N

N
N

HAL

open science

Solving optimal control problems with Julia

Jean-Baptiste Caillau, Olivier Cots, Joseph Gergaud, Pierre Martinon

» To cite this version:

Jean-Baptiste Caillau, Olivier Cots, Joseph Gergaud, Pierre Martinon. Solving optimal control prob-
lems with Julia. Julia and Optimization Days 2023, CNAM; CNRS - Groupe CALCUL, Oct 2023,

Paris, France. hal-04277441

HAL Id: hal-04277441
https://hal.science/hal-04277441v1
Submitted on 23 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04277441v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

— JuliaOpt2023 QGitHlb @ © A

Julia and Optimization Days 2023

Solving optimal control problems with Julia

Jean-Baptiste Caillau, Olivier Cots, Joseph Gergaud, Pierre Martinon, Sophia Sed

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01
Page 1 of 5

Tunversits | IN|\VERS|TE =22 /.
) COTEDAZUR".?." 2

What it's about

e Nonlinear optimal control of ODEs:

g(z(te), z(ts)) + /t " @ (t), ut)) dt — min

subject to

plus boundary, control and state constraints

e Our core interests: numerical & geometrical methods in control, applications

Where it comes from

e BOCOP: the optimal control solver

e HamPath: indirect and Hamiltonian pathfollowing

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html

23/01/2025, 12:01
Page 2 of 5

e Coupling direct and indirect solvers, examples

OptimalControl.jl

e Basic example: double integrator (1/3)
e Basic example: double integrator (2/3)
e Basic example: double integrator (3/3)
e Indirect simple shooting

e Advanced example: Goddard problem

Wrap up

o [X] High level modelling of optimal control problems
o [X] Efficient numerical resolution coupling direct and indirect methods

e [X] Collection of examples

Future

ct_repl

Additional solvers: direct shooting, collocation for BVP, Hamiltonian pathfollowing...

... and open to contributions!
CTProblems.jl

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01
Page 3 of 5

control-toolbox.org

e Open toolbox

e Collection of Julia Packages rooted at OptimalControl.|l

control-toolbox

The control-toolbox ecosystem gathers Julia packages for mathematical control and applications. It is an outcome
of a research initiative supported by the Centre Inria of Université Cote d’Azur and a sequel to previous developments,
notably Bocop and Hampath. See also: ct gallery. The root package is OptimalControl.jl which aims to provide
tools to solve optimal control problems by direct and indirect methods.

Documentation

doc OptimalControl.jl

Installation

See the installation page.

Partners
Tumveste UNIVERSITE 2o /.
J COTEDAZUR “:°- za—

Credits (not exhaustive!)

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01

Page 4 of 5

e DifferentialEquations.jl

e JuMP, InfiniteOpt.jl, ADNLPModels.|l
e Ipopt

 JuliaDiff (FowardDiff.jl, Zygote.jl)

e MLStylejl

o REPLMaker.jl

« JuliaCon2023

Powered by Documenter.jl and the Julia Programming Language.

https://control-toolbox.org/OptimalControl.jl/v0.8/juliaopt2023.html 23/01/2025, 12:01
Page 5 of 5

— Tutorials / Basic example QGitHb & & A

Basic example

Let us consider a wagon moving along a rail, whom acceleration can be controlled by a force u. We denote by £ = (a:l, .’132) the state of

; u(t)

.’El(t)

the wagon, that is its position x; and its velocity 5.

o

We assume that the mass is constant and unitary and that there is no friction. The dynamics we consider is given by
o1 (t) — wZ(t)a j:2(t) - u(t)n u(t) S Ra

which is simply the double integrator system. Les us consider a transfer starting at time £yp = 0 and ending at time £y = 1, for which

1 1
- / u?(t) dt
2 0

starting from the condition (0) = (—1, 0) and with the goal to reach the target (1) = (0, 0).

© Solution and details

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html 23/01/2025, 12:03
Page 1of 5

we want to minimise the transfer energy

See the page Double integrator: energy minimisation for the analytical solution and details about this problem.

First, we need to import the OptimalControl. jl package:

using OptimalControl

Then, we can define the problem

@def ocp begin
te[0, 1], time
X € R?, state
u € R, control

x(0) == [-1, 0]
x(1) == [0, 0]
x(t) == [x2(t), u(t)]
J(0.5u(t)A2) > min
end
Solve it

sol = solve(ocp)

Method = (:direct, :adnlp, :ipopt)
This is Ipopt version 3.14.14, running with linear solver MUMPS 5.6.2.

Number of nonzeros in equality constraint Jacobian...: 1205
Number of nonzeros in inequality constraint Jacobian.: 0
https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html 23/01/2025, 12:03

Page 2 of 5

Number of nonzeros in Lagrangian Hessian.............:

Total number of variables....vieiiiiiiiiiiiennnennnns
bounds:
bounds:
bounds:
Total number of equality constraints.................:
Total number of inequality constraints...............:
bounds:
bounds:
bounds:

variables with only lower
variables with lower and upper
variables with only upper

inequality constraints with only lower
inequality constraints with lower and upper
inequality constraints with only upper

iter objective inf_pr inf_du lg(mu) ||d]]|

0 1.0000000e-01 1.10e+00 1.92e-14 0.0 0.00e+00
1 -5.0000000e-03 1.81e-01 1.78e-15 -11.0 6.04e+00
2 6.0023829e+00 8.88e-16 1.78e-15 -11.0 6.01e+00

Number of Iterations....: 2
(scaled)

Objective...eieeeneneen.s 6.0023829460295719e+00
Dual infeasibility......: 1.7763568394002505e-15
Constraint violation....: 8.8817841970012523e-16
Variable bound violation: 0.0000000000000000e+00
Complementarity.........: 0.0000000000000000e+00
Overall NLP error.......: 1.7763568394002505e-15

Number of objective function evaluations

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html

O O 0 Fr O

101

404

o o

305

ol ol oMol

lg(rg) alpha_du alpha_pr

- 0.00e+00 0.00e+00

- 1.00e+00 1.00e+00h 1
- 1.00e+00 1.00e+00h 1

(unscaled)

.0023829460295719e+00
.7763568394002505e-15
.8817841970012523e-16
.0000000000000000e+00
.0000000000000000e+00
.7763568394002505e-15

23/01/2025, 12:03
Page 3 of 5

Number
Number
Number
Number
Number
Number

of
of
of
of
of
of

objective gradient evaluations

equality constraint evaluations

inequality constraint evaluations

equality constraint Jacobian evaluations
inequality constraint Jacobian evaluations
Lagrangian Hessian evaluations

Total seconds in IPOPT

EXIT: Optimal Solution Found.

and plot the solution

plot(sol, size=(600, 450))

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html

O N O WO W W

.022

23/01/2025, 12:03
Page 4 of 5

0.00
-0.25
—0.50
-0.75
-1.00

1.5
1.0
0.5
0.0

5.0
2.5
0.0
-2.5
-5.0

. 13.0 | —
' 125 | pxa
12.0
115
1 1 1 1 11.0 [l]]]]
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
t t
. 5.0 %z
2.5
0.0
-2.5
]]] -35.0]]]]
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
t t
i u
i]]]]
0.00 0.25 0.50 0.75 1.00

« Introduction

Powered by Documenter.jl and the Julia Programming Language.

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-basic-example.html

Basic example (functional version) »

23/01/2025, 12:03
Page 5 of 5

— Tutorials / Goddard problem QGitHub @& & A

Goddard problem

Introduction

For this advanced example, we consider the well-known Goddard problem[l] (2] \which models the ascent
of a rocket through the atmosphere, and we restrict here ourselves to vertical (one dimensional)
trajectories. The state variables are the altitude 7, speed v and mass m of the rocket during the flight,
for a total dimension of 3. The rocket is subject to gravity g, thrust u and drag force D (function of
speed and altitude). The final time £ ¢ is free, and the objective is to reach a maximal altitude with a
bounded fuel consumption.

We thus want to solve the optimal control problem in Mayer form

r(tf) — max

subject to the controlled dynamics

'r':’U, U: _g7 m:_u7

and subject to the control constraint u(t) € [0, 1] and the state constraint v(t) < vyay. The initial state is fixed while only the final
mass is prescribed.

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 1 of 17

© Nota bene

The Hamiltonian is affine with respect to the control, so singular arcs may occur, as well as constrained arcs due to the path
constraint on the velocity (see below).

Direct method

We import the OptimalControl. jl package:
using OptimalControl

We define the problem

t0 =0 # initial time

0 = 1 # initial altitude

vo = 0 # initial speed

mo =1 # initial mass

vmax = 0.1 # maximal authorized speed
mf = 0.6 # final mass to target

@def ocp begin # definition of the optimal control problem

tf € R, variable

t e[tO, tf], time
X € R3, state

u € R, control

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 2 of 17

T = X1

X2

X3

x(t0) == [r0, vO, mO]
m(tf) == mf, (1)
0 <u(t) =1

r(t) = 10

0 < v(t) = vmax

x(t) == FO(x(t)) + u(t) = F1(x(t))
r(tf) > max
end;

Dynamics

const Cd = 310
const Tmax = 3.5
const B = 500
const b = 2

FO(x) = begin
Ty V, M = X
D =Cd % v*2 % exp(-B*(r - 1)) # Drag force
return [v, -D/m - 1/r*2, 0]

end

F1(x) = begin

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 3 of 17

Ty, V, M = X
return [0, Tmax/m, -bxTmax]
end

We then solve it

direct_sol = solve(ocp, grid_size=100)

Method = (:direct, :adnlp, :ipopt)

This is Ipopt version 3.14.14, running with linear solver

Number of nonzeros in equality constraint Jacobian...:
Number of nonzeros in inequality constraint Jacobian.:
Number of nonzeros in Lagrangian Hessian.............:

Total number of variables.....ieeiiiiiiieiiiennneennns
bounds:
bounds:
bounds:
Total number of equality constraints.................:
Total number of inequality constraints...............:
bounds:
bounds:
bounds:

variables with only lower
variables with lower and upper
variables with only upper

inequality constraints with only Llower
inequality constraints with lower and upper
inequality constraints with only upper

iter objective inf_pr inf_du lg(mu) ||d]]|

0 -1.0100000e+00 9.00e-01 2.00e+00 0.0 0.00e+00
1 -1.0090670e+00 8.99e-01 6.67e+01 1.3 1.67e+02

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

MUMPS 5.6.2.

1904
0
1111

405
101
202

0
304

ol ol ool

lg(rg) alpha_du alpha_pr
0.00e+00 0.00e+00
3.64e-03 5.93e-04f 1

23/01/2025, 12:03
Page 4 of 17

O 00 N O 1 WD

iter
10
11
12
13
14
15
16
17
18
19
iter
20
21
22
23
24

Number of Iterations

.0000907e+00
.0023670e+00
.0025025e+00
.0033626e+00
.0142503e+00
.0101264e+00
.0068427e+00
.0067336e+00

objective

.0067340e+00
.0067350e+00
.0078967e+00
.0081866e+00
.0091814e+00
.0105115e+00
.0114149e+00
.0122891e+00
.0125091e+00
.0125585e+00

objective

.0125675e+00
.0125707e+00
.0125714e+00
.0125716e+00
.0125716e+00

.74e-01
.37e-01
.70e-01
.16e-01
.62e-03
.21e-03
.20e-04
.64e-06
inf_pr

.13e-10
.81e-10
.07e-04
.67e-06
.57e-04
.55e-04
.34e-05
.90e-05
.83e-05
.21e-05
inf_pr

4.40e-06
1.75e-06
9.50e-07
5.06e-08
1.25e-10

N N B O N NN 00

P NNNDNNPEPEP WO DN P

1.83e+02 1.0
1.34e+04 1.0
9.45e+03 1.5
1.48e+05 2.3
3.99e+04 2.3
4.24e+05 1.8
2.87e+06 0.9
2.30e+07 0.1
inf_du lg(mu)
6.50e+05 -5.0
7.20e+03 -7.0
5.95e+03 -3.0
9.38e+03 -9.0
1.79e+02 -4.6
7.17e+02 -4.4
7.98e-04 -5.1
1.24e+02 -5.8
4.85e-04 -6.1
8.67e-05 -6.8
inf_du lg(mu)
3.01le-05 -7.3
3.70e-02 -8.0
4.98e-03 -8.6
6.91e-04 -9.3
1.08e-09 -11.0
(scaled)

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

.64e+00
.91e+00
.04e+00
.56e+00
.16e-01
.32e-01
.44e-01
.39e-02
| [d]]

.90e-04
.26e-04
.61le-01
.31e-02
.18e-01
.09e-01
.29e-02
.25e-01
.06e-01
.01e-01
| [d]]

9.80e-02
1.14e-01
1.37e-01
2.57e-02
2.15e-03

NN O N W RO o

R R R DN WNRENDAN

lg(rg)

lg(rg)

.63e-02
.11e-01
.00e+00
.73e-01
.49e-01
.03e-01
.73e-01
7.07e-01
alpha_du
.89e-01
.89e-01
.55e-01
.60e-01
.00e+00
.00e+00
.00e+00
.98e-01
.00e+00
.00e+00
alpha_du
1.00e+00
1.00e+00
1.00e+00
1.00e+00
1.00e+00

o OBk N E N W

PP O R R R OO © O

.83e-02h
.19e-02f
.09e-02f
.94e-02f
.90e-01h
.90e-01h
.91e-01h
1.00e+00f
alpha_pr

1.00e+00h
.00e+00h
.21e-01f
.00e+00h
.28e-01h
.75e-01h
.00e+00h
.92e-01h
.00e+00h
.00e+00h
alpha_pr

1.00e+00h
9.91e-01h
9.94e-01h
9.96e-01h
1.00e+00h

O © O O 0 &N

N N N ¢ N> I =N RSN

(unscaled)

‘—l
P PR R R RPRRPRRERRPRRLRORLRRPRRLRRERERRLRRR

—
(72}

N N = N =N =N

23/01/2025, 12:03
Page 5 of 17

Object

Dual infeasibility
Constraint violation
Variable bound violation:
Complementarity
Overall NLP error

Number
Number
Number
Number
Number
Number
Number

ive

of
of
of
of
of
of
of

N e

EXIT: Optimal Solution Found.

and plot the solution

plt =

.0125716188789131e+00
.0759941386357690e-09
.5779155759787500e-11
.1594570555101313e-09
.5140175163848740e-11
.5779155759787500e-11

objective function evaluations

objective gradient evaluations

equality constraint evaluations
inequality constraint evaluations
equality constraint Jacobian evaluations
inequality constraint Jacobian evaluations
Lagrangian Hessian evaluations
Total seconds in IPOPT

plot(direct_sol, size=(600, 600))

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

N

.0125716188789131e+00
.0759941386357690e-09
.2476877864209257e-10
.1594570555101313e-09
.5140175163848740e-11
.0759941386357690e-09

25
25
25

25

24
1.467

23/01/2025, 12:03
Page 6 of 17

4
1.011
—X —pPX
1.008 : 3 P
1.005 2
1.002
]]]] 1 b | ; i
0.00 005 0.10 0.15 0.20 000 005 0.10 0.15 0.20
t t
0.100 0.15
0.075 —x2 0.10 —pxa
0.050
0.025 0.05
0.000 . . . 0.00 L . . .
0.00 005 010 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
1.0 0.080
0.9 —x3 0.075 H—Pxs
0.070
0.8 0.065
0.7 0.060
0.6 = 1 L ! 0.055 1 1 1 |
0.00 005 010 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
1.00
u
0.75 F
0.50 F
0.25 |
0.00 £ . | | |
0.00 0.05 0.10 0.15 0.20
t

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

23/01/2025, 12:03
Page 7 of 17

Indirect method

We first determine visually the structure of the optimal solution which is composed of a bang arc with maximal control, followed by a
singular arc, then by a boundary arc and the final arc is with zero control. Note that the switching function vanishes along the singular
and boundary arcs.

t = direct_sol.times

x = direct_sol.state

u = direct_sol.control

p = direct_sol.costate

H1 = Lift(F1) # H1(x, p) = p' * F1(x)
o(t) = HL(x(t), p(t)) # switching function

g(x) = vmax - x[2] # state constraint v < vmax
u_plot = plot(t, u, label = "u(t)")

Hi_plot = plot(t, o, label = "Hi(x(t), p(t))")
g_plot = plot(t, g o x, label = "g(x(t))")

plot(u_plot, Hi_plot, g_plot, layout=(3,1), size=(600,450))

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 8 of 17

1.00

u(t)

0.75
0.50
0.25

0.00 £ . | | :
0.00 0.05 0.10 0.15 0.20

ool Ha(x(1), p(t))
-0.1
-0.2
-0.3
-04
—-0.5

0.00 0.05 0.10 0.15 0.20

0.100
0.075
0.050 -

0.025

— 9(x(t))

0.000 = ! : I
0.00 0.05 0.10 0.15 0.20

We are now in position to solve the problem by an indirect shooting method. We first define the four control laws in feedback form and
their associated flows. For this we need to compute some Lie derivatives, namely Poisson brackets of Hamiltonians (themselves
obtained as lifts to the cotangent bundle of vector fields), or derivatives of functions along a vector field. For instance, the control along
the minimal order singular arcs is obtained as the quotient

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 9 of 17

of length three Poisson brackets:
Hyoy = {Ho, {Ho, H1}}, Hioo = {H1,{Ho, H1}}
where, for two Hamiltonians H and G,
{H,G} := (V,H|V,G) — (V,H|V,G).

While the Lie derivative of a function f wrt. a vector field X is simply obtained as

(X - f)(z) = f(z) - X (),
and is used to the compute the control along the boundary arc,

wp(z) = —(Fo - 9)(z)/(F1 - 9) (=),

as well as the associated multiplier for the order one state constraint on the velocity:

p(z,p) = Hoi(z,p)/(F1 - g)(z).

© Poisson bracket and Lie derivative

The Poisson bracket { H, G} is also given by the Lie derivative of G along the Hamiltonian vector field X = (V,H, —V,H) of
H, thatis

(H,G} =Xz -G

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 10 of 17

which is the reason why we use the @Lie macro to compute Poisson brackets below.

With the help of the differential geometry primitives from CTBase.|l, these expressions are straightforwardly translated into Julia code:

Controls

uo = 0 # off control

ul = 1 # bang control

HO = Lift(FO) # HO(x, p) = p' * FO(X)
HO1 = @Lie { HO, H1 }

HOO1 = @Lie { HO, HO1 }

H101 = @Lie { H1, HO1 }

us(x, p) = -HEO1(x, p) / H101(x, p) # singular control

H

ub(x) = -(FO-g)(x) / (F1-g)(x)

boundary control

M(x, p) = HOL(x, p) / (F1-g)(x) # multiplier associated to the state constraint g
Flows

fo = Flow(ocp, (x, p, tf) -> u0)

f1 = Flow(ocp, (x, p, tf) -> ul)

fs = Flow(ocp, (x, p, tf) -> us(x, p))

fb = FlOW(OCp, (Xs P, tf) = Ub(X), (Xs u, tf) -> g(x), (Xa P, tf) == “(Xs p))

Then, we define the shooting function according to the optimal structure we have determined, that is a concatenation of four arcs.

x0 = [r0, v, mO0] # initial state

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 11 of 17

function shoot!(s, p0, t1, t2, t3, tf)

x1, pl
X2, p2
x3, p3
xf, pf

s[1] =
s[2:3]

s[5]
s[6]
s[7]

end

f1(t0, x0, po,
fs(t1, x1, pl,
fb(t2, x2, p2,
f0(t3, x3, p3,

constraint(ocp,
= pf[1:2] - [1,
H1(x1, p1)
HO1(x1, p1)
g(x2)

HO(xf, pf)

t1)
t2)
t3)
tf)

:eql) (x0, xf, tf) - mf

0]

FH O FH O HF H HF R

final mass constraint (1)
transversality conditions

H1 = HO1 = 0O

at the entrance of the singular arc
g = 0 when entering the boundary arc
since tf is free

To solve the problem by an indirect shooting method, we then need a good initial guess, that is a good approximation of the initial
costate, the three switching times and the final time.

n = 1e-3
t13

t23 = t[0 .< (g o x).(t) .<
pO = p(t0)

t1 = min(t13...)

12 = min(t23...)

t3 = max(t23...)

tf = t[end]

t[abs.(9.(t)) .= n]

println("p0 = ", p0)

n |

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

23/01/2025, 12:03
Page 12 of 17

println("t1

II, tl)

println("t2 = ", t2)

println("t3
println("tf

Norm of the
using LinearAlgebra: norm
similar(p@, 7)
shoot! (s, p0O, t1, t2, t3, tf)

println("Norm of the shooting function: |s| =

S =

po =
t1 =
t2 =
t3 =
tf =
Norm

||’ t3)
", tf)

shooting function at solution

, horm(s), "\n")

[3.9420913558122708, 0.14627140398405294, 0.05411785715966011]

0.01817850265880542
0.06059500886268473
0.07877351152149016
0.20198336287561577

of the shooting function: |s|| = 3.249855374403743

Finally, we can solve the shooting equations thanks to the MINPACK solver.

using MINPACK

nle = (s, £) -> shoot!(s, g[1:3], £[4], £[5], £[6], E[7])

E=1[p0 ; t1 5 t2 3 t3 5 tf]
indirect_sol = fsolve(nle, &)

we retrieve the costate solution together with the times

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

NLE solver

auxiliary function

with aggregated inputs
initial guess

resolution of S(§) = 0O

23/01/2025, 12:03
Page 13 of 17

pO = indirect_sol.x[1:3]
t1 = indirect_sol.x[4]
t2 = indirect_sol.x[5]
t3 = indirect_sol.x[6]
tf = indirect_sol.x[7]
println("p0 = ", p0)
println("t1 = ", t1)
println("t2 = ", t2)
println("t3 = ", t3)

println("tf = ", tf)

Norm of the shooting function at solution

s = similar(p0, 7)

shoot! (s, p0O, t1, t2, t3, tf)

println("Norm of the shooting function: |s|| = ", norm(s), "\n")

p0 = [3.945764658694955, 0.15039559623494775, 0.053712712941714945]
tl1 = 0.023509684039930347

t2 = 0.059737380905787986

t3 = 0.1015713484236716

tf = 0.20204744057161464

Norm of the shooting function: |[s|| = 1.5775667383975246e-10

We plot the solution of the indirect solution (in red) over the solution of the direct method (in blue).

f = f1 % (11, fs) %= (t2, fb) * (t3, f0) # concatenation of the flows

flow_

sol = f((to, tf), x0, po) # compute the solution: state, costate, control...

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

23/01/2025, 12:03
Page 14 of 17

plot!(plt, flow_sol)

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 15 of 17

4
1.011
— X1 —pPX1
1.008 H—xu 3 —pxa
1.005 2
1.002
1 1 1 1 1 R 1 \ '
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
0.100 0.15
0.075 —X2 —px2
0.050 —x 0.10 —px2
0.025 0.05
0.000 . . L 0.00 &= ! ! !
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
1.0 0.080
0.9 —X 0.075 —pX3/
0.8 — X3 0.070 —PXs3
. 0.065
0.7 0.060 /
0.6I 1 ! ! 0055 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t t
1.00
u
0.75 u
0.50 |
0.25 F
0.00 £ ! . . |
0.00 0.05 0.10 0.15 0.20
t

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html

23/01/2025, 12:03
Page 16 of 17

References

. R.H. Goddard. A Method of Reaching Extreme Altitudes, volume 71(2) of Smithsonian Miscellaneous Collections. Smithsonian institution, City of Washington, 1919.

o H. Seywald and E.M. Cliff. Goddard problem in presence of a dynamic pressure limit. Journal of Guidance, Control, and Dynamics, 16(4):776-781, 1993.

« Double integrator: time minimisation Indirect simple shooting »

Powered by Documenter.jl and the Julia Programming Language.

https://control-toolbox.org/OptimalControl.jl/v0.8/tutorial-goddard.html 23/01/2025, 12:03
Page 17 of 17

