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Abstract 
 
Molecular Dynamics with excited Normal Modes (MDeNM) is an enhanced sampling 

method for exploring conformational changes in proteins with minimal biases. The 

excitation corresponds to injecting kinetic energy along normal modes describing 

intrinsic collective motions. Herein we developed a new automated open-source 

implementation, MDexciteR, enabling the integration of MDeNM with two 

commonly used simulation programs with GPU support. Second, we generalized the 

method to include the excitation of principal components calculated from 

experimental ensembles. Finally, we evaluated whether the use of coarse-grained 

normal modes calculated with elastic network representations preserved the 

performance and accuracy of the method. The advantages and limitations of these 

new approaches are discussed based on results obtained for three different protein test 

cases: two globular and a protein/membrane system. 
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Introduction 
	

The dynamic nature of biological macromolecules is widely evidenced by 

multiple sources of experimental data 1, 2.	Protein motions range from fast equilibrium 

fluctuations (picoseconds to nanoseconds) to slow conformational transitions of 

domains occurring in longer timescales (i.e., microseconds, milliseconds). Multiple 

evidence supports the correlation between slow collective motions and biological 

functions 3, 4. Furthermore, recent experimental data provided quantitative 

demonstrations of how such motions impact the conformational selection of states 

with optimal activity 5, 6. 

Normal modes (NM) are intrinsic motions encoded by a given protein fold 3. 

They often correlate with experimentally-determined structural transitions 7. Several 

NM-based simulation techniques are currently available, some of them designed to 

elucidate the transition pathways between two known conformational states 8-13. Other 

methods enable a more efficient exploration of the collective coordinate space without 

requiring endpoints. In this case, the subspace defined by selected NMs is extensively 

sampled through energy minimizations or molecular dynamics simulations 14-17. 

In addition to NM analysis, Principal Component Analysis (PCA) is a 

commonly used technique to characterize conformational changes. The subspace 

spanned by a few degrees of freedom (first principal components - PCs) captures a 

large fraction of the overall variance of a given structural ensemble 18. Because of the 

fast convergence of the essential subspace 19, PCA-based enhanced sampling methods 

allow an efficient conformational exploration during the time-course of MD 

simulations 20-26  

Our group has been developing NMA-based hybrid simulation approaches 

over the last decade 14, 17, 27. Molecular Dynamics with Excited Normal Modes 

(MDeNM) stands out among then. This method allows an improved characterization 

of the conformational equilibrium with minimum computational costs. The broad 

range of MDeNM applications in biological systems include the determination of free 

energy profiles, structural rationalization of experimental data, flexible fitting of 

structures into Cryo-EM maps and ensemble docking studies 14, 28-31.  

The motivation behind the MDeNM method is that standard MD simulations 

rarely explore the intrinsic motions described by low-frequency NMs. MDeNM was 

primarily designed to enhance the exploration of the conformational space defined by 
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a set of NMs without restrains or modifications in the energy function. This effect is 

achieved upon the kinetic excitation of collective motions during short MD 

simulations in the picosecond timescale. In other words, the directions of NMs are 

taken as a small increment to the current velocities of the simulated system. A multi-

replica procedure is adopted to maximize MDeNM efficiency, where each 

independent simulation explores a distinct combination of selected NMs. The 

resulting amplitude of each excited movement is ultimately defined by the energy 

barriers found in the energy landscape.  

In brief, the fundamental advantages of MDeNM are: (i) coupling between 

slow collective degrees of freedom and (ii) simulations performed on the same 

conditions used in standard MD, therefore enabling straightforward comparisons. 

According to previous evidence, the structural ensembles obtained by MDeNM 

encompass a much larger exploration of the conformational space than long standard 

MD 14, 28, 32. 

Recently, our group participated in a critical assessment of NM-based hybrid 

methods 33. All tested approaches exhibited increased computational efficiency 

without compromising their accuracy, based on comparisons with experimental and 

MD data. Furthermore, MDeNM performed well according to all metrics considered 

in the study. The authors suggested that the adoption of simplified elastic network 

models (ENM) for NM calculation instead of using all-atom energy functions would 

enhance MDeNM computational efficiency even further 33. 

Based on these premises, we decided to generalize the strategy proposed for 

MDeNM by including the excitation of (i) NMs calculated using ENMs with distinct 

levels of coarseness; or (ii) PCs describing structural variations encoded in 

experimental ensembles. To accomplish this task, we developed a generalized 

automated implementation of MDeNM, termed MDexciteR. It is based on the 

integration of the previous MDeNM method into the R program (using the Bio3D 

package 34, 35) in conjunction with a MD simulation engine (Figure 1). The advantages 

and limitations of each approach will be discussed in light of the results obtained for 

three different test cases.   



	 5	

2. Results  
 

The enhanced sampling simulations reported in this study were conducted 

using our new implementation MDexciteR. Indeed, the i/o routines, NM or PCA 

calculations, and the linear algebra operations necessary to generate excitation 

velocities are performed within the R program 36. In this article all simulations were 

carried out with the NAMD software 37,  but it is important to notice that MDexciteR 

also enables integration with CHARMM 38. Ongoing developments include AMBER 
39 and GROMACS 40 compatibility. A detailed description of the implementation is 

given in the Supporting Information. 

 

 

Figure 1: Workflow of the MDexciteR implementation. Blue boxes indicate user 
inputs; red, the routines conducted by the R software and in green, the execution of 
MD simulation, using previously generated excitation velocities.  

 

We selected three proteins as test cases (Figure 2), including two soluble 

proteins and one membrane protein. First, the sampling efficiency of simulations 

guided by coarse-grained NMs or PC vectors was compared to the original method in 

simulations of lysozyme and calmodulin. Second, we tested the ability of MDeNM 

using Cα-based NMs to predict activation motions of a G-protein coupled receptor 

simulated in an explicit membrane environment.  
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Figure 2:  Test cases. (A) Hen Egg White Lysozyme (HEWL). The α and β domains 
are shown in red and green, respectively. The pincer angle θ is also highlighted. (B) 
Calmodulin (CAM). Each lobe is colored differently and the central helix is shown in 
gray. The bending (θ) and torsion (φ) angles are shown in black and blue, 
respectively. (C) β2-adrenergic receptor (β2AR) with the seven transmembrane 
helices shown in red. The distance between helix 3 and helix 6 (d) is also highlighted. 
All details about the structural descriptors used in this study are given in the methods 
section.  
	

2.1 Test case 1: Lysozyme.  
	

The high amount of available structural information makes Hen Egg White 

Lysozyme (HEWL; E.C 3.2.1.17) a strategic choice for testing new methodologies. In 

addition, lysozyme inter-domain motions are well described by the two lowest 

frequency normal modes (mode 7: hinge bending; mode 8: twisting) 41. Here, we 

compare the extension of the conformational exploration using NMs calculated under 

distinct levels of complexity. 

To enable fair comparisons, we initially obtained an equilibrated structure 

after a minimization/equilibration protocol in explicit solvent (as detailed in the 

methods section). Then, three independent NM calculations were carried out under 

decreasing levels of description: a “classical” all-atom approach with the CHARMM 

36 forcefield 42 or using two distinct elastic network models (AAENM 43 and HCA 
44). While the AAENM model is an atomistic ENM, where nodes are placed in the 

positions of heavy atoms, the HCA model includes an additional level of simplicity, 

as it only considers Cα atoms as nodes. Both ENMs are based on distance-dependent 

force constants as previously described 43, 44.  

Supplementary Figure 1 shows the overlap between pairs of normal modes 

calculated with each ENM and those obtained using the all-atom CHARMM 36 

energy function. The degree of similarity to all-atom classical normal modes was 
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dependent on the level of coarseness: the atomistic AAENM model resulted in higher 

overlaps than the Cα-based HCA model. In general, the subspaces spanned by the 

ENM derived vectors were similar to those defined by all-atom NMs (as given by the 

root mean square inner product - RMSIP = 0.84 for AAENM and 0.82 for HCA), 

calculated according to the following equation: 
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where Mi and Xj correspond to NM and PC vectors obtained from distinct 

calculations. RMSIP values close to 1 indicate high similarity between the compared 

subspaces. 

The comparison between NM vectors with Principal Components (PCs) 

calculated from an ensemble of 814 experimental structures was also performed 

(details in the Methods section). Figure 3 reveals low overlaps independent of the set 

of NM model considered. The only exception was the high overlap between PC5 and 

the lowest frequency NM 7 (markedly for CHARMM 36 and AAENM). Inspection of 

these vectors reveals a hinge bending motion in agreement with previous data 14 

(Figure 3).  
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Figure 3: Comparing low-frequency NMs and principal components describing 
structural variations in the lysozyme experimental ensemble. (A) Overlap between 
PCs and different sets of NMs obtained with an all-atom model (CHARMM 36), an 
atomistic ENM (AAENM) or a Cα-ENM (HCA). (B) The directions of motions 
described by selected modes are represented by arrows, and the magnitude is 
proportional to their amplitude. 

 

MDeNM simulations were carried out under an explicit solvent representation 

using the new MDexciteR implementation. The three sets of NM vectors obtained 

before using different models were taken as inputs. In addition, the top five PCs were 

also tested. One hundred replicas were carried out for each set of excitation directions 

considered (CHARMM 36, AAENM, HCA and PCA). Regardless of the NM model 

considered, we observed almost indistinguishable differences among the distributions 

of conformations. The range of exploration of all excited simulations was markedly 

greater than that obtained from a microsecond-long standard MD. Although the PCA-

based exploration yielded a distribution similar to those obtained using NMs, the 

sampling extent was reduced yet substantially larger than standard MD (Figure 4A).  
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Figure 4: Enhanced conformational exploration using MDexciteR. (A) Bidimensional 
plots describing the conformational space explored as indicated in the legend. Both 
RMSD and radius of gyration were computed considering only Cα atoms, taking the 
starting structure as reference. The accumulated simulation times were 12 ns for each 
case. The distribution obtained after a 1 µs standard MD is given for comparison 
purposes. (B) Comparing the distribution of the pincer angle provided by an ensemble 
of 814 experimental conformers and simulations. (C) Projections of snapshots 
collected from simulations (MDeNM-HCA) along mass-weighted normal mode 
coordinates. Different numbers of replicates were considered to inspect convergence 
of the distributions.  
 

The comparison between the conformational variability from simulations and 

the experimental ensemble revealed that MDeNM sampled the full range of observed 

pincer angle values (Figure 4B). The narrow distribution derived from the 

experimental conformers is likely related to crystal packing effects and the vast 

majority of ligand-bound states exhibiting restricted flexibility. We also checked the 

convergence of simulations with respect to the number of independent replicates (50, 

100, and 200). One hundred replicates (selected for this study) seemed sufficient, as 

the resulting conformational populations were equivalent to those obtained with twice 

as many replicates (Figure 4C).  
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2.2 Test case 2: Calmodulin 
	

Calmodulin (CAM) is a calcium-binding protein involved in diverse signaling 

pathways, acting as a Ca2+ dependent modulator of several enzymes, such as kinases 

or phosphatases 45. CAM possesses two globular lobes that accommodate a pair of 

Ca2+ ions in each one. An extended flexible linker connects them, therefore yielding 

substantial structural plasticity. Indeed, CAM is a highly flexible protein found in a 

wide range of conformations, from extended to compact forms 46. The intrinsic 

flexibility enables CAM to interact with several proteins 45. Conformational changes 

of CAM have been observed on time scales spanning many orders of magnitude, from 

rapid wobbling motions (ns timescale) to large transitions from compact to extended 

forms requiring at least 100 µs 46. Thus, CAM was selected as a test case for our study 

because it is considered a challenging system. Indeed, previous long standard MD 

simulations and other NM-based methods (Clust-ENM) failed to describe all the 

variability observed in experimental structures 15, 47  

The same protocol adopted for lysozyme was followed: independent NM 

calculations using distinct models were initially carried out from the equilibrated 

CAM/Ca2+ extended structure in explicit solvent. The subspaces spanned by the five 

low-frequency NMs are nearly identical to all-atom NM data, as given by the 

markedly high RMSIPs (0.95 for AAENM and 0.96 for HCA) (Supplementary 

Figure 3). Hence, we can assume that exploring these subspaces will result in similar 

conformational populations. Accordingly, we decided to perform a single set of 

MDeNM simulations for CAM/Ca2+, adopting the simplest HCA model to provide the 

excitation directions.  

The similarity between NMs and PCs calculated from 532 experimental 

structures was evaluated. Compared to lysozyme results (Figure 3), higher overlaps 

were obtained, revealing that NMs capture the overall variations observed in the 

experimental data set. The RMSIP between the subspaces defined by the two sets of 

vectors was 0.76 (Figure 5A). Figure 5B shows the distributions of the radius of 

gyration obtained for distinct simulation data sets. While a standard 1 µs MD resulted 

in a unimodal distribution centered on the starting extended structure, excited 

simulations using either PCs or NMs resulted in larger distributions. The PCA-based 

exploration resulted in a smaller sampling than simulations using NMs as excitation 

directions. All methods failed to reproduce the entire conformational sampling 
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retrieved from experimental data, mainly composed of compact structures. Although 

NM-based exploration favored elongated structures, it also covered more compact 

states (Figure 5B). Therefore, the approach captured this CAM feature better than 

others tested in this study.  

Next, the conformational variability observed from simulations and 

experimental data was further detailed. To this end, two structural descriptors 

previously adopted in other studies were chosen 47. They account for torsions between 

the two lobes and a bending angle to describe the approximation between them 

(Figure 2B). The distribution of experimental conformers was split to highlight the 

impact of CAM binding partners on the protein conformation. The bound structures 

were clustered around low values of the bending and torsional angles, showing a 

strong preference for more compact states. On the other hand, the free states were 

scattered over a large plot area, thus confirming the high structural plasticity of the 

protein (Figure 5C).  

The standard MD simulation covered a limited portion of the conformational 

space compared to the hybrid approaches. Sampling was uniformly spread around the 

initial extended structure (yellow square on the plots). The PCA-based exploration 

resulted in a more extensive sampling range along the bending angle but not along the 

torsional angle. Interestingly, the NM-based sampling resulted in more extensive 

sampling regarding both descriptors, covering a significant part of the subspace 

spanned by the free structures. However, neither method could generate conformers 

close to the cluster of bound structures (Figure 5C). 



	 12	

 

Figure 5: Exploring calmodulin conformational space using MDexciteR. (A) Overlap 
between low-frequency NMs and PCs describing structural variations in the 
experimental ensemble. (B) Distributions of the radius of gyration (Rg) calculated 
from the Cα atoms retrieved from different data sets, as indicated in the legend. The 
dashed line corresponds to the Rg of the starting structure (PDB ID: 1CLL) (C) 
Bidimensional plots showing the sampling of calmodulin conformational space using 
the bending and torsional angles as descriptors. Each simulation set is indicated on the 
bottom left of the plots. The projection of the starting structure onto this subspace is 
shown as a yellow square. The projections of experimental structures are also shown 
as indicated in the legend.  
 

2.3 Test case 3: Beta-2 adrenergic receptor 
	

The β2-adrenergic receptor (β2AR) belongs to the rhodopsin family/class A of 

G protein-coupled receptors (GPCRs). β2AR was the second GPCR to have its atomic 

structure unraveled 48, 49. The data accumulated over the last decade enabled a deep 

understanding of β2AR activation mechanisms and interactions with ligands 50. This 

protein was selected as a test case as it offers an opportunity to evaluate the 

performance of NM-based exploration and the flexibility of our approach in 

simulations of a protein-membrane system. Previous studies have provided evidence 

that low frequency NMs successfully capture diverse aspects of the functional 

dynamics of GPCRs 51, 52. A caveat revealed in these studies was the poor description 

of the flexibility of extra and intracellular segments connecting the transmembrane 
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helices Indeed, these highly flexible regions move as rigid blocks according to low-

frequency NMs 52. Therefore, the flexibility of connecting segments needs to be better 

represented in hybrid simulations using low frequency NMs calculated for β2AR (this 

should also be the case for other GPCRs). 

While in the original MDeNM method the excitation was applied to all protein 

atoms, here we can easily excite a subset of them. Therefore, additional excitation 

velocities were added only at residues within the transmembrane helices, leaving the 

connecting segments with more conformational freedom (Supplementary Figure 4). A 

key point regarding the protocol is the requirement of using low excitation energies to 

ensure a proper relaxation of these segments during the exploration along each 

combination of modes.  

A significant advantage of MDexciteR is the possibility to work with 

simplified ENMs and easily explore the same set of motions for the apo (receptor 

only) and holo (receptor + agonist) systems (Figure 6A). To this end, NM calculations 

using the Cα-based HCA model were performed only in the apo system and the 

obtained lowest frequency modes were stored to be used as inputs for the holo system. 

The choice of the apo structure for NM calculations was based on the fact that ligand 

binding generally restricts motions once energetically available in the free state. 

Based on this strategy, we could directly assess the ligand related effects on the 

distribution of conformations observed after the simulations. 

We inspected the conformational variability obtained after MDeNM 

simulations using the same protocol for both systems. The starting conformations are 

different due to the requirement of an extensive equilibration protocol carried out for 

each system to properly accommodate lipids and water molecules around the protein 

(see details in the methods section). The distribution obtained for the apo form is 

broader and covers the entire range of helix-3-helix6 distances sampled by the holo 

form. While the narrower unimodal distribution obtained for the holo form is centered 

on the starting structure, the populations obtained in the apo form are shifted towards 

the peak obtained for the holo system. This finding suggests that even in the absence 

of ligands, the intermediate state obtained experimentally in the presence of the 

agonist BI167107 would be energetically favorable. However, as the apo system 

considered in this study was obtained artificially by removing the ligand from the 

experimental structure, we cannot exclude the impact of this step on the resulting 

populations (Figure 6B).   
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Figure 6: β2AR MDeNM simulations. (A) 3D view of the simulated systems 
considering a realistic environment. The location of the agonist BI167107 is 
highlighted. (B) Conformational populations obtained after excited simulations. The 
distributions were calculated from conformers collected after each cycle of 
excitation/relaxation. The initial helix-3-helix-6 distances are indicated by vertical 
dotted lines. The inset displays a 3D view of the considered helices.    

 

Finally, we attempted to analyze whether MDeNM simulations would reveal 

putative β2AR activation motions without ligands. GPCRs are known to exhibit 

constitutive basal activity even in the absence of agonists 53 . Indeed, the structural 

rationalization of such mechanism is a topic of great interest. To this end, we 

compared the displacements obtained from our simulations to the structural variation 

observed between the initial structure and the active G-protein bound state (PDB ID: 

3SN6) 54. The replicate leading to the largest variations on the helix-3-helix-6 

distances was selected for visual comparison here. Our results show that picosecond 

timescale MDeNM simulations yield intermediate states that comply with the β2AR 

activation process (Figure 7). These structures may be further relaxed using standard 

MD or be taken as starting points for simulations using other methods. The generation 

of such states along the transition towards the active state would require standard MD 

simulations at the microsecond timescale onwards.  
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Figure 7: Visual inspection of a β2AR MDeNM trajectory describing receptor 
activation motions even in the absence of agonists. Snapshots were collected at 10 ps 
intervals. The superposition with the active conformer bound to Gs protein (PDB ID: 
3SN6) 54 is given for comparison purposes. Dotted circles highlight the cytoplasmic 
outward of helix-6, which is related to β2AR activation. Arrows show the 
approximation of helix-1to the active conformation obtained experimentally. 
	

2.4 Free energy landscape analysis  
	

Figure 8 shows the free energy landscapes (FEL) obtained from the 

concatenated relaxed states. Supplementary Figure 5 depicts a schematic view of the 

protocol (details in the Methods section). The FELs obtained for lysozyme were 

calculated considering the projections of the trajectories onto normal modes 

describing the dominant hinge bending and twisting motions (modes 7 and 8, 

respectively). Clearly, the FELs obtained from MDexciteR (NM and PCA) resemble 

those generated from a 1 �s standard MD. In all systems, a dominant population was 

found in a large basin comprising the entire pool of experimental structures. However, 

the distribution obtained from MDexciteR (NM) was the largest. It reveals a minor 

subpopulation corresponding to a more open conformation than those observed in the 

experimental ensemble (negative values along mode 7).  
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Figure 8: Free energy landscape (FEL) analysis. Lysozyme and calmodulin results 
are presented in the left- and right-hand side of the picture, respectively. The 
projections of lysozyme experimental structures are shown as white circles. 
Experimental structures of CAM in complex with other proteins or ligands are 
represented as black circles, while free states are colored white. For both test cases, 
the projection of the starting structure onto each subspace is shown as a yellow 
square.   

 

Regarding CAM, the sampling obtained from the protocol using MDexciteR 

was more extensive than those derived from a 1 �s MD. The dominant low energy 

populations for both NM and PCA-based protocols revealed from extended (bending 

angle > 130°) to moderately collapsed states (values between 100 and 120°). 

However, sampling of torsions between CAM lobes was not so efficient. Comparing 

each data source, we notice a higher sampling efficiency of the protocol combining 

MDexciteR (NM) even after relaxation. On the other hand, the 1 �s standard MD 



	 17	

simulation generated conformers close to the initial state, with a much narrower 

distribution compared to the protocols including excited MD (Figure 8). 

 

3. Discussion 
 

In this study we evaluated different aspects of the enhanced sampling using 

coarse-grained normal modes or principal components. In this section we will discuss 

each key point and provide guidelines for future studies. 

3.1 Choosing relevant NM or PC directions 
 

The choice of specific PCs or NMs for defining the essential subspace is a crucial 

step. Instead of an arbitrary definition, we decided to use the fractional contribution of 

the PCs for the overall variance (or total fluctuations in the case of NMs) as the 

criterion for defining the relevant subspace (Supplementary Figure 2). Once 

experimental structural data is available, one can adopt other criteria. It may include a 

subset of motions known to explain a given phenomenon (i.e., active-site opening, 

interdomain-motions, channel-gating). However, the more directions explored, the 

higher the complexity of the conformational space to be sampled, therefore requiring 

a large number of replicas. 

3.2 Coarse-grained vs. all atom normal modes as excitation directions 
 

It is well known that NMs calculated with simplified models reproduce well 

the motions calculated with all-atom models. This feature is evident when evaluating 

the low-frequency end of the vibrational spectrum, associated with modes describing 

collective motions 3, 55. This observation motivated us to test simplified NMs as 

excitation directions in our MDeNM approach (Supplementary Figures 1 and 3). 

Interestingly, the conformational populations obtained for lysozyme using NMs 

calculated with different levels of coarseness are nearly indistinguishable (Figure 4). 

According to our data, the loss of precision on NMs with simplified models is less 

relevant under the MDeNM approach. This feature is likely due to the coupling of the 

excited large amplitude motions with the fast degrees of freedom simulated under 

explicit solvent effects. Rather than evaluating the best energy function for NM 

calculations 56, MDeNM focuses on generating energetic relevant conformational 
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states under realistic conditions, thus yielding highly valuable outputs for various 

applications.   

The adoption of coarse-grained NMs in the MDeNM procedure has significant 

advantages. Calculations with the ENM representations are faster and less memory-

intensive, which is interesting for simulating large systems, such as viral capsids. 

Furthermore, the energy minimization step in vacuum required for NM calculations 

using all-atom energy functions is no longer necessary. These features allowed us to 

introduce NM calculations directly into the MDexciteR implementation developed for 

this study. In this R script, all input/output processing, NM calculations, and 

submission of excited MD simulations (using an external program with GPU support, 

i.e. NAMD and CHARMM) are accomplished from a single user-prepared input 

(Supplementary text). We believe that such implementation will help the MDeNM 

approach to reach a wider community. Future studies will include using coarse-

grained NMs in excited simulations in conjunction with more sophisticated energy 

functions, such as polarizable force fields.  

3.3 Advantages and limitations of guiding the conformational exploration 
along experimental PCs    

 

Both NM and PCA-based exploration outperformed standard MD simulations 

concerning the sampling efficiency. Although the cumulative simulation time for each 

enhanced sampling approach was 12 ns (100 replicates of 120 ps each), the 

conformational space sampled was more extensive than standard simulations one 

hundred times longer. Both strategies performed almost equally well for lysozyme. 

Regarding this test case, it is crucial to keep in mind that the selection of excitation 

directions will impact the quality of the results. For example, the widely studied hinge 

bending motion described by the lowest frequency NM (regardless of the model 

considered) was the 5th most relevant variation according to PCA analysis (Figure 3). 

Should our PCA-based exploration be conducted considering the top three vectors 

that most contribute to the overall variance (thus excluding the 5th vector), the 

resulting conformational populations would not reflect the dominant contribution of 

the hinge bending motion.  

The NM-based sampling of CAM/Ca2+ resulted in a substantially larger 

conformational space explored. We wondered about the reasons behind this 

observation. From the inspection of NM and PC vectors, one would expect a similar 
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sampling performance from the excited simulations. The differences observed might 

be due to the nature of motions described by low-frequency NMs. Indeed, they are 

also known as “soft modes”, describing intrinsic physical motions with minimum 

energetic costs 55. Therefore, following such directions in the MDeNM procedure 

using low excitation energies would rarely result in the obtaining of non-physical 

states. 

On the other hand, PCs represent a linear decomposition of the structural 

variations observed in the experimental dataset. Consequently, this procedure could 

result in non-physical motions associated with high energetic costs 18. To overcome 

this drawback, we suggest an initial search for NMs close to the motions of interest 

encoded in experimental ensembles and subsequently using these modes as excitation 

directions, instead of directly using the principal components vectors. According to 

this strategy, the protein dynamics would be driven along intrinsic relaxed motions.  

Another issue associated with PCA calculations is the requirement of a prior 

structural superposition of the conformers included in the ensemble. Indeed, each 

structure is fitted to the average coordinates. While this rigid-body alignment is very 

efficient for globular proteins, it may overestimate the displacements of the smaller 

domains for proteins with multiple domains connected by linkers. This limitation will 

impact the quality of the PCs, thus increasing the probability of obtaining non-

physical structural variations. The dihedral PCA technique can alleviate this issue, but 

still there is no guarantee that the resulting variations will correspond to actual 

intrinsic motions. 

The simulations using calmodulin as a test case also revealed some limitations of 

both approaches. Although the excitation of NMs alleviates the impact of the initial 

conformation on sampling, we still observed a predominance of multiple extended 

and not fully compact conformations. This result is partially consistent with NMR and 

FRET data showing that CAM/Ca2+ can adopt multiple stable conformers in solution 
46, 57. Future MDeNM simulations of the apo-CAM probably will likely generate an 

ensemble of more compact states, as revealed by experiments 58. Considering that 

local unfolding of CAM central helix is observed in the jumps between extended and 

compact forms, a promising strategy to improve sampling would be to include higher 

frequency modes among the excitation directions. According to previous data, these 

modes are related to protein stability rather than describing slow collective dynamics 
59. Therefore, future studies should test MDeNM protocols including a wider range of 
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excited NM frequencies. Finally, we believe that full exploration of the calmodulin 

conformational space would only be achieved by performing simulations under 

distinct conditions (apo, bound with partners, etc). 

3.4 New perspectives opened by the MDexciteR implementation 
 

Besides the advantages of including CG-NMA excitation directions discussed 

above, the generalization of the MDeNM method proposed here brings other 

perspectives. First, the simulations conducted for β2AR on this study reveal another 

key advantage: excitation effects can be applied to a selection of residues, leaving 

regions whose dynamics is poorly described by low frequency NMs with full 

conformational freedom. We believe that leaving these regions free is a simple 

solution perfectly aligned with one of the main motivations behind MDeNM: the idea 

of enhancing the conformational exploration using minimal biases (Supplementary 

Figure 4).  

Another key advantage is the possibility of using the same set of motions to 

compare the impact of ligand binding on the steady-state populations. Here, MDeNM 

simulations on apo β2AR revealed sampling of putative activation motions, leading to 

a small population that resembles the G-protein bound state (Figures 6 and 7). Rather 

than a single pathway, several types of motions could contribute to reaching the active 

structure. However, it is important to notice that helix-1 did not fully transit to the 

active state. This observation could be associated to the complexity of the β2AR 

activation mechanism that seems not to be fully described by a single linear 

combination of NMs. As previously discussed for calmodulin, the re-calculation of 

modes in intermediate states combined with the selection of new combinations may 

be required to obtain a complete description of the activation process. The great 

advantage of our procedure is that no endpoints were required to produce these 

results. Given that many different pathways can be accessed to reach the G-protein 

bound state, MDeNM constitutes a powerful tool to rapidly generate a set of putative 

activation motions that can be further deeply characterized using other methods, such 

as umbrella sampling or metadynamics.  

Regarding the efficiency of the method, we believe that MDeNM based 

sampling needs further improvement. Two different strategies could be adopted for 

this purpose. The first would be an initial generation of a pool of structures, followed 
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by clusterization and selection of a few relevant states. Then, a new round of 

MDeNM simulations starting from each of these structures would generate 

conformers far from them. This procedure would ensure that the excitation directions 

take into account the rearrangements observed in intermediate structures.  

Another strategy that follows the same principle consists of recalculating NMs 

during the time-course of the simulations. This procedure has proven effective for the 

Cryo-EM fitting procedure based on MDeNM simulations 29. Adopting these new 

strategies will likely improve the characterization of complex conformational 

transitions not well described by a single linear combination of vectors.   

3.5 Free energy landscapes characterization 
 

Previous studies demonstrated the efficiency and accuracy of our protocol for 

calculating FELs from MDeNM simulations, in agreement with experimental data, 

metadynamics, and umbrella sampling calculations14, 17. Its advantage is the 

simplicity, still leading to accurate predictions for several applications. Both excited 

MD strategies lead to a more extensive range of sampling than orders of magnitude 

longer unbiased MD (Figure 8). This observation is more evident for a highly flexible 

system such as calmodulin. However, after relaxation, the sampling differences 

between each exciting MD strategy are less noticeable than during the excitation 

phase (Figure 5C). This expected effect comes from a quick relaxation of non-

favorable excited states. Still, NM-based sampling remains the most efficient 

approach. 

On the other hand, the distributions obtained for lysozyme were very similar, 

regardless of the adopted enhanced sampling strategy. This protein is considerably 

more rigid than calmodulin, as given by the high structural similarity observed in 

experimental structures. The slight opening of the system only noticed using the NM-

based sampling is likely relevant for ligand entrance / product release, as previously 

revealed 60. It is evident that our protocol (consisting of less than one hundred 

nanosecond-long MD simulations) was enough to cover all variability observed 

experimentally. 
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4. Conclusion 
 

NM-based methods have been demonstrating high efficiency for 

characterizing protein conformational variability without compromising their 

accuracy 33, 55. MDeNM stands out from other methodologies because the enhanced 

sampling is achieved with minimal interference, and the simulations are performed 

with the same level of detail as standard MD 29. In addition, velocities injected along 

the intrinsic motions described by NMs constitute an almost negligible increase in the 

overall kinetic energy of the system. Moreover, the additional energy is quickly 

dissipated, enabling the combination of MDeNM and standard simulations to 

determine free energy landscapes 29.  

Previous MDeNM results reported by other studies were obtained using all-

atom NMs calculated using standard energy functions 14, 28, 30, 32, 33, 61. The success of 

methods based on simplified NMs motivated us to develop a new MDeNM 

implementation allowing the selection of such modes as excitation directions. This 

effort enabled us to assess whether the method's accuracy would be preserved using 

NMs calculated from simplified forcefields, or PCs extracted from experimental 

ensembles. 

This study provides strong evidence that NMs calculated from elastic network 

representations can be used in MDeNM simulations without sacrificing the method's 

accuracy. On the other hand, some pitfalls were revealed regarding the PCA-based 

exploration of conformational spaces. First, the sampling achieved using the first PC 

vectors (ranked by their contributions to the overall variance) is substantially less 

efficient than NM-based exploration. Second, the results obtained for calmodulin 

reveal that even though the excited subspaces were similar, NM-based exploration 

better agrees with the experimental data. Further, PCs are not guaranteed to describe 

actual motions from a physical point of view, so we discussed an alternative approach 

using NMs that are close to the experimental variations. 

Finally, the new implementation allows the integration with different 

simulation programs. We expect our method to reach a larger community based on 

this feature. In addition, the simplicity of working with ENMs and the minimal 

requirements for their computation will also contribute to MDeNM popularity. This 

study also paves the way for developing new protocols based on the re-calculation of 

NMs on the time course of the simulations. This approach will now be possible thanks 
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to the lack of necessary energy minimizations required prior to NM calculations using 

ENMs. Further studies will be conducted to develop and validate new sampling 

strategies based on MDeNM. 

 

5. Methods 
Atomic coordinates and experimental data sets 
	

The following atomic coordinates were selected as starting structures for the 

calculations: lysozyme (PDB ID: 2LZT) 62 , CAM/Ca2+ bound (PDB ID: 1CLL) 63, 

and β2AR (PDB ID: 3P0G) 64. Alternative experimental conformations of lysozyme 

and calmodulin were obtained using ProDy v.1.9.3 65. To this end, we carried out a 

blast search against the Protein Data Bank to retrieve structures sharing at least 90% 

sequence identity with the reference structures. Subsequently, the coordinates of Cα 

atoms of these structures were superimposed using the Kabsch’s algorithm. A list of 

the PDB IDs included in each experimental data set is provided in the Supplementary 

Material. Only the coordinates of Cα atoms were taken into account for subsequent 

PCA calculations and comparisons with NM vectors.  

The following definitions were adopted for the structural descriptors 

considered in this article. The lysozyme breathing angle was defined from the 

computation of the centers of mass (COM) of Cα atoms from three regions: (1) 

residues 28-31 and 111-114; (2) 90-93 and (3) 44-45 and 51-52 66. Calmodulin 

bending and torsional angles were defined from selected points as previously defined 
47. The (COMs) of the N-lobe, C-lobe and the linker defined the bending angle θ. 

Residues 69 and 91 were selected to represent the linker’s initial and final positions. 

Four points in the space define the virtual dihedral angle φ: the COMs of each lobe 

and the initial and final positions of the linker (represented by residues 69 and 91, 

respectively). The helix-3-helix-6 distance adopted to evaluate β2AR was defined by 

the positions of Cα atoms of residues 131 and 272. All molecular graphics were 

produced with VMD v. 1.9.3 67. 

Preparation of molecular systems for subsequent simulations 
	

Preparation steps were conducted with the CHARMM-GUI webserver 68. A 

similar protocol was adopted for lysozyme and calmodulin, while specific steps were 

required for β2AR. Unless otherwise specified, the following procedures were 
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common to all simulated systems. Hydrogen atoms were added to the crystal 

structures using the HBUILD routine. The simulations were carried out in explicit 

solvent using periodic boundary conditions. Van der Waals interactions were 

calculated up to 10 Å, being approximated until 12 Å by using a switching function. 

Electrostatic interactions were treated with the PME algorithm using a 10-Å cut-off 69. 

The SETTLE 70 and SHAKE 71 algorithms were used during MD simulations to fix 

bonds involving hydrogen atoms in water molecules and protein. Pressure was kept 

constant at 1 atm during equilibration and production using the Langevin piston 

method 72. In these steps, temperature was also kept constant at 300 K using the 

Langevin thermostat with a damping coefficient of 1 ps-1. 

Preparation protocol for lysozyme and calmodulin: each system was placed in 

a cubic box with a 14 Å layer of TIP3P water molecules 73 (approximately 25.000, 

depending on the system) added around the solute molecules. Counter-ions were 

inserted to neutralize the system reaching a 0.15 M NaCl concentration. Then, an 

energy-minimization protocol was performed, starting by the conjugate-gradient 

algorithm, keeping protein heavy atoms harmonically restrained with a force constant 

of 50 kcal mol−1 Å−2 to avoid structural distortions. The following steps using the 

same algorithm were carried out using decreasing force constants (up to 2.5 kcal 

mol−1 Å−2). Then the atomic velocities were assigned accordingly to a 

Maxwell−Boltzmann distribution corresponding to 50 K and then slowly increased to 

300 K during a 1 ns heating MD using a 1fs integration time. In the equilibration step, 

the positional restraints were gradually decreased to zero during the first half of a 3 ns 

constant temperature MD, while in the remaining part, all restraints were removed. 

The MD integration time adopted for equilibration and production simulations was 2 

fs. Production simulations were performed in the NPT ensemble using the same 

parameters for temperature and pressure control.  

Preparation protocol for β2AR: the CHARMM-GUI membrane builder 

module was used to assemble the protein/membrane/water/ions system 74. The protein 

was inserted into a homogenous POPC bilayer. An excess of ~15.000 TIP3 water 

molecules were added to solvate the protein/membrane system. Counter ions were 

added to neutralize the system, reaching a 0.15 M NaCl concentration. The energy 

minimization protocol was performed following the same steps used for the other 

proteins considered in this study. A four-step equilibration was required here due to 

the increased complexity of the system. Initially, a short 100 ps equilibration MD in 
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the NVT ensemble was carried out keeping the protein fixed. Then a similar 

simulation in the NPT ensemble was performed. In these steps a 1 fs integration time 

was adopted. In the third step, the protein backbone was restrained with a force 

constant of 100 kcal mol−1 Å−2 during a 50 ps MD. The restraints were then gradually 

decreased during subsequent 50 ps MD. The final equilibration step consisted of a 

100 ns MD without any restraints to accommodate lipid and water molecules 

properly. In the latter steps, a 2 fs integration step was adopted.  

All-atom Normal mode calculations using a physical-based forcefield 
	

The 200 lowest-frequency normal modes of lysozyme and calmodulin were 

calculated with the VIBRAN module of the available academic version of CHARMM 

(v.42b2) 38. Calculations were performed on the structures obtained after the 

equilibration step. Solvent and counter-ions were removed, leaving only the solute. 

The four Ca2+ ions bound to calmodulin were considered in NM calculations. 

Electrostatic interactions were treated using a distance-dependent dielectric constant 

(ε = 2ri,j). Prior to NM calculations, an energy minimization protocol was applied, 

using different algorithms: steepest descent (SD), conjugate-gradient (CG) and the 

Adopted Basis Newton-Raphson (ABNR). First, harmonic restraints were applied to 

hold backbone atoms close to their initial positions during the SD steps. The restraints 

were progressively decreased from 250 kcal mol-1 Å-2 to zero. Subsequently, 

additional steps of energy minimization were performed with the CG and the ABNR 

algorithms without positional restraints, until they reached a convergence criterion of 

10-5 kcal mol-1 Å-1 energy gradient.  

Normal mode calculations using simplified models  
	

Normal modes calculations were performed using the R software in 

conjunction with the nma.pdb function included in the Bio3D package 35. Calculations 

were performed directly on the equilibrated structures, without the requirement of 

energy minimization steps. Two different models were considered independently. 

Both the Harmonic Cα potential (HCA) and the AAENM models are based on elastic 

networks with distance-dependent force constants (as previously discussed in 

reference 56 ). While the HCA model considers only Cα atoms for the construction of 

the elastic network, the AAENM model considers all protein heavy atoms. The 
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rotation-translation blocks (RTB) approximation 75 (one residue per rigid block) was 

adopted for calculations with the AAENM model.  

Principal component analysis of experimental structures 
	

The most relevant structural variations found in each dataset of experimental 

structures were characterized with principal component analysis (PCA). Briefly, PCA 

is based on the diagonalization of the covariance matrix, C(i,j), of atomic coordinates 

displacements whose elements are represented by 

!(!,!) = ∆!! ∙ ∆!!  

where Δri and Δrj are the displacement vectors of atoms i and j, respectively, from 

their average positions. Brackets indicate ensemble averages. Then, an eigenvalue 

problem is solved, resulting in 3N PCs that can be sorted according to their fractional 

contributions to the overall variance. These calculations were performed using the R 

software in conjunction with the pca.xyz function of the Bio3D library 35.  

Molecular dynamics with excited NMs or PCs 
	

All simulations followed the flowchart presented in Figure 1. Apart from the 

MD simulations using excitation velocities, all other steps were conducted using R 

v.3.5.1 36 and the Bio3D package v. 2.3.3 34, 35.	MD simulations were carried out using 

NAMD 2.13 37. We performed a set of independent simulations following the same 

protocol for each set of vectors considered. Therefore, direct comparisons between the 

resulting conformers are allowed.  

MDeNM protocol for lysozyme and calmodulin: we performed one hundred 

independent simulations driving the protein along a distinct linear combination of NM 

or PC vectors. The top five vectors contributing the most overall fluctuations (in the 

case of NMs) or the variance (in the case of PCs) define the essential subspace. 

According to Supplementary Figure 2, the cumulative contribution provided by the 

first five PCs accounted for more than 75 % of overall variance, while the respective 

normal modes contributed to more than 75 % of total fluctuations. 

Each replica consisted of 30 short excitation/relaxation cycles. The simulation 

length of each cycle was 5 ps. The maximum excitation temperature adopted was 4 K. 

Therefore, each independent replicate accounted for 120 ps simulation length. The 

conformers generated at the end of each cycle were retrieved for further analysis.  
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MDeNM protocol for β2AR: Five normal mode vectors obtained from NM 

calculations on the apo β2AR using the HCA model defined the essential subspace. 

These vectors were linearly combined (as described in ref 14 and in the Supplementary 

Text) producing one hundred combinations of vectors that were stored (.crd files). 

These combinations were used as inputs for the MDeNM simulations of the holo 

β2AR system. Excitation energies were only applied to residues located at 

transmembrane helices (residues: 29 to 61; 66 to 97; 102 to 137; 146 to 172; 197 to 

228; 266 to 299 and 304 to 329). Low excitation temperatures were adopted 

(maximum Tnm = 3 K ), therefore ensuring a slower exploration of collective motions 

and enabling a better conformational adjustment of loop segments. The number of 

replicas, cycles and the simulation lengths used here were the same as those adopted 

for the other test cases.  

Free energy landscape analysis 
	

Overall, the protocol for the free energy landscape calculation consisted of a 

clustering step from the concatenated structures generated by MDexciteR followed by 

relaxation MD simulations starting from each centroid. The gromos algorithm was 

employed using an RMS cutoff of 1 Å. Supplementary Table 1 summarizes the 

number of centroids selected for each state. Briefly, from each centroid, velocities 

were re-generated at 300 K and the backbone and side chain atoms were restrained 

with a force constant of 5 and 2.5 kcal mol−1 Å−2, respectively. These restraints were 

progressively decreased to zero over the course of a 500 ps MD in the NPT ensemble 

using the same parameters adopted in previous steps. From this point, an unrestrained 

1 ns production MD simulation was conducted. For each considered data set, the 

generated trajectories (recorded at 2 ps intervals) were concatenated into a single file 

considered for further analysis.  

We used an in-house R script to calculate the free energy landscapes. The free 

energy difference (ΔGα) of a particular state � with respect to the most populated one 

(taken as reference) was calculated according to the probability of finding these states 

as given by: 

!! = −! !! !" ! !!
!!"# !

 

where kB is the Boltzmann constant, T is the temperature of the simulations (300 K), 

and P(qα) is an estimate of the probability density function obtained from bi-
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dimensional kernel density estimates of distinct properties of interest q (i.e., torsion 

and bending angles, projections onto NM vectors) calculated over the concatenated 

standard MD trajectories starting from centroids. Pmax(q) is the probability of the most 

visited state. 

Overlap between NM vectors and RMISP of essential subspaces 
	

The overlap between a given mode vector, M, and another mode vector X, is 

evaluated by their normalized projection: 

!! ! = !!!
!! !  

In addition, we measured the similarity between the subspaces defined by the 

five lowest frequency NMs or the top five PCs contributing to overall variance. To 

this end, we calculated the RMS inner product (RMSIP). Only displacements of Cα 

atoms were considered in our comparisons. All overlap and RMSIP calculations were 

carried out with R/bio3D using the rmsip function 35.  
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