
HAL Id: hal-04277441
https://hal.science/hal-04277441v1

Submitted on 23 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Solving optimal control problems with Julia
Jean-Baptiste Caillau, Olivier Cots, Joseph Gergaud, Pierre Martinon

To cite this version:
Jean-Baptiste Caillau, Olivier Cots, Joseph Gergaud, Pierre Martinon. Solving optimal control prob-
lems with Julia. Julia and Optimization Days 2023, CNAM; CNRS - Groupe CALCUL, Oct 2023,
Paris, France. �hal-04277441�

https://hal.science/hal-04277441v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

 JuliaOpt2023 GitHub ⚙

Solving op!mal control problems with JuliaSolving op!mal control problems with JuliaSolving op!mal control problems with JuliaSolving op!mal control problems with Julia

Jean-Bap!ste CaillauJean-Bap!ste CaillauJean-Bap!ste CaillauJean-Bap!ste Caillau, , , , Olivier CotsOlivier CotsOlivier CotsOlivier Cots, , , , Joseph GergaudJoseph GergaudJoseph GergaudJoseph Gergaud, , , , Pierre Mar!nonPierre Mar!nonPierre Mar!nonPierre Mar!non, , , , Sophia SedSophia SedSophia SedSophia Sed

JuliaandOptimizationDays2023

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01
Page 1 of 5

What it's aboutWhat it's aboutWhat it's aboutWhat it's about
Nonlinear op!mal control of ODEs:

subject to

plus boundary, control and state constraints

Our core interests: numerical & geometrical methods in control, applica!ons

Where it comes fromWhere it comes fromWhere it comes fromWhere it comes from
BOCOP: the op!mal control solver

HamPath: indirect and Hamiltonian pathfollowing

g(x(t), x(t)) +0 f f (x(t), u(t)) dt →∫
t0

tf
0 min

(t) =ẋ f(x(t), u(t)), t ∈ [t , t]0 f

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01
Page 2 of 5

Coupling direct and indirect solvers, examples

Op!malControl.jlOp!malControl.jlOp!malControl.jlOp!malControl.jl
Basic example: double integrator (1/3)

Basic example: double integrator (2/3)

Basic example: double integrator (3/3)

Indirect simple shoo!ng

Advanced example: Goddard problem

Wrap upWrap upWrap upWrap up
[X] High level modelling of op!mal control problems

[X] Efficient numerical resolu!on coupling direct and indirect methods

[X] Collec!on of examples

FutureFutureFutureFuture
ct_repl

Addi!onal solvers: direct shoo!ng, colloca!on for BVP, Hamiltonian pathfollowing...

... and open to contribu!ons!

CTProblems.jl

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01
Page 3 of 5

control-toolbox.orgcontrol-toolbox.orgcontrol-toolbox.orgcontrol-toolbox.org
Open toolbox

Collec!on of Julia Packages rooted at Op!malControl.jl

Credits (not exhaus!ve!)Credits (not exhaus!ve!)Credits (not exhaus!ve!)Credits (not exhaus!ve!)
https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01

Page 4 of 5

Differen!alEqua!ons.jl

JuMP, InfiniteOpt.jl, ADNLPModels.jl

Ipopt

JuliaDiff (FowardDiff.jl, Zygote.jl)

MLStyle.jl

REPLMaker.jl

« JuliaCon2023
Powered by Documenter.jl and the Julia Programming Language.

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01
Page 5 of 5

 Tutorials / Basic example GitHub ⚙

Basic exampleBasic exampleBasic exampleBasic example
Let us consider a wagon moving along a rail, whom accelera!on can be controlled by a force . We denote by the state of
the wagon, that is its posi!on and its velocity .

We assume that the mass is constant and unitary and that there is no fric!on. The dynamics we consider is given by

which is simply the double integrator system. Les us consider a transfer star!ng at !me and ending at !me , for which
we want to minimise the transfer energy

star!ng from the condi!on and with the goal to reach the target .

u x = (x , x)1 2

x1 x2

(t) =ẋ1 x (t), (t) =2 ẋ2 u(t),, u(t) ∈ R,

t =0 0 t =f 1

u (t) dt
2
1 ∫

0

1
2

x(0) = (−1, 0) x(1) = (0, 0)

 Solu!on and detailsSolu!on and detailsSolu!on and detailsSolu!on and details

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html 23/01/2025, 12:03
Page 1 of 5

See the page Double integrator: energy minimisa!on for the analy!cal solu!on and details about this problem.

First, we need to import the OptimalControl.jl package:

Then, we can define the problem

Solve it

using OptimalControl

@def ocp begin
 t ∈ [0, 1], time
 x ∈ R², state
 u ∈ R, control
 x(0) == [-1, 0]
 x(1) == [0, 0]
 ẋ(t) == [x₂(t), u(t)]
 ∫(0.5u(t)^2) → min
end

sol = solve(ocp)

Method = (:direct, :adnlp, :ipopt)
This is Ipopt version 3.14.14, running with linear solver MUMPS 5.6.2.

Number of nonzeros in equality constraint Jacobian...: 1205
Number of nonzeros in inequality constraint Jacobian.: 0

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html 23/01/2025, 12:03
Page 2 of 5

Number of nonzeros in Lagrangian Hessian.............: 101

Total number of variables............................: 404
 variables with only lower bounds: 0
 variables with lower and upper bounds: 0
 variables with only upper bounds: 0
Total number of equality constraints.................: 305
Total number of inequality constraints...............: 0
 inequality constraints with only lower bounds: 0
 inequality constraints with lower and upper bounds: 0
 inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 0 1.0000000e-01 1.10e+00 1.92e-14 0.0 0.00e+00 - 0.00e+00 0.00e+00 0
 1 -5.0000000e-03 1.81e-01 1.78e-15 -11.0 6.04e+00 - 1.00e+00 1.00e+00h 1
 2 6.0023829e+00 8.88e-16 1.78e-15 -11.0 6.01e+00 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 2

 (scaled) (unscaled)
Objective...............: 6.0023829460295719e+00 6.0023829460295719e+00
Dual infeasibility......: 1.7763568394002505e-15 1.7763568394002505e-15
Constraint violation....: 8.8817841970012523e-16 8.8817841970012523e-16
Variable bound violation: 0.0000000000000000e+00 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00
Overall NLP error.......: 1.7763568394002505e-15 1.7763568394002505e-15

Number of objective function evaluations = 3

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html 23/01/2025, 12:03
Page 3 of 5

and plot the solu!on

Number of objective gradient evaluations = 3
Number of equality constraint evaluations = 3
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 3
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 2
Total seconds in IPOPT = 0.022

EXIT: Optimal Solution Found.

plot(sol, size=(600, 450))

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html 23/01/2025, 12:03
Page 4 of 5

« Introduc!on Basic example (func!onal version) »
Powered by Documenter.jl and the Julia Programming Language.

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html 23/01/2025, 12:03
Page 5 of 5

 Tutorials / Goddard problem GitHub ⚙

Goddard problemGoddard problemGoddard problemGoddard problem

Introduc!onIntroduc!onIntroduc!onIntroduc!on
For this advanced example, we consider the well-known Goddard problem[1] [2] which models the ascent
of a rocket through the atmosphere, and we restrict here ourselves to ver!cal (one dimensional)
trajectories. The state variables are the al!tude , speed and mass of the rocket during the flight,
for a total dimension of 3. The rocket is subject to gravity , thrust and drag force (func!on of
speed and al!tude). The final !me is free, and the objec!ve is to reach a maximal al!tude with a
bounded fuel consump!on.

We thus want to solve the op!mal control problem in Mayer form

subject to the controlled dynamics

and subject to the control constraint and the state constraint . The ini!al state is fixed while only the final
mass is prescribed.

r v m

g u D

tf

r(t) →f max

=ṙ v, =v̇ −
m

T u − D(r, v)max
g, =ṁ −u,

u(t) ∈ [0, 1] v(t) ≤ vmax

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 1 of 17

The Hamiltonian is affine with respect to the control, so singular arcs may occur, as well as constrained arcs due to the path
constraint on the velocity (see below).

Direct methodDirect methodDirect methodDirect method
We import the OptimalControl.jl package:

We define the problem

 Nota beneNota beneNota beneNota bene

using OptimalControl

t0 = 0 # initial time
r0 = 1 # initial altitude
v0 = 0 # initial speed
m0 = 1 # initial mass
vmax = 0.1 # maximal authorized speed
mf = 0.6 # final mass to target

@def ocp begin # definition of the optimal control problem

 tf ∈ R, variable
 t ∈ [t0, tf], time
 x ∈ R³, state
 u ∈ R, control

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 2 of 17

 r = x₁
 v = x₂
 m = x₃

 x(t0) == [r0, v0, m0]
 m(tf) == mf, (1)
 0 ≤ u(t) ≤ 1
 r(t) ≥ r0
 0 ≤ v(t) ≤ vmax

 ẋ(t) == F0(x(t)) + u(t) * F1(x(t))

 r(tf) → max

end;

Dynamics
const Cd = 310
const Tmax = 3.5
const β = 500
const b = 2

F0(x) = begin
 r, v, m = x
 D = Cd * v^2 * exp(-β*(r - 1)) # Drag force
 return [v, -D/m - 1/r^2, 0]
end

F1(x) = begin

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 3 of 17

We then solve it

 r, v, m = x
 return [0, Tmax/m, -b*Tmax]
end

direct_sol = solve(ocp, grid_size=100)

Method = (:direct, :adnlp, :ipopt)
This is Ipopt version 3.14.14, running with linear solver MUMPS 5.6.2.

Number of nonzeros in equality constraint Jacobian...: 1904
Number of nonzeros in inequality constraint Jacobian.: 0
Number of nonzeros in Lagrangian Hessian.............: 1111

Total number of variables............................: 405
 variables with only lower bounds: 101
 variables with lower and upper bounds: 202
 variables with only upper bounds: 0
Total number of equality constraints.................: 304
Total number of inequality constraints...............: 0
 inequality constraints with only lower bounds: 0
 inequality constraints with lower and upper bounds: 0
 inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 0 -1.0100000e+00 9.00e-01 2.00e+00 0.0 0.00e+00 - 0.00e+00 0.00e+00 0
 1 -1.0090670e+00 8.99e-01 6.67e+01 1.3 1.67e+02 - 3.64e-03 5.93e-04f 1

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 4 of 17

 2 -1.0000907e+00 8.74e-01 1.83e+02 1.0 6.64e+00 - 3.63e-02 2.83e-02h 1
 3 -1.0023670e+00 8.37e-01 1.34e+04 1.0 6.91e+00 - 2.11e-01 4.19e-02f 1
 4 -1.0025025e+00 7.70e-01 9.45e+03 1.5 4.04e+00 - 1.00e+00 8.09e-02f 1
 5 -1.0033626e+00 7.16e-01 1.48e+05 2.3 3.56e+00 - 3.73e-01 6.94e-02f 1
 6 -1.0142503e+00 9.62e-03 3.99e+04 2.3 7.16e-01 - 4.49e-01 9.90e-01h 1
 7 -1.0101264e+00 4.21e-03 4.24e+05 1.8 5.32e-01 - 5.03e-01 9.90e-01h 1
 8 -1.0068427e+00 3.20e-04 2.87e+06 0.9 2.44e-01 - 6.73e-01 9.91e-01h 1
 9 -1.0067336e+00 2.64e-06 2.30e+07 0.1 7.39e-02 - 7.07e-01 1.00e+00f 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 10 -1.0067340e+00 1.13e-10 6.50e+05 -5.0 2.90e-04 - 9.89e-01 1.00e+00h 1
 11 -1.0067350e+00 2.81e-10 7.20e+03 -7.0 4.26e-04 - 9.89e-01 1.00e+00h 1
 12 -1.0078967e+00 9.07e-04 5.95e+03 -3.0 7.61e-01 - 6.55e-01 7.21e-01f 1
 13 -1.0081866e+00 3.67e-06 9.38e+03 -9.0 1.31e-02 - 8.60e-01 1.00e+00h 1
 14 -1.0091814e+00 1.57e-04 1.79e+02 -4.6 2.18e-01 - 1.00e+00 9.28e-01h 1
 15 -1.0105115e+00 2.55e-04 7.17e+02 -4.4 3.09e-01 - 1.00e+00 5.75e-01h 1
 16 -1.0114149e+00 2.34e-05 7.98e-04 -5.1 4.29e-02 - 1.00e+00 1.00e+00h 1
 17 -1.0122891e+00 7.90e-05 1.24e+02 -5.8 1.25e-01 - 9.98e-01 7.92e-01h 1
 18 -1.0125091e+00 2.83e-05 4.85e-04 -6.1 1.06e-01 - 1.00e+00 1.00e+00h 1
 19 -1.0125585e+00 1.21e-05 8.67e-05 -6.8 1.01e-01 - 1.00e+00 1.00e+00h 1
iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
 20 -1.0125675e+00 4.40e-06 3.01e-05 -7.3 9.80e-02 - 1.00e+00 1.00e+00h 1
 21 -1.0125707e+00 1.75e-06 3.70e-02 -8.0 1.14e-01 - 1.00e+00 9.91e-01h 1
 22 -1.0125714e+00 9.50e-07 4.98e-03 -8.6 1.37e-01 - 1.00e+00 9.94e-01h 1
 23 -1.0125716e+00 5.06e-08 6.91e-04 -9.3 2.57e-02 - 1.00e+00 9.96e-01h 1
 24 -1.0125716e+00 1.25e-10 1.08e-09 -11.0 2.15e-03 - 1.00e+00 1.00e+00h 1

Number of Iterations....: 24

 (scaled) (unscaled)

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 5 of 17

and plot the solu!on

Objective...............: -1.0125716188789131e+00 -1.0125716188789131e+00
Dual infeasibility......: 1.0759941386357690e-09 1.0759941386357690e-09
Constraint violation....: 1.5779155759787500e-11 1.2476877864209257e-10
Variable bound violation: 6.1594570555101313e-09 6.1594570555101313e-09
Complementarity.........: 1.5140175163848740e-11 1.5140175163848740e-11
Overall NLP error.......: 1.5779155759787500e-11 1.0759941386357690e-09

Number of objective function evaluations = 25
Number of objective gradient evaluations = 25
Number of equality constraint evaluations = 25
Number of inequality constraint evaluations = 0
Number of equality constraint Jacobian evaluations = 25
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 24
Total seconds in IPOPT = 1.467

EXIT: Optimal Solution Found.

plt = plot(direct_sol, size=(600, 600))

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 6 of 17

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 7 of 17

Indirect methodIndirect methodIndirect methodIndirect method
We first determine visually the structure of the op!mal solu!on which is composed of a bang arc with maximal control, followed by a
singular arc, then by a boundary arc and the final arc is with zero control. Note that the switching func!on vanishes along the singular
and boundary arcs.

t = direct_sol.times
x = direct_sol.state
u = direct_sol.control
p = direct_sol.costate

H1 = Lift(F1) # H1(x, p) = p' * F1(x)
φ(t) = H1(x(t), p(t)) # switching function
g(x) = vmax - x[2] # state constraint v ≤ vmax

u_plot = plot(t, u, label = "u(t)")
H1_plot = plot(t, φ, label = "H₁(x(t), p(t))")
g_plot = plot(t, g ∘ x, label = "g(x(t))")

plot(u_plot, H1_plot, g_plot, layout=(3,1), size=(600,450))

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 8 of 17

We are now in posi!on to solve the problem by an indirect shoo!ng method. We first define the four control laws in feedback form and
their associated flows. For this we need to compute some Lie deriva!ves, namely Poisson brackets of Hamiltonians (themselves
obtained as li#s to the cotangent bundle of vector fields), or deriva!ves of func!ons along a vector field. For instance, the control along
the minimal order singular arcs is obtained as the quo!ent

u =s −
H101

H001

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 9 of 17

of length three Poisson brackets:

where, for two Hamiltonians and ,

While the Lie deriva!ve of a func!on wrt. a vector field is simply obtained as

and is used to the compute the control along the boundary arc,

as well as the associated mul!plier for the order one state constraint on the velocity:

The Poisson bracket is also given by the Lie deriva!ve of along the Hamiltonian vector field of
, that is

H =001 {H , {H , H }}, H =0 0 1 101 {H , {H , H }}1 0 1

H G

{H, G} := (∇ H∣∇ G) −p x (∇ H∣∇ G).x p

f X

(X ⋅ f)(x) := f (x) ⋅′ X(x),

u (x) =b −(F ⋅0 g)(x)/(F ⋅1 g)(x),

μ(x, p) = H (x, p)/(F ⋅01 1 g)(x).

 Poisson bracket and Lie deriva!vePoisson bracket and Lie deriva!vePoisson bracket and Lie deriva!vePoisson bracket and Lie deriva!ve

{H, G} G X =H (∇ H, −∇ H)p x

H

{H, G} = X ⋅H G

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 10 of 17

which is the reason why we use the @Lie macro to compute Poisson brackets below.

With the help of the differen!al geometry primi!ves from CTBase.jl, these expressions are straigh%orwardly translated into Julia code:

Then, we define the shoo!ng func!on according to the op!mal structure we have determined, that is a concatena!on of four arcs.

Controls
u0 = 0 # off control
u1 = 1 # bang control

H0 = Lift(F0) # H0(x, p) = p' * F0(x)
H01 = @Lie { H0, H1 }
H001 = @Lie { H0, H01 }
H101 = @Lie { H1, H01 }
us(x, p) = -H001(x, p) / H101(x, p) # singular control

ub(x) = -(F0⋅g)(x) / (F1⋅g)(x) # boundary control
μ(x, p) = H01(x, p) / (F1⋅g)(x) # multiplier associated to the state constraint g

Flows
f0 = Flow(ocp, (x, p, tf) -> u0)
f1 = Flow(ocp, (x, p, tf) -> u1)
fs = Flow(ocp, (x, p, tf) -> us(x, p))
fb = Flow(ocp, (x, p, tf) -> ub(x), (x, u, tf) -> g(x), (x, p, tf) -> μ(x, p))

x0 = [r0, v0, m0] # initial state

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 11 of 17

To solve the problem by an indirect shoo!ng method, we then need a good ini!al guess, that is a good approxima!on of the ini!al
costate, the three switching !mes and the final !me.

function shoot!(s, p0, t1, t2, t3, tf)

 x1, p1 = f1(t0, x0, p0, t1)
 x2, p2 = fs(t1, x1, p1, t2)
 x3, p3 = fb(t2, x2, p2, t3)
 xf, pf = f0(t3, x3, p3, tf)

 s[1] = constraint(ocp, :eq1)(x0, xf, tf) - mf # final mass constraint (1)
 s[2:3] = pf[1:2] - [1, 0] # transversality conditions
 s[4] = H1(x1, p1) # H1 = H01 = 0
 s[5] = H01(x1, p1) # at the entrance of the singular arc
 s[6] = g(x2) # g = 0 when entering the boundary arc
 s[7] = H0(xf, pf) # since tf is free

end

η = 1e-3
t13 = t[abs.(φ.(t)) .≤ η]
t23 = t[0 .≤ (g ∘ x).(t) .≤ η]
p0 = p(t0)
t1 = min(t13...)
t2 = min(t23...)
t3 = max(t23...)
tf = t[end]

println("p0 = ", p0)

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 12 of 17

Finally, we can solve the shoo!ng equa!ons thanks to the MINPACK solver.

println("t1 = ", t1)
println("t2 = ", t2)
println("t3 = ", t3)
println("tf = ", tf)

Norm of the shooting function at solution
using LinearAlgebra: norm
s = similar(p0, 7)
shoot!(s, p0, t1, t2, t3, tf)
println("Norm of the shooting function: ‖s‖ = ", norm(s), "\n")

p0 = [3.9420913558122708, 0.14627140398405294, 0.05411785715966011]
t1 = 0.01817850265880542
t2 = 0.06059500886268473
t3 = 0.07877351152149016
tf = 0.20198336287561577
Norm of the shooting function: ‖s‖ = 3.249855374403743

using MINPACK # NLE solver

nle = (s, ξ) -> shoot!(s, ξ[1:3], ξ[4], ξ[5], ξ[6], ξ[7]) # auxiliary function
 # with aggregated inputs
ξ = [p0 ; t1 ; t2 ; t3 ; tf] # initial guess
indirect_sol = fsolve(nle, ξ) # resolution of S(ξ) = 0

we retrieve the costate solution together with the times

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 13 of 17

We plot the solu!on of the indirect solu!on (in red) over the solu!on of the direct method (in blue).

p0 = indirect_sol.x[1:3]
t1 = indirect_sol.x[4]
t2 = indirect_sol.x[5]
t3 = indirect_sol.x[6]
tf = indirect_sol.x[7]

println("p0 = ", p0)
println("t1 = ", t1)
println("t2 = ", t2)
println("t3 = ", t3)
println("tf = ", tf)

Norm of the shooting function at solution
s = similar(p0, 7)
shoot!(s, p0, t1, t2, t3, tf)
println("Norm of the shooting function: ‖s‖ = ", norm(s), "\n")

p0 = [3.945764658694955, 0.15039559623494775, 0.053712712941714945]
t1 = 0.023509684039930347
t2 = 0.059737380905787986
t3 = 0.1015713484236716
tf = 0.20204744057161464
Norm of the shooting function: ‖s‖ = 1.5775667383975246e-10

f = f1 * (t1, fs) * (t2, fb) * (t3, f0) # concatenation of the flows
flow_sol = f((t0, tf), x0, p0) # compute the solution: state, costate, control...

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 14 of 17

plot!(plt, flow_sol)

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 15 of 17

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 16 of 17

ReferencesReferencesReferencesReferences

1 R.H. Goddard. A Method of Reaching Extreme Al!tudes, volume 71(2) of Smithsonian Miscellaneous Collec!ons. Smithsonian ins!tu!on, City of Washington, 1919.

2 H. Seywald and E.M. Cliff. Goddard problem in presence of a dynamic pressure limit. Journal of Guidance, Control, and Dynamics, 16(4):776–781, 1993.

« Double integrator: !me minimisa!on Indirect simple shoo!ng »
Powered by Documenter.jl and the Julia Programming Language.

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 17 of 17

