing node estimates [START_REF] Zayyani | Communication Reducing Diffusion LMS Robust to Impulsive Noise Using Smart Selection of Communication Nodes[END_REF].

In wireless and IoT networks, security issues should be considered in designing the signal processing tasks such as distributed estimation. So, designing adversary-resilient distributed estimation algorithms is a necessity [START_REF] Yang | Adversary-Resilient Distributed and Decentralized Statistical Inference Machine Learning[END_REF]. To this end, some distributed estimation algorithms are suggested in the literature [START_REF] Chen | Resilient Distributed Estimation Through Adversary Detection[END_REF]- [START_REF] Ntemos | Secure Information Sharing in Adversarial Adaptive Diffusion Networks[END_REF]. In [START_REF] Chen | Resilient Distributed Estimation Through Adversary Detection[END_REF], a flag raising distributed estimator is proposed that allows the agents under attack to perform accurate parameter estimation and detect the adversarial agents simultaneously. [START_REF] Chang | Correction-based diffusion LMS algorithms for secure distributed estimation under attacks[END_REF] suggests a hybrid algorithm composed of a non-cooperative LMS (nc-LMS) algorithm and a correction-based diffu-sion LMS. Also, [START_REF] Hua | Secure distributed estimation against false data injection attack[END_REF] proposes a distributed algorithm based on the Kullback-Leibler divergence to detect false data injection attacks. Moreover, in a recent work [START_REF] Li | Resilient Distributed Diffusion in Networks With Adversaries[END_REF], a resilient distributed diffusion algorithm is suggested which is robust to any data falsification attack when the number of compromised agents in the local neighborhood of a normal agent is bounded. In addition, in [START_REF] Shi | A Secure Distributed Information Sharing Algorithm Based on Attack Detection in Multi-Task Networks[END_REF], by determining an adaptive threshold, a distributed detection algorithm is proposed based on the correlation between tasks and a safe multi-task diffusion least mean square, SM-DLMS. Not only do the authors reduce communication costs, they also effectively decrease the impact of attacks. Furthermore, a secure diffusion least mean squares (S-DLMS) algorithm is proposed which can be considered as a hybrid system, i.e. a nc-LMS subsystem and a DLMS subsystem [START_REF] Liu | Secure Distributed Estimation over Wireless Sensor Networks under Attacks[END_REF]. [START_REF] Ntemos | Secure Information Sharing in Adversarial Adaptive Diffusion Networks[END_REF] proposed an attack detection mechanism and also a reputation model which is utilized by the agents to estimate the other agents' trustworthiness based on their past interactions. Recent papers are dedicated to the influence of disturbances, modeling errors, various uncertainties in real world systems as well as robust and filtering techniques [START_REF] Cheng | Asynchronous Fault Detection Observer for 2-D Markov Jump Systems[END_REF]- [START_REF] Fang | Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics[END_REF].

In this paper, an adversary-resilient yet communication reduced distributed estimation algorithm is devised. We modify the doubly-compressed diffusion LMS (DC-DLMS) algorithm in [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF] to become robust to adversary agents. This paper is different from our past papers on one bit distributed estimation [START_REF] Zayyani | A Distributed 1-bit Compressed Sensing Algorithm Robust to Impulsive Noise[END_REF], robust distributed estimation against impulsive noise [START_REF] Zayyani | A Distributed 1-bit Compressed Sensing Algorithm Robust to Impulsive Noise[END_REF], [START_REF] Korki | Weighted diffusion continuous mixed p-norm algorithm for distributed estimation in non-uniform noise environment[END_REF], [START_REF] Zayyani | A Robust Generalized Proportionate Diffusion LMS Algorithm for Distributed Estimation[END_REF], [START_REF] Zayyani | Robust Minimum Disturbance Diffusion LMS for Distributed Estimation[END_REF] and communication reducing distributed estimation [START_REF] Zayyani | Communication Reducing Diffusion LMS Robust to Impulsive Noise Using Smart Selection of Communication Nodes[END_REF], in that it is our first attempt in secure distributed estimation problem [START_REF] Chen | Resilient Distributed Estimation Through Adversary Detection[END_REF]- [START_REF] Ntemos | Secure Information Sharing in Adversarial Adaptive Diffusion Networks[END_REF]. The strategy of communication reduction in [START_REF] Zayyani | Communication Reducing Diffusion LMS Robust to Impulsive Noise Using Smart Selection of Communication Nodes[END_REF] is different from this paper because [START_REF] Zayyani | Communication Reducing Diffusion LMS Robust to Impulsive Noise Using Smart Selection of Communication Nodes[END_REF] uses an smart node selection rather than random node selection strategy is used in this paper. In the proposed Adversary-Resilient DC-DLMS (AR-DC-DLMS) algorithm, an adaptation-detection-combination strategy is derived in which the adversary detection is performed by a Bayesian Hypothesis Test (BHT). The BHT adversary detector compares a test statistics to an optimal threshold. The test statistics is a distance metric and the optimal threshold depends on adversary attack parameters which are not available. So, a suboptimal procedure to select the threshold is proposed. In this paper, two adversary false data injection attack models are considered. The first attack model, injects the false data into the measurements at the nodes. The second attack model injects the false data into the intermediate estimations exchanged between nodes in the network. The adversary detector based on the measurements is performed in a centralized manner since all the measurements are needed for detection. The adversary detector based on intermediate estimations is performed in a decentralized manner and each node detects its own neighboring's adversaries. In addition, a theoretical mean convergence analysis of the proposed AR-DC-DLMS algorithm is provided. Moreover, an approximated closed form CRB formula for the distributed estimation problem in the presence of adversaries is provided. Simulation results show that the proposed algorithm reaches the final error performance of the ideal algorithm when the adversaries are known in advance.

In brief, the main contributions and novelties of the paper are:

-Proposing a BHT for adversary detection in two false data injection attack models, -Calculating analytically the optimum thresholds of BHT and proposing a suboptimal procedure to determine the thresholds practically, -Proposing the AR-DC-DLMS algorithm for a distributed estimation resilient to adversaries, -Calculating the CRB of the distributed estimation problem in presence of adversaries, -Providing the mean convergence analysis of the proposed algorithm.

The organization of the remaining of the paper is as follows. Section 2 introduces the problem and model used in the paper. Section 3 reviews the basics of diffusion LMS and doubly compressed diffusion LMS algorithm. In section 4, the proposed adversary-resilient distributed estimation algorithm is derived. In section 5, the convergence analysis of the proposed algorithm is derived. Section 6 calculates the closed form CRB for the problem in presence of adversaries. Simulation results are presented in Section 7. Finally, conclusions are drawn in Section 8.

Distributed system model and problem formulation

Distributed estimation problem

Consider a network consisting of N sensors observing a linear scalar measurement of a common L × 1 unknown vector w o . The measurements are

x k,i = u T k,i w o + n k,i , (1) 
where 1 ≤ k ≤ N is the index of the sensor, 1 ≤ i ≤ I is the index of time, u k,i is the L × 1 zero-mean regression vector of sensor k at time index i and is known, and n k,i is the zero-mean measurement noise. The noise and the regression vectors are assumed to be independent of each other. The objective of the distributed estimation is to collaboratively and adaptively estimate the unknown vector w o using the known sequences of measurements and regression vectors {x k,i , u k,i } for 1 ≤ k ≤ N and 1 ≤ i ≤ I. Each node k can communicate the data with its neighboring nodes collected in the set N k .

In this paper, we assume that some of the sensors are attacked by adversaries whose attack models are presented in the following.

Adversary attack models

Although there are some important practical attacks such as denial of service attacks in WSN [START_REF] Nunez | Understanding the Performance of Software Defined Wireless Sensor Networks Under Denial of Service Attack[END_REF], we only consider the false data injection attacks discussed in [START_REF] Chen | Resilient Distributed Estimation Through Adversary Detection[END_REF]- [START_REF] Ntemos | Secure Information Sharing in Adversarial Adaptive Diffusion Networks[END_REF]. There are weak and strong false data injection attacks knowing partially or completely the information of the network and the compromised agent, respectively [START_REF] Li | Resilient Distributed Diffusion in Networks With Adversaries[END_REF]. In [START_REF] Li | Resilient Distributed Diffusion in Networks With Adversaries[END_REF], the single node attack model and the network attack model are designed. In this paper, since the focus is not on designing attacks, we use two simple false data injection models for the attacks [START_REF] Chen | Resilient Distributed Estimation Through Adversary Detection[END_REF]- [START_REF] Ntemos | Secure Information Sharing in Adversarial Adaptive Diffusion Networks[END_REF]. In the first one, an adversary attacker drifts the unknown vector w by an error q k,i . So, the attack hypothesis (H 1 ) can be defined as

x k,i = u T k,i (w + q k,i ) + n k,i γ lk,i = 1 (H 1 ) u T k,i w + n k,i γ lk,i = 0 (H 0 ) (2) 
where the attack error q is independent of the measurements vector, and H 0 is the no-attack hypothesis. In the first model of adversary, we should resort to an adversary detector based on the measurements. In the second attack model, the adversary takes control of the communication link and injects the false data into intermediate estimations ψ l,i by an error equal to e l,i . Therefore, the attack hypothesis is defined as

Ψ l,i = ψ l,i + e l,i + v l,i γ lk,i = 1 ( H1 ), ψ l,i + v l,i γ lk,i = 0 ( H0 ), (3) 
where the intermediate estimation ψ l,i are used as in the DLMS (4) as described in section 3. In Section 4, we derive the adversary detector based on the measurements and the detector based on the intermediate estimations.

3 Diffusion LMS and Doubly-compressed diffusion LMS algorithms

Diffusion LMS

In the Diffusion LMS (DLMS), a mean square error convex cost function is considered at each node. For the k th node, it is J k (w) = E{|x k,i -u T k,i w| 2 }. DLMS seeks the minimization of the aggregate global cost function defined as J glob (w) = N k=1 J k (w). In the Adapt-Then-Combine (ATC) strategy of DLMS, this is obtained cooperatively by updating the local estimations in the adaptation step and then combining the local estimations to yield a new estimation. Hence, the overall DLMS algorithm is a two-step algorithm as follows [START_REF] Sayed | Adaptation, Learning and Optimization over networks[END_REF]:

ψ k,i+1 = w k,i + µ k l∈N k c lk ĝl (w k,i ), w k,i+1 = l∈N k a lk ψ l,i+1 , (4) 
where ĝl (w

k,i ) = [x l,i -u T l,i w k,i ]u l,i = -∇ w (J l (w k,i ))
is the negative of the gradient of J l (w) with w replaced by the locally estimated w k,i . N k is the neighborhood set of the k'th sensor. ψ k,i+1 is the intermediate estimation of the k'th sensor at the next time index. It is calculated through the adaptation step of the algorithm. c lk and a lk are the combination coefficients from node l to node k in the adaptation and combination steps, respectively. [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF] is a variant of the DLMS algorithm where two random diagonal entry-selective matrices H k,i and Q k,i are used at node k and time index i. Matrices H k,i and Q k,i have M and M ∆ ones on their diagonals. The other diagonal entries are set to zero. The ones select the entries and the zeros remove the entries. The matrix H k,i selects the entries of the estimation and the matrix Q k,i selects the entries of the gradient. The overall DC-DLMS algorithm is as follows [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF]:

Doubly-compressed DLMS DC-DLMS

ψ k,i+1 = w k,i + µ k l∈N k c lk g l,i , w k,i+1 = a kk ψ k,i+1 + l∈N - k a lk H l,i w l,i + (I -H l,i )ψ k,i+1 , (5) 
where g l,i , the negative of the gradient is defined as [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF]:

g l,i = Q l,i u l,i x l,i -u T l,i H k,i w k,i + (I -H l.i )w l,i +(I L -Q l,i )u k,i x k,i -u T k,i w k,i , (6) 
and N - k stands for the neighborhood set of node k except k itself. The false measurement data (in first false data injection model) and false intermediate estimate (in second false data injection model) deviates the common estimate of the parameter vector in aforementioned DLMS and DC-DLMS algorithms. So, unfortunately, the DLMS and DC-DLMS algorithms are sensitive to attacks of the adversaries and their performances are degraded in the presence of adversaries. Therefore, the main aim of this paper is to devise an adversary resilient yet communication reduced diffusion algorithm. This is accomplished in the next sections.

The proposed adversary-resilient doubly-compressed DLMS algorithm

Basic idea

The main purpose of this paper is to modify the DC-DLMS [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF] to be resilient to adversary. In the adaptation and combination steps, we suggest to exclude the nodes attacked by adversaries. So, we propose the AR-DC-DLMS algorithm described as follows:

ψ k,i+1 = w k,i + µ k l∈N k c lk (1 -γ lk,i )g l,i , w k,i+1 = a kk ψ k,i+1 + l∈N - k a lk (1 -γ lk,i )ϕ lk,i + γ lk,i w k,i-1 , (7) 
where γ lk,i = 0 or 1 is the adversary l indicator of node k coefficient at instant i and ϕ lk,i is defined as

ϕ lk,i = H l,i w l,i-1 + (I L -H l,i )ψ k,i . (8) 
To design the γ lk,i , we should detect the adversary nodes. To do this, we suggest to use a Bayesian Hypothesis Test (BHT). To devise the detectors, we need to assume some attack model for the adversaries. Two different attack models can be considered as will be discussed in the next subsections.

Node adversary detector based on measurements

Next, we should consider the hypothesis testing. BHT selects γlk,i = 1 if the a posteriori probabilities satisfy p(H 1 |x k ) ≥ p(H 0 |x k ) and γlk,i = 0 otherwise where

x k = [x k,1 , ..., x k,i ] T . We have p(H 1 |x k ) ∝ p(H 1 )p(x k |H1) and P (H 0 |x k ) ∝ p(H 0 )p(x k |H 0 ). If the prior probability is assumed to be p(H 1 ) = p a , then p(H 0 ) = 1 -p a . Also, the likelihoods p(x k |H 1 ) and p(x k |H0) are equal to p(x k |H 1 ) = p(x i-1,k |H 1 )p(x k,i |H 1 , x i-1,k ) p(x k |H 0 ) = p(x i-1,k |H 0 )p(x k,i |H 0 , x i-1,k ) (9) 
where we denote

x i-1,k = [x k,1 , ..., x k,i-1 ] T . Assuming that u k,i-1 is indepen- dent of u k,i , and q k,i is independent of q k,i-1 , then we have p(x k,i |H 1 , x i-1,k ) = p(x k,i |H 1 ) and p(x k,i |H 0 , x i-1,k ) = p(x k,i |H 0 ). So that, we have log(p(x k |H 1 )) = i j=1 log(p(x k,j |H 1 )). Similarly, we have log(p(x k |H 0 )) = i j=1 log(p(x k,j |H 0 )
). The hypothesis in (2) can be written as:

x k,i = u T k,i w + ñk,i If k is adversary (H 1 ) u T k,i w + n k,i otherwise (H 0 ) ( 10 
)
where ñk,i = u T k,i q k,i + n k,i . If the length of the unknown vector w, equal to L, is large, then from the Central Limit Theorem (CLT), the distribution of ñk,i is Gaussian with zero mean and variance σ2 n = Lσ 2 u σ 2 q + σ 2 n , in which it is assumed that the elements of q k,i are identically distributed with zero mean and variance σ 2 q and are independent of n k,i . So, we have

p(x k,j |H 1 ) = 1 σn √ 2π exp( -1 2σ 2 n (x k,j -u T k,j w) 2 ), (11) 
and

p(x k,j |H 0 ) = 1 σ n √ 2π exp( -1 2σ 2 n (x k,j -u T k,j w) 2 ). ( 12 
)
So, we have log(p(

x k |H 1 )) = i j=1 -1 2 log(2πσ 2 n ) -1 σ2 n (x k,j -u T k,j w) 2 and log(p(x k |H 0 )) = i j=1 -1 2 log(2πσ 2 n ) -1 σ 2 n (x k,j -u T k,j w) 2 .
Back to the detector, with some calculations, the BHT detector decides the hypothesis H 1 of presence of an adversary when we have i j=1

(x k,j -u T k,j w) 2 ≥ Th i , (13) 
where the optimum threshold is equal to Th i

σ 2 n σ2 n σ2 n -σ 2 n
log( 1-pa pa ) + i log( σn σn ) . So, the adversary detector based on BHT needs the prior probability of adversary. This can be circumvented by a suboptimal procedure for determining the threshold which will be discussed later. Replacing σ2 n = Lσ 2 u σ 2 q + σ 2 n in the above formula leads to the following final formula for the threshold which is increasing with the time index i:

Th i = σ 2 n (1 + σ 2 n Lσ 2 q σ 2 u ) log( 1 -p a p a ) + i log( σn σ n ) ( 14 
)
To simplify the final detector, from ( 13), we decide on the presence of the adversary if we have

||x k -U T k w|| 2 ≥ Th i ( 15 
)
where

U k = [u k,1 |u k,2 |...|u k,i ] T in which u k,j is the column of U k .
The disadvantage of the adversary detector in [START_REF] Lee | Data-Reserved Periodic Diffusion LMS With Low Communication Cost Over Networks[END_REF] is that the computational complexity grows with the increasing the time index i. So, we can confine our observation vector to xk,i = [x k,i-R+1 , ..., x k,i ] T which consists of last R terms of the observations. Similar derivations lead to the final adversary detection criterion

||x k - ŨT k w|| 2 ≥ Th R , (16) 
where Ũk = [u k,i-R+1 |...|u k,i ] T , the threshold Th R is equal to:

Th R = σ 2 n (1 + σ 2 n Lσ 2 q σ 2 u ) log( 1 -p a p a ) + R log( σn σ n ) ( 17 
)
The problem of the detectors in ( 15) and ( 16) is that we do not know the unknown vector w in advance. Therefore, we use the estimated ŵ instead of the w. So, the detection criterion is equivalent to

||x k - ŨT k ŵ|| 2 ≥ Th f , (18) 
where Th f is a threshold which should be determined. So, we resort to a suboptimal practical approach for finding the threshold Th f . Let's set the test statistics as

T = ||x k - ŨT k ŵ|| 2 . ( 19 
)
Next, we assume that the above test statistics are distributed as a mixture of Gaussian as below

p(T ) = (1 -p a )N (µ 0 , σ 2 0 ) + p a N (µ 1 , σ 2 1 ), (20) 
where p(T |H 0 ) = N (µ 0 , σ 2 0 ) and p(T |H 1 ) = N (µ 1 , σ 2 1 ). This assumption is verified in practice by the simulations. To determine the threshold Th f , the means µ 0 and µ 1 can be determined by finding the peaks of the pdf p(T ). The optimum threshold can be determined by minimizing the detection error probability. The probability of binary error detection is equal to

p e = (1 -p a )p(T > Th|H 0 ) + p a p(T < Th|H 1 ) = (1 -p a )Q( Th -µ 0 σ 0 ) + p a (1 -Q( Th -µ 1 σ 1 )), (21) 
where Q(.) is the Q-function [START_REF] Proakis | Digital Communications[END_REF]. Taking the derivative of the probability of error with respect to the threshold and enforce it to be equal to zero, leads to the following quadratic equation

(Th -µ 0 ) 2 2σ 2 0 - (Th -µ 1 ) 2 2σ 2 1 = log( 1 -p a p a σ 1 σ 0 ). ( 22 
)
To derive a simple solution, we assume σ 0 = σ 1 . Then, the final threshold is obtained as

Th o = µ 2 1 -µ 2 0 + 2σ 2 0 log( 1-pa pa ) 2(µ 1 -µ 0 ) . ( 23 
)
If we assume that µ 2 1 -µ 2 0 2σ 2 0 log( 1-pa pa ) i.e. the two Gaussian are far apart from each other and that σ 2 0 is small with respect to µ 2 1 -µ 2 0 , a straightforward formula for the threshold is Th o ≈ µ0+µ1

2

. It is equivalent to tell that the two Gaussian distribution should be separated enough with respect to their variances to enable detecting the peaks of the Gaussian mixture as a valid estimate of the mean values. It is shown in the simulation results that this is sufficient for reaching acceptable results. Since we need to compute the pdf of the test statistics for both adversary and non-adversary measurements, we use this detector in the centralized version of the proposed method. The details of the procedure is shown in Algorithm 1 (Centralized AR-DLMS algorithm) in which the adversary detection based on measurements is demonstrated in Algorithm 2.

Link adversary detector based on intermediate estimations

Following the model in (3), the BHT detector decides on adversary link if we have p(

H1 )p(Ψ l | H1 ) ≥ p( H0 )p(Ψ l | H0 ), (24) 
where index i is omitted for the sake of brevity. Denoting p( H1 ) = p a , p( H0 ) = 1 -p a , and the likelihoods are as

p(Ψ l | H1 ) = 1 (2πσ 2 1 ) L 2 exp( -1 2σ 2 1 ||Ψ l -ψ l || 2 ) = N (ψ l , σ 2 1 I), (25) 
and

p(Ψ l | H0 ) = 1 (2πσ 2 0 ) L 2 exp( -1 2σ 2 0 ||Ψ l -ψ l || 2 ) = N (ψ l , σ 2 0 I), (26) 
where the error vector e l in (3) is assumed to be a zero-mean Gaussian random variable with variance σ 2 e and independent from v l which is a zero-mean Gaussian noise with variance σ 2 v , σ 2 0 = σ 2 v , and

σ 2 1 = σ 2 v + σ 2 e .
Hence, with some calculations and simplifications, [START_REF] Wilson | Robust distributed Lorentzian adaptive filter with diffusion strategy in impulsive noise environment[END_REF] results in the final link adversary detection criterion as

||Ψ l -ψ l || 2 ≥ Th L , (27) 
where the optimum threshold is equal to

Th L = 2σ 2 v (1 + σ 2 v σ 2 e ) log( 1 -p a p a ) + L log( σ 1 σ 0 ) . ( 28 
)
The issue in the detector of ( 27) is that we do not know ψ l in advance and the threshold value depends on parameters which are not known beforehand. Moreover, if the node l is not a link adversary and knows that it is not, then we can resort to ψ l = Ψ l = ψ 0 . But, we can not really know that the link is not captured by the adversary before detection. So, if we wait for a fixed delay of D samples to be sure that we have a rough estimate of the unknown vector, and if the intermediate estimations of adversaries are far apart from the true estimation, we can detect the adversaries by outlier detection. Therefore, if we find the most distant values of the test statistics and detect to which nodes they belong, we can detect the adversaries. The details of the proposed AR-DC-DLMS is shown in Algorithm 3 (Decentralized algorithm) in which the adversary detection based on intermediate estimations is explained in Algorithm 4.

The proposed Algorithms

The general pseudocode of centralized adversary-resilient distributed estimation algorithm AR-DLMS is shown in Algorithm 1. In this algorithm, the detected adversary nodes are excluded in updating the centralized estimation.

In algorithm 1, the adversary detection is done via Algorithm 2. Moreover, the proposed decentralized AR-DC-DLMS algorithm is provided in Algorithm 3. This is a three step adaptation-detection-combination algorithm in which the adversary detection is done in Algorithm 4. The total communication reduction ratio is equal to

1 N k (|N k |-Nmax) |N k |
and communication reduction ratio

at node k is equal to |N k |-Nmax |N k |
. This communication reduction ratio leads to lower energy consumption of the entire network.

Convergence analysis

In this section, the convergence of the mean of the algorithm is discussed. The matrices H l,i and Q l,i are assumed to be random with M and M ∆ nonzero Algorithm 1 Centralized adversary-resilient distributed estimation AR-DLMS Input: Observations x l,i ; Regression vectors u l,i . Parameters: Step-size µ glob , Fixed-delay D. -Calculate the means of two Gaussian variables by peak finding (µ 0 , µ 1 ) in the p(T ).

Initialize i = 0, ŵi = 0 L×1 . repeat -i=i+1; -For k = 1 : N -Compute T k,i = ||x k - ŨT k ŵi ||. -if i ≥ D -
-Calculate the threshold Th o,f ≈ µ 0 +µ 1 2 .

-Adversary-detector: T k,i ≥ Th o,f .

Algorithm 3 Decentralized adversary-resilient doubly-compressed diffusion LMS (AR-DC-DLMS)

Input: Observations x l,i ; Regression vectors u l,i . Parameters: Step-sizes µ k , Fixed-delay D, Parameters nmax, Nmax.

Initialize i = 0, ŵk,i = 0 L×1 . repeat -i=i+1; -For k = 1 : N -Generate random H k,i and Q k,i Adaptation: -Compute ϕ k,i = w k,i-1 + µ k l∈N k c lk (1 -γlk,i )g l,i
where g l,i is given by [START_REF] Arablouei | Distributed Least Mean-Square Estimation With Partial Diffusion[END_REF].

Adversary-detection: if i ≥ D -Determine γlk,i based on algorithm 4.

Combination: -ŵk,i = a kk ψ k,i + l∈N - k a lk (1 -γlk,i )ϕ lk,i + γlk,i w k,i-1 where ϕ lk,i is given by (8) end for. until A stopping criterion is reached entries on their diagonal. Hence, we have E{H l,i } = M L I L and E{Q l,i } = M ∆ L I L . We shall now analyze the stochastic mean convergence of the AR-DC-DLMS algorithm. We follow the approach of [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF] with the difference that we exclude the adversaries in the AR-DC-DLMS algorithm. We shall investigate the effect of this exclusion on the condition of the mean convergence. In this regard, we consider three assumptions, the first and second assumptions being Algorithm 4 Adversary detection based on intermediate estimations

-Calculate T k,l,i = ||ϕ l,i -ŵk,i-1 || 2 .
-Calculate Tk,l,i = Sort{T k,l,i }.

-Detect nmax of greatest Tk,l,i (Farthest outliers).

-Detect maximum Nmax non-repetitive Adversaries from nmax previous items (Farthest outliers belong to what nodes). -Determine γlk,i based on previous items.

the same as in [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF]. The assumptions on the regression data, selection matrices, and the false data injections are as follows:

Assumption 1: The regression vectors u k,i are independent zero-mean white random processes.

Assumption 2: The matrices H k,i and Q l,i are spatially independent white random processes and are independent from each other as well as any other processes.

Assumption 3: The false data injection vectors q k,i are independent from the regression vectors u k,i , selection matrices H k,i , Q k,i , and noise n k,i .

The error vector is defined as wk,i = w o -w k,i . Also, we collect all error vectors across all nodes into the wi = col{ w1,i , w2,i , ..., wN,i }. We show in the Appendix A that a sufficient condition of convergence of the mean of the proposed algorithm is

µ k < 2 λ max,k , (29) 
where we have:

λ max,k = ( M M ∆ L 2 + p a )λ max (R k ) + (1 - M ∆ L )(1 + p a )λ max (R u k ) + M ∆ L (1 - M L )(1 + p a )max l∈N k c lk λ max (R u l ), ( 30 
)
where R k and R u k are defined in the Appendix A and λ max (.) denotes the maximum eigenvalue of the matrix argument. Obviously, the above maximum eigenvalue is greater than that obtained in [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF] for the DC-DLMS algorithm. So, the sufficient convergence condition of µ k of the AR-DC-DLMS is more stringent than that of the DC-DLMS algorithm. Increasing the percentage of adversaries p a , the step size parameters µ k should be selected smaller and the convergence condition is tighter.

Cramer-Rao bound for distributed estimation with adversaries

In this section, we calculate the CRB [START_REF] Kay | Fundamentals of statistical signal processing: Estimation theory[END_REF] for the problem of distributed estimation with adversaries. All the observations can be modeled as

x k,i = u T k,i (w + qk,i ) + n k,i (31) 
where qk,i is the false data injection and can be modeled as a Bernoulli-Gaussian variable as follows qk,i = q k,i with probability p a 0 otherwise, [START_REF] Bershad | Stochastic analysis of the diffusion LMS algorithm for cyclostationary white Gaussian inputs[END_REF] where the q k,i are assumed to be white zero-mean random processes1 with variance σ 2 q . Then, the observation vector of the k'th node which is defined as x k = [x k,1 , x k,2 , ..., x k,I ] T , can be written as:

x k = U k w + z k ( 33 
)
where

U T k = [u k,1 |u k,2 |...|u k,I ],
and

z k = [z k,1 , z k,2 , ..., z k,I ] T with z k,i = u T k,i qk,i + n k,i . All the measurements are X = [x 1 |x 2 |..., |x N ].
The Fisher-Information Matrix (FIM) elements are defined as

F l,j = -E{ ∂ 2 log p(X|w) ∂w l w j } ( 34 
)
The closed form formula of the FIM is derived in the Appendix B and is equal to:

F = N k=1 U T k P -1 k U k ( 35 
)
where

P k = diag(σ 2 z k,i ) in which σ 2 z k,i = p a σ 2 q ||u k,i || 2 + σ 2 k,n is defined in the Appendix B.
Then, the CRB is as follows:

E{(w j -ŵj ) 2 } ≥ CRB j = F -1 jj (36)
To find a closed form formula for the CRB as well, we assume for simplicity that σ 2 k,n = σ 2 n and assume that L is large. We can deduce that

σ 2 z k,i ≈ σ 2 z = Lp a σ 2 q σ 2 u + σ 2 n . Then, we have F ≈ 1 σ 2 z N k=1 U T k U k . The term U T k U k can be approximated by Iσ 2 u I L .
Finally, the CRB is approximated as

E{(w j -ŵj ) 2 } ≥ CRB j ≈ σ 2 z N Iσ 2 u = Lp a σ 2 q σ 2 u + σ 2 n N Iσ 2 u ( 37 
)
7 Simulation Results

In this section, the performance of the proposed AR-DC-DLMS algorithm for distributed estimation is evaluated with respect to state-of-the-are techniques.

For the performance metric, there are mean square deviation (MSD), normalized MSD, or Signal to Noise Ratio (SNR). Because of the versatility of MSD, the performance of the proposed method is evaluated by calculating the MSD defined as MSD(dB) = 20log(||w -w o || 2 ). The number of Monte Carlo simulations are selected as 50 and the results are averaged over these 50 random independent run of the experiment. The programming tool is MATLAB which is run on a laptop with corei7. The reconstruction quality performance of the proposed algorithm is compared with the three approaches mentioned earlier. In all the experiments, L = 50. The sensor network size is chosen with N = 16 sensors and is shown in Fig 1 . The channels between the nodes are assumed to be AWGN with a background noise. Also, the standard deviation of the Gaussian background noise is σ n = 0.025. The elements of the 50 × 1 parameter vector w o are selected as Gaussian iid random variables with zero mean and variance equal to 1. Also, the 50 × 1 regression vectors u k,i are exactly generated as the unknown parameter vector. At first, we investigate the effect of parameters of the proposed algorithm which are delay D, n max , and N max . Since the effect of step-sizes is well-known in the literature, we exclude to inspect the effect of step-sizes and they are selected as µ glob = 0.005 and µ k = µ = 0.07 in all experiments hereafter. The explanation for the adversaries and details of false data injection attacks are the same as the following first experiment that will be presented in sequel. Figure 2 shows the effect of the delay parameter D on the MSD curve versus iteration. Figure 3 demonstrates the effect of n max , and Figure 4 depicts the effect of parameter N max . The mentioned figures show that the sensitivity of the performance of the proposed algorithm with respect to D and n max is low. So, we select the values of D = 100 and n max = 10 in all experiments. Also, Figure 4 shows that the best value for parameter N max is equal to 2. Hence, we choose N max = 2 in the following experiments. After adjusting the value of parameters, three experiments are performed and discussed next. In the first and second experiments, the performance of the proposed centralized AR-DLMS and decentralized AR-DC-DLMS algorithm are compared with the centralized DLMS without adversary detection, the centralized DLMS with ideally known adversaries, the AR-DC-DLMS with known adversaries, DC-DLMS algorithm and Cramer-Rao bound. In the first experiment, we use only the first type of attack for the adversaries. The elements of the false data q k,i are assumed to be iid Gaussian random variables with zero mean and variance σ 2 q = 0.36. The parameters of AR-DC-DLMS are selected as D = 100, N max = 2, and n max = 10. To fairly compare the proposed method to other communication reducing algorithms, we use the same communication reduction ratio at each node for all algorithms. We assume to have 4 attacked nodes among the 16 nodes in the network. The adversaries are assumed to be Fig. 1 The network used in the simulations.

fixed and are the 2nd, 5th, 10th, and 12th node in the network. The MSD is displayed in Fig. 5 versus the iteration number. Seven curves are depicted in the mentioned figure. The first is the classic DC-DLMS algorithm which have not any adversary detector. The second is the DC-DLMS with ideal adversary detector which means that we know the adversaries beforehand and exclude them from the algorithm. The third is the proposed AR-DC-DLMS algorithm. The fourth is the centralized algorithm without adversary detection. The fifth is the centralized with ideal adversary detection which means the adversaries are known in advance. The sixth is the centralized AR-DC-DLMS algorithm. The last curve is the CRB which is calculated in Section 6. It shows that the final MSD of the centralized AR-DLMS with adversary detection reaches the final MSD of the centralized AR-DLMS with ideal adversary detection but with a delay due to detection processing. Similarly, the final MSD of the decentralized AR-DC-DLMS reaches the final MSD of the AR-DC-DLMS with ideal adversary detection. Also, the proposed AR-DC-DLMS algorithm is 15dB better than the DC-DLMS algorithm. In the second experiment, we use a similar experiment to the first experiment. But, we use both first and second attack models simultaneously. In this second experiment, the adversaries not only inject false data into the measurements but also injects false data into the intermediate estimations. For the elements of the false data vector e l,i , we use an iid Gaussian random variable with zero mean and variance σ 2 e = 0.36. For the second experiment, the MSD versus iteration number is depicted in Fig. 6. The curves are similar to the previous figure. It can be seen that the results are somehow similar to these of the first experiment. However, the convergence of the proposed AR-DC-DLMS is slower than in the first experiment and the final MSD of the DC-DLMS is higher than before. The second experiment shows that the proposed AR-DC-DLMS algorithm works well for both attack models when the attackers take control of communication link in addition to taking control of the measurements. In the next experiment, we use only the first attack model. In the third experiment, we compare the AR-DC-DLMS algorithm with some state-of-the-art algorithms. The other algorithms are DLMS [START_REF] Sayed | Adaptation, Learning and Optimization over networks[END_REF]- [START_REF] Cattivelli | Diffusion LMS strategies for distributed estimation[END_REF], Correctionbased DLMS (CDLMS) [START_REF] Chang | Correction-based diffusion LMS algorithms for secure distributed estimation under attacks[END_REF], resilient distributed diffusion under F-local bounds (R-DLMSAW) [START_REF] Li | Resilient Distributed Diffusion in Networks With Adversaries[END_REF], DC-DLMS [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF] and Reduced Communication DLMS (RC-DLMS) [START_REF] Arablouei | Analysis of a reducedcommunication diffusion LMS algorithm[END_REF]. The MSD is displayed in Fig. 7 versus the iterations' number. It shows that the proposed AR-DC-DLMS outperforms the other algorithms with respect to final MSD. However, the lower final MSD is obtained with a slower rate of convergence. Table 1 shows the final MSD of various algorithms. It demonstrates that the proposed AR-DC-DLMS has at least a 5dB lower final MSD with respect to others.

Conclusion and future works

In this paper, an adversary-resilient doubly-compressed diffusion LMS, called AR-DC-DLMS, is proposed for the distributed estimation problem. The resiliency to adversaries is obtained by detecting adversaries using a BHT. We proved that the test statistics is a distance metric which should be compared to a threshold which is obtained in closed form. Since its calculation requires the adversary statistics that are not available beforehand, a suboptimal procedure for calculating the threshold is proposed. Based on the attack model, the adversary detection is performed using measurements or using intermediate estimations. Direct measurements are used in the centralized version of the proposed algorithm, the AR-DLMS, while intermediate estimations are used in the decentralized version of the algorithm, the AR-DC-DLMS. The proposed algorithm is a three-step adaptation-detection-combination strategy in which the detected adversaries are excluded in the adaptation and combination steps. Moreover, the mean convergence analysis of the AR-DC-DLMS is provided in the paper. We also derived the CRB for the distributed estimation problem in presence of adversaries. The simulation results show the effectiveness of the proposed algorithms in comparison to the ideal case where the adversaries are known in advance and also in comparison to some state-ofthe-art algorithms. The main limitation of the proposed method which limits the use of this algorithm in practical scenarios is the usage of simple false data injection models. For example, an adversary may inject false data for a short duration and then stop the false data injection. So, more sophisticated false data injection models (e.g. non-stationary) should be used in practical situations. It will be addressed in future works.

Appendix A The convergence of the mean condition

For calculating the sufficient condition of mean convergence of the weight vectors, we shall define some notations. We define ψk,i = w o -ψ k,i . Then, we collect them in a vector as ψi = col{ ψ1,i , ψ2,i , ..., ψN,i }. Let R u l ,i = u l,i u T l.i . The other notations are defined as follows: After the above definitions, some manipulations show that we have:

M = diag{µ 1 I L , µ 2 I L , ..., µ N I L } (38) R u,i = diag{R u1,i , ..., R u N ,i } (39 
C = C ⊗ I L (40) 
R Q,i = diag l∈N1 c l1 Q l,i R u l ,i , ..., l∈N N c lN Q l,i R u l ,i (41) 
R γQ,i = diag l∈N1 c l1 γ l1 Q l,i R u l ,i , ..., l∈N N c lN γ lN Q l,i R u l ,i (42) 
H i = diag{H 1,i , H 2,i , ..., H N,i } (43) 
Q i = diag l∈N1 c l1 (I L -Q l,i ), ..., l∈N N c lN (I L -Q l,i ) (44) 
Q γ,i = diag l∈N1 c l1 γ l1 (I L -Q l,i ), ..., l∈N N c lN γ lN (I L -Q l,i ) (45) 
R u,i = diag{R u1,i , R u2,i , ..., R u N ,i } (46) 
Q i = diag{Q 1,i , Q 2,i , ..., Q N,i } (47) 
F = diag l∈N1 a l1 γ l1,i (I L -H l,i ), ..., l∈N N a lN γ l N ,i (I L -H l,i ) (48) 
F = diag l∈N1 a l1 γ l1,i H l,i , ..., l∈N N a lN γ l N ,i H l,i (49) 
R Q(I-H),i kl = c lk Q l,i R u l ,i (I L -H k,i ) (50) 
R γQ(I-H),i kl = c lk γ lk,i Q l,i R u l ,i (I L -H k,i ) (51) 
D = D i ⊗ I L , d kl,i = l∈N a lk (1 -γ lk,i ) (52) 
R qQ,i = diag l∈N1 c l1 Q l,i R u l ,i q l,i , ..., l∈N N c lN Q l,i R u l ,i q l,i (53) 
R γqQ,i = diag l∈N1 c l1 γ l1 Q l,i R u l ,i q l,i , ..., l∈N N c lN γ lN Q l,i R u l ,i q l,i (54) 
A q,i = diag l∈N1 c l1 (I L -Q l,i )R u l ,i q l,i , ..., l∈N N c lN (I L -Q l,i )R u l ,i q l,i (55) 
A γq,i = diag l∈N1 c l1 γ l1 (I L -Q l,i )R u l ,i q l,i , ..., l∈N N c lN γ lN (I L -Q l,i )R u l ,i q l,i (56) 
S i = col{u 1,i n 1,i , ..., u N,i n N,i } (57) 
wi = (I N L + F) ψi + F wi-1 + D wi-1 (58) 
For investigating the mean convergence, we take expectation from the above equation. So, we reach:

E{ wi } = E{(I N L + F)}E{ ψi } + (E{F } + E{D})E{ wi-1 } (59) 
In the above formula, the term of E{ ψi } is difficult to compute. It needs to calculate a recursion formula for wi . It is done and for brevity we omit the details of the derivation. We have:

ψi = I N L -MR Q,i H i -MQ i R u,i -MR Q(I-H),i -MR γQ,i H i -MQ γ,i R u,i -MR γQ(I-H),i wi-1 -MC T Q i + MQ i + MC T Q γ,i + MQ γ,i S i -MR qQ,i -MR γqQ,i -MA q,i -MA γq,i (60) 
Since we assume that E{q k,i } = 0 and expectation of noise vectors are zero, the expectations of the above terms in the forth row of (60) are zero. Then, some calculations lead to the following formula: 

E{ ψi } = I N L - M M ∆ L 2 MR -(1 - M ∆ L )MR u 0 
- M ∆ L (1 - M L )MC T R u -p a M M ∆ L 2 MR -p a (1 - M ∆ L )MR u -p a M ∆ L (1 - M L )MC T R u E{ wi-1 } = BE{ wi-1 }, (61) 
where R u = E{R u,i } = diag{R u1 , ..., R u N } (62)

R = diag{R 1 , ..., R N } (63) with R k = l∈N k c lk R u l . (64) 
Then, replacing (61) into (59), and with some calculations, we reach to Therefore, similar to [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF], the proposed AR-DC-DLMS asymptotically converges in the mean toward w o if, and only if ρ(B + Y) < 1 where ρ(.) stands for the spectral radius of the matrix argument. From matrix algebra, we have ρ(X) ≤ ||X|| for any induced norm. So, we have:

E{ wi } = 1 + p a (1 - M L ) BE{ wi-1 } + p a M L + (1 -p a ) E{ wi-1 } = (B + Y)E{ wi-1 }, (65) 
ρ(B + Y) ≤ ||B + Y|| b,∞ ≤ max|| B + Y kl || (67) 
where ||.|| b,∞ is the block maximum norm. Deducing from (67), we will have:

ρ(B + Y) ≤ max k,l ||I L -µ k M M ∆ L 2 + (1 - M ∆ L )R u k + M ∆ L (1 - M L )c lk R u l -p a [ M M ∆ L 2 R k + (1 - M ∆ L )R u k + M ∆ L (1 - M L )c lk R u l ] + p a M L + (1 -p a ) || < 1 ( 68 
)
Similar to [START_REF] Harrane | On reducing the communication cost of the diffusion LMS algorithm[END_REF], as a linear combination with positive coefficients of positive definite matrices R k , R u k , and R u l , the matrix in square brackets on the RHS of ( 68) is positive definite. Then, the condition in right side of (68) holds if ( 29) is satisfied. Then, the λ max,k is given by ( 30) and the proof is completed.

Appendix B Calculating the Fisher-information matrix

For calculating the FIM, the total likelihood can be computed as 

Since z k = [z k,1 , z k,2 , ..., z k,T ] T with z k,i = u T k,i qk,i + n k,i , the z k,i is Gaussian with zero mean and variance σ 2 z k,i = E(z 2 k,i ). Since n k,i and qk,i are assumed to be independent and uncorrelated with mean zero, we have σ 2 z k,i = E{(u T k,i qk,i ) 2 }+E{n 2 k,i }. This would be equal to σ 2 z k,i = E{u T k,i qk,i qT k,i u k,i }+ σ 2 k,n where σ 2 k,n is the variance of noise at node k. Some simple calculations lead to the following formula

σ 2 z k,i = u T k,i E{q k,i qT k,i }u k,i + σ 2 k,n = p a σ 2 q ||u k,i || 2 + σ 2 k,n , (70) 
where it is assumed the elements of qk,i are uncorrelated. Since the elements of z k is independent of each other, the vector z k is Gaussian with zero mean and diagonal covariance matrix equal to P k = diag(σ 2 z k,i ). So, from (69), we can write the log-likelihood as log p(X|w) = N k=1 -I 2 log(2π) - k,ii U k,i,j U k,i,l , where the this formula leads to [START_REF] Amarlingam | A Novel Low-Complexity Compressed Data Aggregation Method for Energy-Constrained IoT Networks[END_REF].
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 2 Fig. 2 MSD versus iteration number for the proposed algorithm for different values of delay parameter D. The other parameters are selected as nmax = 10 and Nmax = 2.
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 3 Fig. 3 MSD versus iteration number for the proposed algorithm for different values of parameter nmax. The other parameters are D = 100 and Nmax = 2.
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 4 Fig. 4 MSD versus iteration number for the proposed algorithm for different values of Nmax. The other parameters are D = 100 and nmax = 10

Fig. 5

 5 Fig. 5 MSD versus iteration number for centralized and decentralized algorithms with 4 adversaries. Only the first attack model is used.

  Fig.6MSD versus iteration number for centralized and decentralized algorithms. Both false data injection attack models are used.

Fig. 7

 7 Fig. 7 MSD versus iteration number for decentralized algorithms of AR-DC-DLMS, DC-DLMS, R-DLMSAW, DLMS, CDLMS, and CR-DLMS.

where B = ( 1 +

 1 p a (1 -M L ) B and Y = [p a M L + (1 -p a )]I N . Then, (65) can be written in the following recursive form E{ wi } = (B + Y)E{ wi-1 } (66)

p

  z k (x k -U k w).

1 2 iT P - 1 k

 121 log(σ 2 z k,i ) -1 2 x k -U k wx k -U k w . So, the partial derivative will be equal to ∂ log p(X|w)∂wj k e k where e k = x k -U k w. We can write B = e T k P -1 k e k = I i=1 P -1 k,ii e 2 k,i . So, the partial derivative is equal to ∂B ∂wj = I i=1 2P -1 ii e k,i∂e k,i ∂wj . Also, we have ∂e k,i ∂wj = -U k,i,l . Taking the second partial derivative and doing some simple manipulations, we reach F l,j = -E{ ∂ 2 log p(X|w)

Table 1

 1 Final MSD of various diffusion algorithms

	Algorithm	DLMS CR-DLMS R-DLMSAW AR-DC-DLMS DC-DLMS CDLMS
	MSD (dB)	-18	-17.3	-22.6	-27.7	-15	-19

The false data injection error q k,i for various adversary nodes and for various time indexes will be more covert (if it is biased in one direction, the adversary can be detected from this bias) if they are assumed to be positive and negative equiprobably. So, we assume such distribution for q k,i . We could assume other distribution for q k,i and find the CRB under that assumption.
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